JP5463154B2 - Laminated microporous membrane and separator for non-aqueous electrolyte secondary battery - Google Patents

Laminated microporous membrane and separator for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5463154B2
JP5463154B2 JP2010025964A JP2010025964A JP5463154B2 JP 5463154 B2 JP5463154 B2 JP 5463154B2 JP 2010025964 A JP2010025964 A JP 2010025964A JP 2010025964 A JP2010025964 A JP 2010025964A JP 5463154 B2 JP5463154 B2 JP 5463154B2
Authority
JP
Japan
Prior art keywords
layer
porosity
microporous membrane
laminated microporous
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010025964A
Other languages
Japanese (ja)
Other versions
JP2010245028A (en
Inventor
譲 榊原
圭太郎 飴山
正寛 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei E Materials Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2010025964A priority Critical patent/JP5463154B2/en
Publication of JP2010245028A publication Critical patent/JP2010245028A/en
Application granted granted Critical
Publication of JP5463154B2 publication Critical patent/JP5463154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Description

本発明は、積層微多孔膜及びその積層微多孔膜からなる非水電解質二次電池用セパレータに関する。   The present invention relates to a laminated microporous membrane and a separator for a nonaqueous electrolyte secondary battery comprising the laminated microporous membrane.

ポリオレフィン系微多孔膜は、精密濾過膜、電池用セパレータ、コンデンサー用セパレータ、燃料電池用材料等に使用されており、特にリチウムイオン二次電池用セパレータとして使用されている。近年、リチウムイオン二次電池は、携帯電話、ノート型パソコン等の小型電子機器、さらには電気自動車、小型電動バイク等への応用も図られている。特に、今後も全世界的に急速に市場が拡大していくノート型パソコンや携帯電話用途の機器は、様々な国々で生産、使用されることから、ポリオレフィン系微多孔膜には、様々な要求特性に応えることが求められている。このような事情のもと、これまでに、機能を複合化する目的から多層構造のセパレータが提案されている。   Polyolefin-based microporous membranes are used for microfiltration membranes, battery separators, capacitor separators, fuel cell materials, and the like, and in particular, lithium ion secondary battery separators. In recent years, lithium ion secondary batteries have been applied to small electronic devices such as mobile phones and laptop computers, as well as electric vehicles and small electric motorcycles. In particular, notebook PCs and mobile phone equipment, which will continue to expand rapidly worldwide, will be produced and used in various countries. It is required to meet the characteristics. Under such circumstances, multilayer separators have been proposed so far for the purpose of combining functions.

例えば、特許文献1には、重量平均分子量500,000以上のポリエチレンを必須とするポリオレフィン系微多孔膜であって、透気性、突刺し強度に優れるポリオレフィン系微多孔膜が開示されている(樹脂と液体溶媒を押出成形した未延伸フィルム原反を、延伸し、溶媒抽出したフィルムを2枚以上重ね合せ、さらに共延伸する方法が記載されている)。
特許文献2には、重量平均分子量500,000以上の多孔質ポリプロピレン層と、融点が100〜135℃の材料からなる多孔質層とからなる多孔質積層フィルム製の電池用セパレータが開示されており、25℃での透気性(ガーレー秒数)と強度(針貫通強度)に優れると記載されている。
特許文献3には、機械強度に優れるセパレータとして延伸開孔法によるPP/PE/PPの3層構造の電池用セパレータが開示されており、その気孔率は通常30〜65%であると記載されている。また、実施例には、PP層の気孔率が41%、PE層の気孔率が44%の例が開示されている。
特許文献4には、高空隙率(気孔率)で高強度の蓄電デバイス用セパレータとして、50質量%以上の無機粉体を含む空隙率80%以上のセパレータ開示されている。
特許文献5には、厚さ、透気度、ピン刺強度、及び表面粗度が特定範囲に調整されたポリエチレン樹脂製多孔性フィルムが開示されており、フィルムの表面が適度に粗面化されているため非水電解液電池用セパレーターとして好適であることが記載されている。
For example, Patent Document 1 discloses a polyolefin-based microporous membrane that requires polyethylene having a weight average molecular weight of 500,000 or more and is excellent in gas permeability and puncture strength (resin) And an unstretched film original fabric obtained by extrusion molding of a liquid solvent is stretched, and two or more films obtained by solvent extraction are overlapped and further co-stretched).
Patent Document 2 discloses a battery separator made of a porous laminated film comprising a porous polypropylene layer having a weight average molecular weight of 500,000 or more and a porous layer made of a material having a melting point of 100 to 135 ° C. The air permeability (Gurley seconds) and strength (needle penetration strength) at 25 ° C. are described.
Patent Document 3 discloses a battery separator having a three-layer structure of PP / PE / PP by a stretch opening method as a separator having excellent mechanical strength, and it is described that the porosity is usually 30 to 65%. ing. In the examples, an example in which the porosity of the PP layer is 41% and the porosity of the PE layer is 44% is disclosed.
Patent Document 4 discloses a separator having a high porosity (porosity) and a high strength as a power storage device separator having a porosity of 80% or more containing inorganic powder of 50% by mass or more.
Patent Document 5 discloses a polyethylene resin porous film in which thickness, air permeability, pin puncture strength, and surface roughness are adjusted to specific ranges, and the surface of the film is appropriately roughened. Therefore, it is described that it is suitable as a separator for a non-aqueous electrolyte battery.

特開2003−103624号公報JP 2003-103624 A 特開平09−219184号公報JP 09-219184 A 特開2000−048794号公報JP 2000-048794 A 特開2007−095440号公報JP 2007-095440 A 特開平11−060791号公報JP-A-11-060791

しかしながら、上記特許文献1〜5に記載されたセパレータは、いずれもサイクル性と安全性(過充電)とを両立する観点から、なお改良の余地を有するものであった。
上記事情に鑑み、本発明は、セパレータとして用いた場合に良好な安全性と良好なサイクル性とを兼ね備えた二次電池を実現し得る積層微多孔膜を提供することを目的とする。
However, the separators described in Patent Documents 1 to 5 still have room for improvement from the viewpoint of achieving both cycle performance and safety (overcharge).
In view of the above circumstances, an object of the present invention is to provide a laminated microporous membrane capable of realizing a secondary battery having both good safety and good cycleability when used as a separator.

本発明者らは、上記課題に対して鋭意研究を重ねた結果、特定の透気度、突刺し強度、平均孔径を有し、且つ、吸液性指数が特定範囲に調整された積層微多孔膜が、上記課題を解決できることを見出し本発明を完成するに至った。   As a result of intensive studies on the above problems, the inventors of the present invention have a laminated microporous structure having a specific air permeability, piercing strength, average pore diameter, and liquid absorption index adjusted to a specific range. The present inventors have found that a film can solve the above problems and have completed the present invention.

即ち、本発明は以下の通りである。
[1]
膜厚み20μm換算の透気度が300秒/100cc以下、膜厚み20μm換算の突刺し強度が300g以上、全層の平均孔径Dが0.02μm以上0.1μm以下を満たす積層微多孔膜であって、吸液性指数(H30)が7mm以上であり、
前記積層微多孔膜の曲路率をT(−)、平均孔径をD(μm)、気孔率をP(%)としたときに、下記式(1)で定義されるF値が0.25≦F≦0.9を満たす、積層微多孔膜。
F=T/(D*P)・・・(1)
[2]
少なくとも(A層)と、(A層)とは異なる(B層)の2層以上からなり、前記(A層)の気孔率(気孔率A)が35〜80%、前記(B層)の気孔率(気孔率B)が30〜60%、(気孔率A)−(気孔率B)が3〜40%の範囲内である、上記[1]記載の積層微多孔膜。
[3]
前記(A層)の気孔率(気孔率A)が40〜70%であり、前記(B層)の気孔率(気孔率B)が30〜50%である、上記[2]記載の積層微多孔膜。
[4]
ポリオレフィン組成物を主体とする、上記[1]〜[3]のいずれか記載の積層微多孔膜
[5
前記(B層)の厚みが積層微多孔膜全体に対して35%以上である、上記[2]〜[]のいずれか記載の積層微多孔膜。

前記(A層)及び前記(B層)は共押出法により積層されている、上記[2]〜[]のいずれか記載の積層微多孔膜。

上記[1]〜[]のいずれか記載の積層微多孔膜からなる非水電解質二次電池用セパレータ。
That is, the present invention is as follows.
[1]
A laminated microporous membrane having an air permeability in terms of membrane thickness of 20 μm of 300 seconds / 100 cc or less, a puncture strength in terms of membrane thickness of 20 μm of 300 g or more, and an average pore diameter D of all layers of 0.02 μm or more and 0.1 μm or less. Te, absorbent index (H30) is Ri der more than 7mm,
When the curvature of the laminated microporous membrane is T (−), the average pore diameter is D (μm), and the porosity is P (%), the F value defined by the following formula (1) is 0.25. A laminated microporous membrane satisfying ≦ F ≦ 0.9 .
F = T / (D * P) (1)
[2]
It consists of at least two layers of (B layer) different from (A layer) and (A layer), and the porosity (porosity A) of the (A layer) is 35 to 80%. The laminated microporous membrane according to the above [1], wherein the porosity (porosity B) is in the range of 30 to 60% and (porosity A)-(porosity B) is in the range of 3 to 40%.
[3]
The layered microparticle according to the above [2], wherein the porosity (porosity A) of the (A layer) is 40 to 70%, and the porosity (porosity B) of the (B layer) is 30 to 50%. Porous membrane.
[4]
The laminated microporous membrane according to any one of the above [1] to [3], comprising a polyolefin composition as a main component .
[5 ]
The laminated microporous membrane according to any one of [2] to [ 4 ], wherein the thickness of the (B layer) is 35% or more with respect to the entire laminated microporous membrane.
[ 6 ]
The laminated microporous membrane according to any one of [2] to [ 5 ], wherein the (A layer) and the (B layer) are laminated by a coextrusion method.
[ 7 ]
The separator for nonaqueous electrolyte secondary batteries which consists of a lamination | stacking microporous film in any one of said [1]-[ 6 ].

本発明により、セパレータとして用いた場合に良好な安全性と良好なサイクル性とを兼ね備えた二次電池を実現し得る積層微多孔膜を提供することができる。   According to the present invention, it is possible to provide a laminated microporous membrane capable of realizing a secondary battery having both good safety and good cycleability when used as a separator.

以下、本発明を実施するための形態(以下、「本実施の形態」と略記する。)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, a mode for carrying out the present invention (hereinafter abbreviated as “the present embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.

本実施の形態の積層微多孔膜は、膜厚み20μm換算の透気度が300秒/100cc以下、膜厚み20μm換算の突刺し強度が300g以上、全層の平均孔径Dが0.02以上0.1μm以下を満たす積層微多孔膜であって、吸液性指数(H30)が7mm以上である。   The laminated microporous membrane of the present embodiment has an air permeability equivalent to a membrane thickness of 20 μm of 300 seconds / 100 cc or less, a puncture strength equivalent to a membrane thickness of 20 μm of 300 g or more, and an average pore diameter D of all layers of 0.02 to 0. A laminated microporous membrane satisfying 1 μm or less and having a liquid absorbency index (H30) of 7 mm or more.

本実施の形態の積層微多孔膜は、膜厚み20μm換算の透気度及び突刺し強度、全層の平均孔径、及び吸液性指数が、それぞれ上記特定の範囲に調整されており、これらが相乗的に機能することにより、セパレータとして使用した際の電池の安全性とサイクル性との両立を可能にする。以下、積層微多孔膜が有する各物性について説明する。   In the laminated microporous membrane of the present embodiment, the air permeability and puncture strength in terms of membrane thickness of 20 μm, the average pore diameter of all layers, and the liquid absorption index are adjusted to the specific ranges, respectively. By functioning synergistically, it is possible to achieve both battery safety and cycleability when used as a separator. Hereinafter, each physical property of the laminated microporous film will be described.

本実施の形態の積層微多孔膜は、膜厚み20μm換算の透気度が300秒/100cc以下、膜厚み20μm換算の突刺し強度が300g以上である。透気度及び突刺し強度が上記範囲内であると、セパレータとして使用した際に電池のサイクル性と膜強度が両立する。   The laminated microporous membrane of the present embodiment has an air permeability equivalent to a film thickness of 20 μm of 300 seconds / 100 cc or less and a puncture strength equivalent to a film thickness of 20 μm of 300 g or more. When the air permeability and puncture strength are within the above ranges, the battery cycle and film strength are compatible when used as a separator.

膜厚み20μm換算の透気度は、機械強度、自己放電の観点から、好ましくは50秒/100cc以上、電池のサイクル特性、レート特性の観点から、好ましくは250秒/100cc以下である。膜厚み20μm換算の透気度は、より好ましくは70秒/100cc以上210秒/100cc以下、さらに好ましくは100秒/100cc以上210秒/100cc以下である。ここで、膜厚み20μm換算の透気度は、JIS P−8117に準拠し、ガーレー式透気度計「G−B2」(東洋精機製作所(株)製、商標)で測定した値をいう。また、透気度を上記範囲に調整する方法としては、微多孔膜の製法により異なるが、原料として樹脂と可塑剤を用い、製膜後に可塑剤を抽出して多孔化させる所謂「湿式法」の場合は、樹脂と可塑剤の混合比を調整する方法や、製膜工程中の延伸倍率や温度、或いは熱固定工程における延伸倍率や温度を調整する方法等が挙げられる。また、可塑剤を使わずに、結晶性樹脂を用い、ラメラ間の非晶部分の界面や、樹脂と炭酸カルシウム等の無機フィラーの界面を、低温での縦延伸により開裂させて多孔化する所謂「乾式法」の場合は、ドラフト比や延伸速度を調整することによりラメラの結晶化を制御する方法等が挙げられる。   The air permeability in terms of a film thickness of 20 μm is preferably 50 seconds / 100 cc or more from the viewpoint of mechanical strength and self-discharge, and preferably 250 seconds / 100 cc or less from the viewpoint of battery cycle characteristics and rate characteristics. The air permeability in terms of the film thickness of 20 μm is more preferably from 70 seconds / 100 cc to 210 seconds / 100 cc, and even more preferably from 100 seconds / 100 cc to 210 seconds / 100 cc. Here, the air permeability in terms of the film thickness of 20 μm is a value measured with a Gurley air permeability meter “G-B2” (trademark, manufactured by Toyo Seiki Seisakusho Co., Ltd.) in accordance with JIS P-8117. Further, the method for adjusting the air permeability to the above range depends on the production method of the microporous membrane, but a so-called “wet method” in which a resin and a plasticizer are used as raw materials, and the plasticizer is extracted and made porous after film formation. In the case of, the method of adjusting the mixing ratio of resin and plasticizer, the draw ratio and temperature in a film forming process, the method of adjusting the draw ratio and temperature in a heat setting process, etc. are mentioned. In addition, a crystalline resin is used without using a plasticizer, and the interface between the amorphous parts between the lamellae and the interface between the resin and the inorganic filler such as calcium carbonate is cleaved by longitudinal stretching at a low temperature to make it porous. In the case of the “dry method”, a method of controlling the crystallization of the lamella by adjusting the draft ratio and the stretching speed can be mentioned.

膜厚み20μm換算の突刺強度は、300g以上であり、この範囲内であるとリチウムイオン2次電池用セパレータとして使用した際に、電極活物質の異常な突起や異物等によりセパレーターが破れることが無く過充電性が向上する。電池の組立時の強度の観点から、好ましくは400g以上であり、より好ましくは500g以上である。
なお、上限としては特に限定はないが、例えば1000g以下である。ここで、膜厚み20μm換算の突刺強度は、ハンディー圧縮試験器「KES−G5」(カトーテック製、商標)を用いて、針先端の曲率半径0.5mm、突刺速度2mm/secの条件で突刺試験を行うことにより求めた値をいう。また、突刺強度を上記範囲に調整する方法としては、例えば、微多孔膜の配向状態を変化させる方法が挙げられ、具体的には、湿式法、乾式法のいずれの場合でも、延伸倍率や温度を調整する方法が挙げられる。また別の方法としては、原料樹脂自体に強度の高い樹脂を用いることが挙げられ、例えば、ポリオレフィンであれば重量平均分子量が50万以上、好ましくは100万以上の超高分子量ポリエチレンを混合すること等が挙げられる。
The puncture strength in terms of film thickness of 20 μm is 300 g or more, and if it is within this range, the separator will not be broken due to abnormal protrusions or foreign matter of the electrode active material when used as a separator for a lithium ion secondary battery. Overchargeability is improved. From the viewpoint of strength during battery assembly, the weight is preferably 400 g or more, and more preferably 500 g or more.
In addition, although there is no limitation in particular as an upper limit, it is 1000 g or less, for example. Here, the puncture strength in terms of the film thickness of 20 μm is puncture using a handy compression tester “KES-G5” (trade name, manufactured by Kato Tech) under the conditions of a radius of curvature of the needle tip of 0.5 mm and a puncture speed of 2 mm / sec. The value obtained by conducting a test. Examples of the method for adjusting the puncture strength to the above range include a method of changing the orientation state of the microporous film. Specifically, in either case of the wet method or the dry method, the draw ratio or temperature The method of adjusting is mentioned. Another method is to use a high-strength resin as the raw material resin itself. For example, in the case of polyolefin, mixing ultrahigh molecular weight polyethylene having a weight average molecular weight of 500,000 or more, preferably 1,000,000 or more. Etc.

本実施の形態の積層微多孔膜は、全層の平均孔径Dが0.02μm以上0.1μm以下である。平均孔径Dが上記範囲内であると、イオン透過性と微短絡防止性が両立される観点から好ましい。平均孔径Dは、イオン透過性の観点から、好ましくは0.03μm以上であり、微短絡防止性の観点から、好ましくは0.09μm以下である。ここで、全層の平均孔径は、後述する実施例において記載された測定方法により求めることができる。また、平均孔径を上記範囲に調整する方法としては、湿式法の場合は、樹脂と可塑剤の組合せを調整し、より可塑剤の分散径が大きくなるようなものを用いる方法や、相溶性の悪い貧溶媒を用いる方法等が挙げられ、、製膜条件としては、延伸工程の際に延伸倍率を調整する方法等が挙げられる。   In the laminated microporous membrane of the present embodiment, the average pore diameter D of all layers is 0.02 μm or more and 0.1 μm or less. When the average pore diameter D is within the above range, it is preferable from the viewpoint of achieving both ion permeability and fine short-circuit prevention. The average pore diameter D is preferably 0.03 [mu] m or more from the viewpoint of ion permeability, and preferably 0.09 [mu] m or less from the viewpoint of prevention of slight short circuit. Here, the average pore diameter of all layers can be determined by the measurement method described in Examples described later. In addition, as a method for adjusting the average pore diameter to the above range, in the case of a wet method, a method of adjusting a combination of a resin and a plasticizer and using a resin that has a larger dispersion diameter of the plasticizer, Examples include a method using a poor poor solvent, and examples of the film forming conditions include a method of adjusting a stretching ratio in the stretching step.

また、本実施の形態の積層微多孔膜は、吸液性指数(H30)が7mm以上である。これにより電池のサイクル性が向上し、更には電池作成時の電解液吸液性も上がるため、生産速度が大幅に向上することにも寄与する。吸液性指数は、より好ましくは8mm以上、さらに好ましくは10mm以上である。ここで、吸液性指数は、後述する実施例において記載された測定方法により求めることができる。また、吸液性指数を上記範囲に調整する方法としては、後述するF値を調整する方法等が挙げられる。   Further, the laminated microporous membrane of the present embodiment has a liquid absorbency index (H30) of 7 mm or more. As a result, the cycle performance of the battery is improved and the electrolyte solution absorbability at the time of battery production is also increased, which contributes to a significant increase in production speed. The liquid absorption index is more preferably 8 mm or more, and further preferably 10 mm or more. Here, the liquid absorbency index can be obtained by the measurement method described in Examples described later. Moreover, as a method of adjusting the liquid absorbency index to the above range, a method of adjusting the F value described later and the like can be mentioned.

本実施の形態の積層微多孔膜は、気孔率が30〜70%の範囲内にあることが好ましい。気孔率が上記範囲内であれば、膜強度と透過性のバランスがより良好となる傾向にある。特に、二次電池等のセパレータとして使用した際の自己放電性の抑止効果、微短絡防止、及びサイクル特性のバランスが良好となる。さらに、気孔率は、膜強度の観点から好ましくは30〜59%であり、微短絡抑止の観点から好ましくは30〜49%の範囲内である。ここで、気孔率は、後述する実施例において記載された測定方法により求めることができる。また、気孔率を上記範囲に調整する方法としては、湿式法の場合は、原料樹脂と可塑剤の混合比を調整する方法、乾式法の場合は延伸倍率を調整する方法等が挙げられる。   The laminated microporous membrane of the present embodiment preferably has a porosity in the range of 30 to 70%. If the porosity is within the above range, the balance between membrane strength and permeability tends to be better. In particular, the balance of self-discharge suppression effect, prevention of fine short-circuiting, and cycle characteristics when used as a separator for a secondary battery or the like is good. Further, the porosity is preferably 30 to 59% from the viewpoint of film strength, and preferably 30 to 49% from the viewpoint of suppressing fine short-circuiting. Here, the porosity can be obtained by the measurement method described in Examples described later. Examples of the method for adjusting the porosity to the above range include a method for adjusting the mixing ratio of the raw material resin and the plasticizer in the case of the wet method, and a method for adjusting the draw ratio in the case of the dry method.

また、本実施の形態の積層微多孔膜は、少なくとも(A層)と、(A層)とは異なる(B層)の2層以上からなり、(A層)の気孔率(気孔率A)が35〜80%、(B層)の気孔率(気孔率B)が30〜60%、(気孔率A)−(気孔率B)が3〜40%の範囲内にあることが好ましい。ここで、(A層)は主に吸液性を受け持つ吸液層であり、(B層)は主に強度や透過性等の基本的な性能を受け持つ主体層として機能する。
なお、「(A層)とは異なる(B層)」という場合の「異なる」とは、原料の相違であっても良いし、気孔率や透気度といった物性の相違であっても良い。
Further, the laminated microporous membrane of the present embodiment is composed of at least two layers of (A layer) and (B layer) different from (A layer), and the porosity (porosity A) of (A layer) Is preferably 35 to 80%, the porosity (porosity B) of (B layer) is within the range of 30 to 60%, and (porosity A)-(porosity B) is within the range of 3 to 40%. Here, (A layer) is a liquid absorption layer mainly responsible for liquid absorption, and (B layer) mainly functions as a main layer responsible for basic performance such as strength and permeability.
Note that “different” in the case of “different from (A layer) (B layer)” may be a difference in raw materials, or a difference in physical properties such as porosity and air permeability.

気孔率Aが上記範囲内であると、吸液性が良好となり、且つ、積層微多孔膜の製膜中に(A層)が製膜不良になるおそれが低減し、良好に製膜できる傾向にある。気孔率Aは、より好ましくは40〜70%の範囲内であり、この範囲であると製膜性がより向上する傾向にある。気孔率Aは、さらに好ましくは45%〜65%の範囲内であり、この範囲であると、(A層)単独での強度も充分付加されるため高速製膜が可能になると共に、ハンドリング性が向上する傾向にある。ここで、ハンドリング性とは、作業者が積層微多孔膜を電池の捲回機の所定のパスラインに設置する際の取扱のしやすさのことを示し、具体的には、微多孔膜の弾性率に関わる腰や膜の自立性のことを言う。   When the porosity A is within the above range, the liquid absorbency is good, and the possibility that the (A layer) will be poor during the formation of the laminated microporous film is reduced, and the film can be favorably formed. It is in. The porosity A is more preferably in the range of 40 to 70%, and in this range, the film forming property tends to be further improved. The porosity A is more preferably in the range of 45% to 65%. When the porosity is within this range, the strength of the (A layer) alone is sufficiently added, so that high-speed film formation is possible and handling properties are also improved. Tend to improve. Here, the handling property indicates the ease of handling when the operator installs the laminated microporous membrane on a predetermined pass line of the battery winding machine. It refers to the independence of the waist and membranes related to the elastic modulus.

また、気孔率Bが上記範囲内であると、主体層である(B層)の透過性と強度のバランスが良好となり、二次電池用セパレータに使用する際に既存の電池捲回機で良好に生産される傾向にある。気効率Bは、より好ましくは30〜50%の範囲内であり、この範囲であると、サイクル性と強度のバランスがより良好な微多孔膜が得られる傾向にある。   Moreover, when the porosity B is in the above range, the balance between the permeability and strength of the main layer (B layer) is good, and it is good for existing battery winding machines when used for secondary battery separators. Tend to be produced. The gas efficiency B is more preferably in the range of 30 to 50%, and in this range, a microporous membrane having a better balance between cycleability and strength tends to be obtained.

また、(気孔率A)−(気孔率B)の差が3〜40%の範囲内であると、吸液性と膜の均質性のバランスが良好となる傾向にある。(気孔率A)−(気孔率B)は、吸液性の観点から、好ましくは5%以上であり、より好ましくは8%以上である。(気孔率A)−(気孔率B)がこの範囲であると、吸液層である(A層)の気孔率が充分大きくなり吸液性が上がると共に、主体層である(B層)の強度が充分となる傾向にある。また、(気孔率A)−(気孔率B)は、膜の均質性の観点から好ましくは30%以下であり、より好ましくは25%以下である。(気孔率A)−(気孔率B)がこの範囲であると、後述する積層微多孔膜の製造方法における好適な一実施形態である共押出しにおいて、(A層)(B層)のダイス内での合流が良好となり、層間乱れ等の膜の均質性に影響する不良現象が起こらず良好に成型できる傾向にある。   Further, when the difference of (porosity A) − (porosity B) is in the range of 3 to 40%, the balance between liquid absorption and film homogeneity tends to be good. (Porosity A) − (Porosity B) is preferably 5% or more, more preferably 8% or more, from the viewpoint of liquid absorbency. When (porosity A) − (porosity B) is in this range, the porosity of the liquid absorbing layer (A layer) is sufficiently large and the liquid absorbing property is increased, and the main layer (B layer) The strength tends to be sufficient. Further, (porosity A) − (porosity B) is preferably 30% or less, more preferably 25% or less from the viewpoint of the homogeneity of the film. When (porosity A)-(porosity B) is within this range, in the coextrusion which is a preferred embodiment in the method for producing a laminated microporous film to be described later, in the die of (A layer) (B layer) As a result, there is a tendency that good merging can be performed without causing a defect phenomenon that affects the homogeneity of the film, such as inter-layer disturbance.

本実施の形態の積層微多孔膜は、曲路率をT(−)、平均孔径をD(μm)、気孔率をP(%)としたときに、下記式(1)で定義されるF値が、0.25≦F≦0.9を満たすことが好ましい。
F=T/(D*P)・・・(1)
F値が上記範囲内であると、吸液性が向上し、吸液性指数(H30)を7mm以上に調整するのが容易となる傾向にある。F値はその定義から明らかなように、膜の透過抵抗に関わるパラメーターである。F値は、吸液性及びイオン透過性の観点から、好ましくは0.9以下、より好ましくは0.8以下である。またF値は小さ過ぎると、膜の強度が低下する傾向にあるので、好ましくは0.25以上であり、より好ましくは0.4以上である。
The laminated microporous membrane of the present embodiment has an F defined by the following formula (1) when the curvature is T (−), the average pore diameter is D (μm), and the porosity is P (%). It is preferable that the value satisfies 0.25 ≦ F ≦ 0.9.
F = T / (D * P) (1)
When the F value is within the above range, the liquid absorbency is improved and the liquid absorbency index (H30) tends to be easily adjusted to 7 mm or more. As apparent from the definition, the F value is a parameter related to the permeation resistance of the membrane. The F value is preferably 0.9 or less, more preferably 0.8 or less, from the viewpoint of liquid absorbency and ion permeability. On the other hand, if the F value is too small, the strength of the film tends to decrease, so it is preferably 0.25 or more, more preferably 0.4 or more.

本実施の形態の積層微多孔膜には、親水化処理や、電解液への親和性を上げるコロナ処理を行なってもよいが、F値が上記範囲内であると、親水化処理なしでも吸液性向上を達成できる傾向にある。   The laminated microporous membrane of the present embodiment may be subjected to a hydrophilization treatment or a corona treatment that increases the affinity for the electrolytic solution. However, if the F value is within the above range, the absorption can be performed without the hydrophilization treatment. There is a tendency to achieve improved liquidity.

F値を上述した好ましい範囲内に調整するには、積層微多孔膜の平均孔径、気孔率、曲路率を公知の方法で調整することはもちろん、上述した規定の気孔率を有する(A層)及び(B層)からなる積層微多孔膜を用いることによっても調整することが可能である。   In order to adjust the F value within the preferable range described above, the average pore diameter, porosity, and curvature of the laminated microporous membrane are adjusted by a known method, and of course, the above-mentioned prescribed porosity (A layer) ) And (B layer) can also be used for adjustment.

さらに(A層)の平均孔径DAは、吸液性の観点から、好ましくは0.03μm以上であり、より好ましくは0.05μm以上である。また、平均孔径DAは、強度の観点から、好ましくは0.15μm以下であり、より好ましくは0.09μm以下である。同様に、B層の平均孔径DBは、好ましくは0.03〜0.1μmであり、イオン透過性と微短絡防止性、強度の観点から、より好ましくは0.04〜0.09μmである。   Furthermore, the average pore diameter DA of (A layer) is preferably 0.03 μm or more, more preferably 0.05 μm or more, from the viewpoint of liquid absorbency. The average pore diameter DA is preferably 0.15 μm or less, more preferably 0.09 μm or less from the viewpoint of strength. Similarly, the average pore diameter DB of the B layer is preferably 0.03 to 0.1 μm, and more preferably 0.04 to 0.09 μm from the viewpoints of ion permeability, fine short-circuit preventing property, and strength.

本実施の形態の積層微多孔膜の曲路率の範囲は、好ましくは1.0〜3.0であり、この範囲内であれば、上述したF値のバランスが取りやすい。曲路率の範囲は、より好ましくは1.5〜2.5である。ここで、曲路率は、後述する実施例において記載された測定方法により求めることができる。また、曲路率を上記範囲に調整する方法としては、湿式法の場合は、延伸倍率、延伸温度等の延伸条件を調整する方法や、樹脂と可塑剤の組合せを適宜選択する方法等が挙げられる。   The range of the curvature of the laminated microporous membrane of the present embodiment is preferably 1.0 to 3.0, and within this range, the above-described F value can be easily balanced. The range of the curvature is more preferably 1.5 to 2.5. Here, the curvature can be obtained by the measurement method described in Examples described later. In addition, as a method for adjusting the curvature to the above range, in the case of a wet method, a method for adjusting stretching conditions such as a stretching ratio and a stretching temperature, a method for appropriately selecting a combination of a resin and a plasticizer, and the like can be given. It is done.

本実施の形態の積層微多孔膜は、(B層)の厚みが積層微多孔膜全体に対して35%以上であることが好ましい。(B層)の厚みが上記範囲であると、積層微多孔膜全体の強度と透過性のバランスが良好となる傾向にある。(B層)の厚みは、より好ましくは50%以上であり、さらに好ましくは60%以上である。上限としては特に限定されないが、100%未満であることが好ましい。   In the laminated microporous membrane of the present embodiment, the thickness of (B layer) is preferably 35% or more with respect to the entire laminated microporous membrane. When the thickness of (B layer) is in the above range, the balance between the strength and permeability of the entire laminated microporous membrane tends to be good. The thickness of (B layer) is more preferably 50% or more, and still more preferably 60% or more. The upper limit is not particularly limited, but is preferably less than 100%.

本実施の形態の積層微多孔膜の層構成の例としては、2層、3層、若しくはそれ以上の多層等、特に限定はされないが、例えば3層で構成される場合、(B層)/(A層)/(B層)、(A層)/(B層)/(A層)等が好ましい。また、積層微多孔膜は3層を超える多層構造でもよい。   Examples of the layer configuration of the laminated microporous membrane of the present embodiment include, but are not particularly limited to, two layers, three layers, or more multilayers. For example, in the case of three layers, (B layer) / (A layer) / (B layer), (A layer) / (B layer) / (A layer), etc. are preferable. The laminated microporous film may have a multilayer structure having more than three layers.

本実施の形態の積層微多孔膜の各層は、通常、熱可塑性樹脂を含む樹脂組成物からなる。樹脂組成物は、成型加工性と電解液に対する耐溶剤性の観点から、ポリオレフィンを主成分とすることが好ましい。ポリオレフィンとしては、例えば、ポリエチレンやポリプロピレン等が挙げられる。また、「主成分とする」とは、特定成分が、当該特定成分を含むマトリックス成分中に占める割合が、好ましくは50質量%以上、より好ましくは80質量%以上であり、100質量%であってもよいことを意味する。   Each layer of the laminated microporous membrane of the present embodiment is usually made of a resin composition containing a thermoplastic resin. The resin composition preferably contains a polyolefin as a main component from the viewpoints of moldability and solvent resistance to the electrolytic solution. Examples of the polyolefin include polyethylene and polypropylene. The term “main component” means that the proportion of the specific component in the matrix component containing the specific component is preferably 50% by mass or more, more preferably 80% by mass or more, and 100% by mass. It means you may.

ポリエチレンとしては、例えば、高密度ポリエチレン、超高分子量ポリエチレン、線状低密度ポリエチレン、高圧法低密度ポリエチレン、及びこれらの混合物等が挙げられる。中でも、セパレータとして用いた場合の熱収縮を低減できる観点から、イオン重合による線状の高密度ポリエチレン、超高分子量ポリエチレン、あるいはこれらの混合物の使用が好ましい。ここでいう超高分子量ポリエチレンとは、粘度平均分子量が50万以上のものを指す。超高分子量ポリエチレンが全ポリエチレン中に占める割合としては、好ましくは5〜50質量%であり、分散性の観点から、より好ましくは9〜40質量%である。   Examples of the polyethylene include high density polyethylene, ultra high molecular weight polyethylene, linear low density polyethylene, high pressure method low density polyethylene, and mixtures thereof. Among these, from the viewpoint of reducing thermal shrinkage when used as a separator, it is preferable to use linear high density polyethylene, ultrahigh molecular weight polyethylene, or a mixture thereof by ion polymerization. The ultra-high molecular weight polyethylene here refers to those having a viscosity average molecular weight of 500,000 or more. The proportion of ultra high molecular weight polyethylene in the total polyethylene is preferably 5 to 50% by mass, and more preferably 9 to 40% by mass from the viewpoint of dispersibility.

ポリエチレンの粘度平均分子量(Mv)(複数種のポリエチレンを用いる場合には、その全体の粘度平均分子量)としては、積層微多孔膜の強度を向上させる観点から、好ましくは20万以上であり、より好ましくは30万以上である。粘度平均分子量(Mv)の上限としては、押出成形性、延伸性の観点から、好ましくは1000万以下、より好ましくは500万以下である。   The viscosity average molecular weight (Mv) of polyethylene (when multiple types of polyethylene are used, the total viscosity average molecular weight) is preferably 200,000 or more from the viewpoint of improving the strength of the laminated microporous membrane, Preferably it is 300,000 or more. The upper limit of the viscosity average molecular weight (Mv) is preferably 10 million or less, more preferably 5 million or less, from the viewpoints of extrusion moldability and stretchability.

ポリエチレンの分子量分布(Mw/Mn)は、無機粒子等を混合して混練する場合にその混練性を向上させ、無機粒子が二次凝集した粒状の欠点が発生することを抑制する観点から、好ましくは4以上であり、より好ましくは6以上である。   The molecular weight distribution (Mw / Mn) of polyethylene is preferable from the viewpoint of improving the kneadability when mixing and kneading inorganic particles, etc., and suppressing the generation of granular defects in which the inorganic particles are secondarily aggregated. Is 4 or more, more preferably 6 or more.

ポリプロピレンとしては、例えば、アイソタクティックポリプロピレン(IPP)、シンジオタクティックポリプロピレン、アタクティックポリプロピレン等のプロピレンのホモ重合体や、プロピレンと、エチレンやブテン、炭素数5以上のα−オレフィンといったコモノマーとを共重合させて得られるランダム共重合体(RPP)やブロック共重合体(BPP)、ターポリマー等が挙げられる。上記の中でも、耐熱性を持たせたい場合は、結晶性の高いIPPが好ましく、強度付与の目的では、延伸の容易なRPPやBPPが好ましい。   Examples of polypropylene include propylene homopolymers such as isotactic polypropylene (IPP), syndiotactic polypropylene, and atactic polypropylene, and propylene and comonomer such as ethylene, butene, and α-olefin having 5 or more carbon atoms. Examples thereof include a random copolymer (RPP), a block copolymer (BPP), and a terpolymer obtained by copolymerization. Among them, IPP having high crystallinity is preferable when it is desired to have heat resistance, and RPP and BPP that are easily stretched are preferable for the purpose of imparting strength.

ポリプロピレンの粘度平均分子量(Mv)は、溶融混練が容易となり、その結果、膜としたときにフィッシュアイ状の欠陥が改善される傾向にあるため、好ましくは100万以下、より好ましくは70万以下、さらに好ましくは60万以下である。さらに膜強度の観点からは好ましくは10万以上、更に好ましくは20万以上である。   The viscosity average molecular weight (Mv) of polypropylene is easy to melt and knead. As a result, when it is used as a film, it tends to improve fish-eye defects, and is preferably 1 million or less, more preferably 700,000 or less. More preferably, it is 600,000 or less. Further, from the viewpoint of film strength, it is preferably 100,000 or more, more preferably 200,000 or more.

また、メタロセン触媒等を利用して立体規則性を低下させたポリプロピレンや、BPP、RPPを、IPPに対して0.5〜30質量%ブレンドした樹脂組成物も好ましい。これにより、後述する湿式法にてポリプロピレンを主体とする微多孔膜を成型する際に、透過性が改良される傾向にある。
なお、ポリプロピレンの分子量分布(Mw/Mn)は、好ましくは5〜20である。
Also preferred is a resin composition obtained by blending 0.5-30% by mass of polypropylene, BPP, or RPP with reduced stereoregularity using a metallocene catalyst or the like with respect to IPP. Thereby, the permeability tends to be improved when a microporous film mainly composed of polypropylene is molded by a wet method described later.
The molecular weight distribution (Mw / Mn) of polypropylene is preferably 5-20.

本実施の形態においては、各層の樹脂組成物に無機フィラーを混合してもよい。用いることが可能な無機フィラーとしては、例えば、アルミナ(例えば、α−アルミナ等)、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄等の酸化物系セラミックス;窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス;シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、チタン酸カリウム、タルク、カオリンクレー、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂等のセラミックス;ガラス繊維等が挙げられ、これらを単独で用いてもよいし、複数を混合して用いてもよい。無機フィラーが、各層の樹脂組成物中に占める割合としては、好ましくは10〜90質量%、より好ましくは20〜55質量%である。   In this Embodiment, you may mix an inorganic filler with the resin composition of each layer. Examples of the inorganic filler that can be used include alumina (for example, α-alumina), silica, titania, zirconia, magnesia, ceria, yttria, zinc oxide, iron oxide, and other oxide ceramics; silicon nitride, nitriding Nitride ceramics such as titanium and boron nitride; silicon carbide, calcium carbonate, aluminum sulfate, aluminum hydroxide, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, mica, candy Ceramics such as sight, bentonite, asbestos, zeolite, calcium silicate, magnesium silicate, diatomaceous earth, and silica sand; glass fiber etc. may be used, and these may be used alone or in combination. Also good. As a ratio for which an inorganic filler accounts in the resin composition of each layer, Preferably it is 10-90 mass%, More preferably, it is 20-55 mass%.

本実施の形態の積層微多孔膜には、必要に応じて、例えば、酸化防止剤、核剤、分散助剤、帯電防止剤等の各種添加剤が配合されていてもよい。   In the laminated microporous membrane of the present embodiment, various additives such as an antioxidant, a nucleating agent, a dispersion aid, and an antistatic agent may be blended as necessary.

酸化防止剤としては、例えば、「イルガノックス1010」、「イルガノックス1076」、「BHT」(いずれも商標、チバスペシャリティーケミカルズ社製)等のフェノール系酸化防止剤や、リン系、イオウ系の二次酸化防止剤、ヒンダードアミン系の耐候剤等を、単独又は目的に応じて複数用いることができる。特にフェノール系酸化防止剤とリン系酸化防止剤の組合せが好適に用いられる。具体的には、ペンタエリスリチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−t−ブチルヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチルヒドロキシベンジル)ベンゼン、トリス(2,4−ジ−t−ブチルフェニル)フォスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4’−ビフェニレンフォスファイト等が好ましい。また、6−[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロポキシ]−2,4,8,10−テトラ−t−ブチルジベンゾ[d,f][1,3,2]ジオキシフォスフェピン等も好適である。酸化防止剤の配合量は、積層微多孔膜を構成する樹脂に対して好ましくは100ppm〜10000ppmであり、フェノール系/リン系の併用の場合は、その比は好ましくは1/3〜3/1である。   Examples of the antioxidant include phenolic antioxidants such as “Irganox 1010”, “Irganox 1076”, and “BHT” (both are trademarks, manufactured by Ciba Specialty Chemicals), phosphorus-based and sulfur-based antioxidants. A secondary antioxidant, a hindered amine weathering agent, and the like can be used alone or in accordance with the purpose. In particular, a combination of a phenolic antioxidant and a phosphorus antioxidant is preferably used. Specifically, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butylhydroxyphenyl) propionate 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butylhydroxybenzyl) benzene, tris (2,4-di-t-butylphenyl) phosphite, tetrakis (2 , 4-di-t-butylphenyl) -4,4′-biphenylene phosphite is preferred. In addition, 6- [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-t-butyldibenzo [d, f] [1,3, 2] Dioxyphosphine and the like are also suitable. The blending amount of the antioxidant is preferably 100 ppm to 10000 ppm with respect to the resin constituting the laminated microporous membrane, and the ratio is preferably 1/3 to 3/1 in the case of a combined phenol / phosphorus system. It is.

本実施の形態において、積層微多孔膜を構成する樹脂としてポリプロピレンを用いる場合、その結晶性を制御し微多孔の形成を制御するために結晶核剤を使用することが好ましく、特に押出成形により微多孔膜を製造する場合に好ましい。核剤の種類としては、特に限定されないが、一般のベンジルソルビトール系、リン酸金属塩、t−ブチル安息香酸アルミニウム等のカルボン酸金属塩等が挙げられる。その具体例としては、ビス(p−エチルベンジリデン)ソルビトール,ビス(4−メチルベンジリデン)ソルビトール、ビス(3,4−ジメチルベンジリデン)ソルビトール、ビスベンジリデンソルビトール等である。核剤の配合量としては、所望の結晶化条件にもよるが、結晶化が迅速に進み、成型性が容易となる観点から、ポリプロピレンの量に対して100ppm以上であることが好ましく、過剰の核剤によるブリード過多を防止する観点から、10,000ppm以下であることが好ましい。より好ましい核剤の配合量は、ポリプロピレンに対して100〜2,000ppmである。通常の可塑剤を用いた微多孔膜の製造法においては、流動パラフィンや、フタル酸エステル系の可塑剤を用いた場合、ポリエチレンは透過性が発揮されやすいが、ポリプロピレンはポリエチレンに比べ孔が小さくなり、透過性が劣る傾向になる。このポリプロピレンの透過性を解消する手段として、孔を適当な大きさに調整する方法が効果的であり、核剤の利用により相分離速度が調整され、適当な孔構造の形成が容易となる。   In the present embodiment, when polypropylene is used as the resin constituting the laminated microporous membrane, it is preferable to use a crystal nucleating agent in order to control its crystallinity and control the formation of micropores. It is preferable when producing a porous membrane. Although it does not specifically limit as a kind of nucleating agent, Carboxylic acid metal salts, such as general benzyl sorbitol type | system | group, a phosphoric acid metal salt, aluminum t-butylbenzoate, etc. are mentioned. Specific examples thereof include bis (p-ethylbenzylidene) sorbitol, bis (4-methylbenzylidene) sorbitol, bis (3,4-dimethylbenzylidene) sorbitol, bisbenzylidenesorbitol, and the like. The blending amount of the nucleating agent is preferably 100 ppm or more based on the amount of polypropylene from the viewpoint that crystallization proceeds rapidly and moldability is easy, although it depends on the desired crystallization conditions. From the viewpoint of preventing excessive bleeding due to the nucleating agent, it is preferably 10,000 ppm or less. A more preferable amount of the nucleating agent is 100 to 2,000 ppm with respect to polypropylene. In the production method of microporous membranes using ordinary plasticizers, when liquid paraffin or phthalate ester plasticizers are used, polyethylene tends to exhibit permeability, but polypropylene has smaller pores than polyethylene. The permeability tends to be inferior. As a means for eliminating the permeability of this polypropylene, a method of adjusting the pores to an appropriate size is effective, and the phase separation speed is adjusted by using a nucleating agent, so that an appropriate pore structure can be easily formed.

その他、ポリプロピレンとポリエチレンの分散助剤として、例えば、水添したスチレン-ブタジエン系エラストマーや、エチレンとプロピレンを共重合したエラストマー等も必要に応じて用いられる。これらの助剤の配合量は、特には限定されないが、ポリプロピレンとポリエチレンの合計量100質量部に対して、好ましくは1〜10質量部が使用される。   In addition, as a dispersion aid for polypropylene and polyethylene, for example, a hydrogenated styrene-butadiene elastomer, an elastomer copolymerized with ethylene and propylene, or the like is used as necessary. Although the compounding quantity of these adjuvants is not specifically limited, Preferably 1-10 mass parts is used with respect to 100 mass parts of total amounts of a polypropylene and polyethylene.

さらに、帯電防止剤としては、アルキルジエタノールアミンやヒドロキシアルキルエタノールアミン等のアミン系、ステアリルジエタノールアミンモノ脂肪酸エステル等のアミンエステル類、ラウリン酸ジエタノールアミドやステアリン酸ジエタノールアミド等のアルキローアミド類、グリセリンやジグリセリンのモノ脂肪酸エステル類、アルキルベンゼンスルホン酸等のアニオン系帯電防止剤、ポリオキシエチレンアルキルエーテル類等を単独、又は複数用いてもよい。これらの帯電防止剤の配合量としては、特に限定されないが、好ましくは積層微多孔膜を構成する樹脂に対して500〜10000ppm程度である。   Antistatic agents include amines such as alkyldiethanolamine and hydroxyalkylethanolamine, amine esters such as stearyl diethanolamine monofatty acid ester, alkyloamides such as lauric acid diethanolamide and stearic acid diethanolamide, glycerin and diethanolamine. Mono-fatty acid esters of glycerin, anionic antistatic agents such as alkylbenzene sulfonic acids, polyoxyethylene alkyl ethers, and the like may be used alone or in combination. The blending amount of these antistatic agents is not particularly limited, but is preferably about 500 to 10,000 ppm with respect to the resin constituting the laminated microporous film.

本実施の形態の積層微多孔膜の製造方法は、共押出法、各層を個別に押出した後にラミネートする方法等の公知の方法を用いればよいが、上述した(A層)及び(B層)を含む積層微多孔膜である場合、好ましくは以下の(工程1)及び(工程2)を含む方法により製造する。
(工程1)(A層)の樹脂組成物Aと、(B層)の樹脂組成物Bとを共に溶融状態で押出し、(A層)と(B層)とが積層された積層膜を形成する積層膜形成工程
(工程2)前記積層膜形成工程の後、前記(A層)及び(B層)を共に微多孔化する積層微多孔膜形成工程
ここで、工程1については(A層)(B層)以外に第3の層を含んでいてもよい。
The method for producing the laminated microporous membrane of the present embodiment may be a known method such as a co-extrusion method, a method of laminating each layer individually and then laminating them, and the above-described (A layer) and (B layer). In the case of a laminated microporous film containing, it is preferably produced by a method comprising the following (Step 1) and (Step 2).
(Step 1) The resin composition A of (A layer) and the resin composition B of (B layer) are extruded in a molten state to form a laminated film in which (A layer) and (B layer) are laminated. Laminated film forming process (Process 2) After the laminated film forming process, the laminated microporous film forming process in which both the (A layer) and (B layer) are microporous. A third layer other than (B layer) may be included.

(工程1)においては、まず、(A層)の樹脂組成物Aと、(B層)の樹脂組成物Bとがそれぞれ混練される。樹脂組成物A又はBを混練する方法としては、あらかじめ原料樹脂と場合により可塑剤をヘンシェルミキサーやタンブラーミキサー等で事前混練する工程を経て、該混練物を押出機に投入し、押出機中で加熱溶融させながら必要に応じて任意の比率で所定量になるまで可塑剤を導入し、さらに混練する方法が挙げられる。このような方法は、樹脂組成の分散性がより良好なシートを得ることができる傾向にあり、各層が、高倍率でも破膜することなく延伸することができる観点から好ましい。前記(工程2)が、樹脂組成物Aと樹脂組成物Bにそれぞれ可塑剤や無機フィラーを配合し、製膜後に可塑剤や無機フィラーを抽出して多層微多孔膜を形成する工程(湿式法)である場合には、樹脂組成物A、樹脂組成物Bに可塑剤や無機フィラーを配合すればよい。前記(工程2)が、樹脂組成物Aと樹脂組成物Bの結晶界面や無機フィラーと樹脂組成物との界面を利用して開孔する工程(乾式法)である場合には、樹脂組成物A、樹脂組成物Bに可塑剤を配合しなくても開孔を実施し得る。   In (Step 1), first, the resin composition A of (A layer) and the resin composition B of (B layer) are respectively kneaded. As a method of kneading the resin composition A or B, the raw material resin and, optionally, a plasticizer is preliminarily kneaded with a Henschel mixer, a tumbler mixer, or the like, and the kneaded product is put into an extruder, and in the extruder Examples of the method include introducing a plasticizer at a desired ratio as required, while heating and melting, and further kneading. Such a method tends to be able to obtain a sheet having a better dispersibility of the resin composition, and is preferable from the viewpoint that each layer can be stretched without breaking even at a high magnification. (Step 2) is a step (wet method) in which a plasticizer and an inorganic filler are blended in the resin composition A and the resin composition B, respectively, and a plasticizer and an inorganic filler are extracted after film formation to form a multilayer microporous film. ), A plasticizer and an inorganic filler may be added to the resin composition A and the resin composition B. In the case where (Step 2) is a step of opening using a crystal interface between the resin composition A and the resin composition B or an interface between the inorganic filler and the resin composition (dry method), the resin composition Opening can be carried out without adding a plasticizer to A and the resin composition B.

前記樹脂組成物A及び前記樹脂組成物Bが可塑剤を含有する場合、樹脂組成物A中の樹脂成分濃度は好ましくは25〜50質量%、前記樹脂組成物B中の樹脂成分濃度は好ましくは30〜55質量%である。(なお、樹脂成分濃度を「PC」(ポリマー濃度)と略記することがある。)(B層)のPCと(A層)のPCの差(PCB−PCA)は、好ましくは3〜20質量%である。当該比を上記範囲に設定することは、積層微多孔膜の物性を本実施の形態の特定範囲に調整する観点から好ましい。   When the resin composition A and the resin composition B contain a plasticizer, the resin component concentration in the resin composition A is preferably 25 to 50% by mass, and the resin component concentration in the resin composition B is preferably 30 to 55% by mass. (The resin component concentration may be abbreviated as “PC” (polymer concentration).) The difference (PCB−PCA) between the PC of (B layer) and the PC of (A layer) is preferably 3 to 20 mass. %. Setting the ratio in the above range is preferable from the viewpoint of adjusting the physical properties of the laminated microporous film to the specific range of the present embodiment.

前記(工程1)において用いられる溶融押出機としては、二軸押出機を用いることが好ましく、これにより強度のせん断が付与出来るため分散性が一層向上する。より好ましくは、二軸押出機のスクリューのL/Dが20〜70程度であり、より好ましくは30〜60である。スクリューにはフルフライトの部分と、一般にニーディングディスクやローター等の混練部分を配していてもよい。   As the melt extruder used in the above (Step 1), it is preferable to use a twin-screw extruder, which can impart a strong shear, thereby further improving dispersibility. More preferably, L / D of the screw of a twin screw extruder is about 20-70, More preferably, it is 30-60. The screw may be provided with a full flight portion and generally a kneading portion such as a kneading disk or a rotor.

押出機先端に装着されるダイスとしては、特に限定されないが、サーキュラーダイス、Tダイス等が用いられる。無機粒子を用いる場合や劣化し易い樹脂組成物を用いる場合には、それによる摩耗や付着を抑制する対策を講じたもの、例えば、流路やリップに、テフロン(登録商標)加工、セラミック加工、ニッケル加工、モリブデン加工、ハードクロムコートしたものが好適に用いられる。   The die attached to the tip of the extruder is not particularly limited, but a circular die, a T die, or the like is used. When using inorganic particles or a resin composition that tends to deteriorate, those that have taken measures to suppress wear and adhesion due thereto, for example, Teflon (registered trademark) processing, ceramic processing, Nickel processing, molybdenum processing, and hard chrome coating are preferably used.

積層膜を得る(工程1)においては共押出用ダイを用いることが好ましく、Tダイの場合は、ダイスの内部で溶融樹脂を膜状に広げてから各層を合流せしめるコートハンガー式のマルチマニホールドダイスを用いるのが、厚み制御の観点から特に好ましい。ただし、フィードブロックダイや、クロスヘッド式のダイスも用いることは可能である。サーキュラーダイスの場合はスパイラル式ダイや、多層フィルムでも5層以上の場合はスタック式のダイスが熱劣化防止の観点から好ましく、各層間の接着強度を大きくしたい場合には特に好ましい。   It is preferable to use a coextrusion die in the step (1) for obtaining a laminated film. In the case of a T die, a coat hanger type multi-manifold die in which the molten resin is spread in a film shape inside the die and then the layers are joined together Is particularly preferable from the viewpoint of thickness control. However, it is also possible to use a feed block die or a crosshead die. In the case of a circular die, a spiral die, and in the case of a multilayer film having five or more layers, a stack die is preferable from the viewpoint of preventing thermal deterioration, and is particularly preferable when it is desired to increase the adhesive strength between layers.

前記(工程1)においては、樹脂組成物Aと、樹脂組成物Bとが共に溶融状態で押出され、両者を積合し積層化するのは好ましくはダイス内であるが、ダイス外で積層化されてもよい。   In the above (Step 1), the resin composition A and the resin composition B are both extruded in a molten state, and the two are stacked and laminated preferably in the die, but laminated outside the die. May be.

ここで、前記(工程1)において、樹脂組成物A及び樹脂組成物Bが共に溶融状態で押出される際の、樹脂組成物Aの押出し温度での溶融粘度と、樹脂組成物Bの押出し温度での溶融粘度との比としては、好ましくは1/5〜5/1、より好ましくは1/2〜2/1である。当該比を上記範囲に設定することは、樹脂合流時の界面乱れ等を抑制し、偏肉を抑制する観点から好ましい。   Here, in (Step 1), the melt viscosity at the extrusion temperature of the resin composition A and the extrusion temperature of the resin composition B when the resin composition A and the resin composition B are both extruded in a molten state. The ratio with the melt viscosity at is preferably 1/5 to 5/1, more preferably 1/2 to 2/1. Setting the ratio in the above range is preferable from the viewpoint of suppressing interface disturbance at the time of resin merging and suppressing uneven thickness.

ダイスより押し出された溶融樹脂は、例えば、キャスト装置に導入されるが、バンク成型でもバンクなしの成型でもよい。キャスト工程で得られた厚手の原反を延伸前の原反とすることができる。その後、高機械強度、縦横の物性バランス付与のため延伸されるが、その際の延伸方法としては、二軸延伸が好ましく、より好ましくは同時二軸延伸、逐次二軸延伸である。延伸温度は、使用する樹脂組成物により異なるが、一般に主体となる樹脂のヴィカット軟化点から融点の間の範囲の温度である。延伸倍率は、膜強度の観点から、好ましくは面積倍率で3〜200倍、好ましくは20〜60倍の範囲内である。   The molten resin extruded from the die is introduced into, for example, a casting apparatus, and may be formed by bank molding or bankless molding. The thick original fabric obtained in the casting process can be used as the original fabric before stretching. Thereafter, the film is stretched for imparting high mechanical strength and a balance between physical and longitudinal properties. As the stretching method, biaxial stretching is preferable, and simultaneous biaxial stretching and sequential biaxial stretching are more preferable. The stretching temperature varies depending on the resin composition used, but is generally a temperature in the range between the Vicat softening point and the melting point of the main resin. From the viewpoint of film strength, the draw ratio is preferably in the range of 3 to 200 times, preferably 20 to 60 times in terms of area magnification.

(工程2)は、積層膜形成工程の後、前記(A層)及び(B層)を共に微多孔化する積層微多孔膜形成工程であり、上述したように、湿式法もしくは乾式法により行う。可塑剤や無機フィラーの抽出は、膜を抽出溶媒に浸漬することにより行い、その後膜を十分乾燥させればよい。可塑剤のみを抽出する場合の抽出溶媒としては、ポリオレフィン、無機フィラーに対して貧溶媒であり、かつ可塑剤に対しては良溶媒であり、沸点がポリオレフィンの融点よりも低いことが好ましい。このような抽出溶媒としては、例えば、塩化メチレン、1,1,1−トリクロロエタン等の塩素系溶剤;メチルエチルケトン、アセトン等のケトン類;ヒドロフルオロカーボン、ヒドロフルオロエーテル、環状ヒドロフルオロカーボン、ペルオロカーボン、ペルフルオロエーテル等のハロゲン系有機溶剤;ジエチルエーテル、テトラヒドロフラン等のエーテル類;n−ヘキサン、シクロヘキサン等の炭化水素類;メタノール、イソプロピルアルコール等のアルコール類が挙げられる。上記の中でも、特に塩化メチレンが好ましい。またこれらの抽出溶媒を2種類以上使用してもよい。抽出工程は延伸工程の前でも後でもよく、複数の抽出槽による多段抽出でもよい。無機フィラーの抽出溶媒としては、例えば、アルカリ水等が挙げられる。   (Step 2) is a laminated microporous film forming step in which both the (A layer) and (B layer) are microporous after the laminated film forming step, and as described above, is performed by a wet method or a dry method. . The extraction of the plasticizer and the inorganic filler may be performed by immersing the film in an extraction solvent and then sufficiently drying the film. When extracting only the plasticizer, the extraction solvent is preferably a poor solvent for the polyolefin and the inorganic filler and a good solvent for the plasticizer, and the boiling point is preferably lower than the melting point of the polyolefin. Examples of such extraction solvents include chlorinated solvents such as methylene chloride and 1,1,1-trichloroethane; ketones such as methyl ethyl ketone and acetone; hydrofluorocarbons, hydrofluoroethers, cyclic hydrofluorocarbons, perocarbons, perfluoros. Halogenous organic solvents such as ether; ethers such as diethyl ether and tetrahydrofuran; hydrocarbons such as n-hexane and cyclohexane; alcohols such as methanol and isopropyl alcohol. Among the above, methylene chloride is particularly preferable. Two or more of these extraction solvents may be used. The extraction step may be before or after the stretching step, or may be multistage extraction using a plurality of extraction tanks. Examples of the extraction solvent for the inorganic filler include alkaline water.

また、膜厚、透気度等の膜物性の調整、或いはフィルムの熱収縮防止のため、必要に応じて加熱延伸による熱固定を加えてもよい。可塑剤及び無機フィラー抽出後の延伸としては、一軸延伸、同時二軸延伸、逐次二軸延伸が挙げられ、好ましくは同時二軸延伸、逐次二軸延伸である。延伸温度は、使用する樹脂組成物により異なるが、一般に主体となる樹脂のヴィカット軟化点から融点の間の範囲の温度である。延伸倍率は、好ましくは面積倍率で1倍を超えて10倍以下である。   Moreover, you may add heat fixation by heating extending | stretching as needed for adjustment of film | membrane physical properties, such as a film thickness and an air permeability, or the heat shrink prevention of a film. Examples of the stretching after extraction of the plasticizer and the inorganic filler include uniaxial stretching, simultaneous biaxial stretching, and sequential biaxial stretching, and simultaneous biaxial stretching and sequential biaxial stretching are preferable. The stretching temperature varies depending on the resin composition used, but is generally a temperature in the range between the Vicat softening point and the melting point of the main resin. The draw ratio is preferably more than 1 time and 10 times or less in terms of area magnification.

さらに、寸法安定化のための熱処理を行う場合は、高温雰囲気下での膜収縮を低減する観点から、例えば、二軸延伸機、一軸延伸機、あるいは両方を用いて、100℃以上150℃以下で熱処理を行うことができる。好ましくは、主体となる樹脂の融点以下の温度で、幅方向、長さ方向、あるいは両方向に、その倍率及び/又は応力を緩和することにより行う。   Further, when heat treatment for dimensional stabilization is performed, from the viewpoint of reducing film shrinkage in a high temperature atmosphere, for example, using a biaxial stretching machine, a uniaxial stretching machine, or both, 100 ° C. or more and 150 ° C. or less. Heat treatment can be performed. Preferably, it is carried out by relaxing the magnification and / or stress in the width direction, the length direction, or both directions at a temperature below the melting point of the main resin.

このようにして得られた積層微多孔膜には、適宜、コロナ処理、電子線架橋処理を施してもよく、無機層や有機層を塗工してもよい。   The laminated microporous film thus obtained may be appropriately subjected to corona treatment or electron beam crosslinking treatment, and may be coated with an inorganic layer or an organic layer.

本実施の形態の積層微多孔膜は、孔が三次元的に入り組んでいる三次元網目構造を有していることが好ましい。三次元網目構造とは、表面が葉脈状であり、任意の三次元座標軸方向からの断面の膜構造がスポンジ状である構造を意味する。葉脈状とはフィブリルが網状構造を形成している状態である。これらは走査型電子顕微鏡で表面及び断面を観察することにより確認できる。三次元網目構造のフィブリル径は、0.01μm以上0.3μm以下であることが好ましく、これも走査型電子顕微鏡で観察することができる。   The laminated microporous membrane of the present embodiment preferably has a three-dimensional network structure in which pores are three-dimensionally complicated. The three-dimensional network structure means a structure in which the surface has a vein shape and the film structure of a cross section from an arbitrary three-dimensional coordinate axis direction is a sponge shape. Leaf vein is a state in which fibrils form a network structure. These can be confirmed by observing the surface and cross section with a scanning electron microscope. The fibril diameter of the three-dimensional network structure is preferably 0.01 μm or more and 0.3 μm or less, and this can also be observed with a scanning electron microscope.

本実施の形態における積層微多孔膜は、リチウムイオン二次電池といった非水電解質二次電池用のセパレータとして好適に用いられる。その他、各種分離膜としても用いることができる。
なお、上述した各種パラメータは、特に断りのない限り、後述する実施例における測定方法に準じて測定される。
The laminated microporous membrane in the present embodiment is suitably used as a separator for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. In addition, it can be used as various separation membranes.
The various parameters described above are measured according to the measurement methods in the examples described later unless otherwise specified.

次に、実施例及び比較例を挙げて本実施の形態をより具体的に説明するが、本実施の形態はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例中の物性は以下の方法により測定した。判定は必用項目において行い、◎、○、△を合格とし、×を不合格とした。   Next, the present embodiment will be described more specifically with reference to examples and comparative examples. However, the present embodiment is not limited to the following examples unless it exceeds the gist. In addition, the physical property in an Example was measured with the following method. Judgment was performed on necessary items, and ◎, ○, and Δ were accepted, and x was rejected.

(1)各層の厚み、及び合計厚み(μm)
一般の走査型電子顕微鏡((株)日立製作所製 S4100)による断面観察により、積層体を構成する各層の厚みを測定した。
各層の厚みの総和を合計厚みとした。
(1) The thickness of each layer and the total thickness (μm)
The thickness of each layer constituting the laminate was measured by cross-sectional observation with a general scanning electron microscope (S4100, manufactured by Hitachi, Ltd.).
The total thickness of each layer was taken as the total thickness.

(2)気孔率(%)
(全層の気孔率)
100mm四方の微多孔膜のサンプルの質量から目付けW(g/cm2)及び微多孔膜を構成する成分(樹脂及び添加剤)の平均密度ρ(g/cm3)を算出し、微多孔膜の厚みd(cm)から下記式にて計算した。
全層気孔率=(W/(d*ρ))*100(%)
(各層の気孔率)
断面のSEM写真を撮り、各層における空孔部分と樹脂部分の面積比により、各層の気孔率(気孔率C)とした。なお、計算された各層の気孔率と当該層の厚みを掛け合わせたものの総和を気孔率Dとし、気孔率Dと上述の全層気孔率が異なる場合は各層の気功率を下記の通りに補正した。
各層の気孔率=気孔率C*全層気孔率/気孔率D
(2) Porosity (%)
(Porosity of all layers)
The weight per unit area W (g / cm 2 ) and the average density ρ (g / cm 3 ) of the components (resin and additive) constituting the microporous membrane were calculated from the mass of the 100 mm square microporous membrane sample. The following formula was calculated from the thickness d (cm).
Total layer porosity = (W / (d * ρ)) * 100 (%)
(Porosity of each layer)
A cross-sectional SEM photograph was taken, and the porosity of each layer (porosity C) was determined based on the area ratio between the void portion and the resin portion in each layer. The total sum of the calculated porosity of each layer and the thickness of the layer is defined as porosity D. If the porosity D is different from the total layer porosity described above, the efficiency of each layer is corrected as follows: did.
Porosity of each layer = porosity C * total layer porosity / porosity D

(3)透気度 (秒/100cc)
JIS P−8117に準拠し、ガーレー式透気度計「G−B2」(東洋精機製作所(株)製、商標)で測定した。
なお、表中の値は、合計厚みを基準とした比例計算により算出した、20μm換算の透気度である。
(3) Air permeability (sec / 100cc)
Based on JIS P-8117, it was measured with a Gurley type air permeability meter “G-B2” (trademark, manufactured by Toyo Seiki Seisakusho Co., Ltd.).
In addition, the value in a table | surface is the air permeability of 20 micrometers conversion calculated by the proportional calculation on the basis of total thickness.

(4)突刺し強度(g)
ハンディー圧縮試験器「KES−G5」(カトーテック製、商標)を用いて、針先端の曲率半径0.5mm、突刺速度2mm/secの条件で突刺試験を行うことにより求めた。
なお、表中の値は、合計厚みを基準とした比例計算により算出した、20μm換算の突刺し強度である。
(4) Puncture strength (g)
Using a handy compression tester “KES-G5” (trade name, manufactured by Kato Tech Co., Ltd.), the puncture test was performed under the conditions of a radius of curvature of the needle tip of 0.5 mm and a puncture speed of 2 mm / sec.
In addition, the value in a table | surface is the puncture strength of 20 micrometers conversion calculated by the proportional calculation on the basis of total thickness.

(5)平均孔径(μm)、曲路率
キャピラリー内部の流体は、流体の平均自由工程がキャピラリーの孔径より大きいときはクヌーセンの流れに、小さい時はポアズイユの流れに従うことが知られている。そこで、微多孔膜の透気度測定における空気の流れがクヌーセンの流れに、また微多孔膜の透水度測定における水の流れがポアズイユの流れに従うと仮定する。
この場合、平均孔径D(μm)と曲路率T(無次元)は、空気の透過速度定数Rgas(m3/(m2・sec・Pa))、水の透過速度定数Rliq(m3/(m2・sec・Pa))、空気の分子速度ν(m/sec)、水の粘度η(Pa・sec)、標準圧力Ps(=101325Pa)、気孔率ε(%)、膜厚L(μm)から、次式を用いて求めることができる。
D=2ν×(Rliq/Rgas)×(16η/3Ps)×106
T=(D×(ε/100)×ν/(3L×Ps×Rgas))1/2
ここで、Rgasは透気度(sec)から次式を用いて求められる。
gas=0.0001/(透気度×(6.424×10-4)×(0.01276×101325))
また、Rliqは透水度(cm3/(cm2・sec・Pa))から次式を用いて求められる。
liq=透水度/100
なお、透水度は次のように求められる。直径41mmのステンレス製の透液セルに、あらかじめアルコールに浸しておいた微多孔膜をセットし、該膜のアルコールを水で洗浄した後、約50000Paの差圧で水を透過させ、120sec間経過した際の透水量(cm3)より単位時間・単位圧力・単位面積当たりの透水量を計算し、これを透水度とした。
また、νは気体定数R(=8.314)、絶対温度T(K)、円周率π、空気の平均分子量M(=2.896×10-2kg/mol)から次式を用いて求められる。
ν=((8R×T)/(π×M))1/2
(5) Average pore diameter (μm), curvature The fluid inside the capillary is known to follow a Knudsen flow when the mean free path of the fluid is larger than the capillary pore diameter, and a Poiseuille flow when it is small. Therefore, it is assumed that the air flow in the measurement of the permeability of the microporous membrane follows the Knudsen flow, and the water flow in the measurement of the permeability of the microporous membrane follows the Poiseuille flow.
In this case, the average pore diameter D (μm) and the curvature T (dimensionless) are the air permeation rate constant R gas (m 3 / (m 2 · sec · Pa)) and the water permeation rate constant R liq (m 3 / (m 2 · sec · Pa)), air molecular velocity ν (m / sec), water viscosity η (Pa · sec), standard pressure P s (= 101325 Pa), porosity ε (%), membrane From the thickness L (μm), it can be obtained using the following equation.
D = 2ν × (R liq / R gas ) × (16η / 3P s ) × 10 6
T = (D × (ε / 100) × ν / (3L × P s × R gas )) 1/2
Here, R gas is obtained from the air permeability (sec) using the following equation.
R gas = 0.0001 / (air permeability × (6.424 × 10 −4 ) × (0.01276 × 101325))
R liq is determined from the water permeability (cm 3 / (cm 2 · sec · Pa)) using the following equation.
R liq = water permeability / 100
In addition, water permeability is calculated | required as follows. A microporous membrane previously immersed in alcohol is set in a stainless steel permeation cell having a diameter of 41 mm, and after the alcohol in the membrane is washed with water, water is allowed to permeate at a differential pressure of about 50000 Pa, and 120 seconds have elapsed. The water permeation amount per unit time, unit pressure, and unit area was calculated from the water permeation amount (cm 3 ) at the time, and this was taken as water permeability.
Ν is a gas constant R (= 8.314), an absolute temperature T (K), a circumference ratio π, and an average molecular weight M of air (= 2.896 × 10 −2 kg / mol), using the following formula. Desired.
ν = ((8R × T) / (π × M)) 1/2

(6)吸液性指数H30(mm)、及び吸液性
積層微多孔膜を、MD100mm、TD10mmの短冊状にサンプリングし、MD方向が鉛直になるようにスタンド等に短冊の上部5mmを固定し静置した。この際、短冊の下部95mmは鉛直下方に垂れ下がり、宙に浮いた状態とした。23℃の条件で、短冊の下端から10mmの部分まで下記の電解液模擬試薬に浸し、その浸した時刻を基準とし、30分後に試薬が上昇する液高さを測定した。液高さは、多孔膜の色が白色から半透明になることで容易に判定できる。判定は以下の通りに行った。なお、試薬への浸漬は、風の影響等を避けるためガラス瓶の中で行なった。
電解液模擬試薬:エチレンカーボネート/プロピレンカーボネート/ジメチルエ−テル=3/1/6の割合で混合したもの。
◎:9mm以上上昇した。
○:9mm未満、7mm以上上昇した。
×:7mm未満しか上昇しなかった。
(6) Liquid absorbency index H30 (mm) and liquid absorbency Laminated microporous membrane is sampled in a strip shape of MD100mm and TD10mm, and the upper 5mm of the strip is fixed to a stand etc. so that the MD direction is vertical. Left to stand. At this time, the lower 95 mm of the strip was suspended vertically and floated in the air. Under the condition of 23 ° C., the following electrolyte solution reagent was immersed from the lower end of the strip to a portion of 10 mm, and the liquid height at which the reagent rose after 30 minutes was measured based on the immersion time. The liquid height can be easily determined by changing the color of the porous film from white to translucent. The determination was performed as follows. The immersion in the reagent was performed in a glass bottle to avoid the influence of wind and the like.
Electrolytic solution simulation reagent: Mixed at a ratio of ethylene carbonate / propylene carbonate / dimethyl ether = 3/1/6.
A: Increased by 9 mm or more.
A: Less than 9 mm and increased by 7 mm or more.
X: It rose only less than 7 mm.

(7)過充電
表面を清浄にしたΦ35mmの電極に、50mm*50mmのフィルムサンプルを挟み、電極に電圧を掛け上昇させていき、0.5mAの電流が流れてスパークする際の電圧値を測定した。この測定を、サンプルフィルムの面内で少なくとも15回測定し、その平均値を記録した。平均値が1.8KV以上を◎、1.8KV未満1.0KV以上を○、1.0KV未満0.8KV以上を△、0.8KV未満を×とした。
(7) Overcharge A 50mm * 50mm film sample is sandwiched between Φ35mm electrodes with a clean surface and a voltage is applied to the electrodes to increase the voltage value when a 0.5mA current flows and sparks. did. This measurement was measured at least 15 times in the plane of the sample film, and the average value was recorded. The average value is 1.8 KV or more, ◎, less than 1.8 KV, 1.0 KV or more, ◯, less than 1.0 KV, 0.8 KV or more, Δ, and less than 0.8 KV, ×.

(8)サイクル性
電極、電解液を以下に示すように作製した後、それを用いて評価用電池を作製し、そのサイクル特性を評価した。
(i)正極の作製
正極活物質として、リチウムコバルト複合酸化物LiCoO2を100質量部、導電剤としてリン片状グラファイトとアセチレンブラックをそれぞれ2.5質量部、バインダーとしてポリフッ化ビニリデン(PVDF)3.5質量部をN−メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の両面にダイコーターで塗布し、130℃で3分間乾燥後、ロールプレス機で圧縮成形した。この時、正極の活物質塗布量は250g/m2、活物質嵩密度は3.00g/cm3となるようにした。これを電池幅に合わせて切断し、帯状にした。
(ii)負極の作製
負極活物質として、グラファイト化したメソフェーズピッチカーボンファイバー(MCF)90質量部とリン片状グラファイト10質量部、バインダーとしてカルボキシメチルセルロースのアンモニウム塩1.4質量部とスチレン−ブタジエン共重合体ラテックス1.8質量部を精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の両面にダイコーターで塗布し、120℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、負極の活物質塗布量は106g/m2、活物質嵩密度は1.35g/cm3となるようにした。これを電池幅に合わせて切断し、帯状にした。
(iii)非水電解液の調製
エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPF6を濃度1.0mol/リットルとなるように溶解させて調製した。
(iv)評価用電池の作製
評価する微多孔膜セパレーター、帯状正極、及び帯状負極を、帯状負極、セパレーター、帯状正極、セパレーターの順に重ねて渦巻状に複数回捲回することで電極版積層体を作製した。この電極板積層体を平面状にプレスした後、アルミニウム製容器に収納し、アルミニウム製リードを正極集電体から導出して電池蓋に、ニッケル製リードを負極集電体から導出して容器底に溶接し、電池捲回体を作製した。
(v)サイクル特性
上記のように作製した評価用電池捲回体に、前述した非水電解液を注入して封口し、リチウムイオン電池を作製した。
この電池を温度25℃の条件下で、充電電流1Aで充電終止電圧4.2Vまで充電を行い、充電電流1Aで放電終止電圧3Vまで放電を行った。これを1サイクルとして充放電を繰り返し、初期容量に対する500サイクル後の容量保持率をサイクル特性として表した。
(8) Cyclicity After producing an electrode and an electrolytic solution as shown below, an evaluation battery was produced using the electrode and an electrolytic solution, and its cycle characteristics were evaluated.
(I) Production of positive electrode 100 parts by mass of lithium cobalt composite oxide LiCoO 2 as a positive electrode active material, 2.5 parts by mass of flake graphite and acetylene black as a conductive agent, and polyvinylidene fluoride (PVDF) 3 as a binder A slurry was prepared by dispersing 5 parts by mass in N-methylpyrrolidone (NMP). This slurry was applied to both surfaces of a 20 μm thick aluminum foil serving as a positive electrode current collector with a die coater, dried at 130 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material coating amount of the positive electrode was 250 g / m 2 and the active material bulk density was 3.00 g / cm 3 . This was cut in accordance with the battery width to form a strip.
(Ii) Production of negative electrode As a negative electrode active material, 90 parts by mass of graphitized mesophase pitch carbon fiber (MCF) and 10 parts by mass of flake graphite, 1.4 parts by mass of ammonium salt of carboxymethyl cellulose as a binder and styrene-butadiene A slurry was prepared by dispersing 1.8 parts by mass of polymer latex in purified water. This slurry was applied to both sides of a 12 μm thick copper foil serving as a negative electrode current collector with a die coater, dried at 120 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material application amount of the negative electrode was 106 g / m 2 , and the active material bulk density was 1.35 g / cm 3 . This was cut in accordance with the battery width to form a strip.
(Iii) Preparation of Nonaqueous Electrolyte Solution It was prepared by dissolving LiPF 6 as a solute in a mixed solvent of ethylene carbonate: ethyl methyl carbonate = 1: 2 (volume ratio) to a concentration of 1.0 mol / liter.
(Iv) Production of battery for evaluation Electrode plate laminate by winding microporous membrane separator to be evaluated, strip-shaped positive electrode, and strip-shaped negative electrode in a spiral shape by overlapping the strip-shaped negative electrode, separator, strip-shaped positive electrode and separator in this order. Was made. After pressing this electrode plate laminate into a flat shape, it is housed in an aluminum container, the aluminum lead is led out from the positive electrode current collector and the nickel lead is led out from the negative electrode current collector to the bottom of the container. The battery wound body was fabricated by welding to a battery.
(V) Cycle characteristics The above-described non-aqueous electrolyte solution was injected into the battery roll for evaluation produced as described above and sealed to produce a lithium ion battery.
The battery was charged to a charge end voltage of 4.2 V with a charge current of 1 A under a temperature of 25 ° C., and discharged to a discharge end voltage of 3 V with a charge current of 1 A. Charging / discharging was repeated with this as one cycle, and the capacity retention after 500 cycles with respect to the initial capacity was expressed as cycle characteristics.

(9)粘度平均分子量Mv
ASTM−D4020に基づき、デカリン溶媒における135℃での極限粘度[η]を求めた。ポリエチレンのMvは次式により算出した。
[η]=6.77×10-4Mv0.67
ポリプロピレンについては、次式によりMvを算出した。
[η]=1.10×10-4Mv0.80
(9) Viscosity average molecular weight Mv
Based on ASTM-D4020, the intrinsic viscosity [η] at 135 ° C. in a decalin solvent was determined. Mv of polyethylene was calculated by the following formula.
[Η] = 6.77 × 10 −4 Mv 0.67
For polypropylene, Mv was calculated by the following formula.
[Η] = 1.10 × 10 −4 Mv 0.80

[実施例1]
(A層)/(B層)/(A層)の3層構成を有する積層微多孔膜の製造例を示す。実施例で使用した原料樹脂は表1に示した。表1中、HDPEは粘度平均分子量(MV)が300,000の高密度ポリエチレン、UHMWPEはMVが1000,000の超高分子量ポリエチレン、PPはMVが500,000のアイソタクティックホモポリプロピレンを示す。
表1に示す配合割合(質量部)にて原料樹脂(樹脂成分)を配合した。当該原料樹脂100質量部に対し、核剤としてビス(P−エチルベンジリデン)ソルビトールを0.5質量部、酸化防止剤としてテトラキス−[メチレン−(3’、5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタンを0.3質量部、可塑剤として流動パラフィン(37.8℃における動粘度75.90cSt、密度868kg/m3)を10質量部配合した。これらの原料をヘンシェルミキサーで攪拌し原料を調製した。
次に、(A)層の原料、(B)層の原料をそれぞれ別個の二軸押出機(口径44mm、L/D=49)に投入した。両押出機のシリンダーの途中部分に、流動パラフィンを、(A)層に68質量%、(B)層に62質量%になるように注入した。
両表層((A)層)、中間層((B)層)の押出量を調整し、ダイス出口で(A)層と(B)層の厚み比が表2に記載の厚み比となるように設定した。
なお、押出機とダイスとの間には、250メッシュのスクリーンを配した。ダイスはマルチマニホールド式の共押出が可能なTダイを用いた。ダイス内では、表層がほぼ均等に等分され、中間層の両側に積合された。ダイスから出た溶融フィルム原反は、キャストロールで冷却固化させた。
このシートを同時二軸延伸機で120℃の条件で面積倍率45倍に延伸した後、塩化メチレンに浸漬して、流動パラフィンを抽出除去後、乾燥し、さらにテンター延伸機により125℃の条件で横方向に1.5倍延伸し、この延伸シートを130℃で7%幅方向に緩和して熱処理を行った。これにより、表層の二層が同一の組成で、中間層が異なる二種三層構造を有する全層で18μm(表層/中間層/表層=3μm/12μm/3μm)の微多孔膜を得た。得られた微多孔膜の物性を表2に示す。
[Example 1]
A production example of a laminated microporous membrane having a three-layer configuration of (A layer) / (B layer) / (A layer) is shown. The raw material resins used in the examples are shown in Table 1. In Table 1, HDPE represents high density polyethylene having a viscosity average molecular weight (MV) of 300,000, UHMWPE represents ultrahigh molecular weight polyethylene having MV of 1,000,000, and PP represents isotactic homopolypropylene having MV of 500,000.
The raw material resin (resin component) was blended at the blending ratio (parts by mass) shown in Table 1. 0.5 parts by mass of bis (P-ethylbenzylidene) sorbitol as a nucleating agent and tetrakis- [methylene- (3 ′, 5′-di-t-butyl-4) as an antioxidant with respect to 100 parts by mass of the raw material resin '-Hydroxyphenyl) propionate] 0.3 parts by mass of methane and 10 parts by mass of liquid paraffin (kinematic viscosity at 37.8 ° C., density of 868 kg / m 3 ) as a plasticizer were blended. These raw materials were stirred with a Henschel mixer to prepare the raw materials.
Next, the raw material of the (A) layer and the raw material of the (B) layer were respectively charged into separate twin screw extruders (caliber 44 mm, L / D = 49). Liquid paraffin was injected into the middle part of the cylinders of both extruders so as to be 68% by mass in the (A) layer and 62% by mass in the (B) layer.
The amount of extrusion of both surface layers ((A) layer) and intermediate layer ((B) layer) is adjusted so that the thickness ratio of the (A) layer and the (B) layer becomes the thickness ratio shown in Table 2 at the die outlet. Set to.
A 250 mesh screen was disposed between the extruder and the die. The die used was a T-die capable of multi-manifold coextrusion. In the die, the surface layer was divided into approximately equal parts and stacked on both sides of the intermediate layer. The melted film raw material coming out of the die was cooled and solidified with a cast roll.
The sheet was stretched by a simultaneous biaxial stretching machine at 120 ° C. at an area magnification of 45 times, then immersed in methylene chloride, extracted after removing liquid paraffin, dried, and further subjected to 125 ° C. by a tenter stretching machine. The film was stretched 1.5 times in the transverse direction, and the stretched sheet was relaxed in the width direction by 7% at 130 ° C. and heat-treated. As a result, a microporous film of 18 μm (surface layer / intermediate layer / surface layer = 3 μm / 12 μm / 3 μm) was obtained in all layers having the same composition in the two surface layers and different two-layer three-layer structures in the intermediate layer. Table 2 shows the physical properties of the obtained microporous membrane.

[実施例2〜11及び13〜15、比較例1〜3]
表2及び3に記載した各層構成、構造因子を変化させて、実施例1と同様の方法により積層微多孔膜を成型し評価した。実施例14及び15に用いた組成6及び7の原料樹脂には、無機フィラーとしてシリカ(アエロジル社製 R972)を加えた。また、添加した流動パラフィンの量は、各例で異なるが40質量%〜80質量%の範囲内であった。同時二軸延伸機の条件は115℃〜130℃の範囲内、面積倍率45倍に延伸した。流動パラフィンを抽出除去後、乾燥し、さらにテンター延伸機により120〜130℃の条件で横方向に1.1〜2.0倍延伸し、この延伸シートを130℃で7%幅方向に緩和して熱処理を行った。得られた微多孔膜の物性を表2及び3に示す。
[Examples 2-11 and 13-15, Comparative Examples 1-3]
A laminated microporous membrane was molded and evaluated in the same manner as in Example 1 while changing each layer configuration and structural factors described in Tables 2 and 3. Silica (R972 manufactured by Aerosil Co., Ltd.) was added as an inorganic filler to the raw material resins of compositions 6 and 7 used in Examples 14 and 15. Moreover, although the quantity of the added liquid paraffin differed in each case, it was in the range of 40 mass%-80 mass%. The simultaneous biaxial stretching machine was stretched at an area magnification of 45 times within a range of 115 ° C to 130 ° C. Liquid paraffin is extracted and dried, then dried, and further stretched 1.1 to 2.0 times in the transverse direction at 120 to 130 ° C. by a tenter stretching machine, and this stretched sheet is relaxed in the width direction by 7% at 130 ° C. The heat treatment was performed. The physical properties of the obtained microporous membrane are shown in Tables 2 and 3.

[実施例12]
(A層)を中間層に配置し、(B層)を表層に配置し、実施例1と同様の方法により積層微多孔膜を得た。
[Example 12]
(Layer A) was disposed in the intermediate layer, (Layer B) was disposed in the surface layer, and a laminated microporous membrane was obtained in the same manner as in Example 1.

[比較例4]
延伸開孔法による製膜例であり、(A層)と(B層)を別個に押出成型した後に積合した。具体的には、表3に示す層組成を(A層)(B層)を別々に可塑剤の添加なしに押出し、ドラフト比200で引取り原反を作成した後、得られた原反を熱処理し、(A層)(B層)を表3の配置になるように積合した。その後、冷間延伸、熱間延伸することで製膜した。評価結果を表3に示す。
[Comparative Example 4]
This is an example of film formation by the stretch opening method, and (A layer) and (B layer) were separately extruded and then stacked. Specifically, the layer composition shown in Table 3 (Layer A) (Layer B) was extruded separately without the addition of a plasticizer, and a take-up raw fabric was created with a draft ratio of 200. It heat-processed and integrated so that it might become the arrangement | positioning of Table 3 (A layer) (B layer). Then, it formed into a film by cold extending | stretching and hot extending | stretching. The evaluation results are shown in Table 3.

Figure 0005463154
Figure 0005463154

Figure 0005463154
Figure 0005463154

Figure 0005463154
Figure 0005463154

本発明によれば、セパレータとして用いた場合に良好な安全性と良好なサイクル性とを兼ね備えた二次電池を実現し得る多層微多孔膜を提供さることができる。また本発明の応用により、高電圧下において耐酸化性に優れたリチウムイオン2次電池(LIB)等の非水電解質2次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, when used as a separator, the multilayer microporous film which can implement | achieve the secondary battery which has favorable safety | security and favorable cycling property can be provided. Further, the application of the present invention can provide a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery (LIB) having excellent oxidation resistance under a high voltage.

Claims (7)

膜厚み20μm換算の透気度が300秒/100cc以下、膜厚み20μm換算の突刺し強度が300g以上、全層の平均孔径Dが0.02μm以上0.1μm以下を満たす積層微多孔膜であって、吸液性指数(H30)が7mm以上であり、
前記積層微多孔膜の曲路率をT(−)、平均孔径をD(μm)、気孔率をP(%)としたときに、下記式(1)で定義されるF値が0.25≦F≦0.9を満たす、積層微多孔膜。
F=T/(D*P)・・・(1)
A laminated microporous membrane having an air permeability in terms of membrane thickness of 20 μm of 300 seconds / 100 cc or less, a puncture strength in terms of membrane thickness of 20 μm of 300 g or more, and an average pore diameter D of all layers of 0.02 μm or more and 0.1 μm or less. Te, absorbent index (H30) is Ri der more than 7mm,
When the curvature of the laminated microporous membrane is T (−), the average pore diameter is D (μm), and the porosity is P (%), the F value defined by the following formula (1) is 0.25. A laminated microporous membrane satisfying ≦ F ≦ 0.9 .
F = T / (D * P) (1)
少なくとも(A層)と、(A層)とは異なる(B層)の2層以上からなり、前記(A層)の気孔率(気孔率A)が35〜80%、前記(B層)の気孔率(気孔率B)が30〜60%、(気孔率A)−(気孔率B)が3〜40%の範囲内である、請求項1記載の積層微多孔膜。   It consists of at least two layers of (B layer) different from (A layer) and (A layer), and the porosity (porosity A) of the (A layer) is 35 to 80%. The laminated microporous membrane according to claim 1, wherein the porosity (porosity B) is in the range of 30 to 60% and (porosity A)-(porosity B) in the range of 3 to 40%. 前記(A層)の気孔率(気孔率A)が40〜70%であり、前記(B層)の気孔率(気孔率B)が30〜50%である、請求項2記載の積層微多孔膜。   The laminated microporous structure according to claim 2, wherein the porosity (porosity A) of the (A layer) is 40 to 70%, and the porosity (porosity B) of the (B layer) is 30 to 50%. film. ポリオレフィン組成物を主体とする、請求項1〜3のいずれか1項記載の積層微多孔膜。   The laminated microporous membrane according to any one of claims 1 to 3, mainly comprising a polyolefin composition. 前記(B層)の厚みが積層微多孔膜全体に対して35%以上である、請求項2〜のいずれか1項記載の積層微多孔膜。 The laminated microporous membrane according to any one of claims 2 to 4 , wherein the thickness of the (B layer) is 35% or more with respect to the entire laminated microporous membrane. 前記(A層)及び前記(B層)は共押出法により積層されている、請求項2〜のいずれか1項記載の積層微多孔膜。 The laminated microporous membrane according to any one of claims 2 to 5 , wherein the (A layer) and the (B layer) are laminated by a coextrusion method. 請求項1〜のいずれか1項記載の積層微多孔膜からなる非水電解質二次電池用セパレータ。 The separator for nonaqueous electrolyte secondary batteries which consists of a lamination | stacking microporous film of any one of Claims 1-6 .
JP2010025964A 2009-03-19 2010-02-08 Laminated microporous membrane and separator for non-aqueous electrolyte secondary battery Active JP5463154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010025964A JP5463154B2 (en) 2009-03-19 2010-02-08 Laminated microporous membrane and separator for non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009068762 2009-03-19
JP2009068762 2009-03-19
JP2010025964A JP5463154B2 (en) 2009-03-19 2010-02-08 Laminated microporous membrane and separator for non-aqueous electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013225447A Division JP5717302B2 (en) 2009-03-19 2013-10-30 Laminated microporous membrane and separator for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2010245028A JP2010245028A (en) 2010-10-28
JP5463154B2 true JP5463154B2 (en) 2014-04-09

Family

ID=43097794

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010025964A Active JP5463154B2 (en) 2009-03-19 2010-02-08 Laminated microporous membrane and separator for non-aqueous electrolyte secondary battery
JP2013225447A Active JP5717302B2 (en) 2009-03-19 2013-10-30 Laminated microporous membrane and separator for non-aqueous electrolyte secondary battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013225447A Active JP5717302B2 (en) 2009-03-19 2013-10-30 Laminated microporous membrane and separator for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (2) JP5463154B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5848545B2 (en) * 2011-08-08 2016-01-27 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Secondary battery separator layer and secondary battery
JP6149266B2 (en) * 2011-12-07 2017-06-21 東レ株式会社 Microporous membrane wound body and method for producing the same
SG10201606695TA (en) * 2012-03-30 2016-10-28 Toray Battery Separator Film Multilayered Microporous Polyolefin Film
JP6179125B2 (en) 2012-04-09 2017-08-16 株式会社Gsユアサ Electricity storage element
WO2014021291A1 (en) * 2012-07-30 2014-02-06 帝人株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
CN110767864A (en) * 2013-03-15 2020-02-07 赛尔格有限责任公司 Multilayer hybrid battery separator for lithium ion secondary battery and method for manufacturing same
JP6295641B2 (en) * 2013-12-20 2018-03-20 東レ株式会社 Microporous membrane and separator using the same
EP3085531B1 (en) * 2014-05-30 2018-05-02 Toray Industries, Inc. Polyolefin multilayer microporous membrane and battery separator
KR102443544B1 (en) * 2014-06-20 2022-09-14 도레이 카부시키가이샤 Polyolefin multilayer microporous film, method for producing same, and cell separator
JP6359368B2 (en) * 2014-07-22 2018-07-18 旭化成株式会社 Laminated microporous film, method for producing the same, and battery separator
JP6356000B2 (en) * 2014-07-22 2018-07-11 旭化成株式会社 Laminated microporous film, method for producing the same, and battery separator
JP6486621B2 (en) * 2014-07-22 2019-03-20 旭化成株式会社 Laminated microporous film, method for producing the same, and battery separator
JP6213506B2 (en) * 2015-03-18 2017-10-18 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP6365383B2 (en) * 2015-04-10 2018-08-01 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
CN108496263B (en) * 2016-01-25 2022-05-17 株式会社大赛璐 Secondary battery
JP6288216B2 (en) * 2016-02-09 2018-03-07 宇部興産株式会社 Polyolefin microporous membrane, separator film for electricity storage device, and electricity storage device
CN110024197B (en) 2016-12-26 2022-05-31 株式会社东芝 Nonaqueous electrolyte battery and battery pack
CN111727517B (en) * 2018-09-25 2023-12-19 旭化成株式会社 High strength separator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266828A (en) * 2000-03-17 2001-09-28 Nippon Muki Co Ltd Separator for non-aqueous electrolyte battery
JP4836185B2 (en) * 2006-03-02 2011-12-14 日立マクセルエナジー株式会社 Non-aqueous electrolyte secondary battery
JP5158678B2 (en) * 2006-10-16 2013-03-06 日立マクセル株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP5164413B2 (en) * 2007-04-04 2013-03-21 旭化成イーマテリアルズ株式会社 Composite microporous membrane, battery separator, and method of manufacturing composite microporous membrane
JP5202866B2 (en) * 2007-04-09 2013-06-05 東レバッテリーセパレータフィルム株式会社 Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery

Also Published As

Publication number Publication date
JP2010245028A (en) 2010-10-28
JP2014017275A (en) 2014-01-30
JP5717302B2 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
JP5717302B2 (en) Laminated microporous membrane and separator for non-aqueous electrolyte secondary battery
US10680223B2 (en) Laminated separator, polyolefin microporous membrane, and separator for electricity storage device
KR102443544B1 (en) Polyolefin multilayer microporous film, method for producing same, and cell separator
JP4902455B2 (en) Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
WO2019093184A1 (en) Polyolefin composite porous film, method for producing same, battery separator, and battery
JP5398016B2 (en) Microporous membrane, method for producing the same, and separator for non-aqueous electrolyte secondary battery
JP2009185093A (en) Polyolefin microporous film
JP2008255307A (en) Polyolefin multilayer microporous film, method for producing the same, separator for battery and battery
JP2014012857A (en) Microporous film, method for producing the same, and separator for nonaqueous electrolyte secondary battery
JP5876221B2 (en) Polyolefin microporous membrane
JP5560119B2 (en) Laminated porous film and method for producing the same
JP5649210B2 (en) Polyolefin microporous membrane
JP5676286B2 (en) Polyolefin microporous membrane
JP5676285B2 (en) Polyolefin microporous membrane
JP7152435B2 (en) Polyolefin microporous membrane
JP7306200B2 (en) porous polyolefin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5463154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350