JP4220329B2 - Polyolefin microporous membrane and method for producing the same - Google Patents

Polyolefin microporous membrane and method for producing the same Download PDF

Info

Publication number
JP4220329B2
JP4220329B2 JP2003278618A JP2003278618A JP4220329B2 JP 4220329 B2 JP4220329 B2 JP 4220329B2 JP 2003278618 A JP2003278618 A JP 2003278618A JP 2003278618 A JP2003278618 A JP 2003278618A JP 4220329 B2 JP4220329 B2 JP 4220329B2
Authority
JP
Japan
Prior art keywords
stretching
microporous membrane
battery
extraction
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003278618A
Other languages
Japanese (ja)
Other versions
JP2004323820A (en
Inventor
博司 畑山
慎也 河添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2003278618A priority Critical patent/JP4220329B2/en
Publication of JP2004323820A publication Critical patent/JP2004323820A/en
Application granted granted Critical
Publication of JP4220329B2 publication Critical patent/JP4220329B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Description

本発明はポリオレフィン微多孔膜、その製造方法及びその電池セパレータへの適用に関する。   The present invention relates to a microporous polyolefin membrane, a method for producing the same, and application to a battery separator.

ポリオレフィン微多孔膜は、精密濾過膜、電池用セパレータ、コンデンサー用セパレータ等に使用されている。その中で近年、特にリチウムイオン2次電池用途の需要が伸びており、電池の高エネルギー密度化に伴って、セパレータ にも高性能、高安全性が要求されるようになった。
リチウムイオン二次電池用セパレータには、突き刺し強度で表される電池の組立性能と深い関わり合いのある高い機械強度と共に、電池の出力特性を向上させるための高いイオン透過性能、異常発熱時にイオン透過や短絡を抑制し発火等を防ぐ安全性能を併せ持つことが求められている。
Polyolefin microporous membranes are used in microfiltration membranes, battery separators, capacitor separators, and the like. In recent years, the demand for lithium-ion secondary batteries has been increasing in recent years, and as the energy density of batteries has increased, separators are also required to have high performance and high safety.
Lithium-ion secondary battery separators have high mechanical strength that is closely related to battery assembly performance expressed by piercing strength, high ion permeability to improve battery output characteristics, and ion permeation during abnormal heat generation. It is also required to have safety performance that suppresses short circuit and prevents ignition.

電池の出力特性とは、大電流での放電性能や低温での放電性能といった電流特性や、サイクル特性、高温保存特性といった寿命に関する特性であり、セパレータのイオン透過性能が高い程良く、イオン透過性能と関係深い物性としてはバブルポイントや透気度に代表される気体透過性と、透水量に代表される液体透過性等とされている。また、最近の電池の高エネルギー密度化の要求に伴い、初期容量を高く維持する工夫も重要になってきている。一方、高エネルギー密度化により異常時における発熱量、発熱速度は増大する傾向であり、ヒューズによる電流遮断後もしばらくは高温状態で維持されるために、高温時の膜収縮が低いことが望まれる。   The output characteristics of a battery are current characteristics such as discharge performance at large current and discharge performance at low temperature, and characteristics related to life such as cycle characteristics and high temperature storage characteristics. The higher the ion permeation performance of the separator, the better the ion permeation performance. As physical properties closely related to the above, gas permeability typified by bubble point and air permeability, liquid permeability typified by water permeability, and the like are used. In addition, with the recent demand for higher energy density of batteries, it has become important to keep the initial capacity high. On the other hand, the amount of heat generated and the rate of heat generation at the time of abnormality tend to increase due to the increase in energy density, and the film shrinkage at high temperature is desired to be low because it is maintained at a high temperature for a while after the current interruption by the fuse. .

微多孔膜の製造技術において、ポリマーと可塑剤よりなる組成物から、相分離プロセスにより微多孔膜前駆体を形成せしめ、これに可塑剤抽出除去のプロセスや延伸薄膜化のプロセスを適用して微多孔膜とする技術は公知である。このような公知技術の中で、延伸を行う段階を抽出プロセスの前または後に実施するかによって、それぞれ抽出前延伸、または抽出後延伸と呼ぶものとすると、抽出前延伸によるプロセスの場合、効率的にマトリックス樹脂に配向を付与し強度を高めることができ、緻密な小孔径の孔構造を持つ微多孔膜を製造することができる。一方、抽出後延伸によるプロセスの場合、延伸によって界面破壊が支配的に進むので、大孔径で透過性能が高い微多孔膜を得ることができる。   In microporous membrane manufacturing technology, a microporous membrane precursor is formed from a composition consisting of a polymer and a plasticizer by a phase separation process, and a plasticizer extraction removal process and a stretched thinning process are applied to this. A technique for forming a porous film is known. In such a known technique, depending on whether the stage of stretching is performed before or after the extraction process, it will be referred to as pre-extraction stretching or post-extraction stretching, respectively. In addition, the matrix resin can be oriented to increase the strength, and a microporous membrane having a dense pore structure with a small pore diameter can be produced. On the other hand, in the case of a process by stretching after extraction, interfacial fracture proceeds predominantly by stretching, so that a microporous film having a large pore diameter and high permeability can be obtained.

この2つの製法により得られる微多孔膜をリチウムイオン二次電池用セパレータとして用いた場合、上記の機械的特性、電池的特性を考えると相反する特徴を示す。すなわち、抽出前延伸による小孔径膜は、高い機械的強度と共に電池作成時の初期容量の維持に優れるがサイクル特性に劣り、一方、抽出後延伸による大孔径膜は、サイクル特性に優れるが初期容量の低下と機械的強度が弱いという特徴を示す。   When the microporous membrane obtained by these two manufacturing methods is used as a separator for a lithium ion secondary battery, the above-mentioned mechanical characteristics and battery characteristics are contradictory. That is, the small pore diameter membrane by stretching before extraction is excellent in maintaining the initial capacity at the time of battery preparation with high mechanical strength, but inferior in cycle characteristics, while the large pore diameter membrane by stretching after extraction has excellent cycle characteristics, but the initial capacity. The characteristic is that the decrease in mechanical strength and mechanical strength are weak.

機械的強度の強弱については各々の製法に起因することが容易に類推できる。一方、電池的特性の優劣については以下のように解釈できる。すなわち、サイクル特性において小孔径膜が劣る要因は、充放電を繰り返す二次電池内では充放電に伴う正負極活物質の膨張収縮による活物質のはく離や電解液の副反応により生成する物質等による微多孔の目詰まりが徐々に起こるため、小孔径膜では充放電サイクルを重ねる内に目詰まりが激しくなり、初期の電池性能が維持できなくなるためである。一方、大孔径膜は目詰まりしにくく性能が維持される。   It can be easily inferred that the mechanical strength is caused by each manufacturing method. On the other hand, the superiority or inferiority of battery characteristics can be interpreted as follows. In other words, the reason why the small-diameter membrane is inferior in the cycle characteristics is due to the material generated by the separation of the active material due to the expansion and contraction of the positive and negative electrode active materials accompanying the charge and discharge or the side reaction of the electrolyte in the secondary battery that repeats charge and discharge This is because microporous clogging occurs gradually, and clogging becomes severe during repeated charge / discharge cycles in a small-pore film, and the initial battery performance cannot be maintained. On the other hand, the large pore diameter membrane is not easily clogged and the performance is maintained.

一方、大孔径膜が電池の初期容量に劣る要因は、表面孔構造の不均一さから初期充放電の際に電流集中によって析出して使われなくなってしまう金属リチウムが多いためと考えられる。電池の初期容量に関してはその重要性にも関わらずあまり着目されてこなかったが、電池の高エネルギー密度化要求の厳しい今日において、初期容量を高く維持しつつ、サイクル特性も維持できるセパレータは非常に有用であると言える。   On the other hand, the reason why the large pore diameter film is inferior to the initial capacity of the battery is thought to be that there is a large amount of metallic lithium that is deposited due to current concentration during the initial charge / discharge due to the nonuniform surface pore structure. Despite the importance of the initial capacity of the battery, not much attention has been paid to it, but today, when the demand for higher energy density of the battery is severe, separators that can maintain high initial capacity and maintain cycle characteristics are very It can be said that it is useful.

また安全性能に関しては、セパレータの機能としてヒューズ機能がある。これは短絡や高温下にさらされるなどにより電池が異常発熱を起こした場合に、微多孔膜の孔を閉塞する事によりイオンの透過を遮断し、更なる発熱の進行を抑制する機能である。しかしながら、高容量化、高密度化が進む現在、異常発熱した際の発熱量は大きく、急激に温度上昇するために、ヒューズ後でも電池内部はセパレータが溶融するような極めて高温に達する場合がある。溶融状態では高度に延伸されたセパレータは大きく収縮し、電極同士が接することにより再短絡した危険な状態となる場合がある。そのため融点以上の高温時での形状保持に優れているセパレータが熱望されており、その中でも大部分の電池ではセパレータはMD方向に巻回されていることから、特にTD方向の形状保持性に優れているセパレータは大変有用であると言える。ここで言うMD方向とは、機械方向、すなわちセパレータの連続製膜時の巻き取り方向であり、TD方向とはMD方向に垂直な幅方向のことである。   Regarding the safety performance, there is a fuse function as a separator function. This is a function of blocking the permeation of ions by blocking the pores of the microporous membrane and suppressing the progress of further heat generation when the battery is abnormally heated due to short circuit or high temperature exposure. However, with the progress of higher capacity and higher density, the amount of heat generated when abnormal heat is generated is large and the temperature rises rapidly. Therefore, even after the fuse, the inside of the battery may reach an extremely high temperature where the separator melts. . In a molten state, a highly stretched separator may be greatly shrunk and may be in a dangerous state where the electrodes are re-short-circuited due to contact between the electrodes. For this reason, separators that are excellent in shape retention at high temperatures above the melting point are eagerly desired. Among them, in most batteries, the separator is wound in the MD direction, and thus particularly excellent in shape retention in the TD direction. The separator is very useful. The MD direction referred to here is the machine direction, that is, the winding direction during continuous film formation of the separator, and the TD direction is the width direction perpendicular to the MD direction.

透過性と膜強度の維持を目的として以下の公知の方法では、抽出前延伸と抽出後延伸を併用する等の製法を開示しているが、以下に示す問題点と共にいずれも電池の初期容量の維持には着目しておらず、初期容量を高く維持しつつ、サイクル性も維持可能な微多孔膜を得るには至っていない。
特許文献1では、高透過性ではあるが気孔率が高く電池用セパレータ用途としては膜強度が弱い。
特許文献2では、抽出前延伸と抽出後延伸を併用し、更に熱処理を施すことにより、強度を損なうことなく、自在に透過性能を調節でき、同時に高温における寸法安定性に優れたポリオレフィン微多孔膜を製造する方法が開示されているが、初期容量を高く維持しつつ、サイクル性も維持可能な微多孔膜を得るには至っていない。
また特許文献3では、抽出後の延伸温度を低温に規定することで適度な大きさの貫通孔とシャープな孔径分布を有する微多孔膜の製造方法が開示されているが、これにより得られる膜の孔径は大きく、また気孔率も高くなるため、電池セパレータ用途では電解液の保液性に劣る。孔径が大きくなり、気孔率が高くなる理由は定かではないが、低温で延伸することで局部延伸は生じないが、延伸応力が樹脂自身の延伸配向には使われずに空孔の拡大のみに使われるためであると考えられる。
For the purpose of maintaining permeability and membrane strength, the following known methods disclose production methods such as using both pre-extraction stretching and post-extraction stretching. However, both of the following problems are associated with the initial capacity of the battery. No attention has been paid to the maintenance, and a microporous membrane that can maintain the initial capacity at a high level and maintain the cycleability has not been obtained.
In patent document 1, although it is highly permeable, its porosity is high and its membrane strength is weak for battery separator applications.
In Patent Document 2, a polyolefin microporous membrane that can freely adjust the permeation performance without damaging the strength by simultaneously using the pre-extraction stretching and the post-extraction stretching, and at the same time without losing the strength, and at the same time having excellent dimensional stability at high temperatures. Has been disclosed, but a microporous membrane capable of maintaining the initial capacity high and maintaining the cycleability has not been obtained.
Further, Patent Document 3 discloses a method for producing a microporous membrane having through holes of an appropriate size and a sharp pore size distribution by regulating the stretching temperature after extraction to a low temperature. Since the pore diameter is large and the porosity is also high, the electrolyte retainability is poor for battery separator applications. The reason why the pore diameter becomes larger and the porosity becomes higher is not clear, but local stretching does not occur by stretching at a low temperature, but stretching stress is not used for stretching orientation of the resin itself, but only for expanding pores. It is thought that it is to be.

安全性に関しては、特許文献2では、高温における寸法安定性に優れたポリオレフィン微多孔膜を開示しているが、高温とはどの程度の温度か詳細に記述されておらず、また「熱収縮率は微多孔膜の高温における寸法安定性を評価する指標であり」との記述があるが、熱収縮率の測定条件が100℃、2時間であることから、本発明で問題にしている、セパレータが溶融状態になるような高温時のことを記述したものではない。   Regarding safety, Patent Document 2 discloses a polyolefin microporous membrane having excellent dimensional stability at high temperatures, but it does not describe in detail how high temperature is, and “thermal shrinkage” Is an index for evaluating the dimensional stability of a microporous membrane at a high temperature ", but since the measurement condition of the heat shrinkage rate is 100 ° C for 2 hours, the separator in question in the present invention It is not a description of the high temperature at which the metal enters a molten state.

特許文献4では、特定の温度で熱処理することにより縦方向の熱収縮率が20%以下であり、横方向の熱収縮率が15%以下である微多孔膜および製造方法を開示しているが、これは105℃での収縮率であり、ヒューズ温度以下の低温での収縮についてしか着目しておらず、ヒューズ温度以上での収縮については記述されていない。
特許文献5では、ヒューズ温度以上の高温での耐熱性、低収縮性の優れた微多孔膜および製造方法が開示されているが、これにより得られる膜はMD方向に3倍以上の延伸倍率で延伸した後、TD方向に20〜80%縮める工程が必須であるために透過性能が劣る。さらに高強度の観点から、MD方向に3倍以上、好ましくは5〜20倍延伸することが記述されているが、MD方向にのみ著しく延伸するためにMD方向とTD方向の異方性が大きく、縦裂けしやすい構造となりデンドライト析出結晶などによる破膜が起こり易い。ゆえに初期電池特性、サイクル特性、安全性の3者を満たすことはできない。
Patent Document 4 discloses a microporous membrane and a manufacturing method in which the heat shrinkage in the vertical direction is 20% or less and the heat shrinkage in the horizontal direction is 15% or less by heat treatment at a specific temperature. This is the shrinkage rate at 105 ° C., focusing only on the shrinkage at a low temperature below the fuse temperature, and does not describe the shrinkage above the fuse temperature.
Patent Document 5 discloses a microporous film excellent in heat resistance and low shrinkage at a high temperature equal to or higher than the fuse temperature and a manufacturing method. The film obtained thereby has a stretch ratio of 3 times or more in the MD direction. After stretching, the transmission performance is inferior because a step of shrinking 20 to 80% in the TD direction is essential. Furthermore, from the viewpoint of high strength, it is described that the film is stretched 3 times or more, preferably 5 to 20 times in the MD direction, but the MD and TD directions have a large anisotropy in order to stretch significantly only in the MD direction. The structure is easy to split longitudinally, and film breakage due to dendrite-precipitated crystals tends to occur. Therefore, the initial battery characteristics, cycle characteristics, and safety cannot be satisfied.

また特許文献1、及び3では収縮について着目されていない。
大孔径膜のサイクル特性と小孔径膜の初期電池特性、及び高い安全性を併せ持つリチウムイオン二次電池用セパレータ、つまり良好な透過性能と緻密な膜構造、及び高温時の低収縮性を併せ持つ微多孔膜の出現が熱望されていた。
特公平6-21177号公報 特開平11-60789号公報 特許第2657430号公報 特開平9−12756号公報 特開2003−119306号公報
Further, Patent Documents 1 and 3 do not focus on shrinkage.
A separator for lithium ion secondary batteries that combines the cycle characteristics of large pore membranes with the initial battery properties of small pore membranes, and high safety, that is, the fine permeability that combines good permeation performance with a dense membrane structure and low shrinkage at high temperatures. The appearance of a porous membrane was eagerly desired.
Japanese Examined Patent Publication No. 6-21177 Japanese Patent Laid-Open No. 11-60789 Japanese Patent No. 2657430 Japanese Patent Laid-Open No. 9-12756 JP 2003-119306 A

本発明は、良好な透過性能と緻密な膜構造、及び高温時の低収縮性を併せ持ち、リチウムイオン等の二次電池用セパレータとして用いた場合にサイクル特性と初期電池特性を両立でき、安全性にも優れたポリオレフィン微多孔膜及びその製造方法を提供するものである。   The present invention has both good permeation performance, a dense membrane structure, and low shrinkage at high temperature. When used as a secondary battery separator such as lithium ion, the cycle characteristics and the initial battery characteristics can be achieved at the same time. The present invention also provides an excellent polyolefin microporous membrane and a method for producing the same.

本発明者らは前記課題に対して鋭意研究を重ねた結果、ポリオレフィン微多孔膜の製造方法において、抽出前及び後の延伸工程の各々で特定の方向及び倍率に延伸させることで、特定範囲の透水量/透気量バランスと特定範囲のバブルポイントを有し、さらに高温時の収縮が低減できること、その膜が電池の初期容量を高く維持しつつ、サイクル性も維持できる安全性に優れたセパレータとして有用であることを見出し、本発明を為すに至った。   As a result of intensive studies on the above problems, the inventors of the present invention have made a specific range and magnification by stretching in a specific direction and magnification in each of the stretching steps before and after the extraction in the polyolefin microporous membrane production method. A separator that has a water permeability / air balance and a specific range of bubble points, can reduce shrinkage at high temperatures, and can maintain cycle capacity while maintaining high initial capacity of the battery. As a result, the present invention has been found to be useful.

すなわち、本発明は下記の通りである。
(1)透水量/透気量の比が0.8×10−3〜1.7×10−3で且つバブルポイントが0.5MPaを越え1.0MPa未満であることを特徴とするポリオレフィン微多孔膜。
(2)MD方向を固定した状態でのTD方向の収縮率が、150℃において20%未満であることを特徴とする上記(1)に記載のポリオレフィン微多孔膜。
(3)(a)ポリオレフィン樹脂と可塑剤からなる組成物を溶融混練し、押出して冷却固化させシート状に成形する工程、(b)前記工程(a)の後にTD方向に3倍以上の延伸を行う工程、(c)前記工程(b)の後に、前記可塑剤を抽出する工程、(d)前記工程(c)の後に、少なくともMD方向に、少なくとも1回の延伸を行う工程を含むことを特徴とする上記(1)または(2)に記載の微多孔膜の製造方法。
(4)上記(1)または(2)に記載のポリオレフィン製微多孔膜からなることを特徴とする電池用セパレータ。
That is, the present invention is as follows.
(1) The ratio of water permeability / air permeability is 0.8 × 10 −3 to 1.7 × 10 −3 and the bubble point is more than 0.5 MPa and less than 1.0 MPa. Porous membrane.
(2) The polyolefin microporous membrane according to (1), wherein the shrinkage rate in the TD direction with the MD direction fixed is less than 20% at 150 ° C.
(3) (a) a step of melt-kneading a composition comprising a polyolefin resin and a plasticizer, extruding, solidifying by cooling, and forming into a sheet shape, (b) stretching at least 3 times in the TD direction after the step (a) (C) a step of extracting the plasticizer after the step (b), (d) a step of performing at least one stretching in the MD direction after the step (c). The method for producing a microporous membrane according to the above (1) or (2), wherein
(4) A battery separator comprising the polyolefin microporous membrane as described in (1) or (2) above.

本発明のポリオレフィン微多孔膜は、良好な透過性能と緻密な膜構造、及び高温時の低収縮性を併せ持ち、初期電池特性とサイクル特性を両立でき、安全性にも優れたリチウムイオン等の二次電池用セパレータとして好適である。   The polyolefin microporous membrane of the present invention has both good permeation performance, a dense membrane structure, and low shrinkage at high temperatures, and is compatible with both initial battery characteristics and cycle characteristics, and is excellent in safety. It is suitable as a separator for a secondary battery.

以下、本発明について、特にその好ましい態様を中心に、詳細に説明する。本発明における透水量、透気量とは微多孔膜の単位時間、単位圧力、単位面積当たりの水及び空気の透過量のことであり、水の透過速度定数Rliq(m/(m・sec・Pa))を透水量、空気の透過速度定数Rgas(m/(m・sec・Pa))を透気量とする。
ここで透気量とは、JIS P-8117準拠のガーレー式透気度計にて測定
される透気度の値を換算した値である。
本願発明の膜の、透水量/透気量の比は、0.8×10−3〜1.7×10−3の範囲にあることが必要である。好ましい範囲は1.0×10−3〜1.5×10−3である。この比が0.8×10−3未満では放電特性が低下する傾向にあり、また、1.7×10−3を越えると初期の電池容量が低下する傾向にあるため好ましくない。
Hereinafter, the present invention will be described in detail with a focus on preferred embodiments. Water permeability in the present invention, the unit time of the microporous membrane and the air permeability amount, unit pressure is that of the permeation amount of water and air per unit area, water permeation rate constants Rliq (m 3 / (m 2 · sec · Pa)) is the water permeability, and the air permeation rate constant Rgas (m 3 / (m 2 · sec · Pa)) is the air permeability.
Here, the air permeability is a value obtained by converting an air permeability value measured by a Gurley type air permeability meter according to JIS P-8117.
The ratio of water permeability / air permeability of the membrane of the present invention needs to be in the range of 0.8 × 10 −3 to 1.7 × 10 −3 . A preferred range is 1.0 × 10 −3 to 1.5 × 10 −3 . If this ratio is less than 0.8 × 10 −3 , the discharge characteristics tend to decrease, and if it exceeds 1.7 × 10 −3 , the initial battery capacity tends to decrease.

透水量は好ましくは3×10−10〜4×10−9/(m・sec・Pa)の範囲にあり、より好ましくは4×10−10〜2×10−9/(m・sec・Pa)、更に好ましくは4×10−10〜1.5×10−9/(m・sec・Pa)である。電池用セパレータに適用する場合、透水量が3×10−10/(m・sec・Pa)より小さいと電解液の含浸速度が遅くなる傾向がある。また、透水量が4×10−9/(m・sec・Pa)より大きいと電解液の保液性が低下する傾向がある。
また、本発明の膜の透気量は好ましくは、3×10−7〜3×10−6/(m・sec・Pa)、より好ましくは4×10−7〜1.5×10−6/(m・sec・Pa)、さ らに好ましくは4×10−7〜1×10−6/(m・sec・Pa)、である。透気量が3×10−7/(m・sec・Pa)より小さいと、電池の低温での放電特性が低下する傾向にあり、また3×10−6/(m・sec・Pa)より大きいと電池セパレータとして使用した場合に正・負極の短絡が起こりやすくなる。
The water permeability is preferably in the range of 3 × 10 −10 to 4 × 10 −9 m 3 / (m 2 · sec · Pa), more preferably 4 × 10 −10 to 2 × 10 −9 m 3 / ( m 2 · sec · Pa), more preferably 4 × 10 −10 to 1.5 × 10 −9 m 3 / (m 2 · sec · Pa). When applied to a battery separator, if the water permeability is smaller than 3 × 10 −10 m 3 / (m 2 · sec · Pa), the impregnation rate of the electrolytic solution tends to be slow. Moreover, when the water permeation amount is larger than 4 × 10 −9 m 3 / (m 2 · sec · Pa), the liquid retaining property of the electrolytic solution tends to be lowered.
The air permeability of the membrane of the present invention is preferably 3 × 10 −7 to 3 × 10 −6 m 3 / (m 2 · sec · Pa), more preferably 4 × 10 −7 to 1.5 ×. 10 −6 m 3 / (m 2 · sec · Pa), more preferably 4 × 10 −7 to 1 × 10 −6 m 3 / (m 2 · sec · Pa). If the air permeability is smaller than 3 × 10 −7 m 3 / (m 2 · sec · Pa), the discharge characteristics at low temperatures of the battery tend to be lowered, and 3 × 10 −6 m 3 / (m 2 If it is greater than sec · Pa), a short circuit between the positive and negative electrodes is likely to occur when used as a battery separator.

また、本願発明の膜のバブルポイントは0.5MPaを越え1MPa未満の範囲にあることが必要である。好ましい範囲は0.6〜0.9MPaである。バブルポイント法は最大孔径を表す簡易な方法として知られているが、バブルポイントが0.5MPa以下では、孔が粗大化して膜強度の低下を招き、電池作成時の巻回不良を引き起こす恐れがあり、一方、1.0MPa以上では孔が緻密すぎて十分なサイクル特性が得られない。   Further, the bubble point of the film of the present invention needs to be in the range of more than 0.5 MPa and less than 1 MPa. A preferred range is 0.6 to 0.9 MPa. The bubble point method is known as a simple method for representing the maximum pore diameter. However, when the bubble point is 0.5 MPa or less, the pores become coarse, resulting in a decrease in film strength, which may cause a winding failure during battery production. On the other hand, at 1.0 MPa or more, the pores are too dense and sufficient cycle characteristics cannot be obtained.

さらに、本発明膜の大きな特徴は、熱収縮率が20%未満であることである。ここで言う熱収縮とは、MD方向に収縮できないようにMD両端部を固定した状態での150℃におけるTD方向の収縮率である。電池内においてセパレータはMD方向に捲回されており、特に角型の電池においては捲回物を潰した構成となっている。そのためセパレータのMD方向は固定された状態となり収縮は出来ない。一方TD方向は固定されておらず収縮は容易である。150℃での収縮率が20%以上であるとセパレータの収縮が大きいために、ヒューズ機能による電流遮断後に電極が露出し、電極同士が接することにより再短絡し、発熱、発火の危険性が増大する。150℃におけるセパレータの収縮率は20%未満、好ましくは15%未満、さらに好ましくは10%未満である。   Furthermore, a great feature of the film of the present invention is that the thermal shrinkage rate is less than 20%. The term “thermal shrinkage” as used herein refers to the shrinkage rate in the TD direction at 150 ° C. in a state where both ends of the MD are fixed so as not to shrink in the MD direction. In the battery, the separator is wound in the MD direction. In particular, in the case of a square battery, the wound product is crushed. Therefore, the MD direction of the separator is fixed and cannot be contracted. On the other hand, the TD direction is not fixed and the contraction is easy. When the shrinkage rate at 150 ° C is 20% or more, the separator shrinks so much that the electrodes are exposed after the current is interrupted by the fuse function, and the electrodes come into contact with each other to cause a short circuit, increasing the risk of heat generation and ignition. To do. The shrinkage of the separator at 150 ° C. is less than 20%, preferably less than 15%, more preferably less than 10%.

次に、本発明のポリオレフィン微多孔膜の好ましい製造方法例について説明する。本発明の製造方法の(a)の工程において、ポリオレフィン樹脂と可塑剤を溶融混練する方法は、ポリオレフィン樹脂を押出機、ニーダー等の樹脂混練装置に投入し、樹脂を加熱溶融させながら任意の比率で可塑剤を導入し、更に樹脂と可塑剤よりなる組成物を混練することにより、均一溶液を得る方法が好ましい。また、予め樹脂と可塑剤を混練したものを投入しても良い。投入するポリオレフィン樹脂の形態は、粉末状、顆粒状、ペレット状の何れでも良い。また、このような方法によって混練する場合は、可塑剤の形態は常温液体であることが好ましい。押出機としては、単軸スクリュー式押出機、二軸異方向スクリュー式押出機、二軸同方向スクリュー式押出機等が使用できる。   Next, a preferred method for producing the polyolefin microporous membrane of the present invention will be described. In the step (a) of the production method of the present invention, the method of melt kneading the polyolefin resin and the plasticizer is performed by adding the polyolefin resin to a resin kneading apparatus such as an extruder or a kneader and heating and melting the resin at an arbitrary ratio. A method of obtaining a uniform solution by introducing a plasticizer and kneading a composition comprising a resin and a plasticizer is preferred. Moreover, what knead | mixed resin and a plasticizer previously may be thrown in. The polyolefin resin to be introduced may be in any form of powder, granules, and pellets. Moreover, when knead | mixing by such a method, it is preferable that the form of a plasticizer is a normal temperature liquid. As an extruder, a single screw type extruder, a biaxial different direction screw type extruder, a biaxial same direction screw type extruder, etc. can be used.

本発明の製造方法の(a)の工程において、押し出して冷却固化させシート状の微多孔膜前駆体を製造する方法は、樹脂と可塑剤の均一溶液をTダイ等を介してシート状に押し出し、熱伝導体に接触させて樹脂の結晶化温度より充分に低い温度まで冷却することにより行うことが好ましい。用いられる熱伝導体としては、金属、水、空気、あるいは可塑剤自身が使用できるが、特に金属製のロールに接触させて冷却する方法が最も熱伝導の効率が高く好ましい。また、金属製のロールに接触させる際に、ロール間で挟み込む等してカレンダー成形または熱間圧延を施すと、更に熱伝導の効率が高まり、またシートが配向して膜強度が増し、シートの表面平滑性も向上するため好ましい。   In the step (a) of the production method of the present invention, the method of producing a sheet-like microporous membrane precursor by extruding and solidifying by cooling is to extrude a uniform solution of resin and plasticizer into a sheet form via a T die or the like. It is preferably carried out by contacting with a heat conductor and cooling to a temperature sufficiently lower than the crystallization temperature of the resin. As the heat conductor to be used, metal, water, air, or the plasticizer itself can be used. In particular, a method of cooling by contacting with a metal roll has the highest heat conduction efficiency and is preferable. Also, when contacted with a metal roll, calendering or hot rolling such as sandwiching between rolls further increases the efficiency of heat conduction, and the sheet is oriented to increase the film strength. Since surface smoothness also improves, it is preferable.

圧延する場合、圧延前のシート厚と圧延後のシート厚の比のことを圧延比と呼ぶが、圧延比の好ましい範囲は1.5〜8倍、更に好ましくは2〜5倍の範囲である。ここでいう圧延前のシート厚とはTダイ等のリップ間隔のことを指し、圧延後のシート厚とは圧延後に得られたシートの厚みのことを指す。圧延比が1.5倍未満ではシートの配向が不十分な場合がある。また8倍を越えると均一な膜厚のシートを得にくくなる傾向がある。また、Tダイ出口から圧延ロール接触点までのエアギャップは通常10〜200mmの範囲が好ましい。
圧延ロールの温度は、20℃から110 ℃未満の範囲の温度が好ましく、更に好ましくは70℃から100℃の範囲の温度である。圧延ロールの温度が20℃より低いと圧延性が低下する傾向がある。圧延ロールの温度が110 ℃以上であると、樹脂融点に近く樹脂と可塑剤の均一溶液が十分に固化しにくくなる傾向がある。
When rolling, the ratio of the sheet thickness before rolling and the sheet thickness after rolling is called the rolling ratio, but the preferred range of the rolling ratio is 1.5 to 8 times, more preferably 2 to 5 times. . Here, the sheet thickness before rolling refers to the lip interval of a T die or the like, and the sheet thickness after rolling refers to the thickness of the sheet obtained after rolling. If the rolling ratio is less than 1.5 times, the orientation of the sheet may be insufficient. On the other hand, if it exceeds 8 times, it tends to be difficult to obtain a sheet having a uniform film thickness. The air gap from the T die exit to the rolling roll contact point is usually preferably in the range of 10 to 200 mm.
The temperature of the rolling roll is preferably in the range of 20 ° C to less than 110 ° C, more preferably in the range of 70 ° C to 100 ° C. When the temperature of the rolling roll is lower than 20 ° C., the rollability tends to decrease. When the temperature of the rolling roll is 110 ° C. or higher, there is a tendency that the uniform solution of the resin and the plasticizer is not sufficiently solidified, close to the resin melting point.

本発明の製造方法の(c)の工程において、可塑剤を抽出する方法はバッチ式、連続式のいずれでもよいが、抽出溶剤に微多孔膜を浸漬することにより可塑剤を抽出し、充分に乾燥させ、可塑剤を微多孔膜から実質的に除去することが肝要である。微多孔膜の収縮を抑えるために、浸漬、乾燥の一連の工程中に微多孔膜の端部を拘束することは好ましい。また、抽出後の微多孔膜中の可塑剤残存量は1重量%未満にすることが好ましい。
本発明の製造方法においては、抽出工程の前に行う延伸を抽出前延伸[(b)工程]と呼び、TD方向に3倍以上延伸を行う工程が必須である。また同時2軸延伸及び逐次2軸延伸を含んでも良い。さらに延伸の回数は、1段延伸、多段延伸、多数回延伸等のいずれでも良く、延伸にはテンター、ロール延伸機等公知の延伸装置を用いることが可能である。
In the step (c) of the production method of the present invention, the method of extracting the plasticizer may be either a batch type or a continuous type, but the plasticizer is extracted by immersing the microporous membrane in the extraction solvent, It is essential that the plasticizer be substantially removed from the microporous membrane by drying. In order to suppress the shrinkage of the microporous membrane, it is preferable to constrain the end of the microporous membrane during a series of steps of immersion and drying. Further, the residual amount of plasticizer in the microporous membrane after extraction is preferably less than 1% by weight.
In the production method of the present invention, stretching performed before the extraction step is referred to as pre-extraction stretching [(b) step], and a step of stretching three times or more in the TD direction is essential. Moreover, simultaneous biaxial stretching and sequential biaxial stretching may be included. Furthermore, the number of stretching operations may be any of one-stage stretching, multi-stage stretching, and multi-stage stretching, and a known stretching apparatus such as a tenter or a roll stretching machine can be used for stretching.

本発明における抽出前延伸では、TD方向に3倍以上延伸することが、本発明で言うところの緻密な膜構造を得る上で必須であり、TD方向への延伸倍率は好ましくは4〜10倍である。抽出前延伸では、可塑剤が微多孔膜の微孔内部、結晶間隙、及び非晶部に高次に分散された状態で延伸するので、可塑化効果により延伸性が良くなるとともに、微多孔膜の気孔率の増大を抑制する効果がある。延伸倍率が3倍未満では、続く抽出後の延伸工程を行った時に、緻密な膜構造が維持されず、孔径が粗大化してしまい緻密な膜構造を得られない。一方、延伸倍率が10倍を越えると高温時のTD方向の収縮量が大きくなる傾向がある。   In the pre-extraction stretching in the present invention, stretching in the TD direction by 3 times or more is essential for obtaining a dense film structure as referred to in the present invention, and the stretching ratio in the TD direction is preferably 4 to 10 times. It is. In the pre-extraction stretching, the plasticizer is stretched in a highly dispersed state in the micropores, crystal gaps, and amorphous parts of the microporous membrane, so that the stretchability is improved by the plasticizing effect and the microporous membrane is improved. This has the effect of suppressing the increase in porosity. If the draw ratio is less than 3, the dense film structure is not maintained and the pore diameter becomes coarse when the drawing process after the subsequent extraction is performed, and a dense film structure cannot be obtained. On the other hand, when the draw ratio exceeds 10, the amount of shrinkage in the TD direction at high temperatures tends to increase.

延伸温度は、ポリオレフィン微多孔膜の融点Tm ℃より50℃低い温度からTm ℃未満の範囲の温度が好ましく、更に好ましくはポリオレフィン微多孔膜の融点Tm ℃より40℃低い温度からTm ℃より5℃低い温度未満の範囲の温度で行う。延伸温度がTm ℃より50℃低い温度未満であると延伸性が低下する傾向がある。延伸温度がTm ℃以上であると、微多孔膜が融解し透過性能を損なう傾向がある。   The stretching temperature is preferably a temperature in the range of 50 ° C. lower than the melting point Tm ° C. of the polyolefin microporous membrane to less than Tm ° C., more preferably 40 ° C. lower than the melting point Tm ° C. of the polyolefin microporous membrane to 5 ° C. from Tm ° C. Perform at a temperature in the range below the lower temperature. If the stretching temperature is less than 50 ° C. lower than Tm ° C., the stretchability tends to decrease. When the stretching temperature is Tm ° C. or higher, the microporous membrane tends to melt and impair the permeation performance.

本発明の製造方法においては、抽出工程の後に行う延伸を抽出後延伸[(d)工程]と呼び、少なくともMD方向に、少なくとも1回の延伸工程が必須である。
少なくともMD方向とは、同時2軸延伸及びまたは逐次2軸延伸を含んでも良いことを意味する。また、少なくとも1回とは、1段延伸、多段延伸、または多数回延伸のことをいう。本発明の製造方法において、抽出工程の後に少なくともMD方向に、少なくとも1回の延伸工程が必要な理由は2つある。一つは、抽出後にMD方向に延伸しなければ、バブルポイントが1.0MPa以上となり、電池に組み込んだ時良好なサイクル特性を発現することができない点であり、もう一つは、MD方向に延伸することにより理由は定かではないが高温時の収縮を抑制できる点である。
In the production method of the present invention, the stretching performed after the extraction step is called post-extraction stretching [(d) step], and at least one stretching step is essential in at least the MD direction.
At least the MD direction means that simultaneous biaxial stretching and / or sequential biaxial stretching may be included. In addition, at least once means one-stage stretching, multi-stage stretching, or multi-stage stretching. In the production method of the present invention, there are two reasons why at least one stretching step is required at least in the MD direction after the extraction step. One is that if it is not stretched in the MD direction after extraction, the bubble point becomes 1.0 MPa or more, and good cycle characteristics cannot be expressed when incorporated in a battery, and the other is in the MD direction. Although the reason is not clear by extending | stretching, it is a point which can suppress shrinkage | contraction at the time of high temperature.

抽出後延伸の倍率は任意の倍率に設定できるが、MD方向のみの倍率では、好ましくは5倍以内、より好ましくは1.1〜3倍、2軸方向の面積倍率で、好ましくは10倍以内、より好ましくは1.4〜6倍である。MD方向に5倍を越えて抽出後延伸すると抽出前延伸と併用したにも関わらず孔径が過度に増大する傾向がある。一方、1.1倍未満ではバブルポイントが1.0MPa以上となる場合がある。
抽出後延伸の温度は、ポリオレフィン微多孔膜の融点Tm ℃より50℃低い温度からTm ℃未満の範囲の温度が好ましく、更に好ましくはポリオレフィン微多孔膜の融点Tm ℃より40℃低い温度からTm ℃より5℃低い温度未満の範囲の温度で行う。延伸温度がTm℃より50℃低い温度未満であると延伸性が低下する傾向があり、また延伸後の歪み成分が残りやすく、高温における形状安定性の点で不十分となりやすい。延伸温度がTm℃以上であると、微多孔膜が融解し透過性能を損なう傾向がある。
The ratio of the stretching after extraction can be set to an arbitrary ratio, but the ratio in the MD direction alone is preferably within 5 times, more preferably 1.1 to 3 times, and the area magnification in the biaxial direction, preferably within 10 times. More preferably, it is 1.4 to 6 times. If the film is stretched after extraction exceeding 5 times in the MD direction, the pore diameter tends to be excessively increased in spite of the combined use with stretching before extraction. On the other hand, if it is less than 1.1 times, the bubble point may be 1.0 MPa or more.
The stretching temperature after extraction is preferably a temperature in the range of 50 ° C. lower than the melting point Tm ° C. of the polyolefin microporous membrane to less than Tm ° C., more preferably 40 ° C. lower than the melting point Tm ° C. of the polyolefin microporous membrane. At a temperature in the range of less than 5 ° C below the temperature. If the stretching temperature is less than 50 ° C. lower than Tm ° C., the stretchability tends to decrease, and a strain component after stretching tends to remain, which is insufficient in terms of shape stability at high temperatures. When the stretching temperature is Tm ° C. or higher, the microporous membrane tends to melt and impair the permeation performance.

抽出後延伸は、可塑剤を微多孔膜から実質的に除去した状態で延伸するので、延伸に伴ってポリマー界面の破壊が支配的に生じ、微多孔膜が大孔径化する効果がある。したがって、本発明において必須である抽出前延伸を行わずして抽出後延伸のみを行うと、いたずらに孔径の過度の増大を来たし、延伸配向を微多孔膜に付与できず、結果、低強度となってしまう。
これに比して、抽出前延伸及び抽出後延伸を併用した本発明の製造方法の場合、微多孔膜の強度を損なうことなく、孔径を適度に増加させることができるので有用である。これによりバブルポイントを0.5MPaを越え、1.0MPa未満にすることができ、電池に組み込んだ時良好なサイクル特性を発現することができる。
Stretching after extraction is performed in a state in which the plasticizer is substantially removed from the microporous membrane, and therefore, the polymer interface breaks predominantly with stretching, and the microporous membrane has an effect of increasing the pore size. Therefore, if only the post-extraction stretching is performed without performing the pre-extraction stretching, which is essential in the present invention, the pore diameter is excessively increased, and the stretch orientation cannot be imparted to the microporous film, resulting in low strength. turn into.
Compared to this, the production method of the present invention in which the pre-extraction stretching and the post-extraction stretching are used in combination is useful because the pore diameter can be increased appropriately without impairing the strength of the microporous membrane. Thereby, a bubble point can be made to exceed 0.5 Mpa and less than 1.0 Mpa, and favorable cycling characteristics can be expressed when it is incorporated in a battery.

本発明の製造方法において、本発明の利点を損なわない範囲で各延伸工程に引き続いて、または後に熱固定及び熱緩和等の熱処理工程を加えることは、微多孔膜の高温における形状安定性を高める効果がある。
また、本発明の製造方法においては、本発明の利点を損なわない範囲で後処理を行っても良い。後処理としては、例えば、界面活性剤等による親水化処理、及び電離性放射線等による架橋処理等が挙げられる。
In the production method of the present invention, it is possible to increase the shape stability of the microporous membrane at a high temperature by adding a heat treatment step such as heat fixation and thermal relaxation after each stretching step within a range that does not impair the advantages of the present invention. effective.
Moreover, in the manufacturing method of this invention, you may post-process in the range which does not impair the advantage of this invention. Examples of the post-treatment include a hydrophilic treatment with a surfactant and the like, and a crosslinking treatment with ionizing radiation.

本発明において使用するポリオレフィン樹脂とは、通常の押出、射出、インフレーション、及びブロー成形に使用する樹脂をいい、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、及び1-オクテンのホモ重合体及び共重合体を使用することができる。また、これらのホモ重合体及び共重合体の群から選んだポリオレフィンを混合して使用することもできる。前記重合体の代表例としては、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン、アイソタクティックポリプロピレン、アタクティックポリプロピレン、ポリブテン、エチレンプロピレンラバー等が挙げられる。本発明の製造方法によって得られた微多孔膜を電池セパレータとして使用する場合、低融点樹脂であり、かつ高強度の要求性能から、特に高密度ポリエチレンを主成分とする樹脂を使用することが好ましい。   The polyolefin resin used in the present invention refers to a resin used for ordinary extrusion, injection, inflation, and blow molding. Ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1 -Octene homopolymers and copolymers can be used. In addition, polyolefins selected from the group of these homopolymers and copolymers can be mixed and used. Representative examples of the polymer include low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, ultrahigh molecular weight polyethylene, isotactic polypropylene, atactic polypropylene, polybutene, and ethylene propylene rubber. . When the microporous membrane obtained by the production method of the present invention is used as a battery separator, it is preferable to use a resin having a high melting point polyethylene as a main component because it is a low-melting-point resin and requires high strength. .

本発明において使用するポリオレフィン樹脂原料及び本発明の微多孔膜の粘度平均分子量は、5万以上1200万未満が好ましく、さらに好ましくは10万以上400万未満、最も好ましくは20万以上200万未満である。粘度平均分子量が5万より小さいと、溶融成形の際のメルトテンションが小さくなり成形性が低下しやすい。粘度平均分子量が1200万を越えると、均一な樹脂組成物を得難くなる傾向がある。
本発明において使用する可塑剤としては、 ポリオレフィン樹脂と混合した際にポリオレフィン樹脂の融点以上において均一溶液を形成しうる不揮発性溶媒であれば良い。例えば、流動パラフィンやパラフィンワックス等の炭化水素類、フタル酸ジオクチルやフタル酸ジブチル等のエステル類、オレイルアルコールやステアリルアルコール等の高級アルコールが挙げられる。
The viscosity average molecular weight of the polyolefin resin raw material used in the present invention and the microporous membrane of the present invention is preferably from 50,000 to less than 12 million, more preferably from 100,000 to less than 4 million, and most preferably from 200,000 to less than 2 million. is there. When the viscosity average molecular weight is less than 50,000, the melt tension at the time of melt molding becomes small and the moldability tends to be lowered. When the viscosity average molecular weight exceeds 12 million, it tends to be difficult to obtain a uniform resin composition.
The plasticizer used in the present invention may be any non-volatile solvent that can form a uniform solution above the melting point of the polyolefin resin when mixed with the polyolefin resin. Examples thereof include hydrocarbons such as liquid paraffin and paraffin wax, esters such as dioctyl phthalate and dibutyl phthalate, and higher alcohols such as oleyl alcohol and stearyl alcohol.

本発明において使用するポリオレフィン樹脂と可塑剤の比率については、ミクロ相分離を生じせしめ、シート状の微多孔膜前駆体を形成しうるのに充分な 比率であり、かつ生産性を損なわない程度であれば良い。具体的には、ポリオレフィン樹脂と可塑剤からなる組成物中に占めるポリオレフィン樹脂の重量分率は、好ましくは10〜70%、更に好ましくは20〜60%である。ポリオレフィン樹脂の重量分率が10%より小さいと、溶融成形時のメルトテンションが不足しやすく、成形性が低下する傾向がある。一方、重量分率が70%を越える場合は、押出し負荷の増大から生産性が向上しにくい。   The ratio between the polyolefin resin and the plasticizer used in the present invention is a ratio sufficient to cause microphase separation and form a sheet-like microporous membrane precursor and does not impair productivity. I just need it. Specifically, the weight fraction of the polyolefin resin in the composition comprising the polyolefin resin and the plasticizer is preferably 10 to 70%, more preferably 20 to 60%. When the weight fraction of the polyolefin resin is smaller than 10%, the melt tension at the time of melt molding tends to be insufficient, and the moldability tends to be lowered. On the other hand, when the weight fraction exceeds 70%, it is difficult to improve productivity due to an increase in extrusion load.

本発明において使用する抽出溶剤は、ポリオレフィンに対して貧溶媒であり、かつ可塑剤に対して良溶媒であり、沸点がポリオレフィン微多孔膜の融点より低いことが望ましい。このような抽出溶剤としては、 例えば、n-ヘキサンやシクロヘキサン等の炭化水素類、塩化メチレンや1,1,1-トリクロロエタン等のハロゲン化炭化水素類、エタノールやイソプロパノール等のアルコール類、ジエチルエーテルやテトラヒドロフラン等のエーテル類、アセトンや2-ブタノン等のケトン類が挙げられる。   The extraction solvent used in the present invention is preferably a poor solvent for polyolefin and a good solvent for plasticizer, and its boiling point is preferably lower than the melting point of the polyolefin microporous membrane. Examples of such extraction solvents include hydrocarbons such as n-hexane and cyclohexane, halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane, alcohols such as ethanol and isopropanol, diethyl ether, Examples include ethers such as tetrahydrofuran, and ketones such as acetone and 2-butanone.

本発明において使用する組成物には、本発明の利点を損なわない範囲で、さらに目的に応じて、酸化防止剤、結晶核剤、帯電防止剤、難燃剤、滑剤、紫外線吸収剤等の添加剤を混合しても差し支えない。
本発明の微多孔膜とは、実質的にポリオレフィンから構成される多孔体シートまたはフィルムをいい、例えば、精密濾過膜や電池用セパレータとして使用されるものであり、特に電池用セパレータへの用途に適するものである。
本発明の微多孔膜の膜厚は1〜100μmが好ましく、5〜50μmがさらに好ましい。膜厚が1μmより小さいと機械強度が不十分となる場合があり、また、100μmより大きいとセパレータの占有体積が増えるため、電池の高容量化の点において不利となる傾向がある。
In the composition used in the present invention, an additive such as an antioxidant, a crystal nucleating agent, an antistatic agent, a flame retardant, a lubricant, an ultraviolet absorber, etc., as long as the advantages of the present invention are not impaired. Can be mixed.
The microporous membrane of the present invention refers to a porous sheet or film substantially composed of polyolefin. For example, it is used as a microfiltration membrane or a battery separator, particularly for use in battery separators. It is suitable.
The film thickness of the microporous membrane of the present invention is preferably 1 to 100 μm, more preferably 5 to 50 μm. If the film thickness is smaller than 1 μm, the mechanical strength may be insufficient, and if it is larger than 100 μm, the occupied volume of the separator increases, which tends to be disadvantageous in terms of increasing the battery capacity.

本発明の微多孔膜の気孔率は、好ましくは25%〜60%、より好ましくは30%〜55%の範囲である。気孔率が25%未満では、透過性が低下しやすく、一方60%を超えると機械強度が低下しやすい。本発明の微多孔膜の突き刺し強度は、3.0N以上が好ましく、4.0N以上が更に好ましい。3.0N未満では、電池用セパレータとして使用した場合に、脱落した活物質等によってセパレータが破れやすくなる。   The porosity of the microporous membrane of the present invention is preferably in the range of 25% to 60%, more preferably 30% to 55%. If the porosity is less than 25%, the permeability tends to decrease, while if it exceeds 60%, the mechanical strength tends to decrease. The puncture strength of the microporous membrane of the present invention is preferably 3.0N or more, and more preferably 4.0N or more. If it is less than 3.0N, when used as a battery separator, the separator is easily broken by the dropped active material or the like.

次に、実施例によって本発明をさらに詳細に説明するが、これらは本発明の範囲を制限しない。実施例において示される試験方法は次の通りである。
<微多孔膜の評価>
(1)膜厚
ダイヤルゲージ(尾崎製作所:商標、PEACOCK No.25)にて測定した。
(2)気孔率
10cm角のサンプルを微多孔膜から切り取り、その体積と重量を求め、得られた結果から次式を用いて計算した。
気孔率(%)=(体積(cm)-重量(g)/密度)/体積(cm)×100
(3)突刺強度
カトーテック製、商標、KES-G5ハンディー圧縮試験器を用いて、針先端の曲率半径0.5mm、突刺速度2mm/secの条件で突刺試験を行い、最大突刺荷重を突刺強度(N)とした。
The invention will now be described in more detail by way of examples, which do not limit the scope of the invention. The test methods shown in the examples are as follows.
<Evaluation of microporous membrane>
(1) Film thickness Measured with a dial gauge (Ozaki Seisakusho: trademark, PEACOCK No. 25).
(2) Porosity A 10 cm square sample was cut from the microporous membrane, its volume and weight were determined, and the obtained results were used for calculation.
Porosity (%) = (volume (cm 3 ) −weight (g) / density) / volume (cm 3 ) × 100
(3) Puncture strength A piercing test was conducted using a Kato Tech, trademark, KES-G5 handy compression tester under the conditions of a radius of curvature of the needle tip of 0.5 mm and a puncture speed of 2 mm / sec. (N).

(4)透気度
JIS P-8117準拠のガーレー式透気度計にて測定した。このときの圧力は0.01276atm、膜面積は6.424cm2 、透過空気量は100ccである。
(5)透気量
空気の透過速度定数Rgasは、透気度(sec)から次式を用いて求められる。測定は室温23℃の室内で実施した。
Rgas(m3 /(m2 ・sec・ Pa))=0.0001/透気度
/0.0006424/(0.01276×101325)
(6)透水量
直径41mmのステンレス製の透液セルに、予めアルコールに浸しておいた微多孔膜をセットし、該膜のアルコールを水で洗浄したあと約50000Paの差圧で水を透過させ、120秒間経過した際の透水量(cm3)から、単位時間・単位圧力・単位面積当たりの透水量を計算し、これを透水度(cm3 /(cm2 ・sec・Pa))とした。測定は室温23℃の室内で実施した。
水の透過速度定数Rliq は透水度(cm3 /(cm2 ・sec ・Pa))から次式
を用いて求められる。
Rliq (m3 /(m2 ・sec・ Pa))=透水度/100
(4) Air permeability It measured with the Gurley type air permeability meter based on JISP-8117. The pressure at this time is 0.01276 atm, the membrane area is 6.424 cm 2 , and the amount of permeated air is 100 cc.
(5) Air permeability The air permeation rate constant Rgas is obtained from the air permeability (sec) using the following equation. The measurement was carried out indoors at room temperature 23 ° C.
Rgas (m 3 / (m 2 · sec · Pa)) = 0.0001 / air permeability
/0.0006424/(0.01276×101325)
(6) Water permeability A microporous membrane previously immersed in alcohol is set in a stainless steel permeation cell having a diameter of 41 mm, and after the alcohol in the membrane is washed with water, water is allowed to permeate at a differential pressure of about 50000 Pa. The water permeation amount per unit time, unit pressure, and unit area was calculated from the water permeation amount (cm 3 ) when 120 seconds passed, and this was defined as the water permeability (cm 3 / (cm 2 · sec · Pa)). . The measurement was carried out indoors at room temperature 23 ° C.
The water permeation rate constant Rliq is obtained from the water permeability (cm 3 / (cm 2 · sec · Pa)) using the following equation.
Rliq (m 3 / (m 2 · sec · Pa)) = water permeability / 100

(7)バブルポイント
ASTM F316-86に準拠し、エタノール溶媒で測定した。
(8)粘度平均分子量 Mv
デカヒドロナフタリンへ試料の劣化防止のため2,6-ジ-t-ブチル-4-メチルフェノールを0.1重量%の濃度となるように溶解させ、これ(以下DHNと略す) を試料溶媒として用いる。試料をDHNへ0.1重量%の濃度となるように150℃で溶解させ試料溶液を作成する。作成した試料溶液を10ml採取し、キャノンフェンスケ粘度計(SO100)により135℃での標線間通過秒数(t)を計測する。また、DHNを150℃に加熱した後、10ml採取し、同様の方法により粘度計の標線間を通過する秒数(tB)を計測する。
得られた 通過秒数t、tBを用いて次の換算式により極限粘度[η]を算出
した。
[η]=((1.651t/tB―0.651)0.5― 1)/0.0834
求められた[η]より、ポリエチレンの場合は次式によりMvを算出した。
[η]=6.77×10-4Mv0.67
また、ポリプロピレンの場合は次式によりMvを算出した。
[η]=1.10×10-4Mv0.80
(7) Bubble point It measured with the ethanol solvent based on ASTMF316-86.
(8) Viscosity average molecular weight Mv
To prevent deterioration of the sample in decahydronaphthalene, 2,6-di-t-butyl-4-methylphenol is dissolved to a concentration of 0.1% by weight, and this (hereinafter abbreviated as DHN) is used as the sample solvent. Use. A sample solution is prepared by dissolving the sample in DHN at 150 ° C. to a concentration of 0.1% by weight. 10 ml of the prepared sample solution is sampled, and the number of seconds passing through the marked line (t) at 135 ° C. is measured with a Canon Fenceke viscometer (SO100). Moreover, after heating DHN to 150 degreeC, 10 ml is extract | collected and the number of seconds (tB) which passes between the marked lines of a viscometer is measured by the same method.
The intrinsic viscosity [η] was calculated by the following conversion formula using the obtained passing seconds t and tB.
[Η] = ((1.651t / tB−0.651) 0.5−1) /0.0834
In the case of polyethylene, Mv was calculated from the obtained [η] by the following formula.
[Η] = 6.77 × 10 −4 Mv 0.67
In the case of polypropylene, Mv was calculated by the following formula.
[Η] = 1.10 × 10 −4 Mv 0.80

(9)収縮率
MD50mm×TD40mmのサンプルを微多孔膜から切り取り、幅26mmの2枚のスライドグラスの間に微多孔膜のMD方向がはみ出すように挟む。はみ出た部分を折り返し耐熱テープで固定する。これを80mm×50mm×5mmのガラス板に挟み、150℃下のオーブン中に水平に置き1時間放置する。その後、空冷し、TD幅(mm)の最も短い長さを測定する。
収縮率(%)=(1−最短TD幅(mm)/40)×100
(9) Shrinkage A sample of MD 50 mm × TD 40 mm is cut from the microporous membrane and sandwiched between two slide glasses having a width of 26 mm so that the MD direction of the microporous membrane protrudes. Turn over the protruding part and fix it with heat-resistant tape. This is sandwiched between 80 mm × 50 mm × 5 mm glass plates, placed horizontally in an oven at 150 ° C. and left for 1 hour. Then, it cools by air and measures the shortest length of TD width (mm).
Shrinkage rate (%) = (1-shortest TD width (mm) / 40) × 100

<電池の作製,及び評価>
(1)正極の作製
活物質としてリチウムコバルト複合酸化物LiCoOを92.2重量%、導電剤としてリン片状グラファイトとアセチレンブラックをそれぞれ2.3重量%、バインダーとしてポリフッ化ビニリデン(PVDF)3.2重量%をN-メチルピロリドン(NMP)中に分散させてスラリーを調製する。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターで塗付し、130℃で3分間乾燥後、ロールプレス機で圧縮成形する。このとき、正極の活物質塗付量は250g/m,活物質嵩密度は3.00g/cmになるようにする。これを幅約40mmに切断して帯状にする。
<Production and evaluation of battery>
(1) Production of positive electrode 92.2% by weight of lithium cobalt composite oxide LiCoO 2 as an active material, 2.3% by weight of flake graphite and acetylene black as a conductive agent, and polyvinylidene fluoride (PVDF) 3 as a binder A slurry is prepared by dispersing 2% by weight in N-methylpyrrolidone (NMP). This slurry is applied to one side of a 20 μm thick aluminum foil serving as a positive electrode current collector with a die coater, dried at 130 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material coating amount of the positive electrode is 250 g / m 2 and the active material bulk density is 3.00 g / cm 3 . This is cut to a width of about 40 mm to form a strip.

(2)負極の作製
活物質として人造グラファイト96.9重量%、バインダーとしてカルボキシメチルセルロースのアンモニウム塩1.4重量%とスチレン-ブタジエン共重合体ラテックス1.7重量%を精製水中に分散させてスラリーを調製する。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗付し、120℃で3分間乾燥後、ロールプレス機で圧縮成形する。このとき、負極の活物質塗付量は106g/m,活物質嵩密度は1.35g/cmになるようにする。これを幅約40mmに切断して帯状にする。
(3)非水電解液の調整
エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPFを濃度1.0mol/リットルとなるように溶解させて調整する。
(2) Production of Negative Electrode 96.9% by weight of artificial graphite as an active material, 1.4% by weight of ammonium salt of carboxymethyl cellulose and 1.7% by weight of styrene-butadiene copolymer latex as a binder were dispersed in purified water to form a slurry. To prepare. This slurry is applied to one side of a 12 μm thick copper foil serving as a negative electrode current collector with a die coater, dried at 120 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material coating amount of the negative electrode is set to 106 g / m 2 and the active material bulk density is set to 1.35 g / cm 3 . This is cut to a width of about 40 mm to form a strip.
(3) Adjustment of Nonaqueous Electrolyte Solution It is adjusted by dissolving LiPF 6 as a solute in a mixed solvent of ethylene carbonate: ethyl methyl carbonate = 1: 2 (volume ratio) to a concentration of 1.0 mol / liter.

(4)電池組立
上記の微多孔膜セパレータ,帯状正極及び帯状負極を、帯状負極、セパレータ、帯状正極、セパレータの順に重ねて渦巻状に複数回捲回することで電極板積層体を作製する。
この電極板積層体を平板状にプレス後、アルミニウム製容器に収納し、アルミニウム製リードを正極集電体から導出して電池蓋に、ニッケル製リードを負極集電体から導出して容器底に溶接する。さらにこの容器内に前記した非水電解液を注入し封口する。こうして作製されるリチウムイオン電池は、縦(厚み)6.3mm,横30mm,高さ48mmの大きさで、公称放電容量が620mAhとなるように設計されている。
(4) Battery assembly The above-mentioned microporous membrane separator, strip-like positive electrode and strip-like negative electrode are stacked in the order of the strip-like negative electrode, separator, strip-like positive electrode, and separator, and wound in a spiral shape to produce an electrode plate laminate.
This electrode plate laminate is pressed into a flat plate shape, and then stored in an aluminum container. The aluminum lead is led out from the positive electrode current collector to the battery lid, and the nickel lead is led out from the negative electrode current collector to the bottom of the container. Weld. Further, the non-aqueous electrolyte described above is injected into the container and sealed. The lithium ion battery thus produced is designed to have a vertical (thickness) size of 6.3 mm, a horizontal size of 30 mm, and a height of 48 mm, and a nominal discharge capacity of 620 mAh.

(5)電池評価(25℃雰囲気下)
上記のようにして組み立てたリチウムイオン電池にて、電流値310mA(0.5C),終止電池電圧4.2Vの条件で6時間定電流定電圧(CCCV)充電を行う。このとき充電終了直前の電流値はほぼ0の値となる。その後、25℃雰囲気下で1週間放置(エージング)する。
その次に、電流値620mA(1.0C),終止電池電圧4.2Vの条件で3時間定電流定電圧(CCCV)充電し、一定電流値(CC)620mAで電池電圧3.0Vまで放電放する、というサイクルを行う。このときの放電容量を初回放電容量とする。初回放電容量が公称放電容量に近い値、またはそれ以上の値であることが初期容量が高く維持されていることになり、本発明でいうところの初期電池特性が良好であることの指標となる。
その後、さらに前述のサイクルを300回繰り返す。このサイクルにおいて、初回放電容量に対する300サイクル目の容量の割合(%)を容量維持率とする。容量維持率が高いことがサイクル特性が良いこととなる。
(5) Battery evaluation (at 25 ° C atmosphere)
The lithium ion battery assembled as described above is charged with a constant current and constant voltage (CCCV) for 6 hours under the conditions of a current value of 310 mA (0.5 C) and a final battery voltage of 4.2 V. At this time, the current value immediately before the end of charging is almost zero. Then, it is left (aged) for 1 week in an atmosphere of 25 ° C.
Next, the battery was charged at a constant current and constant voltage (CCCV) for 3 hours under the conditions of a current value of 620 mA (1.0 C) and a termination battery voltage of 4.2 V, and discharged to a battery voltage of 3.0 V at a constant current value (CC) of 620 mA. The cycle that is done. The discharge capacity at this time is defined as the initial discharge capacity. If the initial discharge capacity is a value close to or higher than the nominal discharge capacity, the initial capacity is maintained high, which is an indicator of good initial battery characteristics in the present invention. .
Thereafter, the above-described cycle is further repeated 300 times. In this cycle, the capacity ratio is the ratio (%) of the capacity at the 300th cycle to the initial discharge capacity. A high capacity retention rate means good cycle characteristics.

[実施例1]
Mv27万のHDPE60重量部、Mv95万のHDPE40重量部に、酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を0.3重量部添加し、タンブラーブレンダーを用いてドライブレンドし、ポリマー等混合物を得た。得られたポリマー等混合物を、フィーダーにより直径37mmの二軸同方向スクリュー式押出機フィード口へ供給した。また、流動パラフィン(37.78℃における動粘度7.59×10 -5/s)をプランジャーポンプにより二軸押出機シリンダーへ注入した。
[Example 1]
As an antioxidant, 0.3 parts of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] was added to 60 parts by weight of HDPE having an Mv of 270,000 and 40 parts by weight of HDPE having an Mv of 950,000. Part by weight was added and dry blended using a tumbler blender to obtain a polymer mixture. The obtained mixture of polymers and the like was fed to a feed port of a twin screw co-directional screw type extruder having a diameter of 37 mm by a feeder. Further, liquid paraffin (kinematic viscosity at 37.78 ° C .: 7.59 × 10 −5 m 2 / s) was injected into the twin-screw extruder cylinder by a plunger pump.

溶融混練し押し出される全混合物(100重量部)中に占める流動パラフィン量比は62重量部となるように、フィーダー及びポンプを調整した。溶融混練条件は、設定温度200℃、スクリュー回転数180rpm、吐出量12kg/hで行った。続いて、溶融混練物をTダイを経て表面温度85℃に制御された冷却ロール上に押出し、圧延比4倍で圧延することにより、厚み200μmのゲルシートを得た。
次に、得られたシートを横テンター延伸機に導き、延伸温度115℃、延伸倍率5倍で抽出前横延伸した後、10%熱緩和を施した。次に塩化メチレン中に浸漬して流動パラフィンを抽出除去し乾燥した。
The feeder and pump were adjusted so that the liquid paraffin content ratio in the total mixture (100 parts by weight) melted and kneaded and extruded was 62 parts by weight. The melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 180 rpm, and a discharge rate of 12 kg / h. Subsequently, the melt-kneaded material was extruded through a T-die onto a cooling roll controlled at a surface temperature of 85 ° C., and rolled at a rolling ratio of 4 to obtain a gel sheet having a thickness of 200 μm.
Next, the obtained sheet was guided to a transverse tenter stretching machine, subjected to transverse stretching before extraction at a stretching temperature of 115 ° C. and a stretching ratio of 5 times, and then subjected to 10% thermal relaxation. Next, it was immersed in methylene chloride to extract and remove liquid paraffin and dried.

次に、上記抽出後膜を多段ロール式縦延伸機に導き、延伸温度110℃、MD方向の総延伸倍率2倍になるように抽出後縦延伸して微多孔膜を得た。
得られた微多孔膜の物性、及びこれをセパレータとして用いた電池の特性を表1に示した。また、以下に示す実施例、比較例の差異を明確にするため、延伸工程比較表を表2として示した。
Next, the extracted membrane was guided to a multi-stage roll type longitudinal stretching machine, and extracted and longitudinally stretched so that the stretching temperature was 110 ° C. and the total stretching ratio in the MD direction was doubled to obtain a microporous membrane.
Table 1 shows the physical properties of the obtained microporous membrane and the characteristics of the battery using this as a separator. Moreover, in order to clarify the difference between the Example shown below and a comparative example, the extending | stretching process comparison table was shown as Table 2.

[実施例2]
圧延比3倍で、ゲルシートの厚みを250μm、抽出後縦延伸の倍率を1.5倍、続いて抽出後横延伸を延伸温度125℃、延伸倍率1.4倍で延伸して10%熱緩和すること以外は実施例1と同様にして微多孔膜を得た。得られた微多孔膜の物性、及びこれをセパレータとして用いた電池の特性を表1に示した。
[Example 2]
With a rolling ratio of 3 times, the gel sheet thickness is 250 μm, the longitudinal stretching ratio after extraction is 1.5 times, and then the lateral stretching after extraction is stretched at a stretching temperature of 125 ° C. and a stretching ratio of 1.4 times to achieve 10% thermal relaxation. A microporous membrane was obtained in the same manner as in Example 1 except that. Table 1 shows the physical properties of the obtained microporous membrane and the characteristics of the battery using this as a separator.

[実施例3]
ゲルシートの厚みを150μm、抽出後縦延伸の倍率を1.5倍、続いて抽出後横延伸を延伸倍率1.7倍で延伸すること以外は実施例2と同様にして微多孔膜を得た。得られた微多孔膜の物性、及びこれをセパレータとして用いた電池の特性を表1に示した。
[Example 3]
A microporous membrane was obtained in the same manner as in Example 2 except that the gel sheet thickness was 150 μm, the longitudinal stretching ratio after extraction was 1.5 times, and then the lateral stretching after extraction was stretched at a stretching ratio of 1.7 times. . Table 1 shows the physical properties of the obtained microporous membrane and the characteristics of the battery using this as a separator.

[実施例4]
原料としてMv27万のHDPE30重量部、Mv95万のHDPE40重量部、Mv12万の線状低密度ポリエチレン30重量部を用い、ゲルシートの厚みを150μm、抽出後縦延伸の延伸温度を105℃、抽出後横延伸の延伸温度を110℃とすること以外は実施例2と同様にして微多孔膜を得た。得られた微多孔膜の物性、及びこれをセパレータとして用いた電池の特性を表1に示した。
[Example 4]
As raw materials, 30 parts by weight of HDPE with Mv 270,000, 40 parts by weight of HDPE with Mv 950,000, and 30 parts by weight of linear low density polyethylene with Mv 120,000, the thickness of the gel sheet is 150 μm, the stretching temperature for longitudinal stretching after extraction is 105 ° C., A microporous membrane was obtained in the same manner as in Example 2 except that the stretching temperature for stretching was 110 ° C. Table 1 shows the physical properties of the obtained microporous membrane and the characteristics of the battery using this as a separator.

[実施例5]
Tダイから押し出した溶融混練物を、表面温度40℃に制御された冷却ロールで引き取り、厚さ2mmのゲルシートを得た。得られたシートを同時二軸テンターを用いて、延伸温度122℃で7×7倍に抽出前延伸し、続いて塩化メチレン中に浸漬して流動パラフィンを抽出除去し乾燥した。次に延伸温度110℃、延伸倍率1.5倍で抽出後縦延伸し、続いて延伸温度125℃、延伸倍率1.4倍で抽出後横延伸して10%熱緩和することにより微多孔膜を得た。上記以外の押出しまでの工程は実施例1と同様にした。得られた微多孔膜の物性、及びこれをセパレータとして用いた電池の特性を表1に示した。
[Example 5]
The melt-kneaded product extruded from the T-die was taken up with a cooling roll controlled at a surface temperature of 40 ° C. to obtain a gel sheet having a thickness of 2 mm. The obtained sheet was stretched before extraction by 7 × 7 times at a stretching temperature of 122 ° C. using a simultaneous biaxial tenter, and subsequently immersed in methylene chloride to extract and remove liquid paraffin, followed by drying. Next, the film was extracted at a stretching temperature of 110 ° C. and a draw ratio of 1.5 times, and then longitudinally stretched. Got. The other steps up to extrusion were the same as in Example 1. Table 1 shows the physical properties of the obtained microporous membrane and the characteristics of the battery using this as a separator.

[比較例1]
抽出後縦延伸しないこと以外は実施例5と同様にして微多孔膜を得た。得られた微多孔膜の物性、及びこれをセパレータとして用いた電池の特性を表1に示した。
[Comparative Example 1]
A microporous membrane was obtained in the same manner as in Example 5 except that longitudinal stretching was not performed after extraction. Table 1 shows the physical properties of the obtained microporous membrane and the characteristics of the battery using this as a separator.

[比較例2]
Mv28万のHDPE40重量部、ジオクチルフタレート42重量部、ジブチルフタレート18重量部および酸化防止剤として該ポリエチレンに対して0.3重量部のテトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンを二軸押出機を用いて250℃で混練し、Tダイから押し出して冷却ロールで引き取り厚さ1600μmのゲルシートを得た。得られたシートを同時二軸テンターを用いて、延伸温度130℃で7×7倍に延伸し、続いて塩化メチレン中に浸漬して可塑剤を除去した後、乾燥した。次にこの膜を延伸温度125℃、延伸倍率1.8倍で抽出後横延伸した後、17%熱緩和させ、微多孔膜を得た。得られた微多孔膜の物性、及びこれをセ
パレータとして用いた電池の特性を表1に示した。
[Comparative Example 2]
Mv 280,000 HDPE 40 parts by weight, dioctyl phthalate 42 parts by weight, dibutyl phthalate 18 parts by weight and 0.3 parts by weight of tetrakis- [methylene-3- (3 ', 5'-di- [t-butyl-4′-hydroxyphenyl) propionate] methane was kneaded at 250 ° C. using a twin screw extruder, extruded from a T die, and taken up with a cooling roll to obtain a gel sheet having a thickness of 1600 μm. The obtained sheet was stretched 7 × 7 times at a stretching temperature of 130 ° C. using a simultaneous biaxial tenter, and subsequently immersed in methylene chloride to remove the plasticizer and then dried. Next, this membrane was extracted at a stretching temperature of 125 ° C. and stretched at a draw ratio of 1.8, and then stretched laterally, followed by 17% thermal relaxation to obtain a microporous membrane. Table 1 shows the physical properties of the obtained microporous membrane and the characteristics of the battery using this as a separator.

[比較例3]
最終膜厚を20μmにするように調整した以外は、特開平11-60789号公報実施例2の方法に準拠して(抽出後縦延伸なし)微多孔膜を得た。得られた微多孔膜の物性、及びこれをセパレータとして用いた電池の特性を表1に示した。
[Comparative Example 3]
A microporous membrane was obtained in accordance with the method of Example 2 of JP-A-11-60789 (no longitudinal stretching after extraction) except that the final film thickness was adjusted to 20 μm. Table 1 shows the physical properties of the obtained microporous membrane and the characteristics of the battery using this as a separator.

[比較例4]
直径37mmの二軸同方向スクリュー式押出機を用いたこと以外は、特許第2657430号公報実施例1の方法に準拠して(抽出後縦延伸なし)微多孔膜を得た。得られた微多孔膜の物性、及びこれをセパレータとして用いた電池の特性を表1に示した。
[Comparative Example 4]
A microporous membrane was obtained in accordance with the method of Example 2 of Japanese Patent No. 2657430 (no longitudinal stretching after extraction) except that a biaxial co-directional screw type extruder having a diameter of 37 mm was used. Table 1 shows the physical properties of the obtained microporous membrane and the characteristics of the battery using this as a separator.

[比較例5]
ゲルシートの厚みを150μm、抽出前の延伸を行わず、抽出後縦延伸の倍率を4倍、続いて抽出後横延伸を延伸温度125℃、延伸倍率2倍で延伸すること以外は実施例1と同様にして微多孔膜を得た。得られた微多孔膜の物性、及びこれをセパレータとして用いた電池の特性を表1に示した。
[Comparative Example 5]
Example 1 with the exception that the gel sheet thickness is 150 μm, stretching before extraction is not performed, the ratio of longitudinal stretching after extraction is 4 times, and then lateral stretching after extraction is stretched at a stretching temperature of 125 ° C. and a stretching ratio of 2 times. Similarly, a microporous membrane was obtained. Table 1 shows the physical properties of the obtained microporous membrane and the characteristics of the battery using this as a separator.

Figure 0004220329
Figure 0004220329

Figure 0004220329
Figure 0004220329

表1から明らかなように本発明の微多孔膜は、二次電池用セパレータとして用いた場合、比較例1,3に比べサイクル特性が高く、また比較例2,4,5に比べ初回放電容量が高く維持されており、初期電池特性とサイクル特性を両立できることがわかる。また、実施例では抽出後縦延伸を施しているために得られた微多孔膜の高温時の収縮は抑制されていることがわかる。   As is apparent from Table 1, the microporous membrane of the present invention, when used as a secondary battery separator, has higher cycle characteristics than Comparative Examples 1 and 3, and the initial discharge capacity compared to Comparative Examples 2, 4 and 5. It can be seen that the initial battery characteristics and the cycle characteristics can be compatible. Moreover, in the Example, since the longitudinal stretch after extraction is performed, it turns out that the shrinkage | contraction at the time of the high temperature of the obtained microporous film is suppressed.

本発明のポリオレフィン微多孔膜は、特に電池セパレーターとして好適に利用できる。   The polyolefin microporous membrane of the present invention can be suitably used particularly as a battery separator.

Claims (4)

透水量/透気量の比が0.8×10−3〜1.7×10−3で且つバブルポイントが0.5MPaを越え1.0MPa未満であることを特徴とするポリオレフィン微多孔膜。 A polyolefin microporous membrane having a water permeability / air permeability ratio of 0.8 × 10 −3 to 1.7 × 10 −3 and a bubble point of more than 0.5 MPa and less than 1.0 MPa. MD方向を固定した状態でのTD方向の収縮率が、150℃において20%未満であることを特徴とする請求項1に記載のポリオレフィン微多孔膜。   2. The polyolefin microporous membrane according to claim 1, wherein a shrinkage ratio in the TD direction in a state where the MD direction is fixed is less than 20% at 150 ° C. 3. (a)ポリオレフィン樹脂と可塑剤からなる組成物を溶融混練し、押出して冷却固化させシート状に成形する工程、(b)前記工程(a)の後に、TD方向に3倍以上の延伸を行う工程、(c)前記工程(b)の後に、前記可塑剤を抽出する工程、(d)前記工程(c)の後に、少なくともMD方向に、少なくとも1回の延伸を行う工程を含むことを特徴とする請求項1又は請求項2に記載の微多孔膜の製造方法。   (A) a step of melt-kneading a composition comprising a polyolefin resin and a plasticizer, extruding, solidifying by cooling, and forming into a sheet; (b) after the step (a), stretching 3 times or more in the TD direction; And (c) a step of extracting the plasticizer after the step (b), and (d) a step of performing at least one stretching in the MD direction after the step (c). The method for producing a microporous membrane according to claim 1 or 2. 請求項1又は請求項2に記載のポリオレフィン微多孔膜からなることを特徴とする電池用セパレータ。   A battery separator comprising the microporous polyolefin membrane according to claim 1.
JP2003278618A 2003-04-11 2003-07-23 Polyolefin microporous membrane and method for producing the same Expired - Lifetime JP4220329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003278618A JP4220329B2 (en) 2003-04-11 2003-07-23 Polyolefin microporous membrane and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003108109 2003-04-11
JP2003278618A JP4220329B2 (en) 2003-04-11 2003-07-23 Polyolefin microporous membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004323820A JP2004323820A (en) 2004-11-18
JP4220329B2 true JP4220329B2 (en) 2009-02-04

Family

ID=33513086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003278618A Expired - Lifetime JP4220329B2 (en) 2003-04-11 2003-07-23 Polyolefin microporous membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP4220329B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7718104B2 (en) 2001-12-12 2010-05-18 Dupont Teijin Films Us Ltd. Process for the production of brittle polymeric film
CN102569699A (en) * 2011-12-02 2012-07-11 佛山市金辉高科光电材料有限公司 Preparation method of power lithium battery diaphragm
WO2012102241A1 (en) 2011-01-27 2012-08-02 三菱樹脂株式会社 Polyolefin resin porous film, and non-aqueous electrolyte cell separator using same
CN109346656A (en) * 2018-10-12 2019-02-15 深圳中科瑞能实业有限公司 The application of organic matter coating, lithium ion battery pole piece and its application, lithium ion battery and its application

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100371057C (en) * 2006-03-22 2008-02-27 广东工业大学 Extraction method for production of polyolefin microporous film
CN101375436B (en) * 2006-05-22 2010-10-06 松下电器产业株式会社 Diaphragm and non-aqueous electrolyte secondary battery
KR20080029428A (en) * 2006-09-29 2008-04-03 도레이새한 주식회사 Method of manufacturing polyolefin microporous films
CN101568575B (en) * 2006-12-04 2013-06-05 旭化成电子材料株式会社 Polyolefin microporous membrane
JP5219099B2 (en) * 2010-06-14 2013-06-26 平松産業株式会社 Battery separator material, battery separator manufacturing method, battery separator, and secondary battery
PL3272500T3 (en) 2010-12-28 2019-10-31 Asahi Chemical Ind Polyolefin-based porous film
KR101886681B1 (en) 2012-01-06 2018-08-08 에스케이이노베이션 주식회사 Microporous polyolefin film and preparing method thereof
WO2014181760A1 (en) * 2013-05-07 2014-11-13 帝人株式会社 Liquid filter substrate
JP6657055B2 (en) * 2015-11-30 2020-03-04 住友化学株式会社 Non-aqueous electrolyte secondary battery separator
JP6716631B2 (en) * 2018-06-08 2020-07-01 株式会社エンビジョンAescジャパン Non-aqueous battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310989A (en) * 1992-04-30 1993-11-22 Mitsubishi Kasei Corp Polyethylenic porous film
JP4033546B2 (en) * 1998-03-30 2008-01-16 旭化成ケミカルズ株式会社 Method for producing separator for lithium ion secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7718104B2 (en) 2001-12-12 2010-05-18 Dupont Teijin Films Us Ltd. Process for the production of brittle polymeric film
US8530045B2 (en) 2001-12-12 2013-09-10 DuPont Teijin Films U.S. Ltd. Brittle polymeric film and tamper evident labels made therefrom
WO2012102241A1 (en) 2011-01-27 2012-08-02 三菱樹脂株式会社 Polyolefin resin porous film, and non-aqueous electrolyte cell separator using same
US9419266B2 (en) 2011-01-27 2016-08-16 Mitsubishi Plastics, Inc. Polyolefin resin porous film, and non-aqueous electrolyte cell separator using same
CN102569699A (en) * 2011-12-02 2012-07-11 佛山市金辉高科光电材料有限公司 Preparation method of power lithium battery diaphragm
CN109346656A (en) * 2018-10-12 2019-02-15 深圳中科瑞能实业有限公司 The application of organic matter coating, lithium ion battery pole piece and its application, lithium ion battery and its application
CN109346656B (en) * 2018-10-12 2021-11-05 深圳中科瑞能实业有限公司 Application of organic coating, pole piece for lithium ion battery and application thereof, lithium ion battery and application thereof

Also Published As

Publication number Publication date
JP2004323820A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP4753446B2 (en) Polyolefin microporous membrane
JP5403633B2 (en) Microporous membrane, battery separator and battery
JP5052135B2 (en) Polyolefin microporous membrane and battery separator
JP5586152B2 (en) Polyolefin microporous membrane
JP5213443B2 (en) Polyolefin microporous membrane
JP5403634B2 (en) Microporous membrane, battery separator and battery
KR101174995B1 (en) Microporous membranes and methods for making and using such membranes
KR100977345B1 (en) Polyolefin microporous membrane
JP4986199B2 (en) Polyethylene microporous membrane and battery using the same
JP2010007053A (en) Microporous polyolefin film
JP4220329B2 (en) Polyolefin microporous membrane and method for producing the same
JP4964565B2 (en) Polyethylene microporous membrane
JP5511329B2 (en) Polyolefin microporous membrane
JP5450944B2 (en) Polyolefin microporous membrane, battery separator and battery
WO2020137336A1 (en) Microporous polyolefin membrane and method for producing microporous polyolefin membrane
JP5592745B2 (en) Polyolefin microporous membrane
JP5295857B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP6598911B2 (en) Manufacturing method of polyolefin microporous membrane, battery separator, and non-aqueous electrolyte secondary battery
JP4713441B2 (en) Method for producing polyolefin microporous membrane
JP6347801B2 (en) Manufacturing method of polyolefin microporous membrane, battery separator, and non-aqueous electrolyte secondary battery
WO2021065283A1 (en) Polyolefin microporous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6596270B2 (en) Method for producing polyolefin microporous membrane
JP2015136809A (en) Method for producing polyolefin microporous film, battery separator and nonaqueous electrolyte secondary battery
JP2012136704A (en) Microporous membrane made of polyethylene and battery using the same
JP2011079933A (en) Polyolefin microporous film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4220329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term