JP4270411B2 - Nonaqueous electrolyte battery and separator for nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery and separator for nonaqueous electrolyte battery Download PDF

Info

Publication number
JP4270411B2
JP4270411B2 JP07485898A JP7485898A JP4270411B2 JP 4270411 B2 JP4270411 B2 JP 4270411B2 JP 07485898 A JP07485898 A JP 07485898A JP 7485898 A JP7485898 A JP 7485898A JP 4270411 B2 JP4270411 B2 JP 4270411B2
Authority
JP
Japan
Prior art keywords
separator
heat
inorganic
electrolyte battery
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07485898A
Other languages
Japanese (ja)
Other versions
JPH11260338A (en
Inventor
泰三 松波
英吉 佐藤
春二 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP07485898A priority Critical patent/JP4270411B2/en
Publication of JPH11260338A publication Critical patent/JPH11260338A/en
Application granted granted Critical
Publication of JP4270411B2 publication Critical patent/JP4270411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種電子機器等の電源として利用されるリチウムイオン二次電池等の非水電解液電池並びに非水電解液電池用セパレータに関する。
【0002】
【従来の技術】
従来、小型の二次電池は、OA、FA、家電、通信機器等のポータブル電子機器用電源として幅広く使用されており、さらに機器に装着した場合に容積効率がよく、機器の小型化、軽量化につながる二次電池の要求がなされている。一方、大型の二次電池は、ロードレベリング、UPS、電気自動車をはじめ、環境問題に関連する多くの分野において研究開発が進められ、大容量、高出力、高電圧、長期保存性に優れた非水電解液二次電池であるリチウムイオン二次電池が要求されている。
【0003】
リチウムイオン二次電池では、充電時にリチウムイオンが正極の活物質から電解液を経て負極の活物質中に入り込み、放電時は負極の活物質中に入り込んだリチウムイオンが電解液中に放出され、正極の活物質中に再び戻ることによって、充放電動作をおこなっている。
【0004】
従来のリチウムイオン二次電池はエネルギー密度を上げるため、活物質を金属箔の集電体の表裏両面に塗布し、正負極電極シートを作製し、ポリエチレンもしくはポリプロピレン等の微多孔性のポリオレフィン樹脂フィルムよりなるセパレータを介して所定の大きさの電極対を多数積層した角型電池構造、あるいは長尺の正負極電極を同上のセパレータを介して巻回した円筒型電池構造のものがほとんどであった。
【0005】
前記微多孔性ポリオレフィン樹脂フィルムからなるセパレータは、高温(140〜160℃)状態になると、セパレータに開孔させた微細な孔を閉塞し、その結果、電池内部のイオン伝導を遮断し、その後の電池の温度上昇を防止できる機能(シャットダウン特性)を有しており、延伸、アニール処理を施したポリプロピレンや高密度ポリエチレンからなるセパレータが特公平3−11259号に開示されている。
【0006】
ところが、ポリプロピレンからなるセパレータは無孔化温度(孔がつぶれて閉塞した状態になる温度)が高くて電池内部温度の上昇防止が十分でなく、また、高密度ポリエチレン(超高分子量、高分子量ポリエチレン)からなるセパレータは無孔化温度は低いが膜破れ温度(セパレータに破れが発生する温度)も低いという不都合を有している。そこで、セパレータとして強度を保ちつつ、その融点以上に加熱されると融着する材料を用いることにより、温度上昇時にはセパレータ材料自体が融着することによりその微細孔が閉塞してイオン透過性を失わせ、しかも膜破れ温度と無孔化温度の差を30〜35℃とすることで前記不都合を改善したセパレータとして、ポリプロピレンや高密度ポリエチレンからなるセパレータに低密度(低融点)ポリエチレンを混合して用いることが特開平5−234578号に開示されている。
【0007】
【発明が解決しようとする課題】
しかしながら、前記特公平3−11259号に開示されている延伸、アニール処理を施したポリプロピレンや高密度ポリエチレンからなるセパレータ及び特開平5ー234578号に開示されている低密度(低融点)ポリエチレンを混合したセパレータ単体では、外部加熱、外部短絡、あるいは内部ショートなどにより温度が上昇し、電池内温度が140〜160℃を越えるような場合には正負極電極間の微多孔性ポリオレフィン樹脂フィルムよりなるセパレータがシャットダウンする温度を超えてしまい、完全に熱溶融し、熱分解し、さらに振動が加えられた場合には、セパレータに亀裂が発生して絶縁性が維持できなくなり、正負極間が直接ショートし、内部ショートが拡大するという不都合があった。
【0008】
本発明は斯かる点に鑑み、正極及び負極間の直接ショートを防止するようにし、内部ショートが拡大しないようにすることを目的とする。
【0009】
【課題を解決するための手段】
本発明の非水電解液電池用セパレータは、ポリオレフィン系樹脂20〜80wt%と無機粉体及び/又は無機繊維80〜20wt%とで構成される厚さ10〜200μmの無機質多孔膜の少なくとも片面に、500℃以上のセパレータ耐熱絶縁性を与える厚さ20〜40μmの耐熱多孔性支持体を積層したことを特徴とする。
また、請求項2記載の非水電解液電池用セパレータは、請求項1記載の非水電解液電池用セパレータにおいて、ポリオレフィン系樹脂40〜80wt%と無機粉体及び/又は無機繊維60〜20wt%とで構成される厚さ10〜100μmの無機質多孔膜の少なくとも片面に、前記耐熱多孔性支持体を積層したことを特徴とする。
また、請求項3記載の非水電解液電池用セパレータは、請求項1又は2記載の非水電解液電池用セパレータにおいて、前記ポリオレフィン系樹脂が重量平均分子量20万以上の高密度ポリエチレンであることを特徴とする。
また、請求項4記載の非水電解液電池用セパレータは、請求項1乃至3の何れかに記載の非水電解液電池用セパレータにおいて、前記耐熱多孔性支持体が抄造紙又は織布からなることを特徴とする。
また、請求項5記載の非水電解液電池用セパレータは、請求項1乃至4の何れかに記載の非水電解液電池用セパレータにおいて、前記耐熱多孔性支持体が耐熱性繊維及び/又は耐熱性粉体の抄造紙からなることを特徴とする。
また、請求項6記載の非水電解液電池は、正極と負極とをセパレータを介して積層し、非水電解液を含む電池ケース内に収容してなる非水電解液電池において、前記セパレータとして請求項1乃至5の何れかに記載の非水電解液電池用セパレータを用いることを特徴とする。
【0010】
本発明によれば、セパレータの主構成要素として、有機質の中に無機粉体及び/又は無機繊維を配した無機質多孔膜を用いているので、外部加熱あるいは外部ショートによる発熱があって200℃までの電解液の温度上昇があっても、正極及び負極間は、無機粉体及び/又は無機繊維により絶縁が保たれるので大面積での電極間ショートが起こらない。また、内部ショートが発生しても無機質多孔膜の溶融によるショート部位の拡大が防止されるので、直接的な大面積での電極間ショートを防ぐことができる。
また、さらに、無機質多孔膜の支持体として使用される耐熱多孔性支持体の積層によって、外部加熱あるいは外部ショートによる発熱があり、電解液の温度が500〜600℃の高温になっても、無機質多孔膜の亀裂の発生を防止して絶縁が維持継続されるので、直接的な大面積での電極間ショートを防ぐことができる。
【0011】
【発明の実施の形態】
前記のように無機質多孔膜の構成をポリオレフィン系樹脂20〜80wt%と無機粉体及び/又は無機繊維80〜20wt%とするのは、ポリオレフィン系樹脂が20wt%未満あるいは無機粉体及び/又は無機繊維が80wt%を越える場合は、ポリオレフィン系樹脂が無機質多孔膜全体に均一に分散できず機械的強度が低くなり好ましくなく、また、ポリオレフィン系樹脂が80wt%を越えるかあるいは無機粉体が20wt%未満の場合は、十分な多孔性得られず一定温度以上での加熱収縮が大きくなり、また、高温時のセパレータ(無機質多孔膜)構造の保持ができなくなり好ましくないからである。
【0012】
尚、前記組成において、ポリオレフィン系樹脂が40wt%未満の場合、あるいは無機粉体が60wt%を超える場合には、無機質多孔膜に均一に孔が開かなくなるため、ポリオレフィン系樹脂は40wt%以上、無機粉体は60wt%以下とするのが好ましい。
【0013】
また、前記無機質多孔膜の厚さは10μmから200μmの範囲にするのが好ましい。これは、厚さが200μmを越える場合は、電池におけるセパレータの容積が増えて、その結果、活物資の容積が減少する不都合があり、また、厚さ10μm未満の場合は、セパレータ強度が著しく低下して電池の作成が困難になるからである。
【0014】
前記無機質多孔膜を構成するポリオレフィン樹脂としては、ポリプロピレン、ポリエチレン、ポリブデン及びこれらの共重合物あるいはこれらの混合物等が使用できる。特に重量平均分子量20万以上の高密度ポリエチレンを使用すれば、加熱収縮による無機質多孔膜の寸法変化がなくかつ成形加工性にも優れたもとなり好ましい。また、重量平均分子量200万以上の高密度ポリエチレンと重量平均分子量20万未満の低密度ポリエチレンをブレンドして重量平均分子量70万以上の高密度ポリエチレンとして使用することもできる。
【0015】
前記無機質多孔膜を構成する無機粉体としては、酸化珪素、酸化チタン、酸化アルミニウム、チタン酸カリウム等が使用できる。
特に比表面積が大きくて可塑剤兼開孔剤となる鉱物オイルを吸着保持できる無機粉体であれば、後記する無機質多孔膜の製造時における鉱物オイル抽出により気孔率(空隙率)を確保すると共に無機質多孔膜の骨格となる担体として加熱収縮し難くかつ有機質物が消失した後でも無機質多孔膜(セパレータ)の形状を保持して電極間の絶縁体となるので好ましい。
【0016】
また、無機繊維としては、平均繊維径0.1〜20μm、平均繊維長0.1〜数十mmのものが使用できる。
【0017】
前記無機質多孔膜は、ポリオレフィン系樹脂と無機粉体及び/又は無機繊維及び鉱物オイルの混合物に対して鉱物オイルを30〜70wt%添加し、該混合物を混練・加熱溶融しながらシート状に成形した後、樹脂の融点もしくは軟化点よりも低い温度で少なくとも1軸方向に延伸し、さらに延伸温度以上であって樹脂の融点もしくは軟化点よりも低い温度でアニール処理し、鉱物オイルを抽出除去し、乾燥することにより製造される。
【0018】
この時、ポリオレフィン系樹脂と無機粉体及び/又は無機繊維及び鉱物オイルの混合物に対して鉱物オイルが30wt%未満の場合は、無機質多孔膜の十分な気孔率が確保できず、70wt%を越える場合は、無機粉体に吸着されない遊離オイルが多くなり成形性が悪くなる。
【0019】
上記開孔剤抽出による微細孔化によれば、孔構造は、膜の表面からほぼ直線的に孔が貫通する貫通構造に対して、網状骨格構造となり高気孔率のものが得られ、電気抵抗を小さくできる。
【0020】
また、前記製造方法における延伸は、少なくとも1軸方向に延伸することでシート厚さを10〜200μmと薄くして空隙率と機械的強度を向上させることを目的に行われるものであり、延伸倍率は1〜10倍程度とし、低温時の加熱収縮及び高温時のセパレータ構造保持に影響しない。
【0021】
延伸方法としては、空間延伸(非接触型の延伸)、例えばテンター法、ロール式延伸法等がある。
【0022】
その延伸温度条件は、樹脂の融点もしくは軟化点よりも5〜50℃低い温度で行う。樹脂の融点もしくは軟化点よりも5℃未満の温度で行うと、樹脂が溶融しないまでも孔がつぶれて多孔膜化できない。また、樹脂の融点もしくは軟化点よりも50℃を越えて低ければ延伸による結晶化が進まず機械的強度の増加が図れず、また寸法安定性が悪く、延伸応力が高く、延伸時の膜の破断が発生する。
【0023】
尚、乾燥後に、延伸温度以上であって樹脂の融点もしくは軟化点よりも低い温度でアニール処理することで、延伸による残留応力が緩和され、残留応力発生により寸法安定性が悪くなることを防止できる。また、同時に機械的強度の向上にも寄与する。熱処理法としては、空間熱処理は緊張状態あるいは飽和状態のどちらでもよい。その熱処理温度条件は、延伸温度より低いと熱処理の効果がなく、樹脂の融点もしくは軟化点以上では孔がつぶれるからである。熱処理時間は数秒〜1分程度で十分である。
【0024】
前記のようにして得られた無機質多孔膜に積層させる耐熱多孔性支持体は、耐熱性繊維及び/又は耐熱性粉体の抄造紙で構成するのが好ましく、耐熱性繊維としては、ガラス、酸化アルミニウム、芳香族ポリアミド繊維(アラミド繊維)等の短繊維及び長繊維が使用でき、平均繊維径は0.1〜20μm、短繊維の場合は平均繊維長は0.1〜100mm程度のものの使用が好ましい。
また、耐熱性無機粉体としては、酸化珪素、酸化チタン、酸化アルミニウム、チタン酸カリウム、酸化マグネシウム、酸化ホウ素、雲母等が使用でき、粒子径0.001〜1μm、比表面積5〜220m2 /g程度のものの使用が好ましい。
【0025】
前記耐熱性支持体は、抄造紙として構成した場合には、柔軟性を有し、電池巻回時の組立作業性に支障をきたすことがなく、また、クッション性をも有するため、外部から振動を加えられた場合にこのクッション性によって亀裂を生じにくいものとなる。
【0026】
尚、前記耐熱性支持体の厚さは20μmから40μmの範囲にするのが好ましい。これは、厚さが40μmを越える場合は、電池におけるセパレータの容積が増えて、その結果、活物質の容積が減少する不都合があり、また、厚さ20μm未満の場合は、無機質多孔膜支持体強度が著しく低下して電池の作製が困難になるからである。
【0027】
前記無機質多孔膜と耐熱多孔性支持体は、各々別々にロール状に卷き取ったものを電池組立時に巻き戻しながら電極と共に積層して巻回する。
【0028】
【実施例】
次に、図面を参照して本発明非水電解液電池を円筒型リチウムイオン二次電池に適用した具体的実施例につき説明する。
【0029】
本例による円筒型リチウムイオン二次電池は、図1乃至図3に示す如く、帯状の正極電極2と負極電極3をセパレータ8を介して渦巻き状に巻回した電極渦巻体14をニッケルメッキを施した鉄板製の円筒形状の電池缶47に収納するようにしたものである。
【0030】
この負極電極3は次のようにして作製した。即ち、先ず負極活物質の出発原料として石油ピッチを用い、これを焼成して粗粒状のピッチコークスを得た。この粗粒状ピッチコークスを粉砕して平均粒径20μmの粉末とし、この粉末を不活性ガス中、1000℃にて焼成して不純物を除去し、コークス材料粉末を得た。
【0031】
このコークス材料粉末を90重量部と、結着剤としてポリフッ化ビニリデン(PVDF)10重量部とを混合し、負極合剤を調整した。この負極合剤6を溶剤であるN−メチルピロリドンに分散させて、スラリーとし、この負極合剤スラリーを図1に示す如く厚さ10μmの帯状の銅箔よりなる負極集電体7の両面に均一に塗布し、この溶剤を乾燥後、ローラープレス機により圧縮成形して厚さ190μmの帯状の負極電極原板を得、これを幅55.6mm、長さ551.5mmにカットして負極電極3を得た。
【0032】
また、正極電極2は次のようにして作製した。即ち、先ず炭酸リチウム0.5モルを炭酸コバルト1モルと混合し、空気中、900℃で5時間焼成することによってLiCoO2 を得た。
【0033】
このLiCoO2 を正極活物質とし、このLiCoO2 を91重量部、導電剤としてのグラファイトを6重量部、結着剤としてのポリフッ化ビニリデン(PVDF)を3重量部混合して正極合剤4とし、この正極合剤4を溶剤N−メチルピロリドンに分散させてスラリーとした。
【0034】
この正極合剤スラリーを、厚さ20μmの帯状のアルミニウム箔よりなる正極集電体5の両面に均一に塗布して乾燥し、その後、ローラープレス機により圧縮成形して厚み160μmの帯状の正極電極原板を得、これを幅53.6mm、長さ523.5mmにカットして正極電極2を得た。
【0035】
本例においてはセパレータ8として無機質多孔膜8aは、ポリオレフィン系樹脂と無機粉体で構成されたものを使用した。また、耐熱多孔性支持体8bは、耐熱抄造紙と耐熱織布を使用した。
【0036】
参考例1
比表面積200m2/gのシリカ粉体25重量部と重量平均分子量150万の高密度ポリエチレン20重量部と鉱物オイル55重量部の混合物を混練・加熱溶融して2軸押出機により0.1mmの膜状に成形した。次に、該無機質膜を130℃に加熱した縦延伸機により延伸し、さらに熱処理を行い、トリクロロエチレン溶剤にて浸漬して膜中の鉱物オイルを抽出除去して乾燥し、膜厚さ40μm、高密度ポリエチレン45wt%、シリカ粉体55wt%からなる無機質多孔膜8aを作製した。次に、平均繊維径0.5μm、繊維長約3mmのガラス短繊維85重量部と平均繊維径0.5μm、繊維長約1mmのセルロース繊維5重量部と比表面積200m2/gのシリカ粉体10重量部をパルパーを用いて切断、離解分散を行い、通常の円網抄紙機を用いて抄造し、脱水後、130℃で乾燥して厚さ100μmの多孔性シートを得た。更に、これをヒートプレスして、厚さ45μmのリチウムイオン二次電池用耐熱セパレータ用多孔性支持体8bを得た。これらを積層して参考例1のセパレータとした。物性は、表1の通りであった。
【0037】
(実施例2)
参考例1の無機質多孔膜8aと平均繊維径5μmで厚さ30μmのガラスクロス多孔性支持体を積層して実施例2のセパレータとした。物性は、表1の通りであった。
【0038】
参考例3
比表面積100m2/gのアルミナ粉体30重量部と重量平均分子量120万の高密度ポリエチレン25重量部と鉱物オイル45重量部の混合物を混練・加熱溶融して2軸押出機により0.1mmの膜状に成形した。次に、該無機質膜を130℃に加熱した縦延伸機により延伸し、さらに熱処理を行い、トリクロロエチレン溶剤にて浸漬して膜中の鉱物オイルを抽出除去して乾燥し、膜厚さ40μm、高密度ポリエチレン45wt%、アルミナ粉体55wt%からなる無機質多孔膜8aを作製した。次に、平均繊維径3μm、繊維長約2mmのアルミナ短繊維85重量部と平均繊維径0.5μm、繊維長約1mmのセルロース繊維5重量部と比表面積100m2/gのアルミナ粉体30重量部をパルパーを用いて切断、離解分散を行い、通常の円網抄紙機を用いて抄造し、脱水後、130℃で乾燥して厚さ110μmの多孔性シートを得た。更に、これをヒートプレスして、厚さ50μmのリチウムイオン二次電池用耐熱セパレータ用多孔性支持体8bを得た。これらを積層して参考例3のセパレータとした。物性は、表1の通りであった。
【0039】
参考例4
比表面積200m2/gのシリカ粉体25重量部と重量平均分子量150万の高密度ポリエチレン20重量部と鉱物オイル55重量部の混合物を混練・加熱溶融して2軸押出機により0.1mmの膜状に成形した。次に、該無機質膜を130℃に加熱した縦延伸機により延伸し、さらに熱処理を行い、トリクロロエチレン溶剤にて浸漬して膜中の鉱物オイルを抽出除去して乾燥し、膜厚さ40μm、高密度ポリエチレン45wt%、シリカ粉体55wt%からなる無機質多孔膜8aを作製した。次に、平均繊維径0.5μm、繊維長約3mmのガラス短繊維85重量部と平均繊維径0.5μm、繊維長約1mmのセルロース繊維5重量部をパルパーを用いて切断、離解分散を行い、通常の円網抄紙機を用いて抄造し、脱水後、130℃で乾燥して厚さ100μmの多孔性シートを得た。更に、これをヒートプレスして、厚さ45μmのリチウムイオン二次電池用耐熱セパレータ用多孔性支持体8bを得た。これらを積層して参考例4のセパレータとした。物性は、表1の通りであった。
【0040】
(比較例1)
厚さ40μmの微多孔性ポリプロピレンフィルム単体を比較例1のセパレータとした。物性は、表1の通りであった。
【0041】
【表1】

Figure 0004270411
表1から、本発明の方法による積層体セパレータは耐熱絶縁性に優れていることがわかる。
【0042】
次に、以上のようにして作製した実施例2、参考例1,3,4及び比較例1の各セパレータ8を用いて、図1に示す如く、負極電極3、セパレータ8、正極電極2、及びセパレータ8の順に積層して4層構造の積層体とし、この積層体をその長さ方向に沿って、渦巻き状に多数回巻回し、その最外周に絶縁シートを巻回して接着テープで固定して電極渦巻体14を形成した。
【0043】
また、図3に示す如く、この電極渦巻体14の負極電極3の一側のリード部にニッケルよりなる負極リード46の一端を抵抗溶接により溶着すると共に正極電極2の一側のリード部にアルミニウムよりなる正極リード45の一端を抵抗溶接により溶着した。
【0044】
また、ニッケルメッキを施した鉄製の直径18mm、高さ65mmの円筒状の電池缶47aを用意し、この電池缶47aの底部に絶縁板を挿入した後、図3に示す如く、この電池缶47aに電極渦巻体14を挿入収納した。この場合、電池蓋47bに設けた正極端子49及び負極端子50に正極リード45及び負極リード46のそれぞれの他端をそれぞれ溶接した。
【0045】
そして、この電池缶47aの中にプロピレンカーボネイト50重量%とジエチルカーボネイト50重量%との混合溶媒中にLiPF6 を1モル/リットルの割合で溶解させてなる電解液を5.0g注入し、この電極渦巻体14に含浸させた。その後、アスファルトを塗布した絶縁封口ガスケットを介して電池蓋47bを電池缶47aにかしめることで、この電池蓋47bを固定し、円筒型のリチウム二次電池を作製した。
【0046】
また、この電池蓋47bにこの密封型の電池ケース47の内圧が所定値より高くなったときに、この内部の気体を抜く安全弁装置48を設けた。
【0047】
この安全弁装置48は電池蓋47bの中央部に設けた電解液注入口に例えば厚さ5μmのステンレス箔よりなる開裂板48aを開裂板ホルダー48bで密閉固定したものである。
【0048】
本実施例及び参考例のセパレータによれば、セパレータ8として高密度ポリエチレンとシリカあるいはアルミナ粉末からなる無機質多孔膜を使用しているので、外部加熱あるいは外部ショートによる発熱があっても正極電極2及び負極電極3間はこのセパレータ8を構成する無機質多孔膜8a中のシリカあるいはアルミナ粉末により絶縁が保たれるので大面積での電極間ショートが起こらない利益がある。
【0049】
また、本実施例及び参考例のセパレータによれば、内部ショートが発生しても無機質多孔膜8aの溶融によるショート部位の拡大が防止されるので、直接的な大面積での電極間ショートを防ぐことができる。
【0050】
さらに、本実施例及び参考例のセパレータによれば、外部加熱、外部短絡あるいは内部ショートなどにより温度が上昇し、電池内部が500〜600℃を越えるような場合になっても、耐熱多孔性支持体の積層によって、無機質多孔膜の亀裂の発生を防止して絶縁性が維持継続されるので、直接的な大面積での電極間ショートを防ぐことができる。
【0051】
因みに、上述実施例2、参考例1,3,4のセパレータを用いたリチウムイオン二次電池は、図4に実線で示す如く500〜600℃以上になっても耐熱絶縁性は106Ω以上であったが、上述比較例1の微多孔性ポリオレフィン系フィルムのリチウムイオン二次電池の耐熱絶縁性は、図4に破線で示す如く160℃以上では106Ωより0Ωに急激に低下した。
【0052】
尚、上述実施例及び参考例においては無機質多孔膜8aとして高密度ポリエチレンとシリカあるいはアルミナ粉末からなるセパレータを使用したが、このセパレータの代わりにポリプロピレン、ポリブテン等と酸化チタン、チタン酸カリウム粉末あるいは繊維等から構成される無機質多孔膜を使用したときにも上述実施例及び参考例と同様の作用効果が得られた。
【0053】
また、上述実施例及び参考例では本発明をリチウムイオン二次電池に適用した例につき述べたが本発明をその他の非水電解液電池に適用できることは勿論である。
【0054】
また、本発明は上述実施例及び参考例に限ることなく、本発明の要旨を逸脱することなくその他種々の構成が取り得ることは勿論である。
【0055】
【発明の効果】
本発明によれば、セパレータの主構成要素として、有機質の中に無機粉体及び/又は無機繊維を配した無機質多孔膜を用いているので、外部加熱あるいは外部ショートによる発熱があって200℃までの電解液の温度上昇があっても、正極及び負極間は、無機粉体及び/又は無機繊維により絶縁が保たれるので大面積での電極間ショートが起こらない。また、内部ショートが発生しても無機質多孔膜の溶融によるショート部位の拡大が防止されるので、直接的な大面積での電極間ショートを防ぐことができる。
また、さらに、無機質多孔膜の支持体として使用される耐熱多孔性支持体の積層によって、外部加熱あるいは外部ショートによる発熱があり、電解液の温度が500〜600℃の高温になっても、無機質多孔膜の亀裂の発生を防止して絶縁が維持継続されるので、直接的な大面積での電極間ショートを防ぐことができる。
【図面の簡単な説明】
【図1】本発明非水電解液二次電池の一実施例又は参考例の要部の説明に供する拡大断面図である。
【図2】本発明非水電解液二次電池用セパレータの一実施例又は参考例の拡大断面図である。
【図3】上記非水電解液二次電池の一実施例又は参考例の分解斜視図である。
【図4】本発明の説明に供する電池特性を示す線図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte battery such as a lithium ion secondary battery used as a power source for various electronic devices and a separator for a non-aqueous electrolyte battery.
[0002]
[Prior art]
Conventionally, small secondary batteries have been widely used as power sources for portable electronic devices such as OA, FA, home appliances, communication devices, etc., and when mounted on devices, they have good volumetric efficiency, making devices smaller and lighter. There is a demand for secondary batteries that lead to On the other hand, large-sized secondary batteries are being researched and developed in many fields related to environmental issues, including road leveling, UPS, and electric vehicles, and have high capacity, high output, high voltage, and long-term storage stability. There is a demand for a lithium ion secondary battery that is a water electrolyte secondary battery.
[0003]
In the lithium ion secondary battery, lithium ions enter from the positive electrode active material through the electrolytic solution into the negative electrode active material during charging, and during discharge, the lithium ions that have entered the negative electrode active material are released into the electrolytic solution, The charge / discharge operation is performed by returning to the active material of the positive electrode again.
[0004]
In order to increase the energy density of conventional lithium ion secondary batteries, active materials are applied to both front and back surfaces of a metal foil current collector to produce positive and negative electrode sheets, and a microporous polyolefin resin film such as polyethylene or polypropylene. Most of them have a prismatic battery structure in which a large number of electrode pairs of a predetermined size are stacked through separators made of a cylindrical structure, or a cylindrical battery structure in which long positive and negative electrode electrodes are wound through the same separator. .
[0005]
When the separator made of the microporous polyolefin resin film is in a high temperature (140 to 160 ° C.) state, the fine holes opened in the separator are blocked, and as a result, the ion conduction inside the battery is blocked, Japanese Patent Publication No. 3-11259 discloses a separator made of polypropylene or high-density polyethylene that has a function (shutdown characteristics) that can prevent the battery temperature from rising, and has been subjected to stretching and annealing.
[0006]
However, the separator made of polypropylene has a high non-porous temperature (the temperature at which the pores are crushed and closed) and is not sufficient to prevent the temperature inside the battery from rising, and high density polyethylene (ultra high molecular weight, high molecular weight polyethylene). ) Has a disadvantage that the non-porous temperature is low but the film breaking temperature (temperature at which the separator is broken) is also low. Therefore, by using a material that melts when heated above its melting point while maintaining strength as a separator, when the temperature rises, the separator material itself melts to close the micropores and lose ion permeability. In addition, a separator made of polypropylene or high-density polyethylene is mixed with low-density (low-melting-point) polyethylene as a separator that improves the above disadvantages by setting the difference between the film breaking temperature and the non-porous temperature to 30 to 35 ° C. The use is disclosed in JP-A-5-234578.
[0007]
[Problems to be solved by the invention]
However, a separator made of stretched and annealed polypropylene or high-density polyethylene disclosed in the above Japanese Patent Publication No. 3-11259 and a low-density (low melting point) polyethylene disclosed in JP-A-5-234578 are mixed. In the case of the separator alone, when the temperature rises due to external heating, external short circuit, or internal short circuit, and the internal temperature of the battery exceeds 140 to 160 ° C., the separator made of a microporous polyolefin resin film between the positive and negative electrodes If the temperature exceeds the shutdown temperature, completely melts, thermally decomposes, and vibrations are applied, the separator will crack and the insulation will not be maintained, and the positive and negative electrodes will be directly shorted. There was an inconvenience that the internal short expanded.
[0008]
In view of such a point, the present invention aims to prevent a direct short circuit between a positive electrode and a negative electrode and prevent an internal short circuit from expanding.
[0009]
[Means for Solving the Problems]
The separator for a non-aqueous electrolyte battery of the present invention is formed on at least one surface of an inorganic porous film having a thickness of 10 to 200 μm composed of 20 to 80 wt% of a polyolefin resin and 80 to 20 wt% of inorganic powder and / or inorganic fibers. A heat-resistant porous support having a thickness of 20 to 40 μm that gives a heat-resistant insulating property at 500 ° C. or higher is laminated.
The separator for a non-aqueous electrolyte battery according to claim 2 is the separator for a non-aqueous electrolyte battery according to claim 1, wherein the polyolefin resin is 40 to 80 wt%, the inorganic powder and / or the inorganic fiber is 60 to 20 wt%. on at least one surface of the inorganic porous film having a thickness of 10~100μm composed of a, characterized in that a laminate of the resistance to heat the porous support.
The separator for a nonaqueous electrolyte battery according to claim 3 is the separator for a nonaqueous electrolyte battery according to claim 1 or 2, wherein the polyolefin resin is a high-density polyethylene having a weight average molecular weight of 200,000 or more. It is characterized by.
The separator for a nonaqueous electrolyte battery according to claim 4 is the separator for a nonaqueous electrolyte battery according to any one of claims 1 to 3, wherein the heat-resistant porous support is made of paper-making paper or woven fabric. It is characterized by that.
The separator for a nonaqueous electrolyte battery according to claim 5 is the separator for a nonaqueous electrolyte battery according to any one of claims 1 to 4, wherein the heat-resistant porous support is a heat-resistant fiber and / or heat-resistant. It is characterized in that it is made of paper made of a conductive powder.
The non-aqueous electrolyte battery according to claim 6 is a non-aqueous electrolyte battery in which a positive electrode and a negative electrode are stacked via a separator and housed in a battery case containing the non-aqueous electrolyte. The separator for a nonaqueous electrolyte battery according to any one of claims 1 to 5 is used.
[0010]
According to the present invention, an inorganic porous film in which inorganic powder and / or inorganic fibers are arranged in an organic material is used as a main component of the separator. Even when the temperature of the electrolyte solution rises, insulation between the positive electrode and the negative electrode is maintained by the inorganic powder and / or inorganic fiber, so that no short circuit between the electrodes occurs in a large area. In addition, even if an internal short circuit occurs, expansion of the short part due to melting of the inorganic porous film is prevented, so that a direct inter-electrode short circuit in a large area can be prevented.
Furthermore, due to the lamination of the heat-resistant porous support used as the support for the inorganic porous membrane, there is heat generation due to external heating or external short-circuit, and the inorganic material is not affected even when the temperature of the electrolyte reaches 500 to 600 ° C. Since generation of cracks in the porous film is prevented and insulation is maintained, a direct short-circuit between electrodes in a large area can be prevented.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the inorganic porous membrane is composed of polyolefin resin 20 to 80 wt% and inorganic powder and / or inorganic fiber 80 to 20 wt% because polyolefin resin is less than 20 wt% or inorganic powder and / or inorganic. When the fiber exceeds 80 wt%, the polyolefin resin cannot be uniformly dispersed throughout the inorganic porous membrane and the mechanical strength is lowered, which is not preferable, and the polyolefin resin exceeds 80 wt% or the inorganic powder is 20 wt%. If it is less than 1, it is not preferable because sufficient porosity cannot be obtained and heat shrinkage at a certain temperature or more becomes large, and the separator (inorganic porous film) structure cannot be maintained at a high temperature.
[0012]
In the above composition, when the polyolefin resin is less than 40 wt%, or when the inorganic powder exceeds 60 wt%, pores are not uniformly formed in the inorganic porous film. The powder is preferably 60 wt% or less.
[0013]
The thickness of the inorganic porous film is preferably in the range of 10 μm to 200 μm. This is because when the thickness exceeds 200 μm, the volume of the separator in the battery increases, and as a result, the volume of the active material decreases, and when the thickness is less than 10 μm, the separator strength decreases significantly. This is because it becomes difficult to create a battery.
[0014]
As the polyolefin resin constituting the inorganic porous film, polypropylene, polyethylene, polybutene, a copolymer thereof or a mixture thereof can be used. In particular, the use of high-density polyethylene having a weight average molecular weight of 200,000 or more is preferable because there is no dimensional change of the inorganic porous film due to heat shrinkage and excellent moldability. Further, high density polyethylene having a weight average molecular weight of 2 million or more and low density polyethylene having a weight average molecular weight of less than 200,000 can be blended to be used as a high density polyethylene having a weight average molecular weight of 700,000 or more.
[0015]
As the inorganic powder constituting the inorganic porous film, silicon oxide, titanium oxide, aluminum oxide, potassium titanate and the like can be used.
In particular, in the case of an inorganic powder having a large specific surface area and capable of adsorbing and holding a mineral oil that serves as a plasticizer and a pore-opening agent, the porosity (porosity) is secured by extracting the mineral oil during the production of the inorganic porous film described later. It is preferable that the carrier as a skeleton of the inorganic porous film is difficult to heat shrink, and even after the organic matter disappears, the shape of the inorganic porous film (separator) is maintained and becomes an insulator between the electrodes.
[0016]
As the inorganic fibers, those having an average fiber diameter of 0.1 to 20 μm and an average fiber length of 0.1 to several tens mm can be used.
[0017]
The inorganic porous membrane was formed into a sheet shape by adding 30 to 70 wt% of mineral oil to a mixture of polyolefin resin and inorganic powder and / or inorganic fiber and mineral oil, and kneading, heating and melting the mixture. Thereafter, the film is stretched in at least one axial direction at a temperature lower than the melting point or softening point of the resin, and further annealed at a temperature higher than the stretching temperature and lower than the melting point or softening point of the resin to extract and remove the mineral oil. Manufactured by drying.
[0018]
At this time, when the mineral oil is less than 30 wt% with respect to the mixture of polyolefin resin and inorganic powder and / or inorganic fiber and mineral oil, sufficient porosity of the inorganic porous membrane cannot be ensured and exceeds 70 wt%. In this case, the amount of free oil that is not adsorbed by the inorganic powder increases and the moldability deteriorates.
[0019]
According to the micropore formation by the above-mentioned pore extraction, the pore structure becomes a network skeleton structure with a high porosity with respect to the penetration structure in which the pores penetrate almost linearly from the surface of the membrane. Can be reduced.
[0020]
Further, the stretching in the production method is performed for the purpose of improving the porosity and mechanical strength by stretching the sheet thickness to 10 to 200 μm by stretching in at least uniaxial direction, and the stretching ratio. Is about 1 to 10 times, and does not affect the heat shrinkage at low temperatures and the separator structure retention at high temperatures.
[0021]
Examples of the stretching method include space stretching (non-contact stretching) such as a tenter method and a roll stretching method.
[0022]
The stretching temperature condition is 5 to 50 ° C. lower than the melting point or softening point of the resin. When the temperature is lower than 5 ° C. than the melting point or softening point of the resin, the pores are crushed and the porous film cannot be formed until the resin does not melt. If the melting point or softening point of the resin is lower than 50 ° C., crystallization due to stretching does not proceed and mechanical strength cannot be increased, dimensional stability is poor, stretching stress is high, and the film is not stretched. Breakage occurs.
[0023]
After drying, annealing is performed at a temperature higher than the stretching temperature and lower than the melting point or softening point of the resin, so that the residual stress due to stretching can be relaxed and the dimensional stability can be prevented from deteriorating due to the generation of residual stress. . At the same time, it contributes to the improvement of mechanical strength. As a heat treatment method, the spatial heat treatment may be in a tension state or a saturated state. If the heat treatment temperature condition is lower than the stretching temperature, there is no effect of heat treatment, and the pores are crushed above the melting point or softening point of the resin. A heat treatment time of several seconds to 1 minute is sufficient.
[0024]
The heat-resistant porous support laminated on the inorganic porous membrane obtained as described above is preferably composed of paper-making paper of heat-resistant fibers and / or heat-resistant powder. Short fibers and long fibers such as aluminum and aromatic polyamide fibers (aramid fibers) can be used. The average fiber diameter is 0.1 to 20 μm, and in the case of short fibers, the average fiber length is about 0.1 to 100 mm. preferable.
As the heat-resistant inorganic powder, silicon oxide, titanium oxide, aluminum oxide, potassium titanate, magnesium oxide, boron oxide, mica, etc. can be used, and the particle diameter is 0.001 to 1 μm, the specific surface area is 5 to 220 m 2 / It is preferable to use a material having a weight of about g.
[0025]
When the heat-resistant support is configured as paper-making paper, it has flexibility, does not interfere with the assembly workability when winding the battery, and also has cushioning properties, so it vibrates from the outside. When added, the cushioning property makes it difficult to crack.
[0026]
The thickness of the heat resistant support is preferably in the range of 20 μm to 40 μm. This is because when the thickness exceeds 40 μm, the volume of the separator in the battery increases, and as a result, the volume of the active material decreases. When the thickness is less than 20 μm, the inorganic porous membrane support This is because the strength is significantly reduced, making it difficult to produce a battery.
[0027]
The inorganic porous membrane and the heat-resistant porous support are separately wound up in a roll and stacked with the electrode while being unwound during battery assembly.
[0028]
【Example】
Next, specific examples in which the nonaqueous electrolyte battery of the present invention is applied to a cylindrical lithium ion secondary battery will be described with reference to the drawings.
[0029]
As shown in FIGS. 1 to 3, the cylindrical lithium ion secondary battery according to this example is obtained by subjecting an electrode spiral body 14 in which a strip-like positive electrode 2 and a negative electrode 3 are spirally wound through a separator 8 to a nickel plating. This is accommodated in a cylindrical battery can 47 made of iron plate.
[0030]
The negative electrode 3 was produced as follows. That is, petroleum pitch was first used as a starting material for the negative electrode active material, which was fired to obtain coarse pitch coke. The coarse granular pitch coke was pulverized into a powder having an average particle diameter of 20 μm, and the powder was baked in an inert gas at 1000 ° C. to remove impurities, thereby obtaining a coke material powder.
[0031]
90 parts by weight of the coke material powder and 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder were mixed to prepare a negative electrode mixture. The negative electrode mixture 6 is dispersed in N-methylpyrrolidone as a solvent to form a slurry, and this negative electrode mixture slurry is formed on both surfaces of a negative electrode current collector 7 made of a strip-shaped copper foil having a thickness of 10 μm as shown in FIG. After uniformly applying and drying this solvent, the film was compression-molded by a roller press to obtain a strip-shaped negative electrode original plate having a thickness of 190 μm, which was cut into a width of 55.6 mm and a length of 551.5 mm to form a negative electrode 3 Got.
[0032]
Moreover, the positive electrode 2 was produced as follows. That is, first, 0.5 mol of lithium carbonate was mixed with 1 mol of cobalt carbonate, and LiCoO 2 was obtained by firing in air at 900 ° C. for 5 hours.
[0033]
This LiCoO 2 is used as a positive electrode active material, 91 parts by weight of this LiCoO 2 , 6 parts by weight of graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride (PVDF) as a binder are mixed to form a positive electrode mixture 4. The positive electrode mixture 4 was dispersed in a solvent N-methylpyrrolidone to obtain a slurry.
[0034]
This positive electrode mixture slurry is uniformly applied to both surfaces of a positive electrode current collector 5 made of a strip-shaped aluminum foil having a thickness of 20 μm, dried, and then compression-molded by a roller press to form a strip-shaped positive electrode having a thickness of 160 μm. An original plate was obtained, which was cut into a width of 53.6 mm and a length of 523.5 mm to obtain the positive electrode 2.
[0035]
In this example, as the separator 8, the inorganic porous film 8a made of a polyolefin resin and inorganic powder was used. The heat-resistant porous support 8b was made of heat-resistant papermaking and heat-resistant woven fabric.
[0036]
( Reference Example 1 )
A mixture of 25 parts by weight of silica powder having a specific surface area of 200 m 2 / g, 20 parts by weight of high-density polyethylene having a weight average molecular weight of 1,500,000 and 55 parts by weight of mineral oil was kneaded, heated and melted, and 0.1 mm by a twin screw extruder. Molded into a film. Next, the inorganic film was stretched by a longitudinal stretching machine heated to 130 ° C., further subjected to heat treatment, immersed in a trichlorethylene solvent to extract and remove mineral oil in the film, and the film thickness was 40 μm, high An inorganic porous film 8a made of density polyethylene 45 wt% and silica powder 55 wt% was produced. Next, 85 parts by weight of short glass fibers having an average fiber diameter of 0.5 μm and a fiber length of about 3 mm, silica powder having an average fiber diameter of 0.5 μm, 5 parts by weight of cellulose fibers having a fiber length of about 1 mm, and a specific surface area of 200 m 2 / g. 10 parts by weight were cut and disaggregated using a pulper, made using an ordinary circular net paper machine, dehydrated and dried at 130 ° C. to obtain a porous sheet having a thickness of 100 μm. Furthermore, this was heat-pressed to obtain a porous support 8b for a heat-resistant separator for lithium ion secondary batteries having a thickness of 45 μm. These were laminated to obtain the separator of Reference Example 1 . The physical properties were as shown in Table 1.
[0037]
(Example 2)
The inorganic porous membrane 8a of Reference Example 1 and a glass cloth porous support having an average fiber diameter of 5 μm and a thickness of 30 μm were laminated to obtain the separator of Example 2. The physical properties were as shown in Table 1.
[0038]
( Reference Example 3 )
A mixture of 30 parts by weight of alumina powder having a specific surface area of 100 m 2 / g, 25 parts by weight of high-density polyethylene having a weight average molecular weight of 1,200,000 and 45 parts by weight of mineral oil was kneaded, heated and melted, and 0.1 mm by a twin screw extruder. Molded into a film. Next, the inorganic film was stretched by a longitudinal stretching machine heated to 130 ° C., further subjected to heat treatment, immersed in a trichlorethylene solvent to extract and remove mineral oil in the film, and the film thickness was 40 μm, high An inorganic porous film 8a made of density polyethylene 45 wt% and alumina powder 55 wt% was produced. Next, 85 parts by weight of alumina short fibers having an average fiber diameter of 3 μm and a fiber length of about 2 mm, 5 parts by weight of cellulose fibers having an average fiber diameter of 0.5 μm and a fiber length of about 1 mm, and 30 parts by weight of alumina powder having a specific surface area of 100 m 2 / g. The part was cut and disaggregated using a pulper, made into paper using a normal circular net paper machine, dehydrated and dried at 130 ° C. to obtain a 110 μm thick porous sheet. Furthermore, this was heat-pressed to obtain a porous support 8b for a heat-resistant separator for a lithium ion secondary battery having a thickness of 50 μm. These were laminated to obtain the separator of Reference Example 3 . The physical properties were as shown in Table 1.
[0039]
( Reference Example 4 )
A mixture of 25 parts by weight of silica powder having a specific surface area of 200 m 2 / g, 20 parts by weight of high-density polyethylene having a weight average molecular weight of 1,500,000 and 55 parts by weight of mineral oil was kneaded, heated and melted, and 0.1 mm by a twin screw extruder. Molded into a film. Next, the inorganic film was stretched by a longitudinal stretching machine heated to 130 ° C., further subjected to heat treatment, immersed in a trichlorethylene solvent to extract and remove mineral oil in the film, and the film thickness was 40 μm, high An inorganic porous film 8a made of density polyethylene 45 wt% and silica powder 55 wt% was produced. Next, 85 parts by weight of short glass fibers having an average fiber diameter of 0.5 μm and a fiber length of about 3 mm and 5 parts by weight of cellulose fibers having an average fiber diameter of 0.5 μm and a fiber length of about 1 mm are cut and disaggregated using a pulper. The paper was made using a normal circular net paper machine, dehydrated and dried at 130 ° C. to obtain a porous sheet having a thickness of 100 μm. Furthermore, this was heat-pressed to obtain a porous support 8b for a heat-resistant separator for lithium ion secondary batteries having a thickness of 45 μm. These were laminated to obtain the separator of Reference Example 4 . The physical properties were as shown in Table 1.
[0040]
(Comparative Example 1)
The separator of Comparative Example 1 was a microporous polypropylene film having a thickness of 40 μm. The physical properties were as shown in Table 1.
[0041]
[Table 1]
Figure 0004270411
From Table 1, it can be seen that the laminate separator according to the method of the present invention is excellent in heat-resistant insulation.
[0042]
Next, using each separator 8 of Example 2, Reference Examples 1, 3, 4 and Comparative Example 1 produced as described above, as shown in FIG. 1, a negative electrode 3, a separator 8, a positive electrode 2, And the separator 8 are laminated in this order to form a laminate having a four-layer structure, and the laminate is wound many times in a spiral shape along its length, and an insulating sheet is wound around the outermost periphery and fixed with an adhesive tape. Thus, the electrode spiral body 14 was formed.
[0043]
Further, as shown in FIG. 3, one end of a negative electrode lead 46 made of nickel is welded to one lead portion of the negative electrode 3 of the electrode spiral body 14 by resistance welding, and aluminum is applied to one lead portion of the positive electrode 2. One end of the positive electrode lead 45 made of this was welded by resistance welding.
[0044]
Further, a nickel-plated iron cylindrical battery can 47a having a diameter of 18 mm and a height of 65 mm is prepared, and after inserting an insulating plate into the bottom of the battery can 47a, as shown in FIG. The electrode spiral body 14 was inserted and housed in the container. In this case, the other end of each of the positive electrode lead 45 and the negative electrode lead 46 was welded to the positive electrode terminal 49 and the negative electrode terminal 50 provided on the battery lid 47b.
[0045]
Then, 5.0 g of an electrolytic solution obtained by dissolving LiPF 6 in a mixed solvent of 50% by weight of propylene carbonate and 50% by weight of diethyl carbonate at a rate of 1 mol / liter is injected into the battery can 47a. The electrode spiral body 14 was impregnated. Thereafter, the battery lid 47b was caulked to the battery can 47a through an insulating sealing gasket coated with asphalt, whereby the battery lid 47b was fixed to produce a cylindrical lithium secondary battery.
[0046]
The battery lid 47b is provided with a safety valve device 48 that vents the gas when the internal pressure of the sealed battery case 47 becomes higher than a predetermined value.
[0047]
In this safety valve device 48, a cleavage plate 48a made of, for example, a stainless steel foil having a thickness of 5 μm is hermetically fixed by a cleavage plate holder 48b at an electrolyte inlet provided in the center of the battery lid 47b.
[0048]
According to the separator of this example and the reference example, since the inorganic porous film made of high-density polyethylene and silica or alumina powder is used as the separator 8, the positive electrode 2 and Since the insulation between the negative electrodes 3 is maintained by the silica or alumina powder in the inorganic porous film 8a constituting the separator 8, there is an advantage that no short circuit between the electrodes occurs in a large area.
[0049]
In addition, according to the separators of the present embodiment and the reference example , even if an internal short circuit occurs, the expansion of the short circuit site due to the melting of the inorganic porous film 8a is prevented, so that a direct inter-electrode short circuit in a large area is prevented. be able to.
[0050]
Furthermore, according to the separator of this example and the reference example, even when the temperature rises due to external heating, external short circuit or internal short circuit, and the inside of the battery exceeds 500 to 600 ° C., the heat resistant porous support By laminating the bodies, the generation of cracks in the inorganic porous film is prevented and the insulation is maintained, so that it is possible to prevent a short-circuit between electrodes directly in a large area.
[0051]
Incidentally, the lithium ion secondary batteries using the separators of Example 2 and Reference Examples 1 , 3 , and 4 have a heat resistance insulation of 10 6 Ω or more even when the temperature is 500 to 600 ° C. or more as shown by the solid line in FIG. However, the heat insulation property of the lithium ion secondary battery of the microporous polyolefin film of Comparative Example 1 was suddenly reduced from 10 6 Ω to 0Ω at 160 ° C. or higher as shown by the broken line in FIG.
[0052]
In the above examples and reference examples , a separator made of high-density polyethylene and silica or alumina powder was used as the inorganic porous membrane 8a. Instead of this separator, polypropylene, polybutene, etc., titanium oxide, potassium titanate powder or fiber When using an inorganic porous membrane composed of the same, the same effects as those of the above-mentioned Examples and Reference Examples were obtained.
[0053]
In the above-mentioned embodiments and reference examples , examples in which the present invention is applied to a lithium ion secondary battery have been described, but it is needless to say that the present invention can be applied to other nonaqueous electrolyte batteries.
[0054]
Further, the present invention is not limited to the above-described embodiments and reference examples , and various other configurations can be taken without departing from the gist of the present invention.
[0055]
【The invention's effect】
According to the present invention, an inorganic porous film in which inorganic powder and / or inorganic fibers are arranged in an organic material is used as a main component of the separator. Even when the temperature of the electrolyte solution rises, insulation between the positive electrode and the negative electrode is maintained by the inorganic powder and / or inorganic fiber, so that no short circuit between the electrodes occurs in a large area. In addition, even if an internal short circuit occurs, expansion of the short part due to melting of the inorganic porous film is prevented, so that a direct inter-electrode short circuit in a large area can be prevented.
Furthermore, due to the lamination of the heat-resistant porous support used as the support for the inorganic porous membrane, there is heat generation due to external heating or external short-circuit, and the inorganic material is not affected even when the temperature of the electrolyte reaches 500 to 600 ° C. Since generation of cracks in the porous film is prevented and insulation is maintained, a direct short-circuit between electrodes in a large area can be prevented.
[Brief description of the drawings]
FIG. 1 is an enlarged cross-sectional view for explaining a main part of one embodiment or a reference example of a non-aqueous electrolyte secondary battery of the present invention.
FIG. 2 is an enlarged cross-sectional view of one embodiment or a reference example of a separator for a non-aqueous electrolyte secondary battery of the present invention.
FIG. 3 is an exploded perspective view of one example or a reference example of the non-aqueous electrolyte secondary battery.
FIG. 4 is a diagram showing battery characteristics for explaining the present invention.

Claims (6)

ポリオレフィン系樹脂20〜80wt%と無機粉体及び/又は無機繊維80〜20wt%とで構成される厚さ10〜200μmの無機質多孔膜の少なくとも片面に、500℃以上のセパレータ耐熱絶縁性を与える厚さ20〜40μmの耐熱多孔性支持体を積層したことを特徴とする非水電解液電池用セパレータ。Thickness that gives separator heat resistance insulation of 500 ° C. or higher on at least one surface of an inorganic porous film having a thickness of 10 to 200 μm composed of polyolefin resin 20 to 80 wt% and inorganic powder and / or inorganic fiber 80 to 20 wt% A separator for a non-aqueous electrolyte battery, wherein a heat-resistant porous support having a thickness of 20 to 40 μm is laminated. ポリオレフィン系樹脂40〜80wt%と無機粉体及び/又は無機繊維60〜20wt%とで構成される厚さ10〜100μmの無機質多孔膜の少なくとも片面に、前記耐熱多孔性支持体を積層したことを特徴とする請求項1記載の非水電解液電池用セパレータ。On at least one surface of the inorganic porous film having a thickness of 10~100μm composed of a polyolefin resin 40 to 80 wt% and the inorganic powder and / or inorganic fibers 60~20Wt% that was laminated the resistance heat porous support The separator for a non-aqueous electrolyte battery according to claim 1 . 前記ポリオレフィン系樹脂が重量平均分子量20万以上の高密度ポリエチレンであることを特徴とする請求項1又は2記載の非水電解液電池用セパレータ。  The separator for a non-aqueous electrolyte battery according to claim 1 or 2, wherein the polyolefin resin is a high-density polyethylene having a weight average molecular weight of 200,000 or more. 前記耐熱多孔性支持体が抄造紙又は織布からなることを特徴とする請求項1乃至3の何れかに記載の非水電解液電池用セパレータ。The separator for a nonaqueous electrolyte battery according to any one of claims 1 to 3, wherein the heat-resistant porous support is made of papermaking paper or woven fabric. 前記耐熱多孔性支持体が耐熱性繊維及び/又は耐熱性粉体の抄造紙からなることを特徴とする請求項1乃至4の何れかに記載の非水電解液電池用セパレータ。The separator for a non-aqueous electrolyte battery according to any one of claims 1 to 4 , wherein the heat-resistant porous support is made of paper-making paper of heat-resistant fibers and / or heat-resistant powder. 正極と負極とをセパレータを介して積層し、非水電解液を含む電池ケース内に収容してなる非水電解液電池において、前記セパレータとして請求項1乃至5の何れかに記載の非水電解液電池用セパレータを用いることを特徴とする非水電解液電池。The positive electrode and the negative electrode are layered with a separator, the non-aqueous electrolyte battery comprising housed in a battery case containing a non-aqueous electrolyte, the nonaqueous according to any one of claims 1 to 5 as the separator A non-aqueous electrolyte battery using a separator for a liquid battery.
JP07485898A 1998-03-09 1998-03-09 Nonaqueous electrolyte battery and separator for nonaqueous electrolyte battery Expired - Fee Related JP4270411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07485898A JP4270411B2 (en) 1998-03-09 1998-03-09 Nonaqueous electrolyte battery and separator for nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07485898A JP4270411B2 (en) 1998-03-09 1998-03-09 Nonaqueous electrolyte battery and separator for nonaqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH11260338A JPH11260338A (en) 1999-09-24
JP4270411B2 true JP4270411B2 (en) 2009-06-03

Family

ID=13559450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07485898A Expired - Fee Related JP4270411B2 (en) 1998-03-09 1998-03-09 Nonaqueous electrolyte battery and separator for nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4270411B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11380900B2 (en) 2016-10-12 2022-07-05 Samsung Sdi Co., Ltd. Anode for lithium secondary battery and lithium secondary battery comprising same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266949A (en) * 2000-03-17 2001-09-28 Sumitomo Chem Co Ltd Lithium ion secondary battery
DE10238943B4 (en) * 2002-08-24 2013-01-03 Evonik Degussa Gmbh Separator-electrode unit for lithium-ion batteries, method for their production and use in lithium batteries and a battery, comprising the separator-electrode unit
DE10238945B4 (en) * 2002-08-24 2013-01-03 Evonik Degussa Gmbh Electric separator with shut-off mechanism, process for its preparation, use of the separator in lithium batteries and battery with the separator
JP2004111229A (en) * 2002-09-19 2004-04-08 National Institute Of Advanced Industrial & Technology Polymer electrolyte support body and lithium secondary battery
WO2006134684A1 (en) * 2005-06-15 2006-12-21 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
CN102244220A (en) 2005-12-08 2011-11-16 日立麦克赛尔株式会社 Separator for electrochemical device
CN101091284B (en) * 2006-01-17 2010-10-13 松下电器产业株式会社 Lithium secondary battery
JP5209875B2 (en) * 2006-01-17 2013-06-12 パナソニック株式会社 Lithium secondary battery
JP5158678B2 (en) * 2006-10-16 2013-03-06 日立マクセル株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP6273688B2 (en) * 2012-04-18 2018-02-07 株式会社Gsユアサ Storage element, winding device, and winding method
JP5876766B2 (en) * 2012-04-30 2016-03-02 日本板硝子株式会社 Nonaqueous electrolyte secondary battery separator and battery
TW201347274A (en) * 2012-05-09 2013-11-16 Hitachi Chemical Co Ltd Separator for electrochemical element and fabrication method for same
JP6121697B2 (en) * 2012-11-26 2017-04-26 株式会社東芝 Non-aqueous electrolyte battery
JP6268811B2 (en) * 2013-08-23 2018-01-31 日本ゼオン株式会社 Porous film composition for lithium ion secondary battery, separator with protective layer for lithium ion secondary battery, electrode with protective layer for lithium ion secondary battery, lithium ion secondary battery, and separator with protective layer for lithium ion secondary battery Manufacturing method
WO2016158654A1 (en) * 2015-03-30 2016-10-06 日本板硝子株式会社 Separator for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP5982080B1 (en) * 2015-03-30 2016-08-31 日本板硝子株式会社 Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery
JP6474329B2 (en) * 2015-07-16 2019-02-27 日立オートモティブシステムズ株式会社 Secondary battery
CN117410651A (en) * 2022-07-06 2024-01-16 华为技术有限公司 Composite diaphragm, preparation method thereof, secondary battery and electric equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11380900B2 (en) 2016-10-12 2022-07-05 Samsung Sdi Co., Ltd. Anode for lithium secondary battery and lithium secondary battery comprising same

Also Published As

Publication number Publication date
JPH11260338A (en) 1999-09-24

Similar Documents

Publication Publication Date Title
JP4270411B2 (en) Nonaqueous electrolyte battery and separator for nonaqueous electrolyte battery
JP6630811B2 (en) Separator and electrochemical device including the same
KR100432113B1 (en) Multilayer Non-aqueous Electrolyte Secondary Battery
JP6052813B2 (en) Separator and lithium secondary battery including the same
KR100666821B1 (en) Organic/inorganic composite porous layer-coated electrode and electrochemical device comprising the same
EP2710652B1 (en) Single-layer lithium ion battery separator
JP5144651B2 (en) Battery separator and non-aqueous electrolyte battery
KR100775310B1 (en) Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
JP3831017B2 (en) Nonaqueous electrolyte battery and separator for nonaqueous electrolyte battery
JP5415609B2 (en) Separator including porous coating layer, method for producing the same, and electrochemical device including the same
JP5371979B2 (en) Lithium ion secondary battery
KR20180077190A (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
KR19980024955A (en) Battery electrode and battery containing same
TW200913348A (en) Lithium secondary battery
KR101164650B1 (en) Porous separators for secondary battery comprising cellulose nanofibrils and preparation method thereof
JP2002541633A (en) Porous electrode or partition used for non-aqueous battery and method for producing the same
JPWO2014208596A1 (en) Electrochemical element separator and lithium ion secondary battery
JP2008004442A (en) Separator for lithium secondary battery, and lithium secondary battery
JP2006264029A (en) Composite sheet, its manufacturing method and electric/electronic component using composite sheet
JPH09190814A (en) Nonaqueous electrolyte secondary battery
JP2001266828A (en) Separator for non-aqueous electrolyte battery
JP2006019191A (en) Separator for lithium ion secondary battery, and lithium ion secondary battery
JPH09274935A (en) Lithium ion secondary battery
JP2006351365A (en) Separator for electronic components, and the electronic component
KR101803526B1 (en) Separator for electrochemical device and electrochemical device containing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees