JP6295641B2 - Microporous membrane and separator using the same - Google Patents

Microporous membrane and separator using the same Download PDF

Info

Publication number
JP6295641B2
JP6295641B2 JP2013264137A JP2013264137A JP6295641B2 JP 6295641 B2 JP6295641 B2 JP 6295641B2 JP 2013264137 A JP2013264137 A JP 2013264137A JP 2013264137 A JP2013264137 A JP 2013264137A JP 6295641 B2 JP6295641 B2 JP 6295641B2
Authority
JP
Japan
Prior art keywords
microporous membrane
pore diameter
pore size
microporous
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013264137A
Other languages
Japanese (ja)
Other versions
JP2015120786A (en
Inventor
佐藤 剛
剛 佐藤
豊田 直樹
直樹 豊田
石原 毅
毅 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2013264137A priority Critical patent/JP6295641B2/en
Publication of JP2015120786A publication Critical patent/JP2015120786A/en
Application granted granted Critical
Publication of JP6295641B2 publication Critical patent/JP6295641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Description

本発明は、微多孔膜およびそれを用いてなるセパレータに関し、より詳しくは、孔径が微細で均一であり、かつ引張強度および透過性に優れた微多孔膜およびそれを用いてなるセパレータに関する。   The present invention relates to a microporous membrane and a separator using the same, and more particularly to a microporous membrane having a fine and uniform pore diameter and excellent tensile strength and permeability and a separator using the same.

ポリオレフィン微多孔膜は、リチウム電池用を始めとする電池用セパレータ、電解コン
デンサ用隔膜、透湿防水衣料、各種濾過膜等の用途に広く用いられている。ポリオレフィ
ン微多孔膜を電池用セパレータとして用いる場合、その性能は電池の特性、生産性及び安
全性に深く関わる。そのため優れた透過性、機械的特性、熱収縮特性、シャットダウン特
性、メルトダウン特性等が要求される。
Polyolefin microporous membranes are widely used in applications such as battery separators for lithium batteries, electrolytic capacitor diaphragms, moisture-permeable and waterproof clothing, and various filtration membranes. When a polyolefin microporous membrane is used as a battery separator, its performance is closely related to battery characteristics, productivity, and safety. Therefore, excellent permeability, mechanical characteristics, heat shrinkage characteristics, shutdown characteristics, meltdown characteristics, and the like are required.

リチウムイオン電池用のセパレータは、高い張力をかけつつ捲回されるため、MD方向の機械的強度に優れていることが望ましい。一方で、細孔の孔径が不均一であると、局所的な絶縁破壊が起こりやすくなって耐電圧性能が低下したり、透気度(透気抵抗度)や機械的強度が局所的に偏ってデンドライト生成・成長による部分短絡が生じやすい。しかしながら、微多孔膜の機械的強度と、孔径分布の均一さとは相反する関係にあり、これらのバランスに優れた薄膜のセパレータを効率良く生産することは困難であった。   Since the separator for lithium ion batteries is wound while applying high tension, it is desirable that the separator has excellent mechanical strength in the MD direction. On the other hand, if the pore diameter is not uniform, local dielectric breakdown is likely to occur and the withstand voltage performance is reduced, and the air permeability (air resistance) and mechanical strength are locally biased. Therefore, partial short-circuiting due to dendrite generation / growth tends to occur. However, the mechanical strength of the microporous membrane and the uniformity of the pore size distribution are in a contradictory relationship, and it has been difficult to efficiently produce a thin film separator excellent in these balances.

例えば、特許文献1には、超高分子量ポリエチレンおよび高密度ポリエチレンを溶融混練して同時二軸延伸した後、所定の温度にて熱固定し、しかる後に溶媒を除去して微多孔膜を製造することが記載されている。しかしながら、この微多孔膜は高透過性で熱収縮率が低いものの、引張強度が必ずしも十分ではなかった。   For example, in Patent Document 1, after melt-kneading ultrahigh molecular weight polyethylene and high-density polyethylene and simultaneous biaxial stretching, heat setting is performed at a predetermined temperature, and then the solvent is removed to produce a microporous film. It is described. However, although this microporous membrane has high permeability and low thermal shrinkage, the tensile strength is not always sufficient.

また、特許文献2には、ポリエチレン樹脂を溶融混練して同時二軸延伸した後、さらにTD方向に延伸することにより、TD方向の引張強度を高め、さらに耐圧縮性、電解液注入性、機械的特性、透過性及び耐熱収縮性に優れた微多孔膜を製造することが記載されている。しかしながら、この微多孔膜は比較的微小な細孔と比較的粗大な細孔とを有する構造を有しており、孔径のばらつきが大きかった。その結果、上述したような絶縁破壊等が起こりやすくなる等の種々の問題があった。   Patent Document 2 discloses that a polyethylene resin is melt-kneaded and simultaneously biaxially stretched, and further stretched in the TD direction, thereby increasing the tensile strength in the TD direction, further compressing resistance, electrolyte injection property, mechanical Manufacturing a microporous membrane excellent in mechanical properties, permeability and heat shrinkage resistance is described. However, this microporous membrane has a structure having relatively fine pores and relatively coarse pores, and the variation in pore diameter is large. As a result, there have been various problems such as the above-mentioned dielectric breakdown easily occurring.

国際公開第2000/020492号International Publication No. 2000/020492 特開2008−081513号公報JP 2008-081513 A

そこで本発明の課題は、薄膜でありながら均一微細孔径かつ引張強度、高透過性の物性バランスに優れた微多孔膜を提供することにある。   Accordingly, an object of the present invention is to provide a microporous membrane that is a thin film and has a uniform fine pore diameter, tensile strength, and high permeability and excellent physical property balance.

上記課題を解決するために、本発明に係る微多孔膜およびセパレータは、下記を特徴とするものからなる。
(1)乾燥状態および湿潤状態における空気流量の圧力変化から求められる細孔径分布曲線において細孔径分布の最大ピークを示す孔径をDp(nm)とするとき、孔径が0.9Dp〜1.1Dpである孔の細孔径分布の合計値が孔全体の75%以上であり、最大孔径が45nm以下であり、MD方向の引張強度SMDが1000〜3500kgf/cmであり、MD方向の引張強度SMDとTD方向の引張強度STDの比率SMD/STDが1.1〜2.5であることを特徴とする微多孔膜。
(2)前記細孔径分布曲線において細孔径分布が10%以上となる領域が孔径20〜30nmの範囲内にあり、膜厚を20μmとしたときの透気抵抗度が1000sec/100mL以下である、上記(1)の微多孔膜。
(3)平均膜厚が20μm以下である、上記(1)または(2)の微多孔膜。
(4)前記膜厚を20μmとしたときの絶縁破壊電圧が3.2〜4.0kVである、上記(1)〜(3)のいずれかの微多孔膜。
(5)前記膜厚を20μmとしたときの突刺強度が200gf/20μm以上である、上記(1)〜(4)のいずれかの微多孔膜。
(6)空孔率が20〜80%である、上記(1)〜(5)のいずれかの微多孔膜。
(7)上記(1)〜(6)のいずれかの微多孔膜を用いてなるセパレータ。
In order to solve the above problems, a microporous membrane and a separator according to the present invention are characterized by the following.
(1) When the pore diameter showing the maximum peak of the pore diameter distribution in the pore diameter distribution curve obtained from the pressure change of the air flow rate in the dry state and the wet state is Dp (nm), the pore diameter is 0.9 Dp to 1.1 Dp. The total value of the pore diameter distribution of a certain hole is 75% or more of the whole hole, the maximum pore diameter is 45 nm or less, the MD direction tensile strength S MD is 1000 to 3500 kgf / cm 2 , and the MD direction tensile strength S A microporous membrane having a ratio S MD / S TD of a tensile strength S TD in the MD and TD directions of 1.1 to 2.5.
(2) In the pore size distribution curve, the region where the pore size distribution is 10% or more is in the range of the pore size of 20 to 30 nm, and the air resistance when the film thickness is 20 μm is 1000 sec / 100 mL or less. The microporous membrane of (1) above.
(3) The microporous film according to (1) or (2), wherein the average film thickness is 20 μm or less.
(4) The microporous film according to any one of (1) to (3), wherein the dielectric breakdown voltage is 3.2 to 4.0 kV when the film thickness is 20 μm.
(5) The microporous film according to any one of (1) to (4), wherein the puncture strength when the film thickness is 20 μm is 200 gf / 20 μm or more.
(6) The microporous film according to any one of (1) to (5), wherein the porosity is 20 to 80%.
(7) A separator using the microporous film of any one of (1) to (6) above.

本発明の微多孔膜は従来技術に比べて孔径が小さく孔径分布が均一であるため、耐電圧性能にムラがなく、透気度や機械的強度の偏りが小さく、デンドライトに対する耐性が高い。また、このような均質な微多孔膜を電池用セパレータとして用いることで、膜の不均一性に起因する電池の動作不良を未然に防ぐことができ、歩留まり率の改善を図ることができる。   Since the microporous membrane of the present invention has a smaller pore size and a uniform pore size distribution as compared with the prior art, there is no unevenness in withstand voltage performance, there is little deviation in air permeability and mechanical strength, and resistance to dendrites is high. Further, by using such a homogeneous microporous membrane as a battery separator, it is possible to prevent battery malfunction due to non-uniformity of the membrane and improve the yield rate.

本発明の微多孔膜はMD引張強度が優れているため、高い張力が掛かった場合も膜が破断しにくく、高い耐久性が要求される用途に好適に用いることができる。また、このような強度に優れた微多孔膜を電池用セパレータとして用いることで、電池作製時や使用時における短絡を防ぐことができる   Since the microporous membrane of the present invention has excellent MD tensile strength, the membrane is not easily broken even when high tension is applied, and can be suitably used for applications requiring high durability. Moreover, by using such a microporous membrane having excellent strength as a battery separator, it is possible to prevent a short circuit during battery production or use.

さらに、本発明の微多孔膜を膜厚20μm以下の薄膜とすることで、小型化と高耐久性の両立が求められる用途にも好適に用いることができる。また、このような薄くて強度に優れた微多孔膜を電池用セパレータとして用いた場合、薄膜状のセパレータを高い張力で圧着させつつ捲回でき、電池のさらなる高容量化が図られる。   Furthermore, by making the microporous membrane of the present invention a thin film having a thickness of 20 μm or less, it can be suitably used for applications that require both miniaturization and high durability. Further, when such a thin and excellent microporous membrane is used as a battery separator, the thin film separator can be wound while being pressed with a high tension, thereby further increasing the capacity of the battery.

本発明の実施例および比較例で得られた微多孔膜の細孔径分布曲線を示す関係図である。It is a related figure which shows the pore diameter distribution curve of the microporous film obtained by the Example and comparative example of this invention. 乾燥試料および湿潤試料の通気曲線の例を示す模式図である。It is a schematic diagram which shows the example of the aeration curve of a dry sample and a wet sample. 細孔径分布曲線の例を示す模式図であり、(A)は直径が0.9Dp〜1.1Dpの範囲内にある孔の細孔径分布の合計値が75%以上となる場合の一例を、(B)は細孔径分布が10%以上となる領域が直径20〜30nmの範囲内にある場合の一例を、それぞれ表している。It is a schematic diagram showing an example of a pore diameter distribution curve, (A) is an example when the total value of the pore diameter distribution of the pores having a diameter in the range of 0.9 Dp to 1.1 Dp is 75% or more, (B) represents an example when the region where the pore size distribution is 10% or more is in the range of 20 to 30 nm in diameter.

本発明の微多孔膜は、乾燥状態および湿潤状態における空気流量の圧力変化から求められる細孔径分布曲線において細孔径分布の最大ピークを示す孔径(細孔の直径)をDp(nm)とするとき、孔径が0.9Dp〜1.1Dpである孔の細孔径分布の合計値が、孔全体の75%以上であることを特徴とする。このような微多孔膜は従来技術に比べて孔径分布が均一であるため、透気度や機械的強度の偏りが小さく、デンドライトに対する耐性が高い。また、このような均質な微多孔膜を電池用セパレータとして用いることで、膜の不均一性に起因する電池の動作不良を未然に防ぐことができ、歩留まり率の改善を図ることができる。本明細書において、「最大ピークを示す孔径」とは、微多孔膜中に分布する全孔の割合の中で最も多く分布している孔の孔径を示すものであり、細孔径分布曲線から決定できる。細孔径分布値(%)が最も高い点を最大ピークとする。   The microporous membrane of the present invention has a pore diameter (pore diameter) showing the maximum peak of the pore diameter distribution in a pore diameter distribution curve obtained from a pressure change of the air flow rate in a dry state and a wet state when Dp (nm) is set. The total pore diameter distribution of pores having a pore diameter of 0.9 Dp to 1.1 Dp is 75% or more of the whole pores. Since such a microporous membrane has a uniform pore size distribution as compared with the prior art, the air permeability and mechanical strength are less biased and the resistance to dendrites is high. Further, by using such a homogeneous microporous membrane as a battery separator, it is possible to prevent battery malfunction due to non-uniformity of the membrane and improve the yield rate. In this specification, the “pore diameter showing the maximum peak” is the pore diameter of the most distributed pore among the ratio of the total pores distributed in the microporous membrane, and is determined from the pore diameter distribution curve. it can. The point with the highest pore size distribution value (%) is taken as the maximum peak.

細孔径分布曲線は、ポロメータを用いて以下の方法で測定することができる。まず、乾燥状態の試料(以下、単に「乾燥試料」とも記す)と、測定液が細孔内に充填された湿潤状態の試料(以下、単に「湿潤試料」とも記す)のそれぞれについて、ポロメータを用いて空気圧と空気流量の関係を測定し、図2に示すように、乾燥試料の通気曲線(Dry Curve)および湿潤試料の通気曲線(Wet Curve)を得る。   The pore diameter distribution curve can be measured by the following method using a porometer. First, a porometer is used for each of a dry sample (hereinafter also simply referred to as “dry sample”) and a wet sample (hereinafter also simply referred to as “wet sample”) filled with the measurement liquid in the pores. The relationship between the air pressure and the air flow rate is measured, and the aeration curve (Dry Curve) of the dry sample and the aeration curve (Wet Curve) of the wet sample are obtained as shown in FIG.

測定液が細孔内に充填された湿潤試料は、液体を満たした毛細管と同様の特性を示す。湿潤試料をポロメータにセットして空気圧を徐々に高めてゆくと、径の大きい細孔から順に、空気圧が細孔内の測定液の表面張力に打ち勝って測定液が当該細孔内から押し出され、それに伴って空気流量が徐々に増加し、最終的に試料は乾燥状態となる。従って、液体がその細孔から押し出される際の圧力を測定する事によって、細孔直径を算出できる。ここで、細孔の形状が略円柱状であると仮定すると、直径Dの細孔内に圧力Pの空気が侵入する条件は、測定液の表面張力をγ、測定液の接触角をθとして、下記の式1に示すWashburnの式で表される。
PD=4γcosθ ……(式1)
特に、気泡の発生が最初に検出される測定点(最大孔径を示す測定点)をバブルポイント(Bubble Point)と呼ぶ。バブルポイントの標準的な測定方法としては、例えばASTM F316−86に記載の方法が挙げられる。
The wet sample in which the measurement liquid is filled in the pores shows the same characteristics as the capillary filled with the liquid. When the wet sample is set on the porometer and the air pressure is gradually increased, the air pressure overcomes the surface tension of the measurement liquid in the pores in order from the large diameter pores, and the measurement liquid is pushed out of the pores. Along with this, the air flow rate gradually increases, and the sample finally becomes dry. Therefore, the pore diameter can be calculated by measuring the pressure when the liquid is pushed out of the pore. Assuming that the shape of the pores is substantially cylindrical, the conditions for air of pressure P to enter the pores of diameter D are that the surface tension of the measurement liquid is γ and the contact angle of the measurement liquid is θ. It is expressed by the Washburn formula shown in the following formula 1.
PD = 4γ cos θ (Formula 1)
In particular, a measurement point (measurement point indicating the maximum pore diameter) at which bubble generation is first detected is referred to as a bubble point. As a standard measurement method of a bubble point, the method as described in ASTM F316-86 is mentioned, for example.

また、上記微多孔膜の平均孔径は、上述の乾燥試料の通気曲線(Dry Curve)および湿潤試料の通気曲線(Wet Curve)を用いて、ASTM E1294−89に規定するハーフドライ法に基づいて求めることができる。図2に示すように、乾燥試料の通気曲線(Dry Curve)の1/2の傾きの曲線(Half−Dry Curve)と、湿潤試料の通気曲線(Wet Curve)とが交わる点の圧力を平均流量径圧力(Mean Flow Pressure)として求め、この平均流量径圧力を上記(式1)に代入することにより、微多孔膜の平均孔径(Mean Flow Pore Diameter)が算出される。   The average pore size of the microporous membrane is determined based on the half dry method defined in ASTM E1294-89 using the above-mentioned dry sample aeration curve (Dry Curve) and wet sample aeration curve (Wet Curve). be able to. As shown in FIG. 2, the average flow rate is the pressure at the point where the half-curve curve (Half-Dry Curve) of the dry sample aeration curve (Dry Curve) and the wet sample aeration curve (Wet Curve) intersect. An average pore diameter (Mean Flow Pore Diameter) of the microporous membrane is calculated by obtaining the mean flow diameter pressure and substituting this average flow diameter pressure into the above (Equation 1).

一方、圧力Pにおける湿潤試料の空気流量をFw,j、乾燥試料の空気流量をFd,jとするとき、累積フィルタ流量(CFF:Cumulative Filter Flow,単位:%)および細孔径分布(PSF:Pore Size Frequency,単位:%)は、それぞれ以下の式によって算出される。
CFF=[(Fw,j/Fd,j)×100] ……(式2)
PSF=(CFF)j+1−(CFF) ……(式3)
On the other hand, when the air flow rate of the wet sample at pressure P j is F w, j and the air flow rate of the dry sample is F d, j , the cumulative filter flow rate (CFF: Cumulative Filter Flow, unit:%) and the pore size distribution ( PSF (Pore Size Frequency, unit:%) is calculated by the following formula, respectively.
CFF = [(F w, j / F d, j ) × 100] (Expression 2)
PSF = (CFF) j + 1 − (CFF) j (Formula 3)

上記(式1)〜(式3)を組み合わせることにより、乾燥状態および湿潤状態における空気流量の圧力変化に基づいて、細孔の直径Dと細孔径分布PSFの関係を示す細孔径分布曲線を求めることができる。このような細孔径分布曲線の一例を図3(A)に示す。本発明の微多孔膜は、上記細孔径分布曲線において最大ピークを示す孔径をDp(nm)とするとき、孔径が0.9Dp〜1.1Dpである孔の細孔径分布の合計値が、孔全体の75%以上であることを特徴とする。なお、孔径が0.9Dp〜1.1Dpである孔の細孔径分布の合計値は、孔全体の80%以上であることが好ましく、孔全体の85%以上であることがより好ましい。この合計値が高いほど、均一な細孔径が存在している事を表しており、透気度や機械的強度の偏りが少なくなる。この値は高ければ高いほど望ましい。   By combining the above (Formula 1) to (Formula 3), a pore size distribution curve showing the relationship between the pore diameter D and the pore size distribution PSF is obtained based on the pressure change of the air flow rate in the dry state and the wet state. be able to. An example of such a pore size distribution curve is shown in FIG. In the microporous membrane of the present invention, when the pore diameter showing the maximum peak in the pore diameter distribution curve is Dp (nm), the total pore diameter distribution of pores having a pore diameter of 0.9 Dp to 1.1 Dp is It is characterized by being 75% or more of the whole. In addition, it is preferable that the total value of the pore diameter distribution of the hole whose hole diameter is 0.9 Dp-1.1 Dp is 80% or more of the whole hole, and it is more preferable that it is 85% or more of the whole hole. The higher the total value, the more uniform pore diameter is present, and the less the deviation of air permeability and mechanical strength. The higher this value, the better.

本発明の微多孔膜において、ASTM F316−86(バブルポイント法)に基づいて測定される最大孔径は、通常45nm以下であり、好ましくは40nm以下であり、特に好ましくは38nm以下である。最大孔径を45nm以下とすることで、部分短絡を防止し、優れた耐電圧性を確保することができる。本明細書において、「最大孔径」とは、微多孔膜中に分布する全孔の中で最大の孔径を示すものであり、バブルポイント法により測定できる。   In the microporous membrane of the present invention, the maximum pore diameter measured based on ASTM F316-86 (bubble point method) is usually 45 nm or less, preferably 40 nm or less, and particularly preferably 38 nm or less. By setting the maximum hole diameter to 45 nm or less, partial short-circuiting can be prevented and excellent voltage resistance can be ensured. In the present specification, the “maximum pore size” indicates the maximum pore size among all pores distributed in the microporous membrane, and can be measured by a bubble point method.

本発明の微多孔膜において、ASTM E1294−89に基づいて測定される平均孔径は、10〜40nmであることが好ましく、12〜35nmであることがより好ましく、14.5〜24.5nmであることが特に好ましい。平均孔径を40nm以下とすることで、優れた耐電圧性を確保することができる。また、平均孔径を10nm以上とすることで、透過性に優れた微多孔膜を得ることができる。   In the microporous membrane of the present invention, the average pore diameter measured based on ASTM E1294-89 is preferably 10 to 40 nm, more preferably 12 to 35 nm, and 14.5 to 24.5 nm. It is particularly preferred. By setting the average pore diameter to 40 nm or less, excellent voltage resistance can be ensured. Moreover, the microporous film excellent in the permeability can be obtained by setting the average pore diameter to 10 nm or more.

本発明の微多孔膜において、MD方向の引張強度(以下、単に「MD引張強度」と記すこともある)SMDは通常1000〜3500kgf/cmであり、好ましくは1200〜2900kgf/cmであり、より好ましくは1500〜2800kgf/cmである。また、MD方向の引張強度SMDとTD方向の引張強度(以下、単に「TD引張強度」と記すこともある)STDの比率SMD/STDは、通常1.1〜2.5であり、好ましくは1.3〜2.5であり、より好ましくは1.4〜2.5である。このような微多孔膜はMD引張強度が優れているため、高い張力が掛かった場合も膜が破断しにくく、高い耐久性が要求される用途に好適に用いることができる。また、このような強度に優れた微多孔膜を電池用セパレータとして用いた場合、電池作製時や使用時における短絡を防ぐことができるとともに、高い張力をかけてセパレータを捲回可能となり、電池の高容量化も図られる。なお、引張強度(引張破断強度)の測定方法としては、例えばASTM D882に記載の方法を採用することができる。 In the microporous membrane of the present invention, MD direction tensile strength (hereinafter may be simply referred to as "MD tensile strength") S MD is usually 1000~3500kgf / cm 2, preferably at 1200~2900kgf / cm 2 Yes, more preferably 1500 to 2800 kgf / cm 2 . Further, MD direction tensile strength S MD and TD directions of the tensile strength (hereinafter may be simply referred to as "TD tensile strength") ratio S MD / S TD of S TD is usually 1.1 to 2.5 Yes, preferably 1.3 to 2.5, more preferably 1.4 to 2.5. Since such a microporous membrane has excellent MD tensile strength, the membrane is not easily broken even when high tension is applied, and can be suitably used for applications requiring high durability. In addition, when such a microporous membrane with excellent strength is used as a battery separator, it is possible to prevent short-circuiting during battery production and use, and it is possible to wind the separator by applying high tension. High capacity can also be achieved. In addition, as a measuring method of tensile strength (tensile breaking strength), the method as described in ASTM D882 can be employ | adopted, for example.

上記細孔径分布曲線において、細孔径分布が10%以上となる領域は、図3(B)に例示するように、孔径20〜30nmの範囲内にあることが好ましい。このような微多孔膜は細孔径分布のばらつきが小さいため、デンドライトに対する耐性がより高く、従って電池用セパレータの歩留まり率をさらに向上させることが可能となる。   In the pore size distribution curve, the region where the pore size distribution is 10% or more is preferably in the range of a pore size of 20 to 30 nm as illustrated in FIG. Since such a microporous membrane has a small variation in pore size distribution, it has higher resistance to dendrites, and therefore, it is possible to further improve the yield rate of battery separators.

本発明の微多孔膜は、膜厚を20μmとしたときの透気抵抗度が1000sec/100mL以下であることが好ましい。ここで、膜厚を20μmとしたときの透気抵抗度とは、膜厚T(μm)の微多孔膜において、JIS P 8117(2009)に準拠して測定した透気抵抗度をPとするとき、式:P=(P×20)/Tによって算出される透気抵抗度Pのことを指す。なお、以下では、膜厚について特に記載がない限り、「透気抵抗度」を「膜厚を20μmとしたときの透気抵抗度」の意味で用いるものとする。 The microporous membrane of the present invention preferably has an air resistance of 1000 sec / 100 mL or less when the film thickness is 20 μm. Here, the air resistance when formed into a 20μm thickness, the microporous film having a thickness T 1 (μm), the air resistance was measured in accordance with JIS P 8117 (2009) P 1 Is the air resistance P 2 calculated by the formula: P 2 = (P 1 × 20) / T 1 . In the following description, “air permeability resistance” is used to mean “air resistance when the film thickness is 20 μm” unless otherwise specified.

微多孔膜を電池用セパレータとして用いる場合、透気抵抗度は低い値であることが好ましい。透気抵抗度が1000sec/100mLを超えると、電池の出力が小さくなることがある。なお、透気抵抗度の上限としては、600sec/100mL以下がより好ましく、400sec/100mL以下が特に好ましい。また、透気抵抗度の下限はとくに限定されないが、シャットダウン性能確保の観点からは、透気抵抗度は100sec/100mL以上であることが好ましい。   When the microporous membrane is used as a battery separator, the air permeability resistance is preferably a low value. When the air resistance exceeds 1000 sec / 100 mL, the output of the battery may be small. In addition, as an upper limit of air permeability resistance, 600 sec / 100 mL or less is more preferable, and 400 sec / 100 mL or less is especially preferable. The lower limit of the air resistance is not particularly limited, but from the viewpoint of ensuring the shutdown performance, the air resistance is preferably 100 sec / 100 mL or more.

上記微多孔膜の平均膜厚は20μm以下であることが好ましく、18μm未満であることがより好ましく、15μm未満であることが特に好ましい。なお、平均膜厚の測定方法については後述する。薄膜でしかもMD強度の高い微多孔膜とすることにより、省スペースと高耐久性の両立が求められる用途にも好適に用いることができる。また、このような微多孔膜を電池用セパレータとして用いた場合、薄膜状のセパレータを高い張力で圧着させつつ捲回できるため、電池のさらなる高容量化が実現可能となる。   The average film thickness of the microporous membrane is preferably 20 μm or less, more preferably less than 18 μm, and particularly preferably less than 15 μm. A method for measuring the average film thickness will be described later. By using a microporous film that is thin and has high MD strength, it can be suitably used for applications that require both space saving and high durability. Further, when such a microporous membrane is used as a battery separator, the thin film separator can be wound while being pressed with a high tension, so that it is possible to further increase the capacity of the battery.

上記微多孔膜は、膜厚を20μmとしたときの耐電圧(絶縁破壊電圧)が3.2〜4.0kVであることが好ましく、3.3〜3.9kVであることがより好ましく、3.4〜3.8kVであることが特に好ましい。ここで、膜厚を20μmとしたときの耐電圧とは、膜厚T(μm)の微多孔膜における絶縁破壊電圧をV(kV)とするとき、式:V=(V×20)/Tによって算出される絶縁破壊電圧Vのことを指し、測定を複数回行った場合はそれらの平均値を指すものとする。なお、測定を複数回行った場合、膜厚を20μmとしたときの耐電圧の最小値は、2.8kV以上であることが好ましく、膜厚を20μmとしたときの耐電圧の最大値は、3.6kV以上であることが好ましい。 The microporous film preferably has a withstand voltage (dielectric breakdown voltage) of 3.2 to 4.0 kV, more preferably 3.3 to 3.9 kV when the film thickness is 20 μm. It is particularly preferable that the voltage is 4 to 3.8 kV. Here, the withstand voltage when the film thickness is 20 μm means that the dielectric breakdown voltage in the microporous film having the film thickness T 1 (μm) is V 1 (kV): V 2 = (V 1 × refers to the breakdown voltage V 2 calculated by 20) / T 1, when the measurement was performed a plurality of times shall refer to their mean values. When the measurement is performed a plurality of times, the minimum withstand voltage when the film thickness is 20 μm is preferably 2.8 kV or more, and the maximum withstand voltage when the film thickness is 20 μm is It is preferable that it is 3.6 kV or more.

耐久性向上の観点から、上記微多孔膜は、膜厚を20μmとしたときの突き刺し強度が200gf/20μm以上であることが好ましく、500gf/20μm以上であることがより好ましく、600gf/20μm以上であることがさらに好ましく、650gf/20μm以上であることが特に好ましい。なお、膜厚を20μmとしたときの突き刺し強度とは、膜厚T(μm)の微多孔膜の突刺強度(最大荷重)をLとするとき、L=(L×20)/Tの式によって算出される突刺強度Lのことを指す。 From the viewpoint of improving durability, the microporous membrane preferably has a puncture strength of 200 gf / 20 μm or more, more preferably 500 gf / 20 μm or more, and 600 gf / 20 μm or more when the film thickness is 20 μm. More preferably, it is more preferably 650 gf / 20 μm or more. Here, the piercing strength when formed into a 20μm film thickness, when the puncture strength of the microporous film having a thickness T 1 ([mu] m) (maximum load) and L 1, L 2 = (L 1 × 20) / The puncture strength L 2 calculated by the formula of T 1 is indicated.

上記微多孔膜の空孔率は20〜80%であることが好ましい。空孔率が20%未満であると、微多孔膜は良好な透気度を有さない。一方80%を超えると、微多孔膜を電池用セパレータとして用いたとき、機械的強度が不十分となり、電極が短絡する危険が大きくなる。空孔率は30〜65%がより好ましく、40〜45%が特に好ましい。   The porosity of the microporous membrane is preferably 20 to 80%. When the porosity is less than 20%, the microporous membrane does not have good air permeability. On the other hand, if it exceeds 80%, when the microporous membrane is used as a battery separator, the mechanical strength becomes insufficient, and the risk of a short circuit of the electrode increases. The porosity is more preferably 30 to 65%, particularly preferably 40 to 45%.

微多孔膜を構成する材料としては、ポリオレフィンを用いることが好ましく、ポリエチレンを用いることがより好ましい。ポリエチレンの含有量は、ポリオレフィン全体を100重量%としたとき、90重量%以上であることが好ましく、95重量%以上であることがより好ましく、99重量%以上であることが特に好ましい。ポリエチレンの含有量を90重量%以上とすることで、均質性の低下による物性ムラを防止することができ、均一微細孔径が実現可能となる。   As a material constituting the microporous membrane, polyolefin is preferably used, and polyethylene is more preferably used. The polyethylene content is preferably 90% by weight or more, more preferably 95% by weight or more, and particularly preferably 99% by weight or more, based on 100% by weight of the entire polyolefin. By setting the polyethylene content to 90% by weight or more, physical property unevenness due to a decrease in homogeneity can be prevented, and a uniform fine pore diameter can be realized.

微多孔膜の材料としてポリエチレンを用いる場合、当該ポリエチレンは、重量平均分子量5.0×10〜9.0×10のポリエチレン(高密度ポリエチレン。以下、単に「HDPE」とも記す。)と、重量平均分子量1.5×10〜3.0×10のポリエチレン(超高分子量ポリエチレン。以下、単に「UHMWPE」とも記す。)との組成物であることが好ましい。比較的分子量の大きいHDPEおよびUHMWPEを主成分として用いることで(好ましくは、実質的にHDPEとUHMWPEのみをポリオレフィンとして用いることで)、強度に優れた微多孔膜が提供可能となる。HDPEの含有量は、ポリエチレン組成物全体を100重量%として、90重量%以下が好ましく、80重量%以下がより好ましく、75重量%以下が特に好ましい。また、UHMWPEの含有量は、ポリエチレン組成物全体を100重量%として、10重量%以上が好ましく、20重量%以上がより好ましく、25重量%以上が特に好ましい。 When polyethylene is used as the material for the microporous membrane, the polyethylene is polyethylene having a weight average molecular weight of 5.0 × 10 5 to 9.0 × 10 5 (high-density polyethylene; hereinafter, also simply referred to as “HDPE”). A composition with polyethylene having a weight average molecular weight of 1.5 × 10 6 to 3.0 × 10 6 (ultra high molecular weight polyethylene; hereinafter also simply referred to as “UHMWPE”) is preferable. By using HDPE and UHMWPE having a relatively large molecular weight as main components (preferably, by using substantially only HDPE and UHMWPE as polyolefin), a microporous film having excellent strength can be provided. The content of HDPE is preferably 90% by weight or less, more preferably 80% by weight or less, and particularly preferably 75% by weight or less, based on 100% by weight of the entire polyethylene composition. Further, the content of UHMWPE is preferably 10% by weight or more, more preferably 20% by weight or more, and particularly preferably 25% by weight or more, based on 100% by weight of the entire polyethylene composition.

上述のようにHDPEとUHMWPEとの組成物を用いる場合、HDPEの分子量分布(重量平均分子量Mwと数平均分子量Mnの比、すなわちMw/Mn)は3〜20の範囲内であることが好ましく、UHMWPEの分子量分布(Mw/Mn)は3〜20の範囲内であることが好ましい。分子量分布が狭すぎると、高分子量の成分が多くなり、押し出し成形時の流動性が低下する。また、製膜時の延伸性の低下により破膜につながるおそれもある。一方、分子量分布が広すぎると、低分子量成分の割合が増加して強度の確保が難しくなるおそれがある。   When using a composition of HDPE and UHMWPE as described above, the molecular weight distribution of HDPE (ratio of weight average molecular weight Mw to number average molecular weight Mn, ie Mw / Mn) is preferably in the range of 3-20, The molecular weight distribution (Mw / Mn) of UHMWPE is preferably in the range of 3-20. If the molecular weight distribution is too narrow, the amount of high molecular weight components increases, and the fluidity during extrusion molding decreases. Moreover, there exists a possibility of leading to a membrane breakage due to a decrease in stretchability during film formation. On the other hand, if the molecular weight distribution is too wide, the proportion of low molecular weight components increases and it may be difficult to ensure strength.

上記微多孔膜の製造方法はとくに限定されないが、優れたMD引張強度を確保するという観点からは、MD方向およびTD方向への同時二軸延伸を行った後、さらに、MD方向への追加延伸を行うことが好ましい。すなわち、上記微多孔膜の製造方法は、強度向上の観点から、下記(1)、(2)の工程を含んでいることが好ましい。
(1)ダイから押し出されたシートを、延伸温度100〜120℃にてMD方向およびTD方向に同時二軸延伸する工程
(2)同時二軸延伸されたシートを、延伸温度100〜120℃、延伸倍率1.3〜2.0倍にてMD方向に追加延伸する工程
製造時にこれらの工程を実施することにより、延伸倍率が同程度である従来のポリオレフィン微多孔膜と比較して、より強度に優れた微多孔膜を得ることができる。なお、MD方向への追加延伸の倍率は1.4〜2.0倍がより好ましく、1.6〜2.0倍が特に好ましい。
Although the manufacturing method of the said microporous film is not specifically limited, From the viewpoint of ensuring excellent MD tensile strength, after performing simultaneous biaxial stretching in the MD direction and TD direction, further stretching in the MD direction. It is preferable to carry out. That is, the method for producing a microporous membrane preferably includes the following steps (1) and (2) from the viewpoint of improving the strength.
(1) The step of simultaneously biaxially stretching the sheet extruded from the die in the MD direction and the TD direction at a stretching temperature of 100 to 120 ° C. (2) The simultaneously biaxially stretched sheet is stretched at a temperature of 100 to 120 ° C. Step of additional stretching in the MD direction at a stretch ratio of 1.3 to 2.0 times By carrying out these steps during production, the strength is higher than that of a conventional polyolefin microporous membrane having the same stretch ratio. Can be obtained. The additional stretching ratio in the MD direction is more preferably 1.4 to 2.0 times, and particularly preferably 1.6 to 2.0 times.

以下に、本発明における具体例を、実施例を用いて説明するが、本発明はこれに限定されるものではない。   Specific examples of the present invention will be described below with reference to examples, but the present invention is not limited thereto.

(測定方法)
1.膜厚
微多孔膜の厚みは、接触式厚さ計を用いて、無作為に選択したMD位置で測定した。測定は、膜のTD(幅)に沿った点で、30cmの距離にわたって5mmの間隔で行った。そして、上記TDに沿った測定を5回行い、その算術平均を試料の厚さとした。
(Measuring method)
1. Film thickness The thickness of the microporous film was measured at a randomly selected MD position using a contact-type thickness meter. Measurements were taken at 5 mm intervals over a distance of 30 cm at points along the TD (width) of the membrane. And the measurement along said TD was performed 5 times and the arithmetic mean was made into the thickness of a sample.

2.透気抵抗度
膜厚Tの微多孔膜に対して透気度計(旭精工株式会社製、EGO−1T)で透気抵抗度Pを測定した。また、式:P=(P×20)/Tにより、膜厚を20μmとしたときの透気抵抗度Pを算出した。
2. Air permeability resistance The air resistance resistance P 1 was measured with a gas permeability meter (Asahi Seiko Co., Ltd., EGO-1T) with respect to a microporous film having a film thickness T 1 . Further, by the formula of P 2 = (P 1 × 20 ) / T 1, to calculate the air resistance of P 2 when a 20μm thickness.

3.空孔率
空孔率は、微多孔膜の質量w1と、微多孔膜と同じポリエチレン組成物からなる同サイズの空孔のない膜の質量w2から、空孔率(%)=(w2−w1)/w2×100の式により算出した。
3. Porosity The porosity is calculated from the mass w1 of the microporous membrane and the mass w2 of the same size non-porous membrane made of the same polyethylene composition as the microporous membrane, and the porosity (%) = (w2-w1). ) / W2 × 100.

4.細孔径分布
細孔径分布曲線は、測定器としてPMI社製のパームポロメータ(型番:CFP−1500A)を、測定液としてGalwick(15.9dyn/cm)を用いて、以下の方法で算出した。まず、乾燥試料と湿潤試料のそれぞれについて、ポロメータを用いて空気圧と空気流量の関係を測定し、図2に示すように、乾燥試料の通気曲線(Dry Curve)および湿潤試料の通気曲線(Wet Curve)を得た。圧力Pにおける湿潤試料の空気流量をFw,j、乾燥試料の空気流量をFd,jとして、下記の式1および式2に基づき、累積フィルタ流量(CFF、単位:%)および細孔径分布(PSF、単位:%)を算出した。
CFF=[(Fw,j/Fd,j)×100] ……(式1)
PSF=(CFF)j+1−(CFF) ……(式2)
測定液の表面張力をγ、測定液の接触角をθとして、圧力Pに対応する細孔の直径Dを下記の式3にて算出し、細孔の直径Dと細孔径分布PSFの関係を示す細孔径分布曲線を得た。
PD=4γcosθ ……(式3)
そして、得られた細孔径分布曲線において最大ピークを示す孔径Dp(nm)と、孔径が0.9Dp〜1.1Dpの範囲内にある孔の細孔径分布の合計値を求めた。また、細孔径分布が10%以上である領域が、孔径20〜30nmの範囲内にあるかどうかを判定し、孔径20〜30nmの範囲内にあるものを○(良好)、そうでないものを×(範囲外)と評価した。
4). Pore size distribution The pore size distribution curve was calculated by the following method using a palm porometer (model number: CFP-1500A) manufactured by PMI as a measuring device and Galwick (15.9 dyn / cm) as a measuring solution. First, for each of the dry sample and the wet sample, the relationship between the air pressure and the air flow rate was measured using a porometer, and as shown in FIG. 2, the dry sample aeration curve (Dry Curve) and the wet sample aeration curve (Wet Curve). ) Cumulative filter flow rate (CFF, unit:%) and pore diameter based on Equation 1 and Equation 2 below, where F w, j is the air flow rate of the wet sample at pressure P j and F d, j is the air flow rate of the dry sample. Distribution (PSF, unit:%) was calculated.
CFF = [(F w, j / F d, j ) × 100] (Equation 1)
PSF = (CFF) j + 1 − (CFF) j (Formula 2)
The surface tension of the measurement liquid is γ, the contact angle of the measurement liquid is θ, and the pore diameter D corresponding to the pressure P is calculated by the following equation 3, and the relationship between the pore diameter D and the pore diameter distribution PSF is calculated. The pore size distribution curve shown was obtained.
PD = 4γ cos θ (Formula 3)
And the total value of the pore diameter distribution of the hole diameter Dp (nm) which shows the maximum peak in the obtained pore diameter distribution curve, and the hole diameter in the range of 0.9Dp-1.1Dp was calculated | required. Further, it is determined whether or not the region having a pore size distribution of 10% or more is in the range of the pore size of 20 to 30 nm. If the pore size is in the range of 20 to 30 nm, ○ (good); (Out of range).

5.最大孔径
微多孔膜の最大孔径は、ASTM F316−86に準拠した方法(バブルポイント法)によって測定した。なお、測定器としてはPMI社製のパームポロメータ(型番:CFP−1500A)を、測定液としてはGalwickを、それぞれ用いた。
5. Maximum pore diameter The maximum pore diameter of the microporous membrane was measured by a method (bubble point method) based on ASTM F316-86. In addition, a palm porometer (model number: CFP-1500A) manufactured by PMI was used as a measuring instrument, and Galwick was used as a measuring solution.

6.平均孔径
微多孔膜の平均孔径は、ASTM E1294−89に準拠した方法(ハーフドライ法)によって測定した。なお、測定器としてはPMI社製のパームポロメータ(型番:CFP−1500A)を、測定液としてはGalwickを、それぞれ用いた。
6). Average pore diameter The average pore diameter of the microporous membrane was measured by a method (half dry method) based on ASTM E1294-89. In addition, a palm porometer (model number: CFP-1500A) manufactured by PMI was used as a measuring instrument, and Galwick was used as a measuring solution.

7.突刺強度
先端に球面(曲率半径R:0.5mm)を有する直径1mmの針を、平均膜厚T(μm)の微多孔膜に2mm/秒の速度で突刺して最大荷重L(貫通する直前の荷重、単位:gf)を測定し、L=(L×20)/Tの式により、膜厚を20μmとしたときの突刺強度L(gf/20μm)を算出した。
7). Puncture strength A needle with a diameter of 1 mm having a spherical surface (curvature radius R: 0.5 mm) at the tip is pierced into a microporous film with an average film thickness T 1 (μm) at a speed of 2 mm / sec, and the maximum load L 1 (penetration) The load immediately before the measurement, unit: gf) was measured, and the puncture strength L 2 (gf / 20 μm) when the film thickness was 20 μm was calculated by the formula L 2 = (L 1 × 20) / T 1 .

8.引張強度
MD引張強度SMDおよびTD引張強度STDについては、幅10mmの短冊状試験片を用いて、ASTM D882に準拠した方法により測定した。
8). Tensile strength MD tensile strength S MD and TD tensile strength S TD were measured by a method based on ASTM D882 using a strip-shaped test piece having a width of 10 mm.

9.耐電圧性能
150mm四方のアルミニウム製の板上に、直径60mmに切り出した膜厚Tの微多孔膜を置き、その上に真鍮製の直径50mmの円柱電極を置いて、菊水電子工業製TOS5051A耐電圧試験器を接続した。0.2kV/秒の昇圧速度で電圧を加えていって、絶縁破壊したときの値Vを読み取り、換算式:V=(V×20)/Tに基づいて、膜厚20μmあたりの耐電圧Vを算出した。耐電圧Vの測定は15回行い、最大値、平均値および最小値を得た。
9. The withstand voltage performance 150mm square on aluminum plates, placed a microporous film having a thickness T 1 which is cut out in a diameter of 60 mm, at a cylinder electrode brass 50mm diameter thereon, Kikusui Electronics Ltd. TOS5051A resistance A voltage tester was connected. 0.2 kV / sec went energized at a rate of rise of the read value V 1 of the when dielectric breakdown, conversion equation: V 2 = based on (V 1 × 20) / T 1, per thickness 20μm It was calculated withstand voltage V 2 of. Measurement of withstand voltage V 2 is performed 15 times, the maximum value, to obtain a mean value and a minimum value.

(実施例1)
(a)重量平均分子量Mw1が2.89×10であり、分子量分布Mw1/Mn1が5.28である超高分子量ポリエチレン(UHMWPE)30重量% と、(b)重量平均分子量Mw2が5.72×10であり、分子量分布Mw2/Mn2が4.81である高密度ポリエチレン(HDPE)70重量%とからなるポリエチレン組成物30重量部を二軸押出機に投入し、この二軸押出機のサイドフィーダーから流動パラフィン70重量部を供給し、210℃および200rpmの条件で溶融混練して、ポリエチレン樹脂溶液を押出機中で調製した。続いて、このポリエチレン樹脂溶液を、押出機の先端に設置されたシート形成ダイから押し出し、得られたシート状押出物を25℃の冷却ロールで引き取りながら、ゲル状成形物を形成した。得られたゲル状成形物に対して、115℃で5×5倍になるように同時二軸延伸を施した後に、115℃の温度で1.3倍の倍率でMD方向に延伸した。延伸されたゲル状シートは25℃の塩化メチレンに浸漬し、リキッドパラフィンを除去した。その後、室温で空気乾燥させ、125℃の温度で10分間熱処理をかけることで、ポリエチレン微多孔膜を作製した。
得られた微多孔膜の膜特性を表1および図1に示す。この微多孔膜は孔径が小さく、孔径分布がシャープであり孔径のばらつきも少なかった。また、得られた微多孔膜はMD引張強度が高く、優れた透過性を有していた。
Example 1
(A) 30% by weight of ultrahigh molecular weight polyethylene (UHMWPE) having a weight average molecular weight Mw1 of 2.89 × 10 6 and a molecular weight distribution Mw1 / Mn1 of 5.28; and (b) a weight average molecular weight Mw2 of 5. 30 parts by weight of a polyethylene composition consisting of 70% by weight of high-density polyethylene (HDPE) having a molecular weight distribution Mw2 / Mn2 of 4.81 and 72 × 10 5 is charged into the twin-screw extruder. 70 parts by weight of liquid paraffin were supplied from the side feeder, melt-kneaded at 210 ° C. and 200 rpm, and a polyethylene resin solution was prepared in an extruder. Subsequently, the polyethylene resin solution was extruded from a sheet forming die installed at the tip of the extruder, and a gel-like molded product was formed while taking the obtained sheet-shaped extrudate with a 25 ° C. cooling roll. The obtained gel-like molded product was subjected to simultaneous biaxial stretching at 115 ° C. so as to be 5 × 5 times, and then stretched in the MD direction at a temperature of 115 ° C. and a magnification of 1.3 times. The stretched gel-like sheet was immersed in methylene chloride at 25 ° C. to remove liquid paraffin. Thereafter, the film was air-dried at room temperature, and heat-treated at 125 ° C. for 10 minutes to produce a polyethylene microporous film.
The membrane characteristics of the obtained microporous membrane are shown in Table 1 and FIG. This microporous membrane had a small pore size, a sharp pore size distribution, and a small variation in pore size. Moreover, the obtained microporous film had high MD tensile strength and had excellent permeability.

(実施例2)
5×5倍延伸後のMD方向へ延伸倍率を1.4倍としたほかは、実施例1と同様にしてポリエチレン微多孔膜を得た。得られた微多孔膜の膜特性を表1および図1に示す。この微多孔膜は孔径が小さく、孔径分布がシャープであり孔径のばらつきも少なかった。また、得られた微多孔膜は薄膜でありながらMD引張強度が高く、優れた透過性と高い耐電圧性能を具備していた。
(Example 2)
A polyethylene microporous membrane was obtained in the same manner as in Example 1 except that the draw ratio was changed to 1.4 times in the MD direction after 5 × 5 times stretching. The membrane characteristics of the obtained microporous membrane are shown in Table 1 and FIG. This microporous membrane had a small pore size, a sharp pore size distribution, and a small variation in pore size. Moreover, although the obtained microporous film was a thin film, it had high MD tensile strength and had excellent permeability and high withstand voltage performance.

(実施例3)
5×5倍延伸後のMD方向への延伸倍率を1.6倍としたほかは、実施例1と同様にしてポリエチレン微多孔膜を得た。得られた微多孔膜の膜特性を表1および図1に示す。この微多孔膜は孔径が小さく、孔径分布がシャープであり孔径のばらつきも少なかった。また、得られた微多孔膜は薄膜でありながらMD引張強度が高く、優れた透過性を有していた。
(Example 3)
A polyethylene microporous membrane was obtained in the same manner as in Example 1 except that the stretching ratio in the MD direction after 5 × 5 stretching was 1.6 times. The membrane characteristics of the obtained microporous membrane are shown in Table 1 and FIG. This microporous membrane had a small pore size, a sharp pore size distribution, and a small variation in pore size. Moreover, although the obtained microporous film was a thin film, it had high MD tensile strength and had excellent permeability.

(実施例4)
5×5倍延伸後のMD方向への延伸倍率を2.0倍としたほかは、実施例1と同様にしてポリエチレン微多孔膜を得た。得られた微多孔膜の膜特性を表1および図1に示す。この微多孔膜は孔径が小さく、孔径分布がシャープであり孔径のばらつきも少なかった。また、得られた微多孔膜は薄膜でありながらMD引張強度が高く、優れた透過性と高い耐電圧性能を具備していた。
Example 4
A polyethylene microporous membrane was obtained in the same manner as in Example 1 except that the stretching ratio in the MD direction after 5 × 5 stretching was 2.0 times. The membrane characteristics of the obtained microporous membrane are shown in Table 1 and FIG. This microporous membrane had a small pore size, a sharp pore size distribution, and a small variation in pore size. Moreover, although the obtained microporous film was a thin film, it had high MD tensile strength and had excellent permeability and high withstand voltage performance.

(比較例1)
5×5倍延伸後、MD方向への延伸を行わなかったほかは、実施例1と同様にしてポリエチレン微多孔膜を得た。得られた微多孔膜の膜特性を表1および図1に示す。この微多孔膜は孔径が小さいものの、MD引張強度が十分ではなかった。
(Comparative Example 1)
A polyethylene microporous membrane was obtained in the same manner as in Example 1 except that the stretching in the MD direction was not performed after 5 × 5 stretching. The membrane characteristics of the obtained microporous membrane are shown in Table 1 and FIG. Although this microporous membrane had a small pore diameter, MD tensile strength was not sufficient.

(比較例2)
5×5倍延伸後にリキッドパラフィンの除去および室温乾燥を行い、その後、温度132℃、MD方向の倍率1.8倍、TD方向の倍率1.4倍という運転条件で同時二軸延伸を行ったほかは、実施例1と同様にしてポリエチレン微多孔膜を得た。得られた微多孔膜の膜特性を表1および図1に示す。この微多孔膜は高いMD引張強度を有していたものの、孔径が大きかった。
(Comparative Example 2)
Liquid paraffin was removed and dried at room temperature after 5 × 5 stretching, and then simultaneous biaxial stretching was performed under the operating conditions of a temperature of 132 ° C., a magnification of 1.8 times in the MD direction, and a magnification of 1.4 times in the TD direction. Otherwise, a polyethylene microporous membrane was obtained in the same manner as in Example 1. The membrane characteristics of the obtained microporous membrane are shown in Table 1 and FIG. Although this microporous membrane had high MD tensile strength, the pore diameter was large.

(比較例3)
5×5倍延伸後のMD方向への延伸倍率を1.1倍としたほかは、実施例1と同様にしてポリエチレン微多孔膜を得た。得られた微多孔膜の膜特性を表1および図1に示す。この微多孔膜は孔径は小さかったが、孔径のばらつきがやや大きかった。
(Comparative Example 3)
A polyethylene microporous membrane was obtained in the same manner as in Example 1 except that the draw ratio in the MD direction after 5 × 5 drawing was 1.1 times. The membrane characteristics of the obtained microporous membrane are shown in Table 1 and FIG. Although this microporous membrane had a small pore size, the pore size variation was slightly large.

Figure 0006295641
Figure 0006295641

なお、本出願では、数値範囲を示す「A〜B」という表記を、下限値Aおよび上限値Bを含めた範囲、すなわち「A以上B以下」の意味で用いている。   In the present application, the notation “A to B” indicating a numerical range is used in a range including the lower limit value A and the upper limit value B, that is, “A or more and B or less”.

本発明に係る微多孔膜は、特にリチウムイオン電池用セパレータとして好適に使用することができる。   The microporous membrane according to the present invention can be particularly suitably used as a lithium ion battery separator.

Claims (7)

ポリオレフィンからなる微多孔膜であって、乾燥状態および湿潤状態における空気流量の圧力変化から求められる細孔径分布曲線において細孔径分布の最大ピークを示す孔径をDp(nm)とするとき、該孔径が0.9Dp〜1.1Dpである孔の細孔径分布の合計値が孔全体の75%以上であり、最大孔径が45nm以下であり、MD方向の引張強度SMDが1000〜3500kgf/cmであり、MD方向の引張強度SMDとTD方向の引張強度STDの比率SMD/STDが1.1〜2.5であることを特徴とする微多孔膜。 A microporous membrane made of polyolefin, and when the pore diameter showing the maximum peak of the pore diameter distribution in a pore diameter distribution curve obtained from the pressure change of the air flow rate in a dry state and a wet state is Dp (nm), the pore diameter is and the sum of the pore size distribution of a 0.9Dp~1.1Dp holes more than 75% of the total pore, maximum pore size is not more than 45 nm, MD direction tensile strength S MD is at 1000~3500kgf / cm 2 A microporous membrane having a ratio S MD / S TD of a tensile strength S MD in the MD direction and a tensile strength S TD in the TD direction of 1.1 to 2.5. 前記細孔径分布曲線において細孔径分布が10%以上となる領域が孔径20〜30nmの範囲内にあり、透気抵抗度が1000sec/100mL以下である、請求項1に記載の微多孔膜。   2. The microporous membrane according to claim 1, wherein a region in which the pore size distribution is 10% or more in the pore size distribution curve is in a range of 20 to 30 nm in pore size, and the air resistance is 1000 sec / 100 mL or less. 平均膜厚が20μm以下である、請求項1または2に記載の微多孔膜。   The microporous membrane according to claim 1 or 2, wherein the average film thickness is 20 µm or less. 前記膜厚を20μmとしたときの絶縁破壊電圧が3.2〜4.0kVである、請求項1〜3のいずれかに記載の微多孔膜。   The microporous film according to any one of claims 1 to 3, wherein a dielectric breakdown voltage when the film thickness is 20 µm is 3.2 to 4.0 kV. 前記膜厚を20μmとしたときの突刺強度が200g/20μm以上である、請求項1〜4のいずれかに記載の微多孔膜。   The microporous membrane according to any one of claims 1 to 4, wherein a puncture strength when the film thickness is 20 µm is 200 g / 20 µm or more. 空孔率が20〜80%である、請求項1〜5のいずれかに記載の微多孔膜。   The microporous membrane according to any one of claims 1 to 5, wherein the porosity is 20 to 80%. 請求項1〜6のいずれかに記載の微多孔膜を用いてなるセパレータ。   The separator which uses the microporous film in any one of Claims 1-6.
JP2013264137A 2013-12-20 2013-12-20 Microporous membrane and separator using the same Active JP6295641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013264137A JP6295641B2 (en) 2013-12-20 2013-12-20 Microporous membrane and separator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013264137A JP6295641B2 (en) 2013-12-20 2013-12-20 Microporous membrane and separator using the same

Publications (2)

Publication Number Publication Date
JP2015120786A JP2015120786A (en) 2015-07-02
JP6295641B2 true JP6295641B2 (en) 2018-03-20

Family

ID=53532712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013264137A Active JP6295641B2 (en) 2013-12-20 2013-12-20 Microporous membrane and separator using the same

Country Status (1)

Country Link
JP (1) JP6295641B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6943580B2 (en) * 2017-03-03 2021-10-06 住友化学株式会社 Non-aqueous electrolyte secondary battery separator
EP3604414A4 (en) 2017-03-22 2020-12-23 Toray Industries, Inc. Microporous polyolefin membrane and battery including same
WO2018181704A1 (en) * 2017-03-31 2018-10-04 東レ株式会社 Microporous membrane and production method therefor, battery, microporous membrane evaluation method and microporous membrane production method using same, battery production method, and evaluation device
CN113024882A (en) * 2017-03-31 2021-06-25 东丽株式会社 Polyolefin microporous membrane, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN116491020A (en) * 2021-05-07 2023-07-25 株式会社Lg新能源 Porous substrate for separator and separator for electrochemical device comprising same
WO2023033559A1 (en) * 2021-09-02 2023-03-09 주식회사 엘지에너지솔루션 Method for manufacturing electrode assembly for electrochemical device, electrode assembly obtained by same method, and method for manufacturing electrochemical device
EP4258448A1 (en) * 2022-02-23 2023-10-11 LG Energy Solution, Ltd. Separator substrate for electrochemical device, separator including substrate, and method for forming battery cell separator
KR102563504B1 (en) * 2022-06-14 2023-08-04 주식회사 엘지에너지솔루션 A polyolefin separator for an electrochemical device and an electrochemical device comprising the same
KR102685396B1 (en) * 2022-07-05 2024-07-15 주식회사 엘지에너지솔루션 A separator for an electrochemical device with improved compression resistance, an electrochemical device comprising the same and a manufacturing method therefor
WO2024010349A1 (en) * 2022-07-05 2024-01-11 주식회사 엘지에너지솔루션 Separator for electrochemical device having improved compression resistance, electrochemical device comprising same, and method for producing same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141049A (en) * 2000-11-06 2002-05-17 Nitto Denko Corp Non-aqueous electrolyte battery separator and non- aqueous electrolyte battery
JP2005343958A (en) * 2004-06-01 2005-12-15 Tonen Chem Corp Method for producing polyethylene fine porous film, fine porous film and use of the same
ES2435786T3 (en) * 2007-10-12 2013-12-23 Toray Battery Separator Film Co., Ltd. Microporous membranes and procedures for preparing and using such membranes
JP5422374B2 (en) * 2008-12-24 2014-02-19 三菱樹脂株式会社 Battery separator and non-aqueous lithium secondary battery
JP5422372B2 (en) * 2008-12-24 2014-02-19 三菱樹脂株式会社 Battery separator and non-aqueous lithium secondary battery
JP5463154B2 (en) * 2009-03-19 2014-04-09 旭化成イーマテリアルズ株式会社 Laminated microporous membrane and separator for non-aqueous electrolyte secondary battery
EP3179535B1 (en) * 2012-03-28 2020-07-01 Asahi Kasei Kabushiki Kaisha Porous film and multilayer porous film
JP5942145B2 (en) * 2012-05-09 2016-06-29 旭化成株式会社 Polyolefin microporous membrane and method for producing the same

Also Published As

Publication number Publication date
JP2015120786A (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP6295641B2 (en) Microporous membrane and separator using the same
JP6729392B2 (en) Microporous polyolefin membrane, method for producing the same, and battery separator
JP6296333B2 (en) Polyolefin microporous membrane, separator for secondary battery, and secondary battery
KR101321226B1 (en) Microporous polyolefin film
JP5202826B2 (en) Polyethylene microporous membrane, method for producing the same, and battery separator
JP5596768B2 (en) Polyethylene microporous membrane and battery separator
JP5967589B2 (en) Polyolefin microporous membrane and method for producing the same
JP6680206B2 (en) Polyolefin microporous membrane, battery separator and battery
US20100178544A1 (en) Polyolefin microporous membrane base for nonaqueous secondary battery serarator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery
JP2021036531A (en) Improved microporous membrane separator for lithium-ion secondary battery and related method
JPWO2007060990A1 (en) Polyolefin microporous membrane and method for producing the same, battery separator and battery
TW201836852A (en) Polyolefin microporous film
JP5171012B2 (en) Method for producing polyolefin microporous membrane
JP4964565B2 (en) Polyethylene microporous membrane
JP5450944B2 (en) Polyolefin microporous membrane, battery separator and battery
JP4220329B2 (en) Polyolefin microporous membrane and method for producing the same
WO2020137336A1 (en) Microporous polyolefin membrane and method for producing microporous polyolefin membrane
JP6962320B2 (en) Polyolefin microporous membrane and batteries using it
JP6507650B2 (en) Microporous membrane and method for producing the same
JPWO2019151220A1 (en) Polyolefin microporous film, coating film and battery, and method for producing polyolefin microporous film
JPH10261393A (en) Battery separator
JP6988880B2 (en) Polyolefin microporous membrane
KR20220069831A (en) Polyolefin microporous membrane, battery separator and secondary battery
CN110268010B (en) Synthetic resin microporous membrane, method for producing same, separator for electricity storage device, and electricity storage device
KR20220051166A (en) Polyolefin microporous membranes, laminates, and batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170824

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180205

R151 Written notification of patent or utility model registration

Ref document number: 6295641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151