JP5158678B2 - Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery Download PDF

Info

Publication number
JP5158678B2
JP5158678B2 JP2007214272A JP2007214272A JP5158678B2 JP 5158678 B2 JP5158678 B2 JP 5158678B2 JP 2007214272 A JP2007214272 A JP 2007214272A JP 2007214272 A JP2007214272 A JP 2007214272A JP 5158678 B2 JP5158678 B2 JP 5158678B2
Authority
JP
Japan
Prior art keywords
separator
heat
fine particles
resistant
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007214272A
Other languages
Japanese (ja)
Other versions
JP2008123996A (en
Inventor
秀昭 片山
敏浩 阿部
吉宣 佐藤
康好 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2007214272A priority Critical patent/JP5158678B2/en
Publication of JP2008123996A publication Critical patent/JP2008123996A/en
Application granted granted Critical
Publication of JP5158678B2 publication Critical patent/JP5158678B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、高温時の寸法安定性に優れた非水電解質電池用セパレータと、該セパレータを有し、高温環境下に置かれても安全な非水電解質電池に関するものである。   The present invention relates to a separator for a non-aqueous electrolyte battery excellent in dimensional stability at high temperatures, and a non-aqueous electrolyte battery that has the separator and is safe even when placed in a high-temperature environment.

リチウムイオン電池などの非水電解質電池は、エネルギー密度が高いという特徴から、携帯電話やノート型パーソナルコンピューターなどの携帯機器の電源として広く用いられている。携帯機器の高性能化に伴って素子の高容量化が更に進む傾向にあり、安全性の確保が重要となっている。   Non-aqueous electrolyte batteries such as lithium ion batteries are widely used as power sources for portable devices such as mobile phones and notebook personal computers because of their high energy density. As the performance of mobile devices increases, the capacity of elements tends to increase further, and it is important to ensure safety.

現行の非水電解質電池では、正極と負極の間に介在させるセパレータとして、例えば厚みが20〜30μm程度のポリオレフィン系の多孔質フィルムが使用されている。また、セパレータの素材としては、電池の熱暴走温度以下でセパレータの構成樹脂を溶融させて空孔を閉塞させ、これにより電池の内部抵抗を上昇させて短絡の際などに電池の安全性を向上させる所謂シャットダウン効果を確保するため、融点の低いポリエチレン(PE)が適用されることがある。   In the current nonaqueous electrolyte battery, as a separator interposed between the positive electrode and the negative electrode, for example, a polyolefin-based porous film having a thickness of about 20 to 30 μm is used. In addition, as separator material, the constituent resin of the separator is melted below the thermal runaway temperature of the battery to close the pores, thereby increasing the internal resistance of the battery and improving the safety of the battery in the event of a short circuit. In order to ensure the so-called shutdown effect, polyethylene (PE) having a low melting point may be applied.

ところで、こうしたセパレータとしては、例えば、多孔質化と強度向上のために一軸延伸または二軸延伸したフィルムが用いられている。このようなセパレータは単独で存在する膜として供給されるため、作業性などの点で一定の強度が要求され、これを前記延伸によって確保している。そのため、前記のセパレータには延伸によるひずみが生じており、これが高温に曝されると、残留応力によって収縮が起こるという問題がある。収縮温度は、融点、すなわちシャットダウン温度と非常に近いところに存在する。このため、ポリオレフィン系の多孔質フィルムセパレータを使用するときには、充電異常時などに電池の温度がシャットダウン温度に達すると、電流を直ちに減少させて電池の温度上昇を防止しなければならない。空孔が十分に閉塞せず電流を直ちに減少できなかった場合には、電池の温度は容易にセパレータの収縮温度にまで上昇するため、内部短絡による発火の危険性があるからである。   By the way, as such a separator, for example, a uniaxially stretched or biaxially stretched film is used for increasing the porosity and improving the strength. Since such a separator is supplied as a single film, a certain strength is required in terms of workability and the like, and this is ensured by the stretching. Therefore, the separator is strained by stretching, and there is a problem that when this is exposed to high temperature, shrinkage occurs due to residual stress. The shrinkage temperature is very close to the melting point, ie the shutdown temperature. For this reason, when a polyolefin-based porous film separator is used, when the battery temperature reaches the shutdown temperature in the case of abnormal charging, the current must be immediately reduced to prevent the battery temperature from rising. This is because if the pores are not sufficiently closed and the current cannot be reduced immediately, the battery temperature easily rises to the contraction temperature of the separator, and there is a risk of ignition due to an internal short circuit.

前記のようなセパレータの熱収縮に伴う電池の安全性や、各種原因による内部短絡に対する信頼性を高めるべく、本発明者らは、シャットダウン機能を確保するための樹脂を主体として含む第1セパレータ層と、耐熱温度が150℃以上のフィラーを主体として含む第2セパレータ層とを有する多孔質の電気化学素子用セパレータを開発し、既に特許出願を済ませている(特許文献1)。   In order to improve the safety of the battery due to the thermal contraction of the separator as described above and the reliability against the internal short circuit due to various causes, the present inventors mainly include a first separator layer containing a resin for ensuring a shutdown function. And a porous separator for electrochemical devices having a second separator layer mainly containing a filler having a heat resistant temperature of 150 ° C. or more has been developed and a patent application has already been filed (Patent Document 1).

特許文献1に開示のセパレータにおいては、前記第2セパレータ層がセパレータ本来の機能、主に正極と負極との直接の接触による短絡を防止する機能を確保するための層であり、第2セパレータ層の有する耐熱温度が150℃以上のフィラーによって、前記の機能を確保することに加えて、セパレータの熱収縮も防止している。そして、第2セパレータ層では保持し得ないシャットダウン機能を、前記の第1セパレータ層を併設することで確保している。   In the separator disclosed in Patent Document 1, the second separator layer is a layer for securing the original function of the separator, mainly a function of preventing a short circuit due to direct contact between the positive electrode and the negative electrode. In addition to ensuring the above functions, the filler has a heat resistant temperature of 150 ° C. or higher, and prevents thermal contraction of the separator. A shutdown function that cannot be maintained by the second separator layer is ensured by providing the first separator layer.

国際公開第2007/066768号公報International Publication No. 2007/066768

特許文献1に開示の電気化学素子用セパレータを用いて構成した非水電解質電池であれば、セパレータの熱収縮による問題を良好に解消でき、しかも優れたシャットダウン機能も確保できる。   If it is a nonaqueous electrolyte battery comprised using the separator for electrochemical elements disclosed by patent document 1, the problem by the thermal contraction of a separator can be solved favorably, and also the outstanding shutdown function can be ensured.

しかし、その一方で、従来から使用されているポリオレフィンなどの耐熱性の比較的低い熱可塑性樹脂で構成された多孔質フィルム製のセパレータを使用しつつ、前記の熱収縮による問題を解消する技術の開発に対する要望もある。   However, on the other hand, while using a separator made of a porous film composed of a thermoplastic resin having a relatively low heat resistance such as a polyolefin conventionally used, a technique for solving the above-mentioned problem caused by heat shrinkage. There are also requests for development.

本発明は前記事情に鑑みてなされたものであり、その目的は、異常発熱した際の安全性に優れた非水電解質電池を構成し得るセパレータと、該セパレータを有する非水電解質電池を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a separator that can constitute a non-aqueous electrolyte battery that is excellent in safety when abnormal heat is generated, and a non-aqueous electrolyte battery having the separator. There is.

前記目的を達成し得た本発明の非水電解質電池用セパレータは、熱可塑性樹脂を主成分とし、かつ150℃における熱収縮率が10%以上の樹脂多孔質膜と、前記樹脂多孔質膜表面に形成されてなり、耐熱性微粒子を70体積%以上含有する耐熱多孔質層とを有することを特徴とするものである。   The separator for a non-aqueous electrolyte battery of the present invention capable of achieving the above object is a resin porous membrane having a thermoplastic resin as a main component and a thermal shrinkage rate at 150 ° C. of 10% or more, and the surface of the resin porous membrane And a heat-resistant porous layer containing 70% by volume or more of heat-resistant fine particles.

また、本発明の非水電解質電池は、本発明の非水電解質電池用セパレータを有するものである。   The nonaqueous electrolyte battery of the present invention has the separator for nonaqueous electrolyte batteries of the present invention.

本発明によれば、異常発熱した際の安全性に優れた非水電解質電池を構成し得るセパレータと、該セパレータを有する非水電解質電池を提供することができる。すなわち、本発明の非水電解質電池は、異常発熱した際の安全性が優れている。   ADVANTAGE OF THE INVENTION According to this invention, the separator which can comprise the nonaqueous electrolyte battery excellent in the safety | security at the time of abnormal heat generation, and the nonaqueous electrolyte battery which has this separator can be provided. That is, the nonaqueous electrolyte battery of the present invention is excellent in safety when abnormal heat is generated.

本発明の非水電解質電池用セパレータ(以下、単に「セパレータ」という場合がある)は、熱可塑性樹脂を主成分とし、かつ150℃における熱収縮率が10%以上の樹脂多孔質膜(以下、単に「樹脂多孔質膜」という場合がある)と、耐熱性微粒子を70体積%以上含有する耐熱多孔質層(以下、単に「耐熱多孔質層」という場合がある)とを有することを特徴としている。   The separator for a nonaqueous electrolyte battery of the present invention (hereinafter sometimes simply referred to as “separator”) is a resin porous membrane (hereinafter referred to as “the separator”) having a thermoplastic resin as a main component and a thermal shrinkage rate at 150 ° C. of 10% or more. And a heat-resistant porous layer containing 70% by volume or more of heat-resistant fine particles (hereinafter sometimes simply referred to as “heat-resistant porous layer”). Yes.

本発明のセパレータのうち、樹脂多孔質膜は、セパレータ本来の機能、すなわち、主に正極と負極との直接の接触による短絡を防止する機能を有するものであり、また、シャットダウン機能を確保するための構成要素でもある。すなわち、電池の温度が樹脂多孔質膜を構成する熱可塑性樹脂の融点以上に達したときには、かかる熱可塑性樹脂が溶融してセパレータの空孔を塞ぎ、電気化学反応の進行を抑制するシャットダウンを生じる。   Among the separators of the present invention, the resin porous membrane has the original function of the separator, that is, the function of preventing a short circuit mainly due to direct contact between the positive electrode and the negative electrode, and to ensure a shutdown function. It is also a component of That is, when the battery temperature reaches or exceeds the melting point of the thermoplastic resin constituting the porous resin membrane, the thermoplastic resin melts and closes the pores of the separator, causing a shutdown that suppresses the progress of the electrochemical reaction. .

しかしながら、樹脂多孔質膜は、150℃における熱収縮率が10%以上であり、従来公知のポリオレフィン製多孔質フィルムセパレータと同様に、高温下では熱収縮し得る。   However, the resin porous membrane has a heat shrinkage rate of 10% or more at 150 ° C., and can heat shrink at high temperatures similarly to the conventionally known polyolefin porous film separator.

そこで、本発明のセパレータでは、耐熱性微粒子を70体積%以上含有する耐熱多孔質層を、樹脂多孔質膜の表面に形成して、セパレータ全体の熱収縮を抑制している。耐熱多孔質層では、耐熱性微粒子の量が多くこれらが密に存在しているため、喩え高温下において樹脂多孔質膜が収縮しようとしても、耐熱多孔質層中の耐熱性微粒子同士が衝突することでセパレータ全体の収縮を抑制すると考えられる。   Therefore, in the separator of the present invention, a heat-resistant porous layer containing 70% by volume or more of heat-resistant fine particles is formed on the surface of the resin porous film to suppress thermal shrinkage of the entire separator. In the heat-resistant porous layer, since the amount of heat-resistant fine particles is large and they are densely present, even if the resin porous film shrinks at high temperatures, the heat-resistant fine particles in the heat-resistant porous layer collide with each other. This is considered to suppress the shrinkage of the entire separator.

このように、本発明では、熱可塑性樹脂を主成分とする樹脂多孔質膜と耐熱多孔質層とでセパレータを構成し、樹脂多孔質膜により良好なシャットダウン機能を確保しつつ、耐熱多孔質層を、セパレータの形状を保持する骨格として機能させることで、熱収縮の抑制も達成している。   Thus, in the present invention, a separator is constituted by a resin porous membrane mainly composed of a thermoplastic resin and a heat resistant porous layer, and the heat resistant porous layer is secured while ensuring a good shutdown function by the resin porous membrane. Is made to function as a skeleton that retains the shape of the separator, thereby suppressing thermal shrinkage.

本発明のセパレータを構成する樹脂多孔質膜は、電気絶縁性を有しており、電気化学的に安定で、更に後で詳述する電解液や、セパレータ製造の際に使用する溶媒(これも後述する)に安定であれば、その材質である熱可塑性樹脂について特に制限は無いが、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体などのポリオレフィン;ポリエチレンテレフタレートや共重合ポリエステルなどのポリエステル;などで構成された多孔質膜であることが好ましい。なお、本発明のセパレータは、100〜140℃において、その孔が閉塞する性質(すなわちシャットダウン機能)を有していることが好ましい。そのため、樹脂多孔質膜は、融点、すなわち、JIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度が、100〜140℃の熱可塑性樹脂を素材とするものがより好ましく、ポリエチレンを主成分とする単層の多孔質膜であるか、ポリエチレンとポリプロピレンとを2〜5層積層した積層多孔質膜などの、ポリエチレンを主成分とする多孔質膜を構成要素とする積層多孔質膜であることが更に好ましい。   The porous resin membrane constituting the separator of the present invention has an electrical insulating property, is electrochemically stable, and further contains an electrolyte solution, which will be described in detail later, and a solvent used in the production of the separator (also this As long as it is stable (described later), there are no particular restrictions on the thermoplastic resin, but it is composed of polyolefins such as polyethylene, polypropylene, and ethylene-propylene copolymers; polyesters such as polyethylene terephthalate and copolyesters; It is preferable that the porous film be made. In addition, it is preferable that the separator of this invention has the property (namely, shutdown function) which the hole obstruct | occludes in 100-140 degreeC. Therefore, the resin porous membrane is made of a thermoplastic resin having a melting point, that is, a melting temperature measured using a differential scanning calorimeter (DSC) of 100 to 140 ° C., in accordance with JIS K 7121. More preferably, it is a single layer porous film mainly composed of polyethylene or a porous film composed mainly of polyethylene, such as a laminated porous film obtained by laminating 2 to 5 layers of polyethylene and polypropylene. More preferably, it is a laminated porous film as an element.

樹脂多孔質膜としては、例えば、従来公知の非水電解質電池などで使用されている前記例示の熱可塑性樹脂で構成された多孔質膜、すなわち、溶剤抽出法、乾式または湿式延伸法などにより作製されたイオン透過性の多孔質膜を用いることができる。   As the resin porous membrane, for example, a porous membrane made of the above-mentioned exemplified thermoplastic resin used in a conventionally known non-aqueous electrolyte battery or the like, that is, produced by a solvent extraction method, a dry or wet stretching method, etc. An ion-permeable porous membrane can be used.

なお、樹脂多孔質膜において、「熱可塑性樹脂を主成分とする」や「ポリエチレンを主成分とする」とは、樹脂多孔質膜を構成する成分のうち、主成分である成分(熱可塑性樹脂またはポリエチレン)が80質量%以上であることを意味している。   In the resin porous membrane, “having a thermoplastic resin as a main component” or “having polyethylene as a main component” means a component (thermoplastic resin) that is a main component among components constituting the resin porous membrane. Or polyethylene) is 80% by mass or more.

前記のような樹脂多孔質膜を使用することで、電池の内部温度が上昇した際に樹脂多孔質膜の孔が閉塞する所謂シャットダウン機能を付与することが容易となり、電池の内部温度上昇時における安全性確保を容易に達成することが可能となる。シャットダウン機能が有効に働く状態の目安としては、加熱によりシャットダウンを生じた後の樹脂多孔質膜について、JIS P 8117に準拠した方法で行われ、0.879g/mmの圧力下で100mlの空気が膜を透過する秒数で示されるガーレー値が表される透気度が、加熱前(シャットダウンを生じる前)の透気度の、5倍以上であることが好ましく、10倍以上であることがより好ましく、100倍以上であることが更に好ましい。 By using the resin porous membrane as described above, it becomes easy to provide a so-called shutdown function in which the pores of the resin porous membrane are blocked when the internal temperature of the battery rises. It is possible to easily ensure safety. As an indication of the state in which the shutdown function works effectively, the resin porous membrane after the shutdown is caused by heating is performed by a method in accordance with JIS P 8117, and 100 ml of air under a pressure of 0.879 g / mm 2 is used. The air permeability that represents the Gurley value indicated by the number of seconds that passes through the membrane is preferably 5 times or more, preferably 10 times or more the air permeability before heating (before shutdown occurs). Is more preferable, and it is still more preferable that it is 100 times or more.

また、樹脂多孔質膜の150℃における熱収縮率の上限値は、80%であることが好ましい。   Moreover, it is preferable that the upper limit of the heat shrinkage rate at 150 ° C. of the resin porous membrane is 80%.

なお、本明細書でいう樹脂多孔質膜およびセパレータの熱収縮率は、所定の大きさに切り出した試料(樹脂多孔質膜またはセパレータ)を、所定温度(測定温度)に調節した恒温槽中で3時間保持した後、試料を取り出して室温に放冷してから、恒温槽での保持前の試料の大きさと保持後の試料の大きさとを比較することで測定した値である。なお、試料に方向性のある場合には、それぞれの方向(長手方向、幅方向)について、加熱前と加熱後との長さを測定して熱収縮率を計算し、値の大きな方を樹脂多孔質膜およびセパレータの熱収縮率とする。   In addition, the heat shrinkage rate of the resin porous membrane and separator referred to in the present specification is determined in a thermostatic chamber in which a sample (resin porous membrane or separator) cut into a predetermined size is adjusted to a predetermined temperature (measurement temperature). After holding for 3 hours, the sample was taken out, allowed to cool to room temperature, and then measured by comparing the size of the sample before holding in the thermostat with the size of the sample after holding. If the sample is directional, the length before and after heating is measured for each direction (longitudinal direction and width direction) to calculate the heat shrinkage rate. It is set as the thermal contraction rate of a porous membrane and a separator.

本発明のセパレータを構成する耐熱多孔質層は、耐熱性微粒子を含有することで、その耐熱性を確保している。なお、本明細書でいう「耐熱性」とは、少なくとも150℃において変形などの形状変化が目視で確認されないことを意味している。耐熱性微粒子の有する耐熱性は、200℃以上であることが好ましい。   The heat-resistant porous layer constituting the separator of the present invention contains heat-resistant fine particles to ensure the heat resistance. As used herein, “heat resistance” means that a shape change such as deformation is not visually confirmed at least at 150 ° C. The heat resistance of the heat-resistant fine particles is preferably 200 ° C. or higher.

耐熱性微粒子としては、電気絶縁性を有する無機微粒子であることが好ましく、具体的には、酸化鉄、シリカ(SiO)、アルミナ(Al)、TiO、BaTiOなどの無機酸化物微粒子;窒化アルミニウム、窒化ケイ素などの無機窒化物微粒子;フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶微粒子;シリコン、ダイヤモンドなどの共有結合性結晶微粒子;モンモリロナイトなどの粘土微粒子;などが挙げられる。ここで、前記無機酸化物微粒子は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来物質またはこれらの人造物などの微粒子であってもよい。また、金属、SnO、スズ−インジウム酸化物(ITO)などの導電性酸化物、カーボンブラック、グラファイトなどの炭素質材料などで例示される導電性材料の表面を、電気絶縁性を有する材料(例えば、前記の無機酸化物など)で被覆することにより電気絶縁性を持たせた粒子であってもよい。 The heat-resistant fine particles are preferably inorganic fine particles having electrical insulation properties, and specifically, inorganic oxides such as iron oxide, silica (SiO 2 ), alumina (Al 2 O 3 ), TiO 2 , and BaTiO 2. Inorganic fine particles such as aluminum nitride and silicon nitride; poorly soluble ionic crystal fine particles such as calcium fluoride, barium fluoride and barium sulfate; covalently bonded crystal fine particles such as silicon and diamond; clay fine particles such as montmorillonite And so on. Here, the inorganic oxide fine particles may be fine particles such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, mica, or a mineral resource-derived material or an artificial product thereof. In addition, the surface of a conductive material exemplified by metal, SnO 2 , conductive oxide such as tin-indium oxide (ITO), carbonaceous material such as carbon black, graphite, etc., is a material having electrical insulation ( For example, the particle | grains which gave the electrical insulation property by coat | covering with the said inorganic oxide etc. may be sufficient.

また、耐熱性微粒子には、有機微粒子を用いることもできる。有機微粒子の具体例としては、ポリイミド、メラミン系樹脂、フェノール系樹脂、架橋ポリメチルメタクリレート(架橋PMMA)、架橋ポリスチレン(架橋PS)、ポリジビニルベンゼン(PDVB)、ベンゾグアナミン−ホルムアルデヒド縮合物などの架橋高分子の微粒子;熱可塑性ポリイミドなどの耐熱性高分子の微粒子;が挙げられる。これらの有機微粒子を構成する有機樹脂(高分子)は、前記例示の材料の混合物、変性体、誘導体、共重合体(ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体)、架橋体(前記の耐熱性高分子の場合)であってもよい。   Organic fine particles can also be used as the heat-resistant fine particles. Specific examples of organic fine particles include polyimides, melamine resins, phenol resins, crosslinked polymethyl methacrylate (crosslinked PMMA), crosslinked polystyrene (crosslinked PS), polydivinylbenzene (PDVB), and high crosslinking amounts such as benzoguanamine-formaldehyde condensates. Molecular fine particles; heat-resistant polymer fine particles such as thermoplastic polyimide; The organic resin (polymer) constituting these organic fine particles is a mixture, modified body, derivative, copolymer (random copolymer, alternating copolymer, block copolymer, graft copolymer) of the materials exemplified above. ) Or a crosslinked product (in the case of the heat-resistant polymer).

耐熱性微粒子は、前記例示のものを1種単独で使用してもよく、2種以上を併用してもよい。前記例示の耐熱性微粒子の中でも、無機酸化物微粒子がより好ましく、アルミナ、シリカ、ベーマイトが更に好ましい。   As the heat-resistant fine particles, those exemplified above may be used alone, or two or more kinds may be used in combination. Among the heat-resistant fine particles exemplified above, inorganic oxide fine particles are more preferable, and alumina, silica, and boehmite are more preferable.

耐熱性微粒子の粒径は、平均粒径で、好ましくは0.001μm以上、より好ましくは0.1μm以上であって、好ましくは15μm以下、より好ましくは1μm以下である。なお、耐熱性微粒子の平均粒径は、例えば、レーザー散乱粒度分布計(例えば、HORIBA社製「LA−920」)を用い、耐熱性微粒子を溶解しない媒体に分散させて測定した数平均粒子径として規定することができる。   The average particle diameter of the heat-resistant fine particles is preferably 0.001 μm or more, more preferably 0.1 μm or more, preferably 15 μm or less, more preferably 1 μm or less. The average particle diameter of the heat-resistant fine particles is, for example, a number average particle diameter measured by dispersing the heat-resistant fine particles in a medium that does not dissolve using a laser scattering particle size distribution meter (for example, “LA-920” manufactured by HORIBA). Can be defined as

また、耐熱性微粒子の形態としては、例えば、球状に近い形状を有していてもよく、板状の形状を有していてもよいが、短絡防止の点からは、板状の粒子や、一次粒子が凝集した二次粒子構造の粒子であることが好ましい。耐熱性微粒子が、板状であったり、一次粒子が凝集した二次粒子構造を有する場合には、前記の耐熱多孔質層によるセパレータの骨格としての作用(セパレータの熱収縮を抑える作用)がより良好となる。板状の粒子は、セパレータの熱収縮を抑える作用が特に良好であることから好適である。前記の板状粒子や二次粒子の代表的なものとしては、板状のアルミナや板状のベーマイト、二次粒子状のアルミナや二次粒子状のベーマイトなどが挙げられる。   Moreover, as the form of the heat-resistant fine particles, for example, it may have a shape close to a sphere, or may have a plate-like shape, but from the point of prevention of short circuit, It is preferably a particle having a secondary particle structure in which primary particles are aggregated. When the heat-resistant fine particles are plate-like or have a secondary particle structure in which primary particles are aggregated, the heat-resistant porous layer functions as a separator skeleton (an effect of suppressing the thermal contraction of the separator). It becomes good. Plate-like particles are suitable because they have a particularly good effect of suppressing the thermal shrinkage of the separator. Typical examples of the plate-like particles and secondary particles include plate-like alumina, plate-like boehmite, secondary particle-like alumina, and secondary particle-like boehmite.

板状粒子の形態としては、アスペクト比が、5以上、より好ましくは10以上であって、100以下、より好ましくは50以下であることが望ましい。板状粒子におけるアスペクト比は、例えば、走査型電子顕微鏡(SEM)により撮影した画像を画像解析することにより求めることができる。   As the form of the plate-like particles, it is desirable that the aspect ratio is 5 or more, more preferably 10 or more, and 100 or less, more preferably 50 or less. The aspect ratio of the plate-like particles can be obtained, for example, by analyzing an image taken with a scanning electron microscope (SEM).

耐熱多孔質層における耐熱性微粒子の量は、耐熱多孔質層の構成成分の全体積中、70体積%以上であり、80体積%以上であることが好ましく、90体積%以上であることがより好ましい。耐熱多孔質層中の耐熱性微粒子を前記のように高含有量とすることで、セパレータ全体の熱収縮を良好に抑制することができる。また、耐熱多孔質層には、耐熱性微粒子同士を結着したり耐熱多孔質層と樹脂多孔質膜とを結着したりするために有機バインダを含有させることが好ましく、このような観点から、耐熱多孔質層における耐熱性微粒子量の好適上限値は、例えば、耐熱多孔質層の構成成分の全体積中、99体積%である。なお、耐熱多孔質層における耐熱性微粒子の量を70体積%未満とすると、例えば、耐熱多孔質層中の有機バインダ量を多くする必要が生じるが、その場合には耐熱多孔質層の空孔が有機バインダによって埋められてしまい、セパレータとしての機能を喪失する虞があり、また、開孔剤などを用いて多孔質化した場合には、耐熱性微粒子同士の間隔が大きくなりすぎて、熱収縮を抑制する効果が低下する虞がある。   The amount of heat-resistant fine particles in the heat-resistant porous layer is 70% by volume or more, preferably 80% by volume or more, more preferably 90% by volume or more, in the total volume of the constituent components of the heat-resistant porous layer. preferable. By making the heat-resistant fine particles in the heat-resistant porous layer have a high content as described above, the thermal contraction of the entire separator can be satisfactorily suppressed. Further, the heat resistant porous layer preferably contains an organic binder in order to bind the heat resistant fine particles to each other or to bind the heat resistant porous layer and the resin porous film. The preferred upper limit of the amount of heat-resistant fine particles in the heat-resistant porous layer is, for example, 99% by volume in the total volume of the constituent components of the heat-resistant porous layer. If the amount of the heat-resistant fine particles in the heat-resistant porous layer is less than 70% by volume, for example, the amount of the organic binder in the heat-resistant porous layer needs to be increased. May be buried with an organic binder, and the function as a separator may be lost. Also, when pores are made using a pore-opening agent, the interval between the heat-resistant fine particles becomes too large, There exists a possibility that the effect which suppresses shrinkage | contraction may fall.

耐熱多孔質層に用いる有機バインダとしては、例えば、エチレン−酢酸ビニル共重合体(EVA、酢酸ビニル由来の構造単位が20〜35モル%のもの)、エチレン−エチルアクリレート共重合体などのエチレン−アクリル酸共重合体、フッ素樹脂[ポリフッ化ビニリデン(PVDF)など]、フッ素系ゴム、スチレン−ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリN−ビニルアセトアミド、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などが挙げられる。これらの有機バインダは1種単独で使用してもよく、2種以上を併用しても構わない。   Examples of the organic binder used in the heat resistant porous layer include ethylene-vinyl acetate copolymers (EVA, those having a structural unit of 20 to 35 mol% derived from vinyl acetate), ethylene-ethyl acrylate copolymers, and other ethylene- Acrylic acid copolymer, fluororesin [polyvinylidene fluoride (PVDF), etc.], fluoro rubber, styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinylpyrrolidone (PVP), poly N-vinylacetamide, cross-linked acrylic resin, polyurethane, epoxy resin and the like. These organic binders may be used alone or in combination of two or more.

前記例示の有機バインダの中でも、150℃以上の耐熱性を有する耐熱樹脂が好ましく、特に、エチレン−アクリル酸共重合体、フッ素系ゴム、SBRなどの柔軟性の高い材料がより好ましい。これらの具体例としては、三井デュポンポリケミカル社製の「エバフレックスシリーズ(EVA、商品名)」、日本ユニカー社製のEVA、三井デュポンポリケミカル社製の「エバフレックス−EEAシリーズ(エチレン−アクリル酸共重合体、商品名)」、日本ユニカー社製のEEA、ダイキン工業社製の「ダイエルラテックスシリーズ(フッ素ゴム、商品名)」、JSR社製の「TRD−2001(SBR、商品名)」、日本ゼオン社製の「EM−400B(SBR、商品名)」などが挙げられる。また、アクリル酸ブチルを主成分とし、これを架橋した構造を有する低ガラス転移温度の架橋アクリル樹脂(自己架橋型アクリル樹脂)も好ましい。   Among the organic binders exemplified above, a heat-resistant resin having a heat resistance of 150 ° C. or higher is preferable, and a highly flexible material such as an ethylene-acrylic acid copolymer, fluorine-based rubber, or SBR is particularly preferable. Specific examples include “Evaflex series (EVA, trade name)” manufactured by Mitsui DuPont Polychemical Co., Ltd., EVA manufactured by Nihon Unicar Co., Ltd. Acid copolymer, trade name) ", EEA made by Nihon Unicar," Daiel Latex Series (fluoro rubber, trade name) "by Daikin Industries," TRD-2001 (SBR, trade name) by JSR "EM-400B (SBR, trade name)" manufactured by Zeon Corporation. A cross-linked acrylic resin (self-crosslinking acrylic resin) having a low glass transition temperature and having a structure in which butyl acrylate is a main component and is cross-linked is also preferable.

なお、これら有機バインダを使用する場合には、後記する耐熱多孔質層形成用の組成物(スラリーなど)の溶媒に溶解させるか、または分散させたエマルジョンの形態で用いればよい。   When these organic binders are used, they may be used in the form of an emulsion dissolved or dispersed in a solvent of a composition (slurry or the like) for forming a heat resistant porous layer described later.

本発明のセパレータの厚みは、正極と負極とをより確実に隔離する観点から、6μm以上であることが好ましく、10μm以上であることがより好ましい。他方、セパレータの厚みが大きすぎると、電池としたときのエネルギー密度が低下してしまうことがあるため、その厚みは、50μm以下であることが好ましく、30μm以下であることがより好ましい。   The thickness of the separator of the present invention is preferably 6 μm or more and more preferably 10 μm or more from the viewpoint of more reliably separating the positive electrode and the negative electrode. On the other hand, if the thickness of the separator is too large, the energy density of the battery may be reduced. Therefore, the thickness is preferably 50 μm or less, and more preferably 30 μm or less.

また、セパレータを構成する樹脂多孔質膜の厚みをA(μm)、耐熱多孔質層の厚みをB(μm)としたとき、AとBとの比率A/Bは、5以下であることが好ましく、4以下であることがより好ましく、また、1以上であることが好ましく、2以上であることがより好ましい。本発明のセパレータでは、前記のように、樹脂多孔質膜の厚み比率を大きくし耐熱多孔質層を薄くしても、セパレータ全体の熱収縮を抑制することが可能であり、良好なシャットダウン機能を確保しつつ、セパレータの熱収縮による短絡の発生を高度に抑制することができる。なお、セパレータにおいて、樹脂多孔質膜が複数存在する場合には、厚みAはその総厚みであり、耐熱多孔質層が複数存在する場合には、厚みBはその総厚みである。   Further, when the thickness of the resin porous membrane constituting the separator is A (μm) and the thickness of the heat resistant porous layer is B (μm), the ratio A / B of A and B is 5 or less. Preferably, it is 4 or less, more preferably 1 or more, and more preferably 2 or more. In the separator of the present invention, as described above, even if the thickness ratio of the resin porous membrane is increased and the heat-resistant porous layer is thinned, it is possible to suppress the thermal contraction of the entire separator, and a good shutdown function is achieved. While ensuring, generation | occurrence | production of the short circuit by the thermal contraction of a separator can be suppressed highly. In the separator, when there are a plurality of resin porous membranes, the thickness A is the total thickness, and when there are a plurality of heat resistant porous layers, the thickness B is the total thickness.

なお、具体的な値で表現すると、樹脂多孔質膜の厚み(樹脂多孔質膜が複数存在する場合には、その総厚み)は、5μm以上であることが好ましく、また、30μm以下であることが好ましい。そして、耐熱多孔質膜の厚み(耐熱多孔質層が複数存在する場合には、その総厚み)は、1μm以上であることが好ましく、2μm以上であることがより好ましく、4μm以上であることが更に好ましく、また、20μm以下であることが好ましく、10μm以下であることがより好ましく、6μm以下であることがより好ましい。樹脂多孔質膜が薄すぎると、シャットダウン機能が弱くなる虞があり、厚すぎると、電池のエネルギー密度の低下を引き起こす虞があることに加えて、熱収縮しようとする力が大きくなり、セパレータ全体の熱収縮を抑える効果が小さくなる虞がある。また、耐熱多孔質層が薄すぎると、セパレータ全体の熱収縮を抑制する効果が小さくなる虞があり、厚すぎると、セパレータ全体の厚みの増大を引き起こしてしまう。   In terms of specific values, the thickness of the resin porous membrane (when there are a plurality of resin porous membranes, the total thickness) is preferably 5 μm or more, and 30 μm or less. Is preferred. The thickness of the heat resistant porous membrane (when there are a plurality of heat resistant porous layers, the total thickness) is preferably 1 μm or more, more preferably 2 μm or more, and 4 μm or more. More preferably, it is preferably 20 μm or less, more preferably 10 μm or less, and even more preferably 6 μm or less. If the porous resin membrane is too thin, the shutdown function may be weakened. If the resin porous membrane is too thick, the energy density of the battery may be lowered. There is a possibility that the effect of suppressing the heat shrinkage of the resin becomes small. Further, if the heat-resistant porous layer is too thin, the effect of suppressing the heat shrinkage of the entire separator may be reduced, and if it is too thick, the thickness of the entire separator is increased.

セパレータ全体の空孔率としては、電解液の保液量を確保してイオン透過性を良好にするために、乾燥した状態で、30%以上であることが好ましい。一方、セパレータ強度の確保と内部短絡の防止の観点から、セパレータの空孔率は、乾燥した状態で、70%以下であることが好ましい。なお、セパレータの空孔率:P(%)は、セパレータの厚み、面積あたりの質量、構成成分の密度から、下記(1)式を用いて各成分iについての総和を求めることにより計算できる。
P = 100−(Σa/ρ)×(m/t) (1)
ここで、前記式中、a:質量%で表した成分iの比率、ρ:成分iの密度(g/cm)、m:セパレータの単位面積あたりの質量(g/cm)、t:セパレータの厚み(cm)である。
The porosity of the separator as a whole is preferably 30% or more in a dried state in order to secure the amount of electrolyte solution retained and to improve ion permeability. On the other hand, from the viewpoint of securing separator strength and preventing internal short circuit, the separator porosity is preferably 70% or less in a dry state. The porosity of the separator: P (%) can be calculated by obtaining the sum of each component i from the thickness of the separator, the mass per area, and the density of the constituent components using the following equation (1).
P = 100− (Σa i / ρ i ) × (m / t) (1)
Here, in the above formula, a i : ratio of component i expressed by mass%, ρ i : density of component i (g / cm 3 ), m: mass per unit area of separator (g / cm 2 ), t: The thickness (cm) of the separator.

また、前記(1)式において、mを樹脂多孔質膜の単位面積あたりの質量(g/cm)とし、tを樹脂多孔質膜の厚み(cm)とすることで、前記(1)式を用いて樹脂多孔質膜の空孔率:P(%)を求めることもできる。この方法により求められる樹脂多孔質膜の空孔率は、30〜70%であることが好ましい。 Further, in the formula (1), m is the mass per unit area (g / cm 2 ) of the resin porous membrane, and t is the thickness (cm) of the resin porous membrane. Can also be used to determine the porosity of the resin porous membrane: P (%). It is preferable that the porosity of the resin porous membrane calculated | required by this method is 30 to 70%.

更に、前記(1)式において、mを耐熱多孔質層の単位面積あたりの質量(g/cm)とし、tを耐熱多孔質層の厚み(cm)とすることで、前記(1)式を用いて耐熱多孔質層の空孔率:P(%)を求めることもできる。この方法により求められる耐熱多孔質層の空孔率は、20〜60%であることが好ましい。 Furthermore, in the above formula (1), m is the mass per unit area (g / cm 2 ) of the heat resistant porous layer, and t is the thickness (cm) of the heat resistant porous layer. Can also be used to determine the porosity of the heat-resistant porous layer: P (%). It is preferable that the porosity of the heat resistant porous layer calculated | required by this method is 20 to 60%.

また、本発明のセパレータは、JIS P 8117に準拠した方法で行われ、0.879g/mmの圧力下で100mlの空気が膜を透過する秒数で示されるガーレー値が、10〜300secであることが望ましい。透気度が大きすぎると、イオン透過性が小さくなり、他方、小さすぎると、セパレータの強度が小さくなることがある。さらに、セパレータの強度としては、直径1mmのニードルを用いた突き刺し強度で50g以上であることが望ましい。かかる突き刺し強度が小さすぎると、リチウムのデンドライト結晶が発生した場合に、セパレータの突き破れによる短絡が発生する場合がある。前記の構成を採用することにより、前記の透気度や突き刺し強度を有するセパレータとすることができる。 The separator of the present invention is performed by a method in accordance with JIS P 8117, and the Gurley value indicated by the number of seconds that 100 ml of air passes through the membrane under a pressure of 0.879 g / mm 2 is 10 to 300 sec. It is desirable to be. If the air permeability is too high, the ion permeability is reduced, whereas if it is too low, the strength of the separator may be reduced. Further, the strength of the separator is desirably 50 g or more in terms of piercing strength using a needle having a diameter of 1 mm. If the piercing strength is too small, a short circuit may occur due to the piercing of the separator when lithium dendrite crystals are generated. By employ | adopting the said structure, it can be set as the separator which has the said air permeability and piercing strength.

セパレータの平均孔径は、好ましくは0.01μm以上、より好ましくは0.05μm以上であって、好ましくは1μm以下、より好ましくは0.5μm以下である。また、樹脂多孔質膜の平均孔径は、0.01μm〜0.5μmであることが好ましく、耐熱多孔質膜の平均孔径は、0.05〜1μmであることが好ましい。   The average pore size of the separator is preferably 0.01 μm or more, more preferably 0.05 μm or more, preferably 1 μm or less, more preferably 0.5 μm or less. The average pore size of the resin porous membrane is preferably 0.01 μm to 0.5 μm, and the average pore size of the heat resistant porous membrane is preferably 0.05 to 1 μm.

非水電解質電池においては、シート状の正極とシート状の負極とをセパレータを介して積層し、渦巻状に巻回した巻回体電極群を使用する場合があるが、このような電池においては、巻回に伴ってセパレータが屈曲するため、耐熱多孔質層に割れが発生する虞がある。かかる場合には、前記の各平均孔径(特に樹脂多孔質膜における平均孔径)が前記好適値であれば、耐熱多孔質層に割れが生じた部分において、リチウムデンドライトの貫通を防止することができ、より信頼性の高い電池を構成できるようになる。なお、巻回体電極群を使用せず、正極と負極とをセパレータを介して積層することにより構成される所謂積層型の電極群を使用する電池においては、セパレータ、樹脂多孔質膜および耐熱多孔質層の各平均孔径には特に制限は無いが、この場合においても前記の各平均孔径を満足することが好ましい。   In a non-aqueous electrolyte battery, a sheet-like positive electrode and a sheet-like negative electrode are laminated via a separator, and a wound electrode group wound in a spiral shape may be used. In such a battery, Since the separator bends as it is wound, there is a risk that the heat-resistant porous layer will crack. In such a case, if each of the above average pore sizes (especially the average pore size in the resin porous membrane) is the above preferred value, penetration of lithium dendrite can be prevented at the portion where the heat resistant porous layer is cracked. Thus, a battery with higher reliability can be configured. In addition, in a battery using a so-called laminated electrode group constituted by laminating a positive electrode and a negative electrode via a separator without using a wound body electrode group, a separator, a resin porous membrane, and a heat resistant porous Each average pore diameter of the porous layer is not particularly limited, but in this case as well, it is preferable to satisfy each average pore diameter.

本明細書でいうセパレータ、樹脂多孔質膜および耐熱多孔質層の平均孔径は、JIS K 3832の規定に準拠した方法により求められる値を指す。   The average pore diameter of the separator, the resin porous membrane and the heat resistant porous layer referred to in the present specification refers to a value obtained by a method in accordance with the provisions of JIS K3832.

また、セパレータの曲路率は、リチウムデンドライトの貫通による内部短絡の発生をより良好に防止して、電池の信頼性をより高める観点からは、3以上であることが好ましい。他方、セパレータの曲路率が大きすぎると、リチウムイオンの移動が妨げられて電池の負荷特性が低下する虞があることから、その曲路率は10以下であることが好ましい。   Further, the curvature of the separator is preferably 3 or more from the viewpoint of better preventing the occurrence of an internal short circuit due to penetration of lithium dendrite and further improving the reliability of the battery. On the other hand, when the curvature of the separator is too large, the movement of lithium ions is hindered and the load characteristics of the battery may be lowered. Therefore, the curvature is preferably 10 or less.

本明細書でいうセパレータの曲路率は、以下の方法で求められる値である。セパレータを2枚のステンレス鋼板で挟みこんでモデルセルを作製し、導電率が既知である電解液中での抵抗値を交流インピーダンス法により求める。セパレータの枚数を1枚、2枚、3枚と変化させて抵抗値の変化を求め、下記(2)式により曲路率bを計算する。
b=(P/100)・a・σ・R/1 (2)
ここで、P:セパレータの空孔率(%)、a:セパレータの面積(cm)、σ:電解液の導電率(S/cm)、R:セパレータ1枚あたりの抵抗(Ω)、l:セパレータの厚み(μm)である。
The curvature of the separator referred to in this specification is a value obtained by the following method. A model cell is produced by sandwiching a separator between two stainless steel plates, and a resistance value in an electrolytic solution having a known conductivity is obtained by an AC impedance method. The resistance value is changed by changing the number of separators to 1, 2, and 3, and the curvature b is calculated by the following equation (2).
b = (P / 100) · a · σ · R / 1 (2)
Here, P: porosity of separator (%), a: area of separator (cm 2 ), σ: conductivity of electrolyte (S / cm), R: resistance per separator (Ω), l : Separator thickness (μm).

例えば、セパレータの耐熱多孔質層において、耐熱性微粒子として、前記の板状粒子や一次粒子が凝集した二次粒子構造のものを使用することで、セパレータの曲路率を容易に前記好適値に調節することができる。   For example, in the heat-resistant porous layer of the separator, by using the secondary particle structure in which the plate-like particles and primary particles are aggregated as the heat-resistant fine particles, the curvature of the separator can be easily adjusted to the preferred value. Can be adjusted.

本発明のセパレータは、前記の各構成を採用することで、例えば、長手方向に直交する方向(TD方向)での熱収縮率を、好ましくは150℃で5%以下、より好ましくは150℃で3%以下、更に好ましくは165℃で5%以下とすることができることから、電池の異常発熱時においても、セパレータの熱収縮によって正極と負極とが直接接触することによる短絡が抑制でき、樹脂多孔質膜により確保されるシャットダウン機能と相俟って、高温での安全性および信頼性に優れた電池を構成することができる。   The separator of the present invention adopts each of the above-described configurations, for example, the thermal shrinkage rate in the direction orthogonal to the longitudinal direction (TD direction) is preferably 5% or less at 150 ° C., more preferably at 150 ° C. Since it can be 3% or less, more preferably 5% or less at 165 ° C., even when the battery is abnormally heated, a short circuit due to direct contact between the positive electrode and the negative electrode due to thermal contraction of the separator can be suppressed, and the resin porous Combined with the shutdown function secured by the membrane, a battery having excellent safety and reliability at high temperatures can be configured.

本発明のセパレータを作製する方法としては、例えば、耐熱性微粒子を有機溶剤または水に分散させた耐熱多孔質層形成用の組成物(スラリーなど)を調製し、これを樹脂多孔質膜上に塗布した後、有機溶剤または水を乾燥などにより除去することで耐熱多孔質層を形成する方法が挙げられる。なお、耐熱多孔質層に有機バインダを含有させる場合には、有機バインダを有機溶剤などに均一に溶解した溶液または有機バインダのエマルジョンを、耐熱性微粒子と予め混合し、その後この混合物を有機溶剤または水と混合して調製した耐熱多孔質層形成用の組成物を用いればよい。   As a method for producing the separator of the present invention, for example, a heat-resistant porous layer-forming composition (slurry or the like) in which heat-resistant fine particles are dispersed in an organic solvent or water is prepared, and this is formed on the resin porous film. A method of forming a heat-resistant porous layer by removing the organic solvent or water by drying or the like after coating is exemplified. When the heat-resistant porous layer contains an organic binder, a solution in which the organic binder is uniformly dissolved in an organic solvent or an emulsion of the organic binder is mixed in advance with the heat-resistant fine particles, and then the mixture is mixed with the organic solvent or A composition for forming a heat resistant porous layer prepared by mixing with water may be used.

前記の方法によりセパレータを作製した場合には、耐熱多孔質層形成用の組成物を樹脂多孔質膜に塗布し、有機溶剤または水を乾燥などにより除去することで、耐熱多孔質層が多孔質となるため、特別に孔を開けるプロセスが不要であり、簡便に耐熱多孔質層を形成することができる。   When the separator is prepared by the above-described method, the heat-resistant porous layer is made porous by applying the composition for forming the heat-resistant porous layer to the resin porous film and removing the organic solvent or water by drying or the like. Therefore, a special process for opening a hole is unnecessary, and a heat-resistant porous layer can be easily formed.

耐熱多孔質層形成用の組成物の調製に使用する有機溶剤としては、樹脂多孔質膜を溶解したり膨潤させたりするなどして樹脂多孔質膜にダメージを与えないものであり、また、有機バインダを使用する場合にあっては有機バインダを均一に溶解可能であるものであれば特に制限は無いが、テトラヒドロフラン(THF)などのフラン類;メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)などのケトン類;などが好適である。なお、高沸点の有機溶剤は、耐熱多孔質層形成用の組成物を樹脂多孔質膜に塗布した後に、乾燥などによって有機溶剤を除去する際に、樹脂多孔質膜に熱溶融などのダメージを与える虞があるので好ましくない。また、界面張力を制御するため、これらの有機溶剤に多価アルコールなどを適宜加えてもよい。   The organic solvent used for the preparation of the composition for forming the heat resistant porous layer is one that does not damage the resin porous membrane by dissolving or swelling the resin porous membrane, In the case of using a binder, there is no particular limitation as long as the organic binder can be dissolved uniformly, but furan such as tetrahydrofuran (THF); methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), etc. Ketones; etc. are preferred. Note that high boiling point organic solvents may damage the porous resin membrane by heat melting when the organic solvent is removed by drying after applying the heat-resistant porous layer forming composition to the porous resin membrane. Since there is a possibility of giving, it is not preferable. In order to control the interfacial tension, a polyhydric alcohol or the like may be appropriately added to these organic solvents.

ただし、本発明のセパレータは、前記の作製方法で作製されたものに限定される訳ではなく、他の方法で作製しても構わない。   However, the separator of the present invention is not limited to the one produced by the above production method, and may be produced by other methods.

なお、本発明のセパレータにおいて、耐熱多孔質層と樹脂多孔質膜とは、それぞれ1層ずつである必要はなく、複数の層がセパレータ中にあってもよい。例えば、樹脂多孔質膜の両面に耐熱多孔質層を形成した構成としてもよい。ただし、層数を増やすことでセパレータの厚みを増やして、内部抵抗の増加やエネルギー密度の低下を招く虞があるので、層数を多くしすぎるのは好ましくなく、セパレータを構成する層(耐熱多孔質層および樹脂多孔質膜)の総数は5層以下であることが好ましく、より好ましくは2層の構成である。   In the separator of the present invention, the heat-resistant porous layer and the resin porous membrane do not need to be one each, and a plurality of layers may be in the separator. For example, it is good also as a structure which formed the heat resistant porous layer on both surfaces of the resin porous membrane. However, increasing the number of layers may increase the thickness of the separator, leading to an increase in internal resistance and a decrease in energy density. Therefore, it is not preferable to increase the number of layers. The total number of the porous layer and the porous resin membrane is preferably 5 layers or less, more preferably 2 layers.

本発明の非水電解質電池は、前記本発明のセパレータを有していればよく、その他の構成・構造については特に制限は無く、従来公知の非水電解質一次電池および非水電解質二次電池で採用されている各種構成・構造を適用することができる。以下に、一例として、非水電解質二次電池について詳述する。   The non-aqueous electrolyte battery of the present invention only needs to have the separator of the present invention, and there are no particular restrictions on other configurations and structures, and conventionally known non-aqueous electrolyte primary batteries and non-aqueous electrolyte secondary batteries Various configurations and structures adopted can be applied. Hereinafter, a nonaqueous electrolyte secondary battery will be described in detail as an example.

非水電解質二次電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。   Examples of the form of the non-aqueous electrolyte secondary battery include a tubular shape (such as a square tubular shape or a cylindrical shape) using a steel can or an aluminum can as an outer can. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.

正極としては、従来公知の非水電解質二次電池に用いられている正極、すなわち、Liイオンを吸蔵放出可能な活物質を含有する正極であれば特に制限はない。例えば、活物質として、Li1+xMO(−0.1<x<0.1、M:Co、Ni、Mn、Al、Mgなど)で表される層状構造のリチウム含有遷移金属酸化物、LiMnやその元素の一部を他元素で置換したスピネル構造のリチウムマンガン酸化物、LiMPO(M:Co、Ni、Mn、Feなど)で表されるオリビン型化合物などを用いることが可能である。前記層状構造のリチウム含有遷移金属酸化物の具体例としては、LiCoOやLiNi1−xCox−yAl(0.1≦x≦0.3、0.01≦y≦0.2)などのほか、少なくともCo、NiおよびMnを含む酸化物(LiMn1/3Ni1/3Co1/3、LiMn5/12Ni5/12Co1/6、LiMn3/5Ni1/5Co1/5など)などを例示することができる。 The positive electrode is not particularly limited as long as it is a positive electrode used in a conventionally known nonaqueous electrolyte secondary battery, that is, a positive electrode containing an active material capable of occluding and releasing Li ions. For example, as an active material, a lithium-containing transition metal oxide having a layered structure represented by Li 1 + x MO 2 (−0.1 <x <0.1, M: Co, Ni, Mn, Al, Mg, etc.), LiMn It is possible to use spinel lithium manganese oxide in which 2 O 4 or a part of the element is substituted with another element, or an olivine type compound represented by LiMPO 4 (M: Co, Ni, Mn, Fe, etc.) It is. Specific examples of the lithium-containing transition metal oxide having a layered structure include LiCoO 2 and LiNi 1-x Co xy Al y O 2 (0.1 ≦ x ≦ 0.3, 0.01 ≦ y ≦ 0. 2) and other oxides containing at least Co, Ni and Mn (LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 5/12 Ni 5/12 Co 1/6 O 2 , LiMn 3 / 5 Ni 1/5 Co 1/5 O 2 etc.).

導電助剤としては、カーボンブラックなどの炭素材料が用いられ、バインダとしては、PVDFなどのフッ素樹脂が用いられ、これらの材料と活物質とが混合された正極合剤により正極活物質含有層が、例えば集電体上に形成される。   A carbon material such as carbon black is used as the conductive assistant, and a fluorine resin such as PVDF is used as the binder. The positive electrode active material-containing layer is formed by a positive electrode mixture in which these materials and an active material are mixed. For example, it is formed on a current collector.

また、正極の集電体としては、アルミニウムなどの金属の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、厚みが10〜30μmのアルミニウム箔が好適に用いられる。   Further, as the positive electrode current collector, a metal foil such as aluminum, a punching metal, a net, an expanded metal, or the like can be used, but usually an aluminum foil having a thickness of 10 to 30 μm is preferably used.

正極側のリード部は、通常、正極作製時に、集電体の一部に正極活物質含有層を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。ただし、リード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体にアルミニウム製の箔などを後から接続することによって設けてもよい。   The lead portion on the positive electrode side is usually provided by forming an exposed portion of the current collector without forming the positive electrode active material-containing layer on a part of the current collector and forming the lead portion at the time of producing the positive electrode. However, the lead portion is not necessarily integrated with the current collector from the beginning, and may be provided by connecting an aluminum foil or the like to the current collector later.

負極としては、従来公知の非水電解質二次電池に用いられている負極、すなわち、Liイオンを吸蔵放出可能な活物質を含有する負極であれば特に制限はない。例えば、活物質として、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、リチウムを吸蔵、放出可能な炭素系材料の1種または2種以上の混合物が用いられる。また、Si,Sn、Ge,Bi,Sb、Inなどの元素およびその合金、リチウム含有窒化物、または酸化物などのリチウム金属に近い低電圧で充放電できる化合物、もしくはリチウム金属やリチウム/アルミニウム合金も負極活物質として用いることができる。これらの負極活物質に導電助剤(カーボンブラックなどの炭素材料など)やPVDFなどのバインダなどを適宜添加した負極合剤を、集電体を芯材として成形体(負極活物質含有層)に仕上げたもの、または、前記の各種合金やリチウム金属の箔を単独、もしくは集電体上に積層したものなどが用いられる。   The negative electrode is not particularly limited as long as it is a negative electrode used in a conventionally known non-aqueous electrolyte secondary battery, that is, a negative electrode containing an active material capable of occluding and releasing Li ions. For example, carbon that can occlude and release lithium, such as graphite, pyrolytic carbons, cokes, glassy carbons, fired organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers as active materials One type or a mixture of two or more types of system materials is used. In addition, elements such as Si, Sn, Ge, Bi, Sb, In and their alloys, lithium-containing nitrides, oxides and other compounds that can be charged and discharged at a low voltage close to lithium metal, or lithium metals and lithium / aluminum alloys Can also be used as a negative electrode active material. A negative electrode mixture obtained by appropriately adding a conductive additive (carbon material such as carbon black) or a binder such as PVDF to these negative electrode active materials is formed into a molded body (negative electrode active material-containing layer) using a current collector as a core material. A finished product, or one obtained by laminating the above-mentioned various alloys or lithium metal foils alone or on a current collector is used.

負極に集電体を用いる場合には、集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、下限は5μmであることが望ましい。また、負極側のリード部は、正極側のリード部と同様にして形成すればよい。   When a current collector is used for the negative electrode, a copper or nickel foil, a punching metal, a net, an expanded metal, or the like can be used as the current collector, but a copper foil is usually used. In the negative electrode current collector, when the thickness of the entire negative electrode is reduced in order to obtain a battery having a high energy density, the upper limit of the thickness is preferably 30 μm, and the lower limit is preferably 5 μm. Further, the lead portion on the negative electrode side may be formed in the same manner as the lead portion on the positive electrode side.

電極は、前記の正極と前記の負極とを、本発明のセパレータを介して積層した積層型の電極群や、更にこれを巻回した巻回体電極群の形態で用いることができる。   The electrode can be used in the form of a laminated electrode group in which the positive electrode and the negative electrode are laminated via the separator of the present invention, or a wound electrode group in which the electrode is wound.

なお、本発明のセパレータが、最外層の一方が耐熱多孔質層であり他方が樹脂多孔質膜である構成の場合、電極群を構成するに当たっては、耐熱多孔質層が正極側となり、樹脂多孔質膜が負極側となるように配置することが好ましい。詳細な理由は不明であるが、樹脂多孔質膜を負極側に配置した場合には、正極側に配置した場合よりも、シャットダウンを生じた場合に、樹脂多孔質膜から溶融した樹脂のうち、活物質含有層に吸収される割合が少なくなり、溶融した樹脂がセパレータの孔を閉塞するのに、より有効に利用されるからである。また、耐熱多孔質層が無機酸化物などの耐酸化性に優れた材料で構成されている場合には、セパレータの酸化による劣化を防止する観点からも、耐熱多孔質層が正極側となり、樹脂多孔質膜が負極側となるように配置することが好ましい。   When the separator of the present invention has a configuration in which one of the outermost layers is a heat-resistant porous layer and the other is a resin porous membrane, the heat-resistant porous layer is on the positive electrode side in forming the electrode group, and the resin porous It is preferable to dispose the material film on the negative electrode side. Although the detailed reason is unknown, when the resin porous membrane is arranged on the negative electrode side, when the shutdown occurs rather than the case where the resin porous membrane is arranged on the positive electrode side, among the resins melted from the resin porous membrane, This is because the proportion absorbed by the active material-containing layer is reduced, and the molten resin is used more effectively to close the pores of the separator. In addition, when the heat-resistant porous layer is made of a material excellent in oxidation resistance such as an inorganic oxide, the heat-resistant porous layer is on the positive electrode side from the viewpoint of preventing deterioration of the separator due to oxidation. It is preferable to arrange so that the porous membrane is on the negative electrode side.

非水電解液としては、リチウム塩を有機溶媒に溶解した溶液が用いられる。リチウム塩としては、溶媒中で解離してLiイオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こしにくいものであれば特に制限は無い。例えば、LiClO、LiPF、LiBF 、LiAsF 、LiSbF などの無機リチウム塩、LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕などの有機リチウム塩などを用いることができる。 As the non-aqueous electrolyte, a solution in which a lithium salt is dissolved in an organic solvent is used. The lithium salt is not particularly limited as long as it dissociates in a solvent to form Li + ions and hardly causes side reactions such as decomposition in a voltage range used as a battery. For example, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 and other inorganic lithium salts, LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group] and the like can be used. .

電解液に用いる有機溶媒としては、前記のリチウム塩を溶解し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネート;プロピオン酸メチルなどの鎖状エステル;γ−ブチロラクトンなどの環状エステル;ジメトキシエタン、ジエチルエーテル、1,3−ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2−メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類;エチレングリコールサルファイトなどの亜硫酸エステル類などが挙げられ、これらは2種以上混合して用いることもできる。なお、より良好な特性の電池とするためには、エチレンカーボネートと鎖状カーボネートの混合溶媒など、高い導電率を得ることができる組み合わせで用いることが望ましい。また、これらの電解液に安全性や充放電サイクル性、高温貯蔵性といった特性を向上させる目的で、ビニレンカーボネート類、1,3−プロパンサルトン、ジフェニルジスルフィド、シクロヘキサン、ビフェニル、フルオロベンゼン、t−ブチルベンゼンなどの添加剤を適宜加えることもできる。   The organic solvent used in the electrolytic solution is not particularly limited as long as it dissolves the lithium salt and does not cause side reactions such as decomposition in the voltage range used as a battery. For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; chain esters such as methyl propionate; cyclic esters such as γ-butyrolactone; Chain ethers such as dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme; cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran; nitriles such as acetonitrile, propionitrile and methoxypropionitrile Sulfites such as ethylene glycol sulfite, etc., and these may be used as a mixture of two or more. Kill. In order to obtain a battery with better characteristics, it is desirable to use a combination that can obtain high conductivity, such as a mixed solvent of ethylene carbonate and chain carbonate. In addition, vinylene carbonates, 1,3-propane sultone, diphenyl disulfide, cyclohexane, biphenyl, fluorobenzene, t- for the purpose of improving safety, charge / discharge cycleability, and high-temperature storage properties of these electrolytes. Additives such as butylbenzene can also be added as appropriate.

このリチウム塩の電解液中の濃度としては、0.5〜1.5mol/lとすることが好ましく、0.9〜1.25mol/lとすることがより好ましい。   The concentration of the lithium salt in the electrolytic solution is preferably 0.5 to 1.5 mol / l, and more preferably 0.9 to 1.25 mol / l.

本発明の非水電解質電池は、従来公知の非水電解質電池と同様の用途に用いることができる。   The nonaqueous electrolyte battery of the present invention can be used for the same applications as conventionally known nonaqueous electrolyte batteries.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではない。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.

実施例1
有機バインダであるPVDFのN−メチル−2−ピロリドン(NMP)溶液(固形分比率15質量%):600gと、NMP:1000gとを容器に入れ、均一に溶解するまで室温で攪拌した。この溶液に耐熱性微粒子であるアルミナ粉末(平均粒径0.4μm):3000gを4回に分けて加え、ディスパーにより2800rpmで1時間攪拌して均一なスラリーを調製した。ポリエチレン製多孔質膜(厚み12μm、空孔率40%、平均孔径0.4μm、150℃での熱収縮率68%)上に、前記のスラリーをナイフコーターによって塗布し、乾燥して耐熱多孔質層を形成することで、厚みが20μmのセパレータを得た。このセパレータの耐熱多孔質層における耐熱性微粒子の体積比率は88体積%、耐熱多孔質層の空孔率は51%であった。
Example 1
An organic binder PVDF in N-methyl-2-pyrrolidone (NMP) solution (solid content ratio 15% by mass): 600 g and NMP: 1000 g were put in a container and stirred at room temperature until evenly dissolved. To this solution, alumina powder (average particle size 0.4 μm): 3000 g as heat-resistant fine particles was added in four portions, and stirred at 2800 rpm for 1 hour with a disper to prepare a uniform slurry. On a polyethylene porous membrane (thickness 12 μm, porosity 40%, average pore diameter 0.4 μm, thermal shrinkage 68% at 150 ° C.), the slurry is applied by a knife coater, dried and heat-resistant porous By forming a layer, a separator having a thickness of 20 μm was obtained. The volume ratio of the heat-resistant fine particles in the heat-resistant porous layer of this separator was 88% by volume, and the porosity of the heat-resistant porous layer was 51%.

実施例2
有機バインダであるSBRのエマルジョン(固形分比率40質量%):100gと、水:4000gとを容器に入れ、均一に分散するまで室温で攪拌した。この分散液に耐熱性微粒子であるベーマイト粉末(板状、平均粒径1μm、アスペクト比10):4000gを4回に分けて加え、ディスパーにより2800rpmで5時間攪拌して均一なスラリーを調製した。ポリエチレン製多孔質膜(厚み16μm、空孔率40%、平均孔径0.4μm)上に、前記のスラリーをマイクログラビアコーターによって塗布し、乾燥して耐熱多孔質層を形成することで、厚みが20μmのセパレータを得た。このセパレータの耐熱多孔質層における耐熱性微粒子の体積比率は91体積%、耐熱多孔質層の空孔率は48%であった。
Example 2
An organic binder SBR emulsion (solid content ratio 40 mass%): 100 g and water: 4000 g were placed in a container and stirred at room temperature until evenly dispersed. To this dispersion, boehmite powder (plate shape, average particle size 1 μm, aspect ratio 10): 4000 g as heat-resistant fine particles was added in four portions, and stirred with a disper at 2800 rpm for 5 hours to prepare a uniform slurry. The slurry is applied on a polyethylene porous membrane (thickness 16 μm, porosity 40%, average pore diameter 0.4 μm) with a microgravure coater and dried to form a heat-resistant porous layer. A 20 μm separator was obtained. The volume ratio of the heat-resistant fine particles in the heat-resistant porous layer of this separator was 91% by volume, and the porosity of the heat-resistant porous layer was 48%.

実施例3
有機バインダである自己架橋型アクリル樹脂のエマルジョン(固形分比率40質量%):200gと、水:4000gとを容器に入れ、均一に分散するまで室温で攪拌した。この分散液に耐熱性微粒子であるベーマイト粉末(二次粒子状、二次粒子の平均粒径0.6μm、):4000gを4回に分けて加え、ディスパーにより2800rpmで5時間攪拌して均一なスラリーを調製した。ポリエチレン製多孔質膜(厚み16μm、空孔率40%、平均孔径0.4μm)上に、前記のスラリーをマイクログラビアコーターによって塗布し、乾燥して耐熱多孔質層を形成することで、厚みが20μmのセパレータを得た。このセパレータの耐熱多孔質層における耐熱性微粒子の体積比率は82体積%、耐熱多孔質層の空孔率は46%であった。
Example 3
A self-crosslinking acrylic resin emulsion (solid content ratio: 40% by mass) as an organic binder: 200 g and water: 4000 g were placed in a container and stirred at room temperature until evenly dispersed. Boehmite powder (secondary particles, average particle size of secondary particles: 0.6 μm) as heat-resistant fine particles: 4000 g was added in 4 portions to this dispersion, and stirred uniformly at 2800 rpm for 5 hours with a disper. A slurry was prepared. The slurry is applied on a polyethylene porous membrane (thickness 16 μm, porosity 40%, average pore diameter 0.4 μm) with a microgravure coater and dried to form a heat-resistant porous layer. A 20 μm separator was obtained. The volume ratio of the heat-resistant fine particles in the heat-resistant porous layer of this separator was 82% by volume, and the porosity of the heat-resistant porous layer was 46%.

実施例4
耐熱性微粒子を、ベーマイト粉末に代えて架橋アクリル樹脂微粒子(平均粒径0.4μm):4000gとした以外は、実施例3と同様にしてセパレータを作製した。このセパレータの耐熱多孔質層における耐熱性微粒子の体積比率は94体積%、耐熱多孔質層の空孔率は49%であった。
Example 4
A separator was produced in the same manner as in Example 3 except that the heat-resistant fine particles were changed to boehmite powder and the crosslinked acrylic resin fine particles (average particle size 0.4 μm) were set to 4000 g. The volume ratio of the heat-resistant fine particles in the heat-resistant porous layer of this separator was 94% by volume, and the porosity of the heat-resistant porous layer was 49%.

比較例1
実施例2〜4のセパレータに用いたポリエチレン製多孔質膜のみを比較例1として用いた。
Comparative Example 1
Only the polyethylene porous membrane used for the separators of Examples 2 to 4 was used as Comparative Example 1.

実施例1〜4および比較例1のセパレータについて、加熱特性測定を行った。実施例1〜4および比較例1のセパレータを150℃の恒温槽に3時間放置し、セパレータの熱収縮率およびガーレー値を測定した。熱収縮率およびガーレー値の測定は、それぞれ前記の方法により行った。また、セパレータのガーレー値については、恒温槽に入れる前(加熱前のガーレー値)も測定した。これらの結果を、セパレータにおける樹脂多孔質膜の厚みA(μm)と耐熱多孔質層の厚みB(μm)との比A/Bの値と併せて、表1に示す。   About the separator of Examples 1-4 and the comparative example 1, the heating characteristic measurement was performed. The separators of Examples 1 to 4 and Comparative Example 1 were left in a thermostatic bath at 150 ° C. for 3 hours, and the thermal contraction rate and Gurley value of the separators were measured. The heat shrinkage rate and the Gurley value were measured by the methods described above. Moreover, about the Gurley value of a separator, before putting in a thermostat (Gurley value before a heating), it measured. These results are shown in Table 1, together with the value of the ratio A / B between the thickness A (μm) of the resin porous membrane and the thickness B (μm) of the heat-resistant porous layer in the separator.

Figure 0005158678
Figure 0005158678

実施例5
<正極の作製>
正極活物質であるLiCoO:90質量部、導電助剤であるアセチレンブラック:7質量部、およびバインダであるPVDF:3質量部を、NMPを溶剤として均一になるように混合し、正極合剤含有ペーストを調製した。このペーストを集電体となる厚さ15μmのアルミニウム箔の両面に、活物質塗布長が表280mm、裏面210mmになるように間欠塗布し、乾燥した後、カレンダー処理を行って、全厚が150μmになるように正極活物質含有層の厚みを調整し、幅43mmになるように切断して正極を作製した。その後、正極におけるアルミニウム箔の露出部にタブ付けを行った。
Example 5
<Preparation of positive electrode>
LiCoO 2 as a positive electrode active material: 90 parts by mass, acetylene black as a conductive additive: 7 parts by mass, and PVDF as a binder: 3 parts by mass are mixed so as to be uniform using NMP as a solvent, and a positive electrode mixture A containing paste was prepared. This paste is intermittently applied to both sides of an aluminum foil having a thickness of 15 μm as a current collector so that the active material application length is 280 mm on the back and 210 mm on the back surface, dried, and then subjected to a calendar treatment to give a total thickness of 150 μm Then, the thickness of the positive electrode active material-containing layer was adjusted so that the width was 43 mm, and a positive electrode was produced. Then, tab attachment was performed to the exposed part of the aluminum foil in a positive electrode.

<負極の作製>
負極活物質である黒鉛:95質量部とPVDF:5質量部とを、NMPを溶剤として均一になるように混合して負極合剤含有ペーストを調製した。このペーストを銅箔からなる厚さ10μmの集電体の両面に、活物質塗布長が表290mm、裏面230mmになるように間欠塗布し、乾燥した後、カレンダー処理を行って、全厚が142μmになるように負極活物質含有層の厚みを調整し、幅45mmになるように切断して負極を作製した。その後、負極における銅箔の露出部にタブ付けを行った。
<Production of negative electrode>
A negative electrode active material-containing paste was prepared by mixing 95 parts by mass of graphite serving as the negative electrode active material and 5 parts by mass of PVDF so as to be uniform using NMP as a solvent. This paste is intermittently applied to both sides of a 10 μm thick collector made of copper foil so that the active material application length is 290 mm on the front side and 230 mm on the back side, dried, and calendered to give a total thickness of 142 μm. Then, the thickness of the negative electrode active material-containing layer was adjusted so that the width was 45 mm, and a negative electrode was produced. Then, tab attachment was performed to the exposed part of the copper foil in a negative electrode.

<電池の組み立て>
前記のようにして得た正極と負極とを、実施例1のセパレータを樹脂多孔質膜が負極側に向くように介在させつつ重ね、渦巻状に巻回して巻回体電極群を作製した。得られた巻回体電極群を押しつぶして扁平状にし、厚み4mm、高さ50mm、幅34mmのアルミニウム製外装缶に入れ、電解液(エチレンカーボネートとエチルメチルカーボネートを体積比で1対2に混合した溶媒にLiPFを濃度1.2mol/lで溶解したもの)を注入した後に封止を行って、非水電解質電池を作製した。
<Battery assembly>
The positive electrode and the negative electrode obtained as described above were overlapped with the separator of Example 1 interposed so that the porous resin membrane faced the negative electrode side, and wound in a spiral shape to produce a wound electrode group. The obtained wound body electrode group is crushed into a flat shape, put into an aluminum outer can having a thickness of 4 mm, a height of 50 mm, and a width of 34 mm, and an electrolytic solution (ethylene carbonate and ethyl methyl carbonate are mixed in a volume ratio of 1: 2). After injecting LiPF 6 into the prepared solvent at a concentration of 1.2 mol / l), sealing was performed to prepare a nonaqueous electrolyte battery.

実施例6〜8および比較例2
セパレータを実施例2〜4または比較例1のものに変更した以外は、実施例5と同様にして非水電解質電池を作製した。
Examples 6 to 8 and Comparative Example 2
A nonaqueous electrolyte battery was produced in the same manner as in Example 5 except that the separator was changed to those in Examples 2 to 4 or Comparative Example 1.

実施例5〜8および比較例2の非水電解質電池について、下記のオーブンテストを行った。実施例5〜8および比較例2の電池について、0.2Cの電流で4.25Vまで定電流充電し、その後4.25Vでの定電圧充電を行った。なお、総充電時間は、8時間とした。次に、150℃に加熱した恒温槽中に各電池を3時間放置し、電池表面の温度を観察した。結果を表2に示す。   The non-aqueous electrolyte batteries of Examples 5 to 8 and Comparative Example 2 were subjected to the following oven test. The batteries of Examples 5 to 8 and Comparative Example 2 were charged with a constant current up to 4.25 V at a current of 0.2 C, and then charged with a constant voltage at 4.25 V. The total charging time was 8 hours. Next, each battery was left for 3 hours in a thermostat heated to 150 ° C., and the temperature of the battery surface was observed. The results are shown in Table 2.

また、前記のオーブンテストを行ったものとは別の実施例5〜8および比較例2の非水電解質電池について、前記のオーブンテストと同じ条件で充電を行った後に、恒温槽中で30℃から150℃まで1℃/分の速度で昇温し、電池の内部抵抗変化からシャットダウン温度を測定した。なお、シャットダウン温度は電池の内部抵抗が、30℃での内部抵抗の10倍以上となった時点での温度とした。これらの結果を表2に併記する。   In addition, for the nonaqueous electrolyte batteries of Examples 5 to 8 and Comparative Example 2 other than those subjected to the oven test, charging was performed under the same conditions as in the oven test, and then 30 ° C. in a thermostatic bath. The temperature was raised from 1 to 150 ° C. at a rate of 1 ° C./min, and the shutdown temperature was measured from the change in the internal resistance of the battery. The shutdown temperature was the temperature at which the internal resistance of the battery reached 10 times or more the internal resistance at 30 ° C. These results are also shown in Table 2.

Figure 0005158678
Figure 0005158678

表2に示すように、実施例5〜8の電池は、比較例2の電池と同等程度のシャットダウン温度を有しており、また、150℃でのオーブンテストにおいて異常が認められなかった。このように、実施例5〜8の電池は、比較例2の電池に比較して高温放置時の安全性に優れた電池であることが分かる。   As shown in Table 2, the batteries of Examples 5 to 8 had a shutdown temperature comparable to that of the battery of Comparative Example 2, and no abnormality was observed in the oven test at 150 ° C. Thus, it can be seen that the batteries of Examples 5 to 8 are excellent in safety when left at a high temperature as compared with the battery of Comparative Example 2.

なお、実施例5〜8および比較例2の非水電解質電池について、0.2Cの電流で4.2Vまで定電流充電し、その後4.2Vでの定電圧充電を行い(総充電時間8時間)、0.2Cの電流で放電した結果、いずれの電池も780〜790mAhの放電容量を示し、電池として良好に機能することが確認できた。   In addition, about the nonaqueous electrolyte battery of Examples 5-8 and the comparative example 2, it carried out the constant current charge to 4.2V with the electric current of 0.2C, and then performed the constant voltage charge at 4.2V (total charge time 8 hours) ) As a result of discharging at a current of 0.2 C, all the batteries showed a discharge capacity of 780 to 790 mAh, and it was confirmed that they functioned well as batteries.

Claims (9)

熱可塑性樹脂を主成分とし、かつ150℃における熱収縮率が10%以上の樹脂多孔質膜と、前記樹脂多孔質膜表面に形成されてなり、耐熱性微粒子を70体積%以上含有する耐熱多孔質層とを有し、
前記耐熱性微粒子が、電気絶縁性の無機微粒子であり、かつ前記無機微粒子が板状粒子であることを特徴とする非水電解質電池用セパレータ。
A heat-resistant porous film comprising a thermoplastic resin as a main component and a resin porous film having a heat shrinkage rate of 10% or higher at 150 ° C. and a surface of the resin porous film, and containing 70% by volume or more of heat-resistant fine particles. possess a quality layer,
The heat-resistant fine particles, an electrically insulating inorganic fine particles, and a non-aqueous electrolyte battery separator wherein the inorganic fine particles are characterized Rukoto Oh in plate-like particles.
樹脂多孔質膜の厚みA(μm)と耐熱多孔質層の厚みB(μm)との比A/Bが、1〜5である請求項1に記載の非水電解質電池用セパレータ。   The separator for a non-aqueous electrolyte battery according to claim 1, wherein the ratio A / B between the thickness A (µm) of the resin porous membrane and the thickness B (µm) of the heat resistant porous layer is 1 to 5. 電気絶縁性の無機微粒子が、アルミナ、シリカおよびベーマイトよりなる群から選択される少なくとも1種の微粒子である請求項1または2に記載の非水電解質電池用セパレータ。 The separator for nonaqueous electrolyte batteries according to claim 1 or 2 , wherein the electrically insulating inorganic fine particles are at least one kind of fine particles selected from the group consisting of alumina, silica and boehmite. 電気絶縁性の無機微粒子が、一次粒子が凝集した二次粒子構造を有している請求項1〜3のいずれかに記載の非水電解質電池用セパレータ。 The separator for a nonaqueous electrolyte battery according to any one of claims 1 to 3, wherein the electrically insulating inorganic fine particles have a secondary particle structure in which primary particles are aggregated. 耐熱多孔質層が、有機バインダを更に含有している請求項1〜のいずれかに記載の非水電解質電池用セパレータ。 The separator for a nonaqueous electrolyte battery according to any one of claims 1 to 4 , wherein the heat-resistant porous layer further contains an organic binder. 樹脂多孔質膜の主成分である熱可塑性樹脂が、ポリオレフィンである請求項1〜のいずれかに記載の非水電解質電池用セパレータ。 The separator for a nonaqueous electrolyte battery according to any one of claims 1 to 5 , wherein the thermoplastic resin that is a main component of the resin porous membrane is a polyolefin. 100〜140℃において、樹脂多孔質膜の孔が閉塞する性質を有している請求項1〜のいずれかに記載の非水電解質電池用セパレータ。 The separator for a nonaqueous electrolyte battery according to any one of claims 1 to 6 , wherein the separator has a property of closing pores of the resin porous membrane at 100 to 140 ° C. 150℃における熱収縮率が5%以下である請求項に記載の非水電解質電池用セパレータ。 The separator for a nonaqueous electrolyte battery according to claim 7 , wherein the thermal shrinkage at 150 ° C. is 5% or less. 請求項1〜のいずれかに記載の非水電解質電池用セパレータを有することを特徴とする非水電解質電池。 Nonaqueous electrolyte battery characterized by having a separator for a nonaqueous electrolyte battery according to any one of claims 1-8.
JP2007214272A 2006-10-16 2007-08-21 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery Active JP5158678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007214272A JP5158678B2 (en) 2006-10-16 2007-08-21 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006281076 2006-10-16
JP2006281076 2006-10-16
JP2007214272A JP5158678B2 (en) 2006-10-16 2007-08-21 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012192759A Division JP2013008690A (en) 2006-10-16 2012-09-03 Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2008123996A JP2008123996A (en) 2008-05-29
JP5158678B2 true JP5158678B2 (en) 2013-03-06

Family

ID=39508493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007214272A Active JP5158678B2 (en) 2006-10-16 2007-08-21 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP5158678B2 (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8822082B2 (en) 2007-03-15 2014-09-02 Hitachi Maxwell, Ltd. Separator for electrochemical device, electrode for electrochemical device, and electrochemical device
JP2009032677A (en) 2007-07-04 2009-02-12 Hitachi Maxell Ltd Porous membrane for separator and its manufacturing method; separator for battery and its manufacturing method; electrode for battery and its manufacturing method, and lithium secondary cell
US9166251B2 (en) 2007-10-03 2015-10-20 Hitachi Maxell, Ltd. Battery separator and nonaqueous electrolyte battery
CN102057518A (en) * 2008-06-09 2011-05-11 日立麦克赛尔株式会社 Porous film for separator, battery separator, battery electrode, and manufacturing methods therefor, and lithium secondary battery
JP5262323B2 (en) 2008-06-11 2013-08-14 ソニー株式会社 Negative electrode with porous protective film and method for producing negative electrode with porous protective film
US8518577B2 (en) * 2008-06-13 2013-08-27 Samsung Sdi Co., Ltd. Electrode assembly and secondary battery having the same
JP5603543B2 (en) * 2008-07-07 2014-10-08 日立マクセル株式会社 Battery separator and non-aqueous electrolyte battery
WO2010021248A1 (en) * 2008-08-19 2010-02-25 帝人株式会社 Separator for nonaqueous secondary battery
WO2010027203A2 (en) * 2008-09-03 2010-03-11 주식회사 엘지화학 Separator with a porous coating layer and electrochemical device having the same
JP2010061972A (en) * 2008-09-03 2010-03-18 Panasonic Corp Sealed battery
JP5439772B2 (en) * 2008-09-09 2014-03-12 東レ株式会社 Porous film and power storage device
JP5308118B2 (en) * 2008-10-30 2013-10-09 帝人株式会社 Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
CN102210040A (en) * 2008-11-07 2011-10-05 丰田自动车株式会社 Battery, vehicle and battery mounted equipment
CN102124591B (en) 2009-03-13 2015-01-21 日立麦克赛尔株式会社 Separator for battery and nonaqueous-electrolyte battery using same
JP5463154B2 (en) * 2009-03-19 2014-04-09 旭化成イーマテリアルズ株式会社 Laminated microporous membrane and separator for non-aqueous electrolyte secondary battery
JP5670626B2 (en) * 2009-07-15 2015-02-18 日立マクセル株式会社 Electrochemical element separator, electrochemical element and method for producing the same
JP5576740B2 (en) * 2009-12-14 2014-08-20 日立マクセル株式会社 Electrochemical element
JP5427046B2 (en) * 2010-01-14 2014-02-26 日立マクセル株式会社 Non-aqueous electrolyte battery and manufacturing method thereof
WO2012005152A1 (en) * 2010-07-09 2012-01-12 日立マクセル株式会社 Separator for non-aqueous battery, and non-aqueous battery
JP5768359B2 (en) * 2010-11-17 2015-08-26 ソニー株式会社 Heat-resistant microporous membrane, battery separator, and lithium ion secondary battery
JP5829042B2 (en) * 2011-04-13 2015-12-09 旭化成ケミカルズ株式会社 Copolymer composition for multilayer porous membrane
CN103718338B (en) 2011-07-28 2017-06-06 住友化学株式会社 Laminated porous film and nonaqueous electrolytic solution secondary battery
JP5849537B2 (en) * 2011-08-31 2016-01-27 トヨタ自動車株式会社 Estimation apparatus and estimation method
JPWO2013051079A1 (en) * 2011-10-03 2015-03-30 日立マクセル株式会社 Heat-resistant porous membrane, non-aqueous battery separator and non-aqueous battery
WO2013080867A1 (en) * 2011-11-28 2013-06-06 東レ株式会社 Porous film, separator for electrical storage device, and electrical storage device
JP5765259B2 (en) * 2012-02-03 2015-08-19 株式会社豊田自動織機 Electrode storage separator, electrode body, power storage device, and vehicle
KR102102120B1 (en) 2012-03-27 2020-04-20 도레이 카부시키가이샤 Laminated porous film and separator for electrical energy storage device
WO2014030507A1 (en) 2012-08-23 2014-02-27 Jnc株式会社 Composite porous film having excellent heat resistance
PL2908364T3 (en) * 2012-10-10 2018-08-31 Zeon Corporation Method for producing positive electrode for secondary battery, secondary battery, and method for producing stack for secondary battery
JP5702873B2 (en) * 2014-04-04 2015-04-15 日立マクセル株式会社 Electrochemical element separator, electrochemical element and method for producing the same
HUE048712T2 (en) 2014-04-11 2020-08-28 Toray Industries Separator for battery
JP6423724B2 (en) * 2015-01-26 2018-11-14 旭化成株式会社 Battery separator and non-aqueous electrolyte battery
JP2015181110A (en) * 2015-04-20 2015-10-15 ソニー株式会社 Heat resistance microporous film, separator for lithium ion secondary batteries, and lithium ion secondary battery
CN106848160B (en) 2016-03-11 2019-05-17 住友化学株式会社 Porous layer
KR101707380B1 (en) 2016-03-11 2017-02-15 스미또모 가가꾸 가부시키가이샤 Porous layer
JP6939569B2 (en) 2016-07-25 2021-09-22 東レ株式会社 Battery separator
KR102407590B1 (en) 2016-10-28 2022-06-10 도레이 카부시키가이샤 Separator for non-aqueous electrolyte battery and non-aqueous electrolyte battery
CN109792020B (en) 2017-01-06 2022-08-26 株式会社Lg新能源 Battery separator including functional binder and electrochemical device including the same
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430621B1 (en) 2017-12-19 2018-11-28 住友化学株式会社 Non-aqueous electrolyte secondary battery
JP6430623B1 (en) 2017-12-19 2018-11-28 住友化学株式会社 Non-aqueous electrolyte secondary battery
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430617B1 (en) 2017-12-19 2018-11-28 住友化学株式会社 Non-aqueous electrolyte secondary battery
JP6430618B1 (en) 2017-12-19 2018-11-28 住友化学株式会社 Non-aqueous electrolyte secondary battery
JP7277234B2 (en) 2019-04-16 2023-05-18 住友化学株式会社 Laminated separator for non-aqueous electrolyte secondary battery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4270411B2 (en) * 1998-03-09 2009-06-03 日本板硝子株式会社 Nonaqueous electrolyte battery and separator for nonaqueous electrolyte battery
JP2000048639A (en) * 1998-07-29 2000-02-18 Asahi Chem Ind Co Ltd Composite structure gel electrolyte sheet laminated body
JP2002151040A (en) * 2000-11-13 2002-05-24 Kuraray Co Ltd Separator
JP4981220B2 (en) * 2001-06-21 2012-07-18 帝人株式会社 Non-aqueous secondary battery separator and non-aqueous secondary battery
JP4163894B2 (en) * 2002-04-24 2008-10-08 帝人株式会社 Separator for lithium ion secondary battery
JP2004014127A (en) * 2002-06-03 2004-01-15 Mitsubishi Heavy Ind Ltd Heat-resistant separator and secondary battery
JP4368114B2 (en) * 2003-02-03 2009-11-18 パナソニック株式会社 Lithium ion secondary battery and method for producing secondary battery
JP4992203B2 (en) * 2005-06-24 2012-08-08 日本ゼオン株式会社 Lithium ion secondary battery
JP4946006B2 (en) * 2005-11-04 2012-06-06 東レ株式会社 Composite porous membrane and method for producing the same
JP2007149507A (en) * 2005-11-28 2007-06-14 Sanyo Electric Co Ltd Nonaqueous secondary battery
JP5196780B2 (en) * 2005-12-22 2013-05-15 旭化成イーマテリアルズ株式会社 Multilayer porous membrane and method for producing the same

Also Published As

Publication number Publication date
JP2008123996A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
JP5158678B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP5477985B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP5144651B2 (en) Battery separator and non-aqueous electrolyte battery
JP5937776B2 (en) Battery separator and battery
JP5328034B2 (en) Electrochemical element separator, electrochemical element and method for producing the same
EP1826842B1 (en) Separator for electrochemical cell and electrochemical cell
JP5670626B2 (en) Electrochemical element separator, electrochemical element and method for producing the same
JP5611505B2 (en) Battery separator and lithium secondary battery
JP5650738B2 (en) Battery separator and battery
JP5213158B2 (en) Multilayer porous membrane production method, lithium ion battery separator and lithium ion battery
WO2013080946A1 (en) Separator for non-aqueous electrolyte cell and non-aqueous electrolyte cell using same
JP2008041581A (en) Rolled electrode group, rectangular secondary battery, and laminated type secondary battery
JP5247657B2 (en) Non-aqueous electrolyte battery
JP2008027839A (en) Porous membrane with liner, method of manufacturing porous membrane, and method of manufacturing lithium secondary battery
JP2008192483A (en) Separator for battery, and lithium secondary battery
JP6974930B2 (en) Non-aqueous electrolyte secondary battery
JP2008004439A (en) Separator for battery, and lithium secondary battery
JP5804712B2 (en) Nonaqueous electrolyte secondary battery
JP2012155914A (en) Separator for electrochemical element and electrochemical element
JP5702873B2 (en) Electrochemical element separator, electrochemical element and method for producing the same
JP2012003938A (en) Separator for cell and lithium secondary cell
JP2014022051A (en) Separator for electrochemical element and electrochemical element
JP5478733B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP5408726B2 (en) Electrochemical element separator and electrochemical element
JP2020191306A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5158678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250