JP6939569B2 - Battery separator - Google Patents

Battery separator Download PDF

Info

Publication number
JP6939569B2
JP6939569B2 JP2017562094A JP2017562094A JP6939569B2 JP 6939569 B2 JP6939569 B2 JP 6939569B2 JP 2017562094 A JP2017562094 A JP 2017562094A JP 2017562094 A JP2017562094 A JP 2017562094A JP 6939569 B2 JP6939569 B2 JP 6939569B2
Authority
JP
Japan
Prior art keywords
alumina particles
battery separator
vol
separator
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017562094A
Other languages
Japanese (ja)
Other versions
JPWO2018021143A1 (en
Inventor
裕佳子 新部
裕佳子 新部
篤史 梶田
篤史 梶田
水野 直樹
直樹 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2018021143A1 publication Critical patent/JPWO2018021143A1/en
Application granted granted Critical
Publication of JP6939569B2 publication Critical patent/JP6939569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は電池セパレータに関する。 The present invention relates to a battery separator.

熱可塑性樹脂製の微多孔膜は物質の分離膜、選択透過膜、及び隔離膜等として広く用いられている。例えば、リチウムイオン二次電池、ニッケル−水素電池、ニッケル−カドミウム電池、ポリマー電池に用いる電池用セパレータや、電気二重層コンデンサ用セパレータ、逆浸透濾過膜、限外濾過膜、精密濾過膜等の各種フィルター、透湿防水衣料、医療用材料等などである。 Microporous membranes made of thermoplastic resins are widely used as substance separation membranes, selective permeation membranes, isolation membranes and the like. For example, various types of battery separators used for lithium ion secondary batteries, nickel-hydrogen batteries, nickel-cadmium batteries, polymer batteries, separators for electric double layer capacitors, reverse osmosis filtration membranes, ultrafiltration membranes, precision filtration membranes, etc. Filters, breathable waterproof clothing, medical materials, etc.

特にリチウムイオン二次電池用セパレータとしては、電解液含浸によりイオン透過性を有し、電気絶縁性に優れ、電池内部の異常昇温時に120〜150℃程度の温度において電流を遮断して過度の昇温を抑制する孔閉塞機能を備えているポリオレフィン微多孔膜が好適に使用されている。しかしながら、何らかの原因で孔閉塞後も電池内部の昇温が続く場合、ポリオレフィン微多孔膜は収縮・破膜を生じることがある。この現象はポリオレフィン微多孔膜に限定された現象ではなく、他の熱可塑性樹脂を用いた微多孔膜の場合においても、樹脂の融点以上では避けることができない。 In particular, as a separator for a lithium ion secondary battery, it has ion permeability due to impregnation with an electrolytic solution, has excellent electrical insulation, and cuts off current at a temperature of about 120 to 150 ° C. when the temperature inside the battery rises abnormally, resulting in an excessive amount. A polyolefin microporous film having a pore closing function that suppresses temperature rise is preferably used. However, if the temperature inside the battery continues to rise even after the pores are closed for some reason, the microporous polyolefin membrane may shrink or rupture. This phenomenon is not limited to the polyolefin microporous membrane, and even in the case of a microporous membrane using another thermoplastic resin, it cannot be avoided above the melting point of the resin.

リチウムイオン二次電池用セパレータは、電池特性、電池生産性及び電池安全性に深く関わっており、耐熱性、電極接着性、透過性、耐溶融破膜特性などが要求される。これまでに、例えば、ポリオレフィン微多孔膜を基材として、当該基材の少なくとも片面に多孔質層を設けた電池用セパレータが知られている。多孔質層に用いられる樹脂としてはポリアミドイミド樹脂、ポリイミド樹脂及びポリアミド樹脂といったセパレータに耐熱性を付与する樹脂やフッ素樹脂といったセパレータに電極との接着性を付与する樹脂が好適に用いられている。近年では、比較的簡易な工程で多孔質層を積層できる水溶性または水分散性樹脂も用いられている。また、耐熱性の向上の観点から、多孔質層に無機粒子を含有させることも検討されている。 The separator for a lithium ion secondary battery is deeply related to battery characteristics, battery productivity and battery safety, and is required to have heat resistance, electrode adhesion, permeability, melt rupture resistance and the like. So far, for example, a battery separator in which a polyolefin microporous membrane is used as a base material and a porous layer is provided on at least one surface of the base material is known. As the resin used for the porous layer, a resin that imparts heat resistance to the separator such as a polyamide-imide resin, a polyimide resin, and a polyamide resin, or a resin that imparts adhesiveness to an electrode to a separator such as a fluororesin is preferably used. In recent years, water-soluble or water-dispersible resins capable of laminating porous layers in a relatively simple process have also been used. Further, from the viewpoint of improving heat resistance, it is also considered to include inorganic particles in the porous layer.

セパレータは、正極と負極との間に積層され、巻回された巻回電極体を備える電池に適用される。巻回電極体を製造する際にピンとセパレータとが直接接触するため、セパレータには良好なピン抜け性が求められる。ピン抜け性が悪い場合、ピンと接触しているセパレータがピン抜き時にピンに引きずられてしまい、電極巻回体の内周部がタケノコ状あるいはテレスコープ状に突出する形崩れが生じ、電極巻回体の正負極間の絶縁構造が失われてしまうなどの問題が生じる。セパレータのピン抜け性を改善するため、セパレータの静摩擦係数あるいは動摩擦係数を特定の値以下とすることが提案されている。 The separator is applied to a battery having a wound electrode body laminated and wound between a positive electrode and a negative electrode. Since the pin and the separator come into direct contact with each other when the wound electrode body is manufactured, the separator is required to have good pin pull-out property. If the pin pull-out property is poor, the separator in contact with the pin will be dragged by the pin when the pin is pulled out, causing the inner peripheral portion of the electrode winding body to protrude like a bamboo shoot or a telescope, resulting in an electrode winding. Problems such as loss of the insulating structure between the positive and negative electrodes of the body occur. In order to improve the pin removal property of the separator, it has been proposed to set the coefficient of static friction or the coefficient of dynamic friction of the separator to a specific value or less.

特許文献1には、正極、負極、ポリプロピレン・ポリエチレン・ポリプロピレンからなる三層セパレータと、これら電極とセパレータとの間に配置されたポリフッ化ビニリデンとアルミナ粉末からなる接着性樹脂層とを備えた電極体が記載されている。 Patent Document 1 describes an electrode provided with a three-layer separator made of a positive electrode, a negative electrode, polypropylene, polyethylene, and polypropylene, and an adhesive resin layer made of polyvinylidene fluoride and alumina powder arranged between these electrodes and the separator. The body is listed.

特許文献2の試験例2では、ジェットミルを用いて乾式粉砕(風圧0.2MPa、5分間)し、気流式粉体分級装置を用いて4μm以下に分級した炭酸マグネシウム粉末、アクリル系バインダー水溶液、および増粘剤の混合物を高速攪拌分散機で予備混練(15000rpm、5分間)し、次いで、本混練(20000rpm、15分間)して多孔質層形成用スラリーを調製し、ポリオレフィン微多孔膜上にこれを塗布して電池用セパレータを得ている。 In Test Example 2 of Patent Document 2, a magnesium carbonate powder, an acrylic binder aqueous solution, which was dry pulverized using a jet mill (wind pressure 0.2 MPa, 5 minutes) and classified to 4 μm or less using an air flow type powder classifier. The mixture of the thickener and the thickener is pre-kneaded (15000 rpm, 5 minutes) with a high-speed stirring / dispersing machine, and then the main kneading (20,000 rpm, 15 minutes) is performed to prepare a slurry for forming a porous layer, and the mixture is prepared on a polyolefin microporous film. This is applied to obtain a battery separator.

特許文献3の実施例1では、湿式粉砕スラリー1(アルミナ−水懸濁液をダイノーミルを用いて湿式粉砕した懸濁液)、カルボキシメチルセルロース(CMC)及び溶媒を混合して、ゴーリンホモジナイザーを用いた高圧分散条件(20MPa×1パス、60MPa×3パス)にて処理したスラリーを塗工して、ポリオレフィン基材多孔質フィルム上に多孔質層を積層した電池用セパレータを得ている。 In Example 1 of Patent Document 3, a wet pulverized slurry 1 (a suspension obtained by wet pulverizing an alumina-aqueous suspension using a dyno mill), carboxymethyl cellulose (CMC) and a solvent were mixed, and a gorin homogenizer was used. A slurry treated under high-pressure dispersion conditions (20 MPa × 1 pass, 60 MPa × 3 passes) is applied to obtain a battery separator in which a porous layer is laminated on a polyolefin-based porous film.

特許文献4の実施例3では、自己架橋型アクリル樹脂のエマルジョンと水を均一に分散するまで室温で攪拌し、この分散液にベーマイト粉末を4回に分けて加え、ディスパーにより攪拌(2800rpm、5時間)して得られたスラリーを塗工して、ポリエチレン製微多孔膜上に多孔質層を積層した電池用セパレータを得ている。 In Example 3 of Patent Document 4, the emulsion of the self-crosslinking acrylic resin and water are stirred at room temperature until uniformly dispersed, boehmite powder is added to the dispersion in 4 portions, and the mixture is stirred by a disper (2800 rpm, 5). The slurry obtained after (time) is applied to obtain a separator for a battery in which a porous layer is laminated on a polyethylene microporous film.

特許文献5にはピンとセパレータとの滑り性を良好とするためセパレータ表面層の静摩擦係数を低くすることが開示され、特許文献6にはセパレータ表面層の動摩擦係数を低くすることが開示されている。 Patent Document 5 discloses that the static friction coefficient of the separator surface layer is lowered in order to improve the slipperiness between the pin and the separator, and Patent Document 6 discloses that the dynamic friction coefficient of the separator surface layer is lowered. ..

一方、多孔質層に無機粒子を含有させると、多孔質層の表面に粗大突起を生じることがあり、セパレータを捲回物等とすると粗大突起に接するセパレータに圧痕が生じるおそれがある。今後、電池用セパレータは膜厚の薄膜化が予測され、セパレータの厚さが薄くなるほど圧痕の影響が顕在化し、セパレータの破膜につながるおそれがある。 On the other hand, if the porous layer contains inorganic particles, coarse protrusions may be formed on the surface of the porous layer, and if the separator is a wound product or the like, indentations may be generated on the separator in contact with the coarse protrusions. In the future, it is predicted that the film thickness of the battery separator will be reduced, and as the thickness of the separator becomes thinner, the effect of indentation will become apparent, which may lead to film rupture of the separator.

再表1999−036981号公報Re-table 1999-036981 再表2011−158335号公報Re-table 2011-158335 特開2014−040580号公報Japanese Unexamined Patent Publication No. 2014-040580 特開2008−123996号公報Japanese Unexamined Patent Publication No. 2008-123996 特開2011−126275号公報Japanese Unexamined Patent Publication No. 2011-126275 特開2014−012857号公報Japanese Unexamined Patent Publication No. 2014-012857

本発明は、短絡耐性、耐電圧性に優れかつピン抜け性に優れた電池用セパレータを得ることを課題とする。 An object of the present invention is to obtain a battery separator having excellent short-circuit resistance, withstand voltage resistance, and excellent pin pull-out property.

本発明者らは、上記課題に対して鋭意検討の結果、スラリー中の無機粒子の分散性及び分散安定性を制御することが電池用セパレータにおいては極めて重要であることに着目した。無機粒子を有する多孔質層を基材の表面に設ける場合、無機粒子とバインダーと溶媒とを含むスラリーを調整し、これを基材に塗布し、乾燥して多孔質層を形成する方法が一般に用いられる。このとき用いる無機粒子はそのサイズが小さいとスラリー中で凝集しやすく、サイズが大きいと沈降しやすいという分散性の問題がある。また、十分に粒子を分散できたとしても、スラリー中の無機粒子の分散安定性が低いとスラリーを調製してから塗工するまでの間に粒子が再凝集するおそれがある。スラリー中に無機粒子の凝集物が存在すると多孔質層に凝集物が混入することになり、多孔質層の表面に粗大突起を生じさせる。こうして得られたセパレータを捲回物とすると粗大突起に接するセパレータに圧痕を生じさせる場合がある。 As a result of diligent studies on the above problems, the present inventors have focused on the fact that controlling the dispersibility and dispersion stability of inorganic particles in a slurry is extremely important for a battery separator. When a porous layer having inorganic particles is provided on the surface of a base material, a method of preparing a slurry containing the inorganic particles, a binder and a solvent, applying the slurry to the base material, and drying to form the porous layer is generally used. Used. If the size of the inorganic particles used at this time is small, they tend to aggregate in the slurry, and if the size is large, they tend to settle, which is a problem of dispersibility. Further, even if the particles can be sufficiently dispersed, if the dispersion stability of the inorganic particles in the slurry is low, the particles may reaggregate between the preparation of the slurry and the coating. If agglomerates of inorganic particles are present in the slurry, the agglomerates will be mixed in the porous layer, and coarse protrusions will be generated on the surface of the porous layer. If the separator thus obtained is a wound product, indentations may be generated on the separator in contact with the coarse protrusions.

本発明者らは、無機粒子とその分散技術について鋭意研究を行った結果、一次粒子径分布において極大を示す2つのモード径を有し、少なくとも一部のアルミナ粒子が特定の表面特性を有することで分散性と分散安定性に極めて優れたスラリーを得られ、短絡耐性、耐電圧性とピン抜け性に優れた電池用セパレータを得ることができることを見出した。 As a result of diligent research on inorganic particles and their dispersion technology, the present inventors have two mode diameters showing maximum in the primary particle size distribution, and at least some alumina particles have specific surface characteristics. It was found that a slurry having extremely excellent dispersibility and dispersion stability can be obtained, and a battery separator having excellent short-circuit resistance, withstand voltage resistance and pin pull-out property can be obtained.

上記課題を解決するために本発明の電池用セパレータは以下の構成を有する。
すなわち、
(1)ポリオレフィン微多孔膜と、当該ポリオレフィン微多孔膜の少なくとも片面に多孔質層を有する電池用セパレータであって、前記多孔質層はアルミナ粒子とバインダーとを含み、前記アルミナ粒子と前記バインダーの合計を100体積%としたとき、前記アルミナ粒子の体積比率が50体積%以上であり、前記アルミナ粒子は、フーリエ変換型赤外分光法(FT‐IR)による3475cm−1近辺に吸収ピークを有し該ピークが300℃以上で消失する粒子を含み、前記アルミナ粒子は一次粒子径分布において下記式1、2を満足する少なくとも2つの極大を有し、一次粒子径分布において1.0μm以上の粒子径を有するアルミナ粒子Aと1.0μm未満の粒子径を有するアルミナ粒子Bとに区分したときにそれぞれの総体積の比が下記式3を満足することを特徴とする、電池用セパレータ。
1.0(μm)≦A(r1)≦3.0(μm)・・・・・式1
0.3(μm)≦B(r1)<1.0(μm)・・・・・式2
0.5≦A(vol)/B(vol)≦2.0・・・・・式3
ここで、A(r1)、B(r1)はアルミナ粒子の一次粒子径分布において極大を示すモード径、A(vol)/B(vol)はアルミナ粒子Aとアルミナ粒子Bとの総体積比である。
(2)本発明の電池用セパレータはフーリエ変換型赤外分光法(FT‐IR)による3475cm−1近辺に吸収ピークを有し、該ピークが300℃以上で消失する粒子が前記アルミナ粒子Aであることが好ましい。
(3)本発明の電池用セパレータは室温から1000℃まで上昇させたときの加熱発生ガス質量分析(TPD‐MS)で測定するアルミナ粒子の発生水分量が2000質量ppm以下であることが好ましい。
(4)本発明の電池用セパレータは0.7≦A(vol)/B(vol)≦1.5であることが好ましい。
(5)本発明の電池用セパレータは0.8≦A(vol)/B(vol)≦1.3であることが好ましい。
(6)本発明の電池用セパレータは前記バインダーがフッ素樹脂を含むことが好ましい。
(7)本発明の電池用セパレータは前記フッ素樹脂がフッ化ビニリデン−ヘキサフルオロプロピレン共重合体を含むことが好ましい。
(8)本発明の電池用セパレータは前記ポリオレフィン微多孔膜の厚さが10μm未満であることが好ましい。
(9)本発明の電池用セパレータは前記ポリオレフィン微多孔膜の厚さが7μm以下であることが好ましい。
In order to solve the above problems, the battery separator of the present invention has the following configuration.
That is,
(1) A battery separator having a polyolefin microporous film and a porous layer on at least one side of the polyolefin microporous film, the porous layer containing alumina particles and a binder, and the alumina particles and the binder. When the total is 100% by volume, the volume ratio of the alumina particles is 50% by volume or more, and the alumina particles have an absorption peak in the vicinity of 3475 cm-1 by Fourier transform infrared spectroscopy (FT-IR). The alumina particles include particles whose peaks disappear at 300 ° C. or higher, and the alumina particles have at least two maximums satisfying the following formulas 1 and 2 in the primary particle size distribution, and particles having a primary particle size distribution of 1.0 μm or more. A battery separator, characterized in that the ratio of the total volume of each of the alumina particles A having a diameter and the alumina particles B having a particle diameter of less than 1.0 μm satisfies the following formula 3.
1.0 (μm) ≤ A (r1) ≤ 3.0 (μm) ... Equation 1
0.3 (μm) ≤ B (r1) <1.0 (μm) ... Equation 2
0.5 ≤ A (vol) / B (vol) ≤ 2.0 ... Equation 3
Here, A (r1) and B (r1) are mode diameters showing the maximum in the primary particle size distribution of the alumina particles, and A (vol) / B (vol) is the total volume ratio of the alumina particles A and the alumina particles B. be.
(2) The battery separator of the present invention has an absorption peak in the vicinity of 3475 cm-1 by Fourier transform infrared spectroscopy (FT-IR), and the particles whose peak disappears at 300 ° C. or higher are the alumina particles A. It is preferable to have.
(3) In the battery separator of the present invention, the amount of water generated by the alumina particles measured by mass spectrometry of heated generated gas (TPD-MS) when the temperature is raised from room temperature to 1000 ° C. is preferably 2000 mass ppm or less.
(4) The battery separator of the present invention preferably has 0.7 ≦ A (vol) / B (vol) ≦ 1.5.
(5) The battery separator of the present invention preferably has 0.8 ≦ A (vol) / B (vol) ≦ 1.3.
(6) In the battery separator of the present invention, it is preferable that the binder contains a fluororesin.
(7) In the battery separator of the present invention, it is preferable that the fluororesin contains a vinylidene fluoride-hexafluoropropylene copolymer.
(8) In the battery separator of the present invention, the thickness of the polyolefin microporous film is preferably less than 10 μm.
(9) In the battery separator of the present invention, the thickness of the polyolefin microporous film is preferably 7 μm or less.

本発明によれば、一次粒子径分布において極大を示す2つのモード径を有し特定の表面特性を有するアルミナ粒子を用いることで分散性と分散安定性に極めて優れたスラリーを得ることができ、当該スラリーにより形成される多孔質層は粗大突起を高度に抑制でき、セパレータの薄膜化が進んでも安全な電池用セパレータを提供できる。特に、本発明はセパレータの膜厚が10μm未満の場合により大きな効果を発揮するものである。さらに、本発明の電池用セパレータはピン抜け性に優れるため、電池組み立て工程において生産性の向上を図ることができ、強いては製造コストを低減できるという効果を奏する。 According to the present invention, it is possible to obtain a slurry having extremely excellent dispersibility and dispersion stability by using alumina particles having two mode diameters showing maximums in the primary particle size distribution and having specific surface characteristics. The porous layer formed by the slurry can highly suppress coarse protrusions, and can provide a battery separator that is safe even if the separator is thinned. In particular, the present invention exerts a greater effect when the film thickness of the separator is less than 10 μm. Further, since the battery separator of the present invention is excellent in pin pull-out property, it is possible to improve productivity in the battery assembly process, and it is possible to reduce the manufacturing cost.

実施例1のアルミナ粒子1の拡散反射法による赤外分光スペクトルを示す図である。It is a figure which shows the infrared spectroscopic spectrum of the alumina particle 1 of Example 1 by the diffuse reflection method. 比較例2のアルミナ粒子1の拡散反射法による赤外分光スペクトルを示す図である。It is a figure which shows the infrared spectroscopic spectrum of the alumina particle 1 of the comparative example 2 by the diffuse reflection method. アルミナのTPD−MSスペクトルを示す図である。It is a figure which shows the TPD-MS spectrum of alumina. 短絡耐性試験に用いるサンプルの積層体を示す図である。It is a figure which shows the laminated body of the sample used for a short circuit resistance test. 短絡耐性試験を測定する方法を示す図である。It is a figure which shows the method of measuring a short circuit resistance test.

[1]ポリオレフィン微多孔膜
ポリオレフィン微多孔膜を構成するポリオレフィン樹脂としては、ポリエチレンやポリプロピレンが好ましい。また、単一物又は2種以上の異なるポリオレフィン樹脂の混合物、例えばポリエチレンとポリプロピレンの混合物であってもよいし、異なるオレフィンの共重合体でもよい。上記樹脂により形成されるポリオレフィン微多孔膜は電気絶縁性、イオン透過性などの基本特性に加え、電池異常昇温時に電流を遮断し、過度の昇温を抑制する孔閉塞効果を具備する。
[1] Polyolefin Microporous Film As the polyolefin resin constituting the polyolefin microporous film, polyethylene or polypropylene is preferable. Further, it may be a single substance or a mixture of two or more different polyolefin resins, for example, a mixture of polyethylene and polypropylene, or a copolymer of different olefins. In addition to basic characteristics such as electrical insulation and ion permeability, the polyolefin microporous film formed of the resin has a pore-blocking effect of blocking current when the battery abnormally rises and suppressing excessive temperature rise.

ポリエチレン微多孔膜は、目的に応じた製造方法を自由に選択することができる。微多孔膜の製造方法としては、発泡法、相分離法、溶解再結晶法、延伸開孔法、粉末焼結法などがあり、これらの中では微細孔の均一化、コストの点で相分離法が好ましい。 The polyethylene microporous membrane can be freely selected by a production method according to the purpose. As a method for producing a microporous membrane, there are a foaming method, a phase separation method, a dissolution recrystallization method, a stretch opening method, a powder sintering method, etc. Among these, phase separation in terms of homogenization of fine pores and cost. The method is preferred.

相分離法による製造方法としては、例えばポリエチレンと成形用溶剤とを加熱溶融混練し、得られた溶融混合物をダイより押出し、冷却することによりゲル状成形物を形成し、得られたゲル状成形物に対して少なくとも一軸方向に延伸を実施し、前記成形用溶剤を除去することによって微多孔膜を得る方法などが挙げられる。 As a production method by the phase separation method, for example, polyethylene and a molding solvent are heat-melted and kneaded, and the obtained melt mixture is extruded from a die and cooled to form a gel-like molded product, and the obtained gel-like molding is performed. Examples thereof include a method of obtaining a microporous film by stretching an object in at least one axial direction and removing the molding solvent.

ポリオレフィン微多孔膜は単層膜であってもよいし、ポリオレフィン樹脂の種類、分子量あるいは平均細孔径の異なる二層以上からなる層構成であってもよい。層構成がポリプロピレン/ポリエチレン/ポリプロピレンやポリエチレン/ポリプロピレン/ポリエチレンなどのように異なるポリオレフィンの積層体であってもよいし、いずれかの層、あるいはすべての層に、これらのポリオレフィン樹脂をブレンドして用いてもよい。 The microporous polyolefin membrane may be a single-layer membrane, or may have a layer structure consisting of two or more layers having different types, molecular weights, or average pore diameters of the polyolefin resin. The layer structure may be a laminate of different polyolefins such as polypropylene / polyethylene / polypropylene or polyethylene / polypropylene / polyethylene, or any layer or all layers may be blended with these polyolefin resins. You may.

二層以上からなる多層膜の製造方法としては、例えばa層及びb層を構成するポリエチレンのそれぞれを成形用溶剤と溶融混練し、得られた溶融混合物をそれぞれの押出機から1つのダイに供給し各成分を構成するゲルシートを一体化させて共押出する方法、各層を構成するゲルシートを重ね合わせて熱融着する方法のいずれでも作製できる。共押出法の方が、高い層間接着強度を得やすく、層間に連通孔を形成しやすいために高い透過性を維持しやすく、生産性にも優れているためにより好ましい。 As a method for producing a multilayer film composed of two or more layers, for example, polyethylene constituting the a layer and the b layer are melt-kneaded with a molding solvent, and the obtained melt mixture is supplied from each extruder to one die. It can be produced by either a method of integrating the gel sheets constituting each component and coextruding them, or a method of superimposing the gel sheets constituting each layer and heat-sealing them. The coextrusion method is more preferable because it is easy to obtain high interlayer adhesion strength, it is easy to form communication holes between layers, it is easy to maintain high permeability, and it is also excellent in productivity.

本発明のポリオレフィン微多孔膜の厚さの上限は25μmが好ましく、より好ましくは9μm、さらに好ましくは7μmである。下限は3μmが好ましく、より好ましくは5μmである。ポリオレフィン微多孔膜の厚さが上記好ましい範囲であると、実用的な膜強度と孔閉塞機能を保有させることができ、電池ケースの単位容積当たりの面積が制約されず、今後、進むであろう電池の高容量化に適する。 The upper limit of the thickness of the polyolefin microporous membrane of the present invention is preferably 25 μm, more preferably 9 μm, and even more preferably 7 μm. The lower limit is preferably 3 μm, more preferably 5 μm. When the thickness of the polyolefin microporous membrane is in the above-mentioned preferable range, it is possible to have a practical membrane strength and a pore closing function, and the area per unit volume of the battery case is not restricted, which will be advanced in the future. Suitable for high battery capacity.

ポリオレフィン微多孔膜の透気抵抗度の上限は500sec/100ml Airが好ましく、より好ましくは400sec/100ml Airであり、下限は50sec/100ml Airが好ましく、より好ましくは70sec/100ml Air、さらに好ましくは100sec/100ml Airである。 The upper limit of the air permeation resistance of the polyolefin microporous membrane is preferably 500 sec / 100 ml Air, more preferably 400 sec / 100 ml Air, and the lower limit is preferably 50 sec / 100 ml Air, more preferably 70 sec / 100 ml Air, still more preferably 100 sec. / 100 ml Air.

ポリオレフィン微多孔膜の空孔率については、上限は70%が好ましく、より好ましくは60%、さらに好ましくは55%である。下限は30%が好ましく、より好ましくは35%、さらに好ましくは40%である。ポリオレフィン微多孔膜は透気抵抗度および空孔率が上記好ましい範囲であると、電池用セパレータとして用いた場合、電池の充放電特性、特にイオン透過性(充放電作動電圧)および電池の寿命(電解液の保持量と密接に関係する)において、電池の機能を十分に発揮することができる。また前記ポリオレフィン微多孔膜は十分な機械的強度と絶縁性が得られることで、これを用いた電池は充放電時に短絡が起こる可能性が低くなる。 The upper limit of the porosity of the polyolefin microporous membrane is preferably 70%, more preferably 60%, and even more preferably 55%. The lower limit is preferably 30%, more preferably 35%, and even more preferably 40%. When the polyolefin microporous membrane is used as a battery separator when the air permeation resistance and the porosity are in the above preferable ranges, the charge / discharge characteristics of the battery, particularly the ion permeability (charge / discharge operating voltage) and the life of the battery ( The function of the battery can be fully exerted in (closely related to the holding amount of the electrolytic solution). Further, since the polyolefin microporous film can obtain sufficient mechanical strength and insulating property, a battery using the polyolefin microporous film is less likely to cause a short circuit during charging / discharging.

ポリオレフィン微多孔膜は、充放電反応の異常時に孔が閉塞する機能を有することが必要である。そのために、構成する樹脂の融点(軟化点)は、70〜150℃が好ましく、より好ましくは80〜140℃、さらに好ましくは100〜130℃である。構成する樹脂の融点が上記好ましい範囲であると、正常使用時に孔閉塞機能が発現することにより電池が使用できなくなることを防ぎ、また、異常反応時に孔閉塞機能が発現することで安全性を確保できる。 The polyolefin microporous membrane needs to have a function of closing pores when the charge / discharge reaction is abnormal. Therefore, the melting point (softening point) of the constituent resin is preferably 70 to 150 ° C., more preferably 80 to 140 ° C., and even more preferably 100 to 130 ° C. When the melting point of the constituent resin is within the above-mentioned preferable range, it is possible to prevent the battery from becoming unusable due to the appearance of the pore closing function during normal use, and to ensure safety by exhibiting the pore closing function during an abnormal reaction. can.

[2]多孔質層
本発明における多孔質層はアルミナ粒子とバインダーと溶媒とを含むスラリーをポリオレフィン微多孔膜に塗布し、これを凝固液に浸漬し、乾燥することで形成される。アルミナ粒子はピン抜け性、耐電圧性及び短絡耐性の向上を担うものである。
[2] Porous Layer The porous layer in the present invention is formed by applying a slurry containing alumina particles, a binder and a solvent to a polyolefin microporous film, immersing it in a coagulating liquid, and drying it. Alumina particles are responsible for improving pin pull-out resistance, withstand voltage resistance, and short-circuit resistance.

本発明で用いるアルミナ粒子は、フーリエ変換型赤外分光法(FT‐IR)による3475cm−1近辺に吸収ピークを有し当該ピークが300℃以上で消失する粒子を含む。なお、本明細書で3475cm−1近辺とは3475±5cm−1の範囲をいう。 The alumina particles used in the present invention include particles having an absorption peak in the vicinity of 3475 cm-1 by Fourier transform infrared spectroscopy (FT-IR) and the peak disappearing at 300 ° C. or higher. Note that the 3475Cm -1 near herein refers to a range of 3475 ± 5 cm -1.

本発明ではFT‐IRによる3475cm−1近辺に吸収ピークを有するアルミナ粒子を用いることによって、界面活性剤等の分散剤を添加することなく均一なアルミナ粒子の分散が可能となる。界面活性剤等の分散剤を用いると電極活物質に付着し電池性能を劣化させる場合がある。このような吸収ピークを有するアルミナ粒子を用いることで分散性が向上する機構は定かではないが、発明者等は以下のように考えている。一般的なアルミナ粒子は3400cm−1付近のブロードな吸収ピークを有する。この吸収ピークはアルミナ粒子表面に存在する水酸基および水酸基に水素結合している吸着水の存在を示唆する。一方、本発明で用いるアルミナ粒子は3475cm−1付近の比較的鋭いピークを有するものを含む。この吸収ピークは、アルミナ粒子表面の特定のサイトに吸着した結晶水の存在を示唆する。これにより、水または水に可溶な溶媒に対して分散性が向上するものと推定している。In the present invention, by using alumina particles having an absorption peak in the vicinity of 3475 cm-1 by FT-IR, uniform dispersion of alumina particles is possible without adding a dispersant such as a surfactant. If a dispersant such as a surfactant is used, it may adhere to the electrode active material and deteriorate the battery performance. The mechanism by which the dispersibility is improved by using alumina particles having such an absorption peak is not clear, but the inventors think as follows. Common alumina particles have a broad absorption peak near 3400 cm-1. This absorption peak suggests the presence of hydroxyl groups present on the surface of the alumina particles and the adsorbed water hydrogen-bonded to the hydroxyl groups. On the other hand, the alumina particles used in the present invention include those having a relatively sharp peak near 3475 cm -1. This absorption peak suggests the presence of water of crystallization adsorbed on specific sites on the surface of the alumina particles. It is presumed that this will improve the dispersibility in water or a solvent soluble in water.

非水二次電池の耐久性の観点から、非水電解質二次電池用セパレータに用いる無機粒子の含水率は極力小さい方が好ましいとされてきた。非水電解質二次電池内に水分が存在すると、水分の酸化分解や水分と電解質との反応によるガス発生が顕著となり、電池の膨張や電解質の消費によってサイクル特性が悪化する。本発明で用いる特定のアルミナ粒子の3475cm−1近辺の吸収ピークは300℃以上で消失する。つまり、特定のアルミナ粒子表面の特定サイトに吸着した結晶水は約200℃まで昇温させても脱離することはなく、非水二次電池に悪影響を及ぼさないと推測される。From the viewpoint of the durability of the non-aqueous secondary battery, it has been said that the water content of the inorganic particles used in the separator for the non-aqueous electrolyte secondary battery should be as small as possible. When water is present in the non-aqueous electrolyte secondary battery, oxidative decomposition of water and gas generation due to the reaction between the water and the electrolyte become remarkable, and the cycle characteristics deteriorate due to the expansion of the battery and the consumption of the electrolyte. The absorption peak of the specific alumina particles used in the present invention in the vicinity of 3475 cm-1 disappears at 300 ° C. or higher. That is, it is presumed that the water of crystallization adsorbed on the specific site on the surface of the specific alumina particles does not desorb even when the temperature is raised to about 200 ° C. and does not adversely affect the non-aqueous secondary battery.

本発明で用いるアルミナ粒子における3475cm−1近辺の吸収ピークを有する特定のアルミナ粒子の含有の程度としては、本発明で用いるアルミナ粒子全体でFT‐IRによる測定をした際に上記のようなピークが確認できる程度が好ましい。 As for the degree of content of specific alumina particles having an absorption peak in the vicinity of 3475 cm- 1 in the alumina particles used in the present invention, the above peaks are obtained when the entire alumina particles used in the present invention are measured by FT-IR. It is preferable that it can be confirmed.

アルミナ粒子は、加熱発生ガス質量分析(TPD−MS)で測定する室温から1000℃まで加熱した際に発生する水分量が2000質量ppm以下が好ましく、より好ましくは1900質量ppm以下である。アルミナ粒子全体から発生する水分量が2000質量ppmを超えると水分の影響により電池特性の悪化が懸念される。アルミナ粒子の水分量が上記好ましい範囲内であるとアルミナ粒子を電池セパレータに用いた場合、電池特性への悪化を抑えることができる。 The amount of water generated when the alumina particles are heated from room temperature to 1000 ° C. as measured by heat generation gas mass spectrometry (TPD-MS) is preferably 2000 mass ppm or less, and more preferably 1900 mass ppm or less. If the amount of water generated from the entire alumina particles exceeds 2000 mass ppm, there is a concern that the battery characteristics may deteriorate due to the influence of the water. When the water content of the alumina particles is within the above preferable range, deterioration of the battery characteristics can be suppressed when the alumina particles are used in the battery separator.

ところでピン抜け性を向上させるには多孔質層中に比較的粒径の大きな粒子を添加し、セパレータとピンとの間の摩擦係数を小さくする方法が有効である。しかしながら、粒径1μm以上の比較的大きな粒子のみを用いた場合には、大きな粒子が凝集してより大きな粗大突起を多孔質層の表面に形成した場合、上述の通り粗大突起に接するセパレータに圧痕や破膜を生じさせるおそれがある。また、セパレータ表面におけるアルミナ粒子の間隙が大きくなり、電池内に混入した異物によって発生する短絡への耐性が低下するおそれがあるため、粒径1μm以下の比較的小さな粒子をあわせて用いセパレータ表面をアルミナで被覆する必要がある。 By the way, in order to improve the pin pull-out property, it is effective to add particles having a relatively large particle size to the porous layer to reduce the coefficient of friction between the separator and the pin. However, when only relatively large particles having a particle size of 1 μm or more are used, when the large particles aggregate to form larger coarse protrusions on the surface of the porous layer, indentations are made on the separator in contact with the coarse protrusions as described above. And may cause film rupture. In addition, since the gaps between the alumina particles on the surface of the separator become large and the resistance to short circuits generated by foreign matter mixed in the battery may decrease, relatively small particles having a particle size of 1 μm or less are used together to prepare the surface of the separator. Must be coated with alumina.

本発明で用いるアルミナ粒子は一次粒子径分布において少なくとも2つの極大を有し、粒子径分布において1.0μm以上の粒子径を有するアルミナ粒子Aと、1.0μm未満の粒子径を有するアルミナ粒子Bとに区別できる。 The alumina particles used in the present invention have at least two maximums in the primary particle size distribution, and the alumina particles A having a particle size of 1.0 μm or more and the alumina particles B having a particle size of less than 1.0 μm in the particle size distribution. Can be distinguished from.

アルミナ粒子Aは、一次粒子径分布において極大を示すモード径(以下、「一次モード径」ともいう)A(r1)の上限値は3μmが好ましく、より好ましくは2μmであり、下限値は1μmが好ましく、より好ましくは1.2μmである。一次モード径A(r1)が1.0μm未満では十分なピン抜け性が得られない場合があり、3μmを超えると耐電圧性が低下する場合があるほか、多孔質層から脱落しやすくなる。 The upper limit of the mode diameter (hereinafter, also referred to as “primary mode diameter”) A (r1) showing the maximum in the primary particle size distribution of the alumina particles A is preferably 3 μm, more preferably 2 μm, and the lower limit is 1 μm. It is preferably, more preferably 1.2 μm. If the primary mode diameter A (r1) is less than 1.0 μm, sufficient pin pull-out property may not be obtained, and if it exceeds 3 μm, the withstand voltage resistance may decrease and the primary mode diameter A (r1) may easily fall off from the porous layer.

アルミナ粒子Bは、一次粒子径分布において極大を示すモード径B(r1)の下限値は0.3μmが好ましく、より好ましくは0.4μmである。一次モード径B(r1)が0.3μm未満では凝集物による突起が生成しやすくなり、1.0μmを超えると短絡耐性が低下する場合がある。上限値は1μmを超えず、好ましくは0.8μmである。 The lower limit of the mode diameter B (r1) showing the maximum in the primary particle size distribution of the alumina particles B is preferably 0.3 μm, more preferably 0.4 μm. If the primary mode diameter B (r1) is less than 0.3 μm, protrusions due to agglomerates are likely to be formed, and if it exceeds 1.0 μm, the short-circuit resistance may decrease. The upper limit does not exceed 1 μm, preferably 0.8 μm.

フーリエ変換型赤外分光法(FT‐IR)による3475cm−1近辺に吸収ピークを有し、該ピークが300℃以上で消失する粒子はアルミナ粒子Aであることが好ましく、より好ましくはアルミナ粒子A及びBの両方である。 The particles having an absorption peak in the vicinity of 3475 cm-1 by Fourier transform infrared spectroscopy (FT-IR) and disappearing at 300 ° C. or higher are preferably alumina particles A, and more preferably alumina particles A. And B.

アルミナ粒子A及びBのモース硬度は9が好ましい。分散工程においてアルミナ粒子が削れにくいために微粉が発生しにくく、該微粉による粗大凝集物が生じにくい。モース硬度の高いアルミナ粒子を用いることによって分散性及び分散安定性に優れたスラリーを得ることができ、多孔質層とした時に粗大突起の生成を抑制できる。 The Mohs hardness of the alumina particles A and B is preferably 9. Since the alumina particles are hard to be scraped in the dispersion step, fine powder is hard to be generated, and coarse agglomerates due to the fine powder are hard to be generated. By using alumina particles having a high Mohs hardness, a slurry having excellent dispersibility and dispersion stability can be obtained, and the formation of coarse protrusions can be suppressed when the porous layer is formed.

多孔質層におけるアルミナ粒子A及びBの含有量の合計は、アルミナ粒子A、アルミナ粒子B及びバインダーを100体積%として、50体積%以上、90体積%以下であり、好ましくは60体積%以上、80体積%以下である。アルミナ粒子AとBの合計の体積比率が上記好ましい範囲内であると多孔質層の強度を維持し、塗工性の低下を抑えることができる。 The total content of the alumina particles A and B in the porous layer is 50% by volume or more and 90% by volume or less, preferably 60% by volume or more, with the alumina particles A, the alumina particles B and the binder as 100% by volume. It is 80% by volume or less. When the total volume ratio of the alumina particles A and B is within the above preferable range, the strength of the porous layer can be maintained and the decrease in coatability can be suppressed.

アルミナ粒子AとBの体積比(A(vol)/B(vol))は0.5〜2.0が好ましく、より好ましくは0.7〜1.5、さらに好ましくは0.8〜1.3である。上記範囲内であると良好な短絡耐性とピン抜け性が得られる。なお、それぞれの粒子の体積V(cm)は、粒子の真比重d(g/cm)、重量w(g)としたとき以下の式4で求められる。
V=w/d・・・・・式4 。
The volume ratio of alumina particles A to B (A (vol) / B (vol)) is preferably 0.5 to 2.0, more preferably 0.7 to 1.5, and even more preferably 0.8 to 1. It is 3. Within the above range, good short-circuit resistance and pin pull-out property can be obtained. The volume V (cm 3 ) of each particle is calculated by the following equation 4 when the true specific density d (g / cm 3 ) and the weight w (g) of the particles are taken.
V = w / d ... Equation 4.

本発明で用いるアルミナ粒子は、例えば、焼成条件、粉砕条件を適宜調整することにより得られる。本発明の特性を有すれば、上市されているアルミナ粒子を用いてもよい。 The alumina particles used in the present invention can be obtained, for example, by appropriately adjusting the firing conditions and the pulverizing conditions. As long as it has the characteristics of the present invention, commercially available alumina particles may be used.

(バインダー)
本発明で用いるバインダーは、アルミナ粒子同士を結合させる役割や、基材と多孔質層とを結合させる樹脂であれば特に限定されない。例えば、フッ素樹脂、ポリアミドイミド樹脂、アクリル系樹脂、ポリビニルアルコール、カルボキシメチルセルロースなどが挙げられる。耐熱性及び電解液浸透性の観点からはポリアミドイミド樹脂や芳香族ポリアミド樹脂が好適である。また、電極密着性の観点からはフッ素樹脂が好適である。
(binder)
The binder used in the present invention is not particularly limited as long as it has a role of binding alumina particles to each other and a resin that binds a base material and a porous layer. For example, fluororesin, polyamide-imide resin, acrylic resin, polyvinyl alcohol, carboxymethyl cellulose and the like can be mentioned. Polyamide-imide resin and aromatic polyamide resin are suitable from the viewpoint of heat resistance and electrolyte permeability. Further, from the viewpoint of electrode adhesion, fluororesin is preferable.

以下、フッ素樹脂を例に詳述する。フッ素樹脂としては、フッ化ビニリデン単独重合体、フッ化ビニリデン‐フッ化オレフィン共重合体、フッ化ビニル単独重合体およびフッ化ビニル‐フッ化オレフィン共重合体からなる群より選ばれる1種以上を使用することが好ましい。また、フッ素樹脂にマレイン酸等をグラフト重合してもよい。これらの重合体は電極との密着性に優れ、非水電解液とも親和性も高く、非水電解液に対する化学的、物理的な安定性が高いため高温下での使用にも電解液との親和性を十分維持できる。 Hereinafter, a fluororesin will be described in detail as an example. As the fluororesin, one or more selected from the group consisting of vinylidene fluoride homopolymers, vinylidene fluoride-olefin fluorinated copolymers, vinyl fluoride homopolymers and vinyl fluoride-olefin fluorinated copolymers can be used. It is preferable to use it. Further, maleic acid or the like may be graft-polymerized on the fluororesin. These polymers have excellent adhesion to electrodes, have high affinity with non-aqueous electrolytes, and have high chemical and physical stability with respect to non-aqueous electrolytes, so they can be used with electrolytes even at high temperatures. Affinity can be sufficiently maintained.

(スラリーの製造方法)
本発明に用いるスラリーは、以下の製造方法で得ることができる。本発明に用いるスラリーは、アルミナ粒子Aに相当するアルミナ粒子1とアルミナ粒子Bに相当するアルミナ粒子2とバインダーと溶媒とを混合、分散することによって得られるが、より均一に分散されたスラリーを得るために、(1)バインダーを溶媒に溶解してバインダー溶液を得る工程と、(2)バインダー溶液にアルミナ粒子1とアルミナ粒子2を添加し、予備分散した後に、さらに分散してスラリーを得る工程を順次含む方法で製造してもよい。
(Slurry manufacturing method)
The slurry used in the present invention can be obtained by the following production method. The slurry used in the present invention is obtained by mixing and dispersing alumina particles 1 corresponding to alumina particles A, alumina particles 2 corresponding to alumina particles B, a binder and a solvent, and a slurry in which the slurry is more uniformly dispersed is obtained. In order to obtain, (1) a step of dissolving the binder in a solvent to obtain a binder solution, and (2) adding alumina particles 1 and alumina particles 2 to the binder solution, pre-dispersing them, and then further dispersing them to obtain a slurry. It may be manufactured by a method including sequential steps.

(1)バインダーを溶媒に溶解してバインダー溶液を得る工程
溶媒としてはバインダーを溶解でき、かつ、水と混和できれば特に限定されず、バインダーの溶解性に併せて自由に選択できる。例えば、N−メチル−2−ピロリドン(NMP)、アセトンなどが挙げられる。
(1) Step of Dissolving Binder in Solvent to Obtain Binder Solution The solvent is not particularly limited as long as it can dissolve the binder and can be miscible with water, and can be freely selected according to the solubility of the binder. For example, N-methyl-2-pyrrolidone (NMP), acetone and the like can be mentioned.

(2)バインダー溶液にアルミナ粒子1とアルミナ粒子2を添加し、予備分散した後に、さらに分散してスラリーを得る工程
次に、前記工程で得られたバインダー溶液を撹拌しながらアルミナ粒子1とアルミナ粒子2を順次添加し、予備分散を1回行う。ここで、バインダー溶液へのアルミナ粒子1とアルミナ粒子2は徐々に添加するのが好ましい。徐々に添加するとは、例えば、バインダー溶液10L当たりの添加速度を10〜50g/minとすることであり、こうすることで微粉の発生を抑制することができる。また、予備分散では一定の時間(例えば約1時間)、メカニカルスターラーなどで撹拌し、凝集したアルミナ粒子を減少させる。予備分散を行わないとスラリーに含まれるアルミナ粒子の凝集体が沈降し、スラリーの一部がペースト状になる場合がある。この場合、十分な分散が困難となり、多孔質層に粗大突起を生成させやすくなるだけでなく、輸送用ポンプがつまるおそれもある。
(2) A step of adding alumina particles 1 and alumina particles 2 to a binder solution, pre-dispersing them, and then further dispersing them to obtain a slurry. Next, the alumina particles 1 and alumina are stirred while stirring the binder solution obtained in the above step. Particles 2 are added sequentially and pre-dispersion is performed once. Here, it is preferable to gradually add the alumina particles 1 and the alumina particles 2 to the binder solution. Gradually adding means, for example, setting the addition rate per 10 L of the binder solution to 10 to 50 g / min, whereby the generation of fine powder can be suppressed. Further, in the pre-dispersion, the agglomerated alumina particles are reduced by stirring with a mechanical stirrer or the like for a certain period of time (for example, about 1 hour). If pre-dispersion is not performed, agglomerates of alumina particles contained in the slurry may settle and a part of the slurry may become a paste. In this case, sufficient dispersion becomes difficult, and not only is it easy to generate coarse protrusions in the porous layer, but also the transportation pump may be clogged.

予備分散した後、さらにビーズミルなどを用いて分散する。ビーズミルなどのようにスラリーに高い剪断力を加える分散法によりさらにアルミナ粒子を分散し凝集体を減らすことができる。分散は通常、十分な分散を行おうとすれば高い剪断力を加え、回数(以下、パス回数という場合がある。)は4〜5回行う必要があるが、スラリーの一部が過分散となり再凝集する場合がある。本発明では前記のアルミナ粒子を用いることにより、パス回数1〜3回に短縮できるだけでなく、高い剪断力を加えても再凝集を抑制できる。 After pre-dispersion, it is further dispersed using a bead mill or the like. Alumina particles can be further dispersed and aggregates can be reduced by a dispersion method in which a high shearing force is applied to the slurry such as a bead mill. Generally, if sufficient dispersion is to be performed, a high shearing force is applied and the number of times (hereinafter, may be referred to as the number of passes) needs to be performed 4 to 5 times, but a part of the slurry becomes overdispersed and re-dispersed. May agglomerate. In the present invention, by using the above alumina particles, not only the number of passes can be shortened to 1 to 3 times, but also reaggregation can be suppressed even if a high shearing force is applied.

多孔質層の膜厚は、片面当たり0.5〜3μmが好ましく、より好ましくは1〜2.5μm、さらに好ましくは1〜2μmである。片面あたり膜厚が0.5μm以上であれば、電極との接着性や耐熱性等の機能を確保できる。片面あたり膜厚が3μm以下であれば巻き嵩を抑えることができ、今後、進むであろう電池の高容量化に適する。 The film thickness of the porous layer is preferably 0.5 to 3 μm per side, more preferably 1 to 2.5 μm, and even more preferably 1 to 2 μm. When the film thickness per side is 0.5 μm or more, functions such as adhesiveness to electrodes and heat resistance can be ensured. If the film thickness per side is 3 μm or less, the winding volume can be suppressed, which is suitable for increasing the capacity of batteries, which will be advanced in the future.

多孔質層の空孔率は、30〜90%が好ましく、より好ましくは40〜70%である。多孔質層の空孔率を上記好ましい範囲内とすることでセパレータの電気抵抗の上昇を防ぎ、大電流を流すことができ、かつ膜強度を維持できる。 The porosity of the porous layer is preferably 30 to 90%, more preferably 40 to 70%. By setting the porosity of the porous layer within the above preferable range, it is possible to prevent an increase in the electrical resistance of the separator, allow a large current to flow, and maintain the film strength.

[3]電池用セパレータ
本発明の電池用セパレータの製造方法は以下の工程(1)〜(3)を順次含む。
(1)バインダーを溶媒に溶解してバインダー溶液を得る工程と、
(2)バインダー溶液にアルミナ粒子1と2を添加し、予備分散した後に、さらに分散してスラリーを得る工程と、
(3)スラリーをポリオレフィン微多孔膜に塗布して凝固液に浸漬し、洗浄、乾燥する工程。
[3] Battery Separator The method for manufacturing a battery separator of the present invention sequentially includes the following steps (1) to (3).
(1) A step of dissolving the binder in a solvent to obtain a binder solution, and
(2) A step of adding alumina particles 1 and 2 to a binder solution, pre-dispersing them, and then further dispersing them to obtain a slurry.
(3) A step of applying a slurry to a microporous polyolefin membrane, immersing it in a coagulating liquid, washing and drying it.

得られたスラリーをポリオレフィン微多孔膜に塗布する方法は、公知の方法でもよく、例えば、ディップ・コート法、リバースロール・コート法、グラビア・コート法、キス・コート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、マイヤーバーコート法、パイプドクター法、ブレードコート法およびダイコート法などが挙げられ、これらの方法を単独あるいは組み合わせることができる。 The method of applying the obtained slurry to the microporous polyolefin membrane may be a known method, for example, a dip coating method, a reverse roll coating method, a gravure coating method, a kiss coating method, a roll brush method, or a spray coating method. Methods, air knife coating method, Meyer bar coating method, pipe doctor method, blade coating method, die coating method and the like can be mentioned, and these methods can be used alone or in combination.

以下、フッ素樹脂を例に詳述する。スラリーを塗布した微多孔膜を凝固液に浸漬させてフッ素樹脂を凝固させることで、フッ素樹脂とアルミナ粒子との間に空隙を形成する。凝固液はフッ素樹脂に対する良溶媒を1〜20重量%、より好ましくは5〜15重量%含有する水溶液を用いることができる。良溶媒としては、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドが挙げられる。凝固液には必要に応じて相分離助剤を添加しても良い。 Hereinafter, a fluororesin will be described in detail as an example. By immersing the microporous membrane coated with the slurry in the coagulating liquid to solidify the fluororesin, voids are formed between the fluororesin and the alumina particles. As the coagulating liquid, an aqueous solution containing 1 to 20% by weight, more preferably 5 to 15% by weight of a good solvent with respect to the fluororesin can be used. Examples of good solvents include N-methyl-2-pyrrolidone, N, N-dimethylformamide, and N, N-dimethylacetamide. A phase separation aid may be added to the coagulation liquid if necessary.

凝固液内の浸漬時間はフッ素樹脂の凝固の観点から2秒以上とすることが好ましく、上限は制限されないが10秒もあれば十分である。その後、純水に浸漬させることで溶媒を除去する洗浄工程と、100℃以下の熱風による乾燥工程を経て電池用セパレータを得ることができる。 The immersion time in the coagulating liquid is preferably 2 seconds or more from the viewpoint of coagulation of the fluororesin, and the upper limit is not limited, but 10 seconds is sufficient. After that, a battery separator can be obtained through a cleaning step of removing the solvent by immersing in pure water and a drying step of hot air at 100 ° C. or lower.

電池用セパレータの透気抵抗度は、もっとも重要な特性のひとつであり、好ましくは50〜600sec/100ml Air、より好ましくは100〜500sec/100ml Air、さらに好ましくは100〜400sc/100ml Airである。所望の透気抵抗度にするには、多孔質層の空孔率を調整し、バインダーのポリオレフィン微多孔膜への浸み込み程度を調整することにより得られる。電池用セパレータの透気抵抗度が上記好ましい範囲であると、実使用に好適な範囲の充放電特性、寿命特性が得られる。 The air permeation resistance of the battery separator is one of the most important properties, preferably 50 to 600 sec / 100 ml Air, more preferably 100 to 500 sec / 100 ml Air, and even more preferably 100 to 400 sc / 100 ml Air. The desired air permeation resistance can be obtained by adjusting the porosity of the porous layer and adjusting the degree of penetration of the binder into the polyolefin microporous membrane. When the air permeation resistance of the battery separator is in the above-mentioned preferable range, charge / discharge characteristics and life characteristics in a range suitable for actual use can be obtained.

多孔質層を積層して得られた電池用セパレータの全体の膜厚の上限は30μmが好ましく、より好ましくは25μmである。下限は5μmが好ましく、より好ましくは7μmである。上記好ましい範囲の下限値以上とすることで十分な機械強度と絶縁性を確保できる。上記好ましい範囲の上限値以下とすることで容器内に充填できる電極面積を確保できるため容量の低下を回避することができる。 The upper limit of the overall film thickness of the battery separator obtained by laminating the porous layers is preferably 30 μm, more preferably 25 μm. The lower limit is preferably 5 μm, more preferably 7 μm. Sufficient mechanical strength and insulating properties can be ensured by setting the value to be equal to or higher than the lower limit of the above preferable range. By setting the value to or less than the upper limit of the above preferable range, it is possible to secure an electrode area that can be filled in the container, and thus it is possible to avoid a decrease in capacity.

以下、実施例を示して具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。なお、実施例中の測定値は以下の方法で測定した値である。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. The measured values in the examples are values measured by the following methods.

1.フーリエ変換型赤外分光分析(FT‐IR)
アルミナ粒子をセラミックス製容器に入れ、ヒーターが設置された加熱拡散反射装置チャンバ内に設置し、チャンバ内に不活性ガス(N)を流速50ml/minで流通させた状態で室温から700℃まで約20℃/minで昇温し、1分間隔で拡散反射法により赤外スペクトルを取得した。測定には、市販のFT‐IR装置(Varian社製 FTS−7000)、および加熱拡散反射装置(PIKE Technologies社製)を用い次の条件で測定した。なお、この測定方法の対象となるアルミナ粒子は原料として用いるアルミナ粒子でもよいし、多孔質層から溶剤を用いてバインダーを除去したアルミナ粒子でもよい。
1. 1. Fourier Transform Infrared Spectroscopy (FT-IR)
Alumina particles are placed in a ceramic container, installed in a heat diffusion reflector chamber equipped with a heater, and an inert gas (N 2 ) is circulated in the chamber at a flow velocity of 50 ml / min from room temperature to 700 ° C. The temperature was raised at about 20 ° C./min, and infrared spectra were acquired by the diffuse reflection method at 1-minute intervals. The measurement was carried out under the following conditions using a commercially available FT-IR device (FTS-7000 manufactured by Varian) and a heat diffusion reflector (manufactured by PIKE Technologies). The alumina particles that are the target of this measurement method may be alumina particles used as a raw material, or may be alumina particles in which the binder is removed from the porous layer using a solvent.

検出器:Deuterium Tri−Glycine Sulfate(DTGS)
リファレンス:金(Au)
波長範囲:400〜4000cm−1
分解能:4cm−1
積算回数:16回
得られた拡散反射スペクトルは、Kubelka−Munk変換を行った。
Detector: Deuterium Tri-Glycine Sulfate (DTGS)
Reference: Gold (Au)
Wavelength range: 400-4000 cm -1
Resolution: 4 cm -1
Number of integrations: 16 times The obtained diffuse reflection spectrum was subjected to Kubelka-Munk conversion.

2.加熱ガス発生質量分析(TPD−MS)
アルミナ粒子約100mgを容器に入れ、ヘリウムガスを50ml/min流通させた状態で、20℃/minの昇温速度で室温から1000℃まで昇温し、発生した水分量を質量分析計で定量し、アルミナ粒子単位重量当たりの水分発生量を算出した。測定には、加熱装置を備えたGS−MS装置(株式会社島津製作所製 QP2010Ultra)を用いた。
2. Heating gas generation mass spectrometry (TPD-MS)
Approximately 100 mg of alumina particles were placed in a container, and with helium gas flowing at 50 ml / min, the temperature was raised from room temperature to 1000 ° C at a temperature rise rate of 20 ° C./min, and the amount of water generated was quantified with a mass spectrometer. , The amount of water generated per unit weight of alumina particles was calculated. For the measurement, a GS-MS apparatus equipped with a heating apparatus (QP2010 Ultra manufactured by Shimadzu Corporation) was used.

3.分散性
分散性は、アルミナ粒子の一次モード径に対するスラリー作成直後のスラリー中のアルミナ粒子のモード径とアルミナ粒子の一次モード径との差の割合(以下、式(5)で求められる値)を指標とする。
{(スラリー中のアルミナ粒子のモード径−アルミナ粒子の一次モード径)÷アルミナ粒子の一次モード径}×100・・・式5
アルミナ粒子の一次モード径は、水中で0.05wt%となるようにアルミナ粒子を加えたのち、超音波で十分解砕させた試料をレーザ回折/散乱式粒子径分布測定装置LA-960V2(株式会社堀場製作所製)を用い、下記の条件で粒度分布を測定し、得られた頻度分布図から極大値を検出し、1.0μm以上3.0以下の範囲内にある極大値をA(r1)、0.3以上1.0μm未満の範囲内にある極大値をB(r1)とした。
3. 3. Dispersibility Dispersibility is the ratio of the difference between the mode diameter of the alumina particles in the slurry immediately after the slurry is made and the primary mode diameter of the alumina particles (hereinafter, the value obtained by the formula (5)) with respect to the primary mode diameter of the alumina particles. Use as an index.
{(Mode diameter of alumina particles in slurry-Primary mode diameter of alumina particles) ÷ Primary mode diameter of alumina particles} × 100 ... Equation 5
The primary mode diameter of the alumina particles is LA-960V2 (stock), which is a laser diffraction / scattering type particle size distribution measuring device for a sample obtained by adding alumina particles so as to be 0.05 wt% in water and then sufficiently crushing the sample with ultrasonic waves. Using the company Horiba Seisakusho), measure the particle size distribution under the following conditions, detect the maximum value from the obtained frequency distribution map, and set the maximum value within the range of 1.0 μm or more and 3.0 or less to A (r1). ), The maximum value in the range of 0.3 or more and less than 1.0 μm was defined as B (r1).

スラリー作成直後のスラリー中のアルミナ粒子のモード径は、アルミナ粒子濃度が0.05wt%となるように、バインダーを溶解可能な溶媒でスラリーを希釈し、超音波で解砕させないこと以外は一次モード径と同様に測定してA(r2)、B(r2)を求めた。 The mode diameter of the alumina particles in the slurry immediately after the slurry is prepared is the primary mode except that the slurry is diluted with a solvent capable of dissolving the binder and not crushed by ultrasonic waves so that the alumina particle concentration is 0.05 wt%. A (r2) and B (r2) were determined by measuring in the same manner as the diameter.

データ取り込み回数 5000回
超音波分散の強度 7
超音波分散時間 1分間
循環速度 5
攪拌速度 3
式5の値が30%以内であると、均一に分散できアルミナ粒子の凝集が少なく、得られるセパレータの粗大突起の生成を抑えることができ、分散性が良好である。
Number of data acquisitions 5000 times Ultrasonic dispersion strength 7
Ultrasonic dispersion time 1 minute Circulation speed 5
Stirring speed 3
When the value of the formula 5 is 30% or less, the particles can be uniformly dispersed, the aggregation of alumina particles is small, the formation of coarse protrusions of the obtained separator can be suppressed, and the dispersibility is good.

4.分散安定性
分散安定性は、スラリー作製直後のアルミナ粒子のモード径A(r2)及びB(r2)から1週間後のスラリー中のアルミナ粒子のモード径の変化率(以下、式6で求められる値)を指標とする。1週間後のスラリー中のアルミナ粒子のモード径は、作製から1週間後のスラリーをポリプロピレン製の容器に半分の容量になるように投入し、手で上下に10回震とうさせ、一時間、静置後の試料を用いて、上記3.分散性と同様にモード径を求めた。
{(スラリー作製から1週間後のスラリー中のアルミナ粒子のモード径−スラリー作製直後のスラリー中のアルミナ粒子のモード径)÷スラリー作製直後のスラリー中のアルミナ粒子のモード径}×100・・・式6
アルミナ粒子1及び2の分散安定性は、式6の値が10%以下であるとスラリー中のアルミナ粒子が安定して存在し、得られるセパレータの粗大突起の生成を抑えることができ良好である。
4. Dispersion stability Dispersion stability is determined by the rate of change in the mode diameter of the alumina particles in the slurry one week after the mode diameters A (r2) and B (r2) of the alumina particles immediately after the slurry is prepared (hereinafter, formula 6). Value) is used as an index. For the mode diameter of the alumina particles in the slurry after 1 week, put the slurry 1 week after preparation into a polypropylene container so that the volume is halved, and shake it up and down 10 times by hand for 1 hour. Using the sample after standing, the mode diameter was determined in the same manner as in 3. Dispersibility above.
{(Mode diameter of alumina particles in the slurry one week after the slurry preparation-Mode diameter of the alumina particles in the slurry immediately after the slurry preparation) ÷ Mode diameter of the alumina particles in the slurry immediately after the slurry preparation} × 100 ... Equation 6
The dispersion stability of the alumina particles 1 and 2 is good because when the value of Equation 6 is 10% or less, the alumina particles in the slurry are stably present and the formation of coarse protrusions of the obtained separator can be suppressed. ..

5.ピン抜け性
直径4.0mmの円柱形状ピンを用いた方法によりピン抜け性を評価した。まず、幅40mmのセパレータA〜Dを、200gの引張荷重(セパレータ幅あたり5g/mm)をかけて、直径4.0mmの円柱形状ピンの周囲に5周巻き付けた。この巻回されたセパレータA〜Dから円柱状ピンを引き抜き、ピン抜け性を以下のように評価した。
良好:タケノコ状の突出量が1mm未満
不良:タケノコ状の突出量が1mm以上
6.耐電圧試験法
実施例および比較例で得られた電池用セパレータの捲回体から巻き芯から約10m部分を巻きだし、試料に供した。耐電圧試験機TOS5051A(菊水電子工業株式会社製)を用い、次の手順でセパレータの耐電圧試験を行った。アルミ箔を敷いた試料台にセパレータ(50mm×50mmサイズ)を置き、次いでセパレータの上にφ15mmのアルミ箔を、さらにφ15mmのアルミ箔上にφ13mmの伝導性ゴムを重ねて置いた。次に、伝導性ゴム上に金属製錘(φ50mm×高さ32mm,重量約500g)を置き、ケーブルで金属製錘と試料台上のアルミ箔をそれぞれ耐電圧試験機につないだ。耐電圧試験機で試料台と金属製錘間の電圧を2kVまで昇圧(昇圧速度:0.1kV/sec)し、膜厚20μmに換算して2kV以下で電気的短絡が生じた場合に耐電圧不良、電気的短絡が生じない場合には耐電圧良好とした。
5. Pin pull-out property The pin pull-out property was evaluated by a method using a cylindrical pin having a diameter of 4.0 mm. First, separators A to D having a width of 40 mm were wound around a cylindrical pin having a diameter of 4.0 mm five times by applying a tensile load of 200 g (5 g / mm per separator width). Cylindrical pins were pulled out from the wound separators A to D, and the pin pull-out property was evaluated as follows.
Good: Bamboo shoot-shaped protrusion less than 1 mm Defective: Bamboo shoot-shaped protrusion 1 mm or more 6. Withstanding voltage test method A portion of about 10 m from the winding core was unwound from the wound body of the battery separator obtained in Examples and Comparative Examples, and used as a sample. Using the withstand voltage tester TOS5051A (manufactured by Kikusui Electronics Co., Ltd.), the withstand voltage test of the separator was performed by the following procedure. A separator (50 mm × 50 mm size) was placed on a sample table covered with aluminum foil, then a φ15 mm aluminum foil was placed on the separator, and a φ13 mm conductive rubber was placed on the φ15 mm aluminum foil. Next, a metal weight (φ50 mm × height 32 mm, weight about 500 g) was placed on the conductive rubber, and the metal weight and the aluminum foil on the sample table were connected to the withstand voltage tester with a cable. Withstand voltage tester boosts the voltage between the sample table and the metal weight to 2 kV (boost rate: 0.1 kV / sec), and when converted to a film thickness of 20 μm and an electrical short circuit occurs at 2 kV or less, the withstand voltage When a defect or an electrical short circuit did not occur, the withstand voltage was considered to be good.

7.短絡耐性試験
短絡耐性の評価は、卓上型精密万能試験機 オートグラフAGS−X(株式会社島津製作所製)を用いて実施した。図4及び図5に示されるように、ポリプロピレン製絶縁体1(厚み0.2mm)、リチウムイオン電池用負極2(総厚:約140μm、基材:銅箔(厚み約9μm)、活物質:人造黒鉛(粒径約30μm)、両面塗工)、セパレータ3、アルミニウム箔4(厚み約0.1mm)を積層したサンプル積層体を万能試験機の圧縮治具(下側)6に両面テープで固定した。次に、上記サンプル積層体のアルミ箔、負極を、コンデンサとクラッド抵抗器からなる回路にケーブルでつないだ。コンデンサは約1.5Vに充電し、サンプル積層体中のセパレータ、アルミニウム箔の間に直径約500μmの金属球5(材質:クロム(SUJ−2))を置いた。万能試験機に圧縮治具を取り付け、図5に示されるように両圧縮治具の間に金属球5を含むサンプル積層体を置いて、速度0.3mm/min.で圧縮し、荷重が100Nに達した時点で試験終了とした。このとき、圧縮荷重変化において変曲点が現れた部分をセパレータの破膜点とし、さらに金属球を介して上記回路が形成され電流が検知された瞬間をショート発生点とした。圧縮によりセパレータが破膜し圧縮応力に変曲点を生じたときの圧縮変位A(t)、および回路に電流が流れた瞬間の圧縮変位B(t)を測定し、次の式7で求める数値が1.1以上の場合、電池内に混入した異物によりセパレータが破膜しても、異物表面に塗工層組成物が付着することにより絶縁が保たれることを意味するため、短絡耐性は良好とした。一方、式7で求める数値が1.0より大きく1.1未満の場合、セパレータの破膜と短絡は同時には起こらないものの、電池部材の捲回にかかる張力や充放電時の電極の膨張に伴う電池内圧上昇においても短絡が生じないためには、ある一定以上の耐性が必要となるため、短絡耐性はやや不良とした。式7で求める数値が1.0の場合は、セパレータの破膜と同時に短絡が発生しており、塗工層による短絡耐性の向上はみられていないため、短絡耐性は不良とした。
B(t)÷A(t)・・・式7 。
7. Short-circuit resistance test The short-circuit resistance was evaluated using a desktop precision universal testing machine Autograph AGS-X (manufactured by Shimadzu Corporation). As shown in FIGS. 4 and 5, polypropylene insulator 1 (thickness 0.2 mm), negative electrode 2 for lithium ion battery (total thickness: about 140 μm, base material: copper foil (thickness about 9 μm), active material: A sample laminate in which artificial graphite (particle size: about 30 μm), double-sided coating), separator 3, and aluminum foil 4 (thickness: about 0.1 mm) are laminated is attached to the compression jig (lower side) 6 of the universal testing machine with double-sided tape. Fixed. Next, the aluminum foil and negative electrode of the sample laminate were connected to a circuit consisting of a capacitor and a clad resistor with a cable. The capacitor was charged to about 1.5 V, and a metal ball 5 (material: chromium (SUJ-2)) having a diameter of about 500 μm was placed between the separator and the aluminum foil in the sample laminate. A compression jig was attached to the universal testing machine, and a sample laminate containing the metal balls 5 was placed between the compression jigs as shown in FIG. 5, and the speed was 0.3 mm / min. The test was terminated when the load reached 100 N. At this time, the portion where the inflection point appeared due to the change in the compressive load was defined as the film rupture point of the separator, and the moment when the circuit was formed via the metal ball and the current was detected was defined as the short circuit generation point. The compressive displacement A (t) when the separator breaks due to compression and an inflection point occurs in the compressive stress, and the compressive displacement B (t) at the moment when a current flows through the circuit are measured and calculated by the following equation 7. When the value is 1.1 or more, it means that even if the separator breaks due to the foreign matter mixed in the battery, the coating layer composition adheres to the foreign matter surface to maintain the insulation, so that it is short-circuit resistant. Was good. On the other hand, when the value obtained by Equation 7 is larger than 1.0 and less than 1.1, the separator film breakage and short circuit do not occur at the same time, but the tension applied to the winding of the battery member and the expansion of the electrode during charging and discharging occur. Since a certain level of resistance is required to prevent a short circuit from occurring even when the internal pressure of the battery rises, the short circuit resistance is considered to be slightly poor. When the value obtained by the formula 7 is 1.0, a short circuit occurs at the same time as the film rupture of the separator, and the short circuit resistance is not improved by the coating layer. Therefore, the short circuit resistance is considered to be poor.
B (t) ÷ A (t) ... Equation 7.

実施例1〜11
(スラリーの調整)
フッ素樹脂としてフッ化ビニリデン−ヘキサフルオロプロピレン共重合体(VdF‐HFP共重合体(重量平均分子量100万))をN−メチル−2−ピロリドンに対し約5wt%の重量比率で配合し、VdF‐HFP共重合体を完全に溶解させたフッ素樹脂溶液を得た。次いで、アルミナ粒子1とアルミナ粒子2の合計体積とVdF‐HFP共重合体の体積が50:50となるよう、メカニカルスターラーで350rpmの条件で撹拌しながらフッ素樹脂溶液にアルミナ粒子1と2を添加した。各実施例で用いるアルミナ粒子の特徴および体積比は表1に示した。なお、アルミナ粒子1及び2の一次モード径は、各アルミナ粒子を水中で0.05wt%となるように調整した各試料を用いて上記の3.分散性と同じ測定条件で粒度分布を測定し、頻度分布図から得られる極大値とした。
Examples 1-11
(Adjustment of slurry)
As a fluororesin, vinylidene fluoride-hexafluoropropylene copolymer (VdF-HFP copolymer (weight average molecular weight 1 million)) is blended in a weight ratio of about 5 wt% with respect to N-methyl-2-pyrrolidone, and VdF- A fluororesin solution in which the HFP copolymer was completely dissolved was obtained. Next, the alumina particles 1 and 2 were added to the fluororesin solution while stirring with a mechanical stirrer at 350 rpm so that the total volume of the alumina particles 1 and the alumina particles 2 and the volume of the VdF-HFP copolymer were 50:50. bottom. The characteristics and volume ratio of the alumina particles used in each example are shown in Table 1. The primary mode diameters of the alumina particles 1 and 2 were set to the above 3. using each sample adjusted so that each alumina particle was 0.05 wt% in water. The particle size distribution was measured under the same measurement conditions as the dispersibility, and the maximum value obtained from the frequency distribution map was used.

アルミナ粒子の添加速度はフッ素樹脂溶液10L当たり30g/minとした。アルミナ粒子を添加した後、継続してメカニカルスターラーで1時間撹拌し、予備分散を行った。次に、ダイノーミル(株式会社シンマルエンタープライゼス製、ダイノーミルマルチラボ(1.46L容器、充填率80%、φ0.5mmアルミナビーズ))を用いて、流量11kg/hr、周速10m/sの条件にて表1に示したパス回数で分散し、スラリーを調合した。この時スラリーの温度は20〜45℃の範囲となるように温度調節した。なお、スラリーは塗工時まで極力外気に触れないように密閉保管した。 The addition rate of the alumina particles was 30 g / min per 10 L of the fluororesin solution. After adding the alumina particles, the mixture was continuously stirred with a mechanical stirrer for 1 hour to perform pre-dispersion. Next, using a Dyno Mill (Dyno Mill Multilab (1.46 L container, filling rate 80%, φ0.5 mm alumina beads) manufactured by Simmal Enterprises Co., Ltd.), the flow rate is 11 kg / hr and the peripheral speed is 10 m / s. The slurry was prepared by dispersing in the number of passes shown in Table 1 under the conditions of. At this time, the temperature of the slurry was adjusted so as to be in the range of 20 to 45 ° C. The slurry was stored in a hermetically sealed manner so as not to come into contact with the outside air as much as possible until the time of coating.

(多孔質層の積層)
ディップコート法にてポリエチレン微多孔膜(厚さ7μm、透気抵抗度100sec/100ml Air)の両面にスラリーを塗布し、水(凝固液)に浸漬させ、純水で洗浄した後、70℃の熱風乾燥炉を通過させ乾燥して最終厚み11μmの電池用セパレータを得た。
(Lamination of porous layers)
Slurry is applied to both sides of a polyethylene microporous membrane (thickness 7 μm, air permeability resistance 100 sec / 100 ml Air) by the dip coating method, immersed in water (coagulant), washed with pure water, and then at 70 ° C. It was passed through a hot air drying oven and dried to obtain a battery separator having a final thickness of 11 μm.

実施例12
ポリエチレン微多孔膜を厚さ12μm、透気抵抗度120sec/100ml Airのものに替えた以外は実施例1と同様にして電池用セパレータを得た。
Example 12
A battery separator was obtained in the same manner as in Example 1 except that the polyethylene microporous membrane was replaced with one having a thickness of 12 μm and an air permeation resistance of 120 sec / 100 ml Air.

実施例13
ポリエチレン微多孔膜を厚さ9μm、透気抵抗度180sec/100ml Airのものに替えた以外は実施例1と同様にして電池用セパレータを得た。
Example 13
A battery separator was obtained in the same manner as in Example 1 except that the polyethylene microporous membrane was replaced with one having a thickness of 9 μm and an air permeation resistance of 180 sec / 100 ml Air.

実施例14
ポリエチレン微多孔膜を厚さ7μm、透気抵抗度180sec/100ml Airのものに替えた以外は実施例1と同様にして電池用セパレータを得た。
Example 14
A battery separator was obtained in the same manner as in Example 1 except that the polyethylene microporous membrane was replaced with one having a thickness of 7 μm and an air permeation resistance of 180 sec / 100 ml Air.

実施例15
ポリエチレン微多孔膜を厚さ5μm、透気抵抗度110sec/100ml Airのものに替えた以外は実施例1と同様にして電池用セパレータを得た。
比較例1
アルミナ粒子としてアルミナ粒子1を用いず、アルミナ粒子2のみとした以外は実施例1と同様にして電池用セパレータを得た。
Example 15
A battery separator was obtained in the same manner as in Example 1 except that the polyethylene microporous membrane was replaced with one having a thickness of 5 μm and an air permeation resistance of 110 sec / 100 ml Air.
Comparative Example 1
A battery separator was obtained in the same manner as in Example 1 except that the alumina particles 1 were not used and only the alumina particles 2 were used.

比較例2〜7
アルミナ粒子1とアルミナ粒子2を表1に示す比率とし、分散条件を表1に示すパス回数とした以外は実施例1と同様にして電池用セパレータを得た。
Comparative Examples 2-7
A battery separator was obtained in the same manner as in Example 1 except that the ratio of the alumina particles 1 and the alumina particles 2 was set as shown in Table 1 and the dispersion condition was set to the number of passes shown in Table 1.

表1は、実施例、比較例で用いたポリオレフィン微多孔膜、アルミナ粒子1及び2の特性を示す。 Table 1 shows the characteristics of the polyolefin microporous membranes and alumina particles 1 and 2 used in Examples and Comparative Examples.

Figure 0006939569
Figure 0006939569

表2は、実施例、比較例におけるパス回数、アルミナ粒子の分散性と分散安定性および得られたセパレータの特性を示す。 Table 2 shows the number of passes in Examples and Comparative Examples, the dispersibility and dispersion stability of the alumina particles, and the characteristics of the obtained separator.

Figure 0006939569
Figure 0006939569

1…樹脂製絶縁体
2…リチウムイオン電池用負極
3…セパレータ
4…アルミニウム箔
5…金属球
6…圧縮治具(下側)
6’…圧縮治具(上側)
7…金属球を含むサンプル積層体
1 ... Resin insulator 2 ... Negative electrode for lithium-ion battery 3 ... Separator 4 ... Aluminum foil 5 ... Metal ball 6 ... Compression jig (lower side)
6'... Compression jig (upper side)
7 ... Sample laminate containing metal spheres

Claims (9)

ポリオレフィン微多孔膜と、当該ポリオレフィン微多孔膜の少なくとも片面に多孔質層を有する電池用セパレータであって、前記多孔質層はアルミナ粒子とバインダーとを含み、前記アルミナ粒子と前記バインダーの合計を100体積%としたとき、前記アルミナ粒子の体積比率が50体積%以上であり、前記アルミナ粒子は、フーリエ変換型赤外分光法(FT-IR)による3475cm−1近辺に吸収ピークを有し該ピークが300℃以上で消失する粒子を含み、前記アルミナ粒子は一次粒子径分布において下記式1、2を満足する少なくとも2つの極大を有し、一次粒子径において1.0μm以上の粒子径を有するアルミナ粒子Aと1.0μm未満の粒子径を有するアルミナ粒子Bとに区別したときにそれぞれの総体積の比が下記式3を満足することを特徴とする、電池用セパレータ。
1.0(μm)≦A(r1)≦3.0(μm)・・・・・式1
0.3(μm)≦B(r1)<1.0(μm)・・・・・式2
0.5≦A(vol)/B(vol)≦2.0・・・・・式3
ここで、A(r1)、B(r1)はアルミナ粒子の一次粒子径分布において極大を示すモード径、A(vol)/B(vol)は多孔質層中におけるアルミナ粒子Aとアルミナ粒子Bとの総体積比である。
A battery separator having a polyolefin microporous film and a porous layer on at least one side of the polyolefin microporous film, the porous layer containing alumina particles and a binder, and the total of the alumina particles and the binder is 100. When the volume% is taken, the volume ratio of the alumina particles is 50% by volume or more, and the alumina particles have an absorption peak in the vicinity of 3475 cm-1 by Fourier transform infrared spectroscopy (FT-IR) and the peak. The alumina particles have at least two maximums satisfying the following formulas 1 and 2 in the primary particle size distribution, and the alumina has a particle size of 1.0 μm or more in the primary particle size. A battery separator, characterized in that the ratio of the total volume of each of the particles A and the alumina particles B having a particle size of less than 1.0 μm satisfies the following formula 3.
1.0 (μm) ≤ A (r1) ≤ 3.0 (μm) ... Equation 1
0.3 (μm) ≤ B (r1) <1.0 (μm) ... Equation 2
0.5 ≤ A (vol) / B (vol) ≤ 2.0 ... Equation 3
Here, A (r1) and B (r1) are mode diameters showing the maximum in the primary particle size distribution of the alumina particles, and A (vol) / B (vol) are the alumina particles A and the alumina particles B in the porous layer. Is the total volume ratio of.
フーリエ変換型赤外分光法(FT‐IR)による3475cm−1近辺に吸収ピークを有し、該ピークが300℃以上で消失する粒子が前記アルミナ粒子Aであることを特徴とする、請求項1に記載の電池用セパレータ。Claim 1 is characterized in that the alumina particles A have an absorption peak in the vicinity of 3475 cm-1 by Fourier transform infrared spectroscopy (FT-IR), and the peak disappears at 300 ° C. or higher. Battery separator described in. 前記アルミナ粒子は室温から1000℃まで上昇させたときの加熱発生ガス質量分析(TPD‐MS)で測定する発生水分量が2000質量ppm以下であることを特徴とする、請求項1又は2に記載の電池用セパレータ。 The present invention according to claim 1 or 2, wherein the alumina particles have a water content of 2000 mass ppm or less as measured by mass spectrometry of heated generated gas (TPD-MS) when the temperature is raised from room temperature to 1000 ° C. Battery separator. 0.7≦A(vol)/B(vol)≦1.5であることを特徴とする、請求項1〜3のいずれか1項に記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 3, wherein 0.7 ≦ A (vol) / B (vol) ≦ 1.5. 0.8≦A(vol)/B(vol)≦1.3であることを特徴とする、請求項1〜3のいずれか1項に記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 3, wherein 0.8 ≦ A (vol) / B (vol) ≦ 1.3. 前記バインダーがフッ素樹脂を含むことを特徴とする、請求項1〜5のいずれか1項に記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 5, wherein the binder contains a fluororesin. 前記フッ素樹脂がフッ化ビニリデン−ヘキサフルオロプロピレン共重合体を含むことを特徴とする、請求項6に記載の電池用セパレータ。 The battery separator according to claim 6, wherein the fluororesin contains a vinylidene fluoride-hexafluoropropylene copolymer. ポリオレフィン微多孔膜の厚さが10μm未満であることを特徴とする、請求項1〜7のいずれか1項に記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 7, wherein the thickness of the polyolefin microporous membrane is less than 10 μm. ポリオレフィン微多孔膜の厚さが7μm以下であることを特徴とする、請求項1〜8のいずれか1項に記載の電池用セパレータ。 The battery separator according to any one of claims 1 to 8, wherein the thickness of the polyolefin microporous membrane is 7 μm or less.
JP2017562094A 2016-07-25 2017-07-20 Battery separator Active JP6939569B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016145605 2016-07-25
JP2016145605 2016-07-25
PCT/JP2017/026280 WO2018021143A1 (en) 2016-07-25 2017-07-20 Separator for battery-use

Publications (2)

Publication Number Publication Date
JPWO2018021143A1 JPWO2018021143A1 (en) 2019-05-16
JP6939569B2 true JP6939569B2 (en) 2021-09-22

Family

ID=61016240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017562094A Active JP6939569B2 (en) 2016-07-25 2017-07-20 Battery separator

Country Status (5)

Country Link
JP (1) JP6939569B2 (en)
KR (1) KR101981079B1 (en)
CN (1) CN109075296B (en)
TW (1) TWI716616B (en)
WO (1) WO2018021143A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7289194B2 (en) * 2018-12-18 2023-06-09 住友化学株式会社 Method for producing porous layer, laminate, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN113226988B (en) * 2018-12-26 2023-05-12 住友化学株式会社 Alumina, alumina slurry, alumina film, laminated separator, and nonaqueous electrolyte secondary battery and method for producing same
JP7403310B2 (en) 2019-12-26 2023-12-22 リンテック株式会社 Adhesive sheets for batteries and lithium ion batteries
KR20230065145A (en) 2021-11-04 2023-05-11 김오갑 Welding Device

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3637365B2 (en) 1997-07-22 2005-04-13 日産自動車株式会社 Waste heat power generator
JP2007290943A (en) * 2006-03-29 2007-11-08 Nissan Motor Co Ltd Method of producing modified alumina particle dispersion sol, method of producing modified alumina particles and thermoplastic resin composition using the sol, and modified alumina particle dispersion sol, modified alumina particles and thermoplastic resin composition each prepared by the method
JP4724223B2 (en) * 2006-09-07 2011-07-13 日立マクセル株式会社 Manufacturing method of battery separator
JP5158678B2 (en) 2006-10-16 2013-03-06 日立マクセル株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
WO2009096451A1 (en) * 2008-01-29 2009-08-06 Hitachi Maxell, Ltd. Slurry for forming insulating layer, separator for electrochemical device, method for producing the same, and electrochemical device
JP2010123383A (en) * 2008-11-19 2010-06-03 Teijin Ltd Separator for nonaqueous secondary battery, method of manufacturing the same, and nonaqueous secondary battery
JP5502707B2 (en) 2009-11-20 2014-05-28 三菱樹脂株式会社 Multilayer porous film, battery separator and battery
JP2011158335A (en) 2010-01-29 2011-08-18 Fujitsu Frontech Ltd Stepping motor connection detecting circuit
JP5829042B2 (en) * 2011-04-13 2015-12-09 旭化成ケミカルズ株式会社 Copolymer composition for multilayer porous membrane
JP2015018600A (en) * 2011-11-10 2015-01-29 日産自動車株式会社 Separator with heat-resistant insulating layer
KR20140096358A (en) * 2011-11-15 2014-08-05 도요타지도샤가부시키가이샤 Non-aqueous electrolyte type secondary battery
EP2784842B1 (en) * 2011-11-25 2018-12-12 Nissan Motor Company, Limited Separator for electrical device, and electrical device using same
CN102522516A (en) * 2011-12-22 2012-06-27 中国科学院青岛生物能源与过程研究所 Asymmetric composite diaphragm for lithium ion secondary cell and preparation method thereof
US20150050542A1 (en) * 2012-03-29 2015-02-19 Toray Battery Separator Film Co., Ltd. Battery separator and method for producing same
KR101423103B1 (en) * 2012-04-13 2014-07-25 도레이 배터리 세퍼레이터 필름 주식회사 Battery separator, and method for producing same
JP6242618B2 (en) 2012-07-27 2017-12-06 住友化学株式会社 Method for producing laminated porous film
US20150203686A1 (en) * 2012-07-27 2015-07-23 Sumitomo Chemical Company, Limited Alumina slurry, method for producing same, and coating liquid
KR102225805B1 (en) * 2013-09-10 2021-03-10 도레이 카부시키가이샤 Separator for secondary cell, and secondary cell
JP2014012857A (en) 2013-09-26 2014-01-23 Asahi Kasei E-Materials Corp Microporous film, method for producing the same, and separator for nonaqueous electrolyte secondary battery
WO2015105009A1 (en) * 2014-01-07 2015-07-16 三菱樹脂株式会社 Laminated porous film, separator for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
JP2015156342A (en) * 2014-02-21 2015-08-27 三菱製紙株式会社 battery separator
JP6394346B2 (en) * 2014-12-10 2018-09-26 三菱ケミカル株式会社 Method for producing alumina slurry

Also Published As

Publication number Publication date
WO2018021143A1 (en) 2018-02-01
CN109075296B (en) 2021-03-12
TW201810773A (en) 2018-03-16
KR101981079B1 (en) 2019-05-22
TWI716616B (en) 2021-01-21
KR20180129781A (en) 2018-12-05
CN109075296A (en) 2018-12-21
JPWO2018021143A1 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
JP6309661B2 (en) Porous membrane and multilayer porous membrane
JP6939569B2 (en) Battery separator
JP4789274B2 (en) Multilayer porous membrane
JP5511214B2 (en) Multilayer porous membrane
WO2010134585A1 (en) Multi-layered porous film
TWI700851B (en) Polyolefin microporous membrane, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US10256450B2 (en) Laminated porous membrane, process for manufacturing same and separator for battery
TW200903885A (en) Multilayer porous membrane and method for producing the same
JP2017152268A (en) Battery separator
JP2009129668A (en) Multilayer porous membrane
JP6598905B2 (en) Nonaqueous electrolyte secondary battery separator
JP7229775B2 (en) Battery separator, electrode body and non-aqueous electrolyte secondary battery
JP2008186722A (en) Porous membrane having high thermal resistance and high permeability, and its manufacturing method
JP6444122B2 (en) Power storage device separator, separator slurry, and non-aqueous electrolyte secondary battery
WO2017187780A1 (en) Slurry for secondary-battery separator, secondary-battery separator, and production processes therefor
JP6381754B1 (en) Non-aqueous electrolyte secondary battery
JP6277225B2 (en) Storage device separator
JPH04126352A (en) Separator for battery, manufacture thereof and battery
JP6463395B2 (en) Nonaqueous electrolyte secondary battery separator
JP6479070B2 (en) Nonaqueous electrolyte secondary battery separator
JP2022055757A (en) Porous film, separator for secondary battery, and secondary battery
JP2023050126A (en) Polyolefin microporous film, laminate, and non-aqueous electrolyte secondary battery
JP2020111469A (en) Reel and method of manufacturing reel
JP2019050225A (en) Separator for nonaqueous electrolyte secondary battery
JP2019029360A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210816

R151 Written notification of patent or utility model registration

Ref document number: 6939569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151