JP5586152B2 - Polyolefin microporous membrane - Google Patents

Polyolefin microporous membrane Download PDF

Info

Publication number
JP5586152B2
JP5586152B2 JP2008548298A JP2008548298A JP5586152B2 JP 5586152 B2 JP5586152 B2 JP 5586152B2 JP 2008548298 A JP2008548298 A JP 2008548298A JP 2008548298 A JP2008548298 A JP 2008548298A JP 5586152 B2 JP5586152 B2 JP 5586152B2
Authority
JP
Japan
Prior art keywords
microporous membrane
polyolefin microporous
less
polyolefin
polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008548298A
Other languages
Japanese (ja)
Other versions
JPWO2008069216A1 (en
Inventor
大助 稲垣
久 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei E Materials Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2008548298A priority Critical patent/JP5586152B2/en
Publication of JPWO2008069216A1 publication Critical patent/JPWO2008069216A1/en
Application granted granted Critical
Publication of JP5586152B2 publication Critical patent/JP5586152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、物質の分離、選択透過などの分離膜、及びアルカリ、リチウム二次電池や燃料電池、コンデンサーなど電気化学反応装置の隔離材等として広く使用されている微多孔膜に関し、特にリチウムイオン電池用セパレータとして好適に使用される、ポリオレフィン製微多孔膜に関する。   The present invention relates to a separation membrane for separation of substances, selective permeation, etc., and a microporous membrane widely used as a separator for electrochemical reaction devices such as alkali, lithium secondary batteries, fuel cells, capacitors, etc. The present invention relates to a polyolefin microporous membrane suitably used as a battery separator.

ポリオレフィン製微多孔膜は、種々の物質の分離や選択透過分離膜、及び隔離材等として広く用いられており、用途例としては、精密ろ過膜、燃料電池用セパレータ、コンデンサー用セパレータ、又は機能材を孔の中に充填させ新たな機能を出現させるための機能膜の母材、電池用セパレータなどが挙げられる。これらの用途において、ノート型パーソナルコンピュータや携帯電話、デジタルカメラなどに広く使用されているリチウムイオン電池用のセパレータとして、特に好適に使用されている。その理由としては、膜の機械強度や孔閉塞性を有していることが挙げられる。
孔閉塞性とは、電池内部が過充電状態などで過熱した時に、溶融して孔閉塞し、電池反応を遮断することにより、電池の安全性を確保する性能のことであり、孔閉塞の生じる温度は低いほど、安全性への効果は高いとされている。
また、セパレータを捲回する際や、電池内の異物などによる短絡を防ぐためにも、セパレータの突刺強度や長さ方向(機械方向を指し、以下MDとも言う)、幅方向(機械方向と垂直方向を指し、以下TDとも言う)の引張強度は、ある程度以上の強度を有している必要がある。加えて、近年のリチウムイオン二次電池においては、電池の高出力、高容量化のためにも、セパレータには大孔径化だけでなく、高温下での熱収縮性にも優れている必要がある。
セパレータの気孔率は高く、孔径は大きいほど電池電気特性はよいとされているが、高気孔率化や大孔径化は、熱収縮率の大きさや強度と相反する関係にある。そのため、高気孔率化や大孔径化が施されたセパレータは、電池電気特性が良好であっても、電池オーブン試験の高温下では収縮が大きかったり、強度が不足するという問題があった。
Polyolefin microporous membranes are widely used as separators for various substances, selective permeation separation membranes, separators, etc. Examples of applications include microfiltration membranes, fuel cell separators, capacitor separators, or functional materials For example, a functional film base material for filling the inside of a hole to cause a new function to appear, and a battery separator. In these applications, it is particularly preferably used as a separator for lithium ion batteries widely used in notebook personal computers, mobile phones, digital cameras and the like. The reason for this is that the membrane has mechanical strength and pore blocking properties.
Porosity is a performance that ensures the safety of the battery by melting and closing the hole when the battery is overheated in an overcharged state, etc., and blocking the battery reaction. The lower the temperature, the higher the safety effect.
Also, in order to prevent a short circuit due to foreign matter in the battery when winding the separator, the piercing strength and length direction of the separator (referred to as machine direction, hereinafter also referred to as MD), width direction (perpendicular to the machine direction) The tensile strength of TD) is required to have a certain level of strength. In addition, in recent lithium ion secondary batteries, in order to increase battery output and capacity, separators need to have not only large pore diameters but also excellent heat shrinkability at high temperatures. is there.
It is said that the separator has a higher porosity and larger pore diameter, the better the electric characteristics of the battery. However, the increase in porosity and the increase in the diameter of the pores have a contradictory relationship with the size and strength of the thermal shrinkage. For this reason, separators with high porosity and large pore diameter have problems that even if the battery electrical characteristics are good, the shrinkage is large or the strength is insufficient under the high temperature of the battery oven test.

これらを解決する手段として、本出願人は、特許文献1でポリマーとフィラー、可塑剤とを混練して相分離させ、抽出後に延伸を施す方法を提案している。これにより、高気孔率・大孔径でありながら低熱収縮である微多孔膜が提案されているが、抽出後における延伸では、全方向に充分な強度を発現させながら低熱収縮を両立させることが困難である。
また本出願人は、特許文献2で特定の抽出・延伸工程を経ることによって、特定の孔径範囲にあり、かつ透水量/透気量比を規定した微多孔膜を提案している。しかしながら、斯様な抽出・延伸工程を経た膜であっては、熱収縮率が大きくなる傾向があるばかりか、当該文献に記載の透水量/透気量では近年の高出力化されたリチウムイオン二次電池などにおいては電気特性が不十分になりがちである。
特許文献3では、高分子量のポリオレフィンを用い、孔径の大きな微多孔膜が提案されてはいるが、高耐熱、高強度でありながら大孔径といった、バランスに優れた微多孔膜にまでには至っていない。
また、特許文献4では、高耐熱かつ大孔径である微多孔膜が提案されているが、斯様の製法であっては膜の高強度化は困難である
さらに、特許文献5では、特定のポリオレフィンブレンドによって高強度な微多孔膜が提案されているが、低密度ポリエチレンがブレンドされているため、高温での熱固定が困難となる。
As means for solving these problems, the present applicant has proposed a method of Patent Document 1 in which a polymer, a filler, and a plasticizer are kneaded and phase-separated, and subjected to stretching after extraction. As a result, a microporous membrane that has high porosity and large pore diameter but low heat shrinkage has been proposed, but it is difficult to achieve both low heat shrinkage while exhibiting sufficient strength in all directions in stretching after extraction. It is.
In addition, the present applicant has proposed a microporous membrane that is in a specific pore diameter range and has a specified water permeation amount / air permeation amount ratio through a specific extraction / stretching process in Patent Document 2. However, a membrane that has undergone such an extraction / stretching process tends to have a high thermal contraction rate, and the water permeation amount / air permeation amount described in this document has recently increased the output of lithium ions. In secondary batteries and the like, electrical characteristics tend to be insufficient.
In Patent Document 3, a high-molecular-weight polyolefin is used and a microporous membrane with a large pore diameter has been proposed, but it has reached a microporous membrane with excellent balance, such as a large pore diameter while having high heat resistance and high strength. Not in.
Further, Patent Document 4 proposes a microporous membrane having a high heat resistance and a large pore diameter. However, it is difficult to increase the strength of the membrane with such a manufacturing method. A microporous membrane with high strength has been proposed by a polyolefin blend, but since it is blended with low-density polyethylene, it becomes difficult to heat-set at a high temperature.

特許3258737号公報Japanese Patent No. 3258737 特開2004−323820号公報JP 2004-323820 A 特開平10−258462号公報Japanese Patent Laid-Open No. 10-258462 特許3050021号公報Japanese Patent No. 3050021 特開平8―34873号公報JP-A-8-34873

本発明は、従来のポリオレフィン製微多孔膜が有する特性を低下させることなく、大孔径で電気特性に優れながら、強度と低熱収縮性に優れたポリオレフィン製微多孔膜を提供することを目的とする。   An object of the present invention is to provide a polyolefin microporous membrane that is excellent in strength and low heat shrinkability while having excellent electrical characteristics with a large pore size without degrading the properties of conventional polyolefin microporous membranes. .

本発明者らは上述の目的を達成するために鋭意研究を重ねた結果、バブルポイント、長さ方向及び幅方向の引張強度、並びに、130℃におけるTD熱収縮率が特定範囲に調整されたポリオレフィン製微多孔膜が、大孔径であり、かつ、強度と低熱収縮性に優れることを見出し本発明を完成させた。すなわち、本発明は以下の通りである。
(1)バブルポイントが1MPa以下であり、長さ方向の引張強度、幅方向の引張強度が各々50MPa以上であり下記方法Aにより測定された130℃におけるTD熱収縮率が20%以下であり、ポリマー材料全体の粘度平均分子量が30万以上80万以下であるポリオレフィン製微多孔膜であって、
前記ポリオレフィンが、ポリエチレンである、又は、ポリエチレン及びポリプロピレンのブレンドである、ポリオレフィン微多孔膜
[方法A]
MDに100mm、TDに100mmに切り取り、130℃のオーブン中に1時間静置した。このとき、温風が直接サンプルにあたらないよう、2枚の紙にはさんだ。オーブンから取り出し冷却した後、長さ(mm)を測定し、以下の式にてTD熱収縮率を算出した(サンプル長が確保できないものに関しては、100mm×100mmに入る範囲で、可能な限り長いサンプル。)。
TD熱収縮率(%)=(100−加熱後のTDの長さ)/100×100
ここで、MDは長さ方向を意味し、TDは幅方向を意味する。
(2)透水量/透気量の比が1.7×10 -3 以上2.3×10 -3 未満である、上記(1)に記載のポリオレフィン製微多孔膜。
(3)MD引張伸度とTD引張伸度の合計が20〜250%である、上記(1)又は(2)に記載のポリオレフィン製微多孔膜。
(4)MD引張伸度とTD引張伸度の合計が20〜200%である、上記(1)又は(2)に記載のポリオレフィン製微多孔膜。
(5)粘度平均分子量が50万以上の超高分子量ポリエチレンと、粘度平均分子量が50万未満のポリエチレンとを含有する、上記(1)〜(4)のいずれか記載のポリオレフィン製微多孔膜。
(6)気孔率が20%以上60%以下である、上記(1)〜(5)のいずれか記載のポリオレフィン製微多孔膜。
(7)上記(1)〜(6)のいずれか記載のポリオレフィン製微多孔膜からなる電池用セパレータ。
(8)上記(7)に記載の電池用セパレータを備えた非水電解液二次電池
As a result of intensive studies to achieve the above-mentioned object, the present inventors have found that the bubble point, the tensile strength in the length direction and the width direction, and the TD heat shrinkage rate at 130 ° C. are adjusted to a specific range. The present invention has been completed by finding that the microporous membrane has a large pore diameter and is excellent in strength and low heat shrinkability. That is, the present invention is as follows.
(1) The bubble point is 1 MPa or less, the tensile strength in the length direction and the tensile strength in the width direction are each 50 MPa or more , and the TD heat shrinkage rate at 130 ° C. measured by the following method A is 20% or less. Ri, viscosity-average molecular weight of entire polymer material is a polyolefin microporous membrane Ru der 300,000 over 800,000 or less,
A polyolefin microporous membrane, wherein the polyolefin is polyethylene or a blend of polyethylene and polypropylene .
[Method A]
It was cut to 100 mm in MD and 100 mm in TD, and left in an oven at 130 ° C. for 1 hour. At this time, it was sandwiched between two sheets of paper so that the warm air would not directly hit the sample. After taking out from the oven and cooling, the length (mm) was measured, and the TD heat shrinkage was calculated by the following formula (for samples where the sample length could not be secured, it was as long as possible within the range of 100 mm x 100 mm) sample.).
TD heat shrinkage rate (%) = (100−length of TD after heating) / 100 × 100
Here, MD means the length direction, and TD means the width direction.
(2) The polyolefin microporous membrane according to the above (1), wherein the ratio of water permeability / air permeability is 1.7 × 10 −3 or more and less than 2.3 × 10 −3 .
(3) The polyolefin microporous membrane according to (1) or (2), wherein the total of MD tensile elongation and TD tensile elongation is 20 to 250%.
(4) The polyolefin microporous membrane according to (1) or (2), wherein the total of MD tensile elongation and TD tensile elongation is 20 to 200%.
(5) The polyolefin microporous film according to any one of (1) to (4) above, comprising ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 500,000 or more and polyethylene having a viscosity average molecular weight of less than 500,000.
(6) The polyolefin microporous membrane according to any one of (1) to (5), wherein the porosity is 20% or more and 60% or less.
(7) A battery separator comprising the polyolefin microporous film according to any one of (1) to (6) above.
(8) A non-aqueous electrolyte secondary battery comprising the battery separator according to (7) .

本発明のポリオレフィン製微多孔膜は、従来のポリオレフィン製微多孔膜と比較して大孔径化されており、かつ、優れた強度と低熱収縮性を有する。そのため、本発明のポリオレフィン製微多孔膜を電池用セパレータに使用することにより、電池特性と電池安全性を改善することが可能である。   The polyolefin microporous membrane of the present invention has a larger pore diameter than conventional polyolefin microporous membranes, and has excellent strength and low heat shrinkability. Therefore, it is possible to improve battery characteristics and battery safety by using the polyolefin microporous membrane of the present invention for a battery separator.

以下、本発明を実施するための最良の形態(以下、「本実施の形態」とも称される)について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, the best mode for carrying out the present invention (hereinafter also referred to as “the present embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.

本実施の形態のポリオレフィン製微多孔膜は、バブルポイントが1MPa以下であり、長さ方向の引張強度、幅方向の引張強度が各々50MPa以上、130℃における幅方向の熱収縮率が20%以下である。   The polyolefin microporous membrane of the present embodiment has a bubble point of 1 MPa or less, a tensile strength in the length direction and a tensile strength in the width direction of 50 MPa or more, and a thermal contraction rate in the width direction at 130 ° C. of 20% or less. It is.

ポリオレフィン製微多孔膜のバブルポイントは、孔が緻密に成り過ぎないようにするため、1.0MPa以下である必要があり、好ましくは0.8MPa以下である。バブルポイントの下限としては、好ましくは0.1MPa以上であり、より好ましくは0.3MPa以上である。0.1MPa未満では孔が粗大化して膜強度の低下を招くおそれがある。   The bubble point of the polyolefin microporous membrane needs to be 1.0 MPa or less, preferably 0.8 MPa or less, so that the pores do not become too dense. The lower limit of the bubble point is preferably 0.1 MPa or more, more preferably 0.3 MPa or more. If it is less than 0.1 MPa, the pores may be coarsened and the film strength may be lowered.

このバブルポイント法は最大孔径を表す簡易な方法として知られているが、バブルポイントの観点とは別に、微多孔膜の透水量、透気量の比(透水量/透気量)は、平均的な孔径との間に相関を持つ。この比は1.7×10-3以上であることが好ましい。1.7×10-3未満であると透過性が不十分になりやすく、電池の容量維持率が低下する傾向にある。上限に規定はないが、2.3×10-3未満、より好ましくは2.1×10-3未満の範囲であることが好ましい。2.3×10-3以上であると、孔が大きくなりすぎて強度不足となったり、リチウムデンドライトによるショートが生じやすくなるおそれがある。バブルポイントが1.0MPa以下であって、透水量/透気量比が上記範囲にあると、平均的な孔径のバランスに優れ、透過性を維持したまま高強度と低熱収縮性を備えやすくなり、近年のリチウムイオン電池の特性に良好な性能をもたらすため、特に好ましい。This bubble point method is known as a simple method for expressing the maximum pore size, but apart from the bubble point viewpoint, the water permeability of the microporous membrane, the ratio of the air permeability (water permeability / air permeability) is the average. There is a correlation with the typical pore size. This ratio is preferably 1.7 × 10 −3 or more. If it is less than 1.7 × 10 −3 , the permeability tends to be insufficient, and the capacity retention rate of the battery tends to decrease. The upper limit is not specified, but it is preferably less than 2.3 × 10 −3 , more preferably less than 2.1 × 10 −3 . If it is 2.3 × 10 −3 or more, the pores may become too large and the strength may be insufficient, or a short circuit may occur due to lithium dendrite. When the bubble point is 1.0 MPa or less and the water permeability / air permeability ratio is in the above range, the average pore diameter balance is excellent, and it is easy to provide high strength and low heat shrinkage while maintaining permeability. In particular, it is particularly preferable because it brings good performance to the characteristics of recent lithium ion batteries.

また、本実施の形態のポリオレフィン製微多孔膜は、長さ方向(MD)、幅方向(TD)の両方向の引張強度が50MPa以上である必要があり、70MPa以上がより好ましく、100MPa以上がさらに好ましい。引張強度が弱いと(50MPa未満であると)、電池捲回性が悪くなったり、外部からの電池衝撃試験や、電池内の異物などにより短絡を生じやすくなる。   The polyolefin microporous membrane of the present embodiment needs to have a tensile strength in both the length direction (MD) and the width direction (TD) of 50 MPa or more, more preferably 70 MPa or more, and more preferably 100 MPa or more. preferable. If the tensile strength is weak (less than 50 MPa), the battery winding property is deteriorated, or a short circuit is likely to occur due to an external battery impact test, foreign matter in the battery, or the like.

さらに、本実施の形態のポリオレフィン製微多孔膜は、オーブン試験などにおける安全性確保の観点から、130℃における幅方向(TD)の熱収縮率が、20%以下、好ましくは17%以下、より好ましくは15%以下である。130℃における長さ方向(MD)の熱収縮率は特に制限はないが、幅方向と同様に、安全性確保の観点から、好ましくは20%以下であり、より好ましくは17%以下であり、さらに好ましくは15%以下である。   Furthermore, the microporous membrane made of polyolefin of the present embodiment has a heat shrinkage rate in the width direction (TD) at 130 ° C. of 20% or less, preferably 17% or less, from the viewpoint of ensuring safety in an oven test or the like. Preferably it is 15% or less. Although the heat shrinkage rate in the length direction (MD) at 130 ° C. is not particularly limited, it is preferably 20% or less, more preferably 17% or less, from the viewpoint of ensuring safety, as in the width direction. More preferably, it is 15% or less.

本実施の形態のポリオレフィン製微多孔膜は、好ましくはポリプロピレンを含む。微多孔膜中にポリプロピレンを含むことにより、耐熱性を向上させることができるばかりか、高延伸倍率下でも破断しにくくなる傾向にある。更には、後述するMD及びTD引張伸度を、好適な範囲に調整することが容易となり、結果として、得られる電池の耐衝撃性を向上させ、短絡のリスクを低減させることができる。ポリプロピレンの含有量としては、ポリマー材料に対して好ましくは1〜80質量%であり、より好ましくは2〜50質量%、さらに好ましくは3〜30質量%である。1質量%未満では効果が発現しにくくなる傾向にあり、80質量%を超えると透過性が確保しにくくなる傾向にある。   The polyolefin microporous membrane of the present embodiment preferably contains polypropylene. By including polypropylene in the microporous membrane, not only can the heat resistance be improved, but it tends to be difficult to break even under a high draw ratio. Furthermore, it becomes easy to adjust the MD and TD tensile elongation described later to a suitable range, and as a result, the impact resistance of the obtained battery can be improved and the risk of short circuit can be reduced. The content of polypropylene is preferably 1 to 80% by mass, more preferably 2 to 50% by mass, and further preferably 3 to 30% by mass with respect to the polymer material. If it is less than 1% by mass, the effect tends to be difficult to be exhibited, and if it exceeds 80% by mass, the permeability tends to be difficult to ensure.

また、本実施の形態のポリオレフィン製微多孔膜は、MD及びTD引張伸度が、それぞれ10〜200%であることが好ましく、10〜150%であることがより好ましく、10〜120%であることがさらに好ましい。MD引張伸度とTD引張伸度の合計は、20〜250%であることが好ましく、20〜230%がより好ましく、20〜200%であることがさらに好ましい。MD及びTD引張伸度が上記範囲にある微多孔膜は、電池捲回性が良好であるばかりでなく、電池衝撃試験などにおいて捲回体が変形を受けにくくなる。引張伸度が上記範囲を超えると、微多孔膜の伸びが大きくなり、電池衝撃試験などにおいて繰り返しの衝撃に対して変形しやすく、結果として短絡を生じさせるリスクが増大するおそれがある。   Further, the polyolefin microporous membrane of the present embodiment preferably has an MD and TD tensile elongation of 10 to 200%, more preferably 10 to 150%, and more preferably 10 to 120%. More preferably. The total of MD tensile elongation and TD tensile elongation is preferably 20 to 250%, more preferably 20 to 230%, and still more preferably 20 to 200%. A microporous membrane having an MD and TD tensile elongation in the above range not only has good battery winding properties, but also makes it difficult for the wound body to undergo deformation in a battery impact test or the like. When the tensile elongation exceeds the above range, the elongation of the microporous membrane increases, and it tends to be deformed by repeated impacts in a battery impact test or the like, resulting in an increased risk of causing a short circuit.

MD及びTD引張伸度が上記範囲にある微多孔膜を得るには、いくつかの方法を組み合わせる必要があり、例えば、後述する延伸倍率や、抽出後の延伸及び緩和操作における各種条件を調整することによって達成し得る。また、上述したように、ポリマー中にポリプロピレンを混合することも有効な方法の1つである。   In order to obtain a microporous membrane having MD and TD tensile elongations in the above range, it is necessary to combine several methods. For example, the stretching ratio described later and various conditions in stretching and relaxation operations after extraction are adjusted. Can be achieved. As described above, mixing polypropylene in the polymer is also an effective method.

本実施の形態のポリオレフィン製微多孔膜は、粘度平均分子量が50万以上の超高分子量ポリエチレンと、粘度平均分子量が50万未満のポリエチレンとを含有するのが好ましい。上記各種ポリエチレンを含有することにより、セパレータ溶融時に溶融粘度が増加するばかりか、溶融張力の早期緩和によって耐破膜性が向上する傾向にある。   The polyolefin microporous membrane of the present embodiment preferably contains ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 500,000 or more and polyethylene having a viscosity average molecular weight of less than 500,000. By containing the above-mentioned various polyethylenes, not only the melt viscosity increases when the separator is melted, but also the tear resistance tends to be improved by early relaxation of the melt tension.

本実施の形態のポリオレフィン製微多孔膜の気孔率は、透過性の観点から、20%以上、膜強度及び耐電圧、熱収縮率の観点から、60%以下であることが好ましい。より好ましくは25%以上60%以下、さらに好ましくは30%以上55%以下である。   The porosity of the polyolefin microporous membrane of the present embodiment is preferably 20% or more from the viewpoint of permeability, and 60% or less from the viewpoint of membrane strength, withstand voltage, and heat shrinkage. More preferably, they are 25% or more and 60% or less, More preferably, they are 30% or more and 55% or less.

本実施の形態のポリオレフィン製微多孔膜の透気度は低いほど好ましいが、厚み、気孔率とのバランスの観点から、好ましくは1sec以上であり、より好ましくは50sec以上である。また、透過性の観点から、好ましくは1000sec以下、より好ましくは500sec以下である。   The air permeability of the polyolefin microporous membrane of the present embodiment is preferably as low as possible, but is preferably 1 sec or more, and more preferably 50 sec or more, from the viewpoint of the balance between thickness and porosity. Further, from the viewpoint of permeability, it is preferably 1000 sec or less, more preferably 500 sec or less.

本実施の形態のポリオレフィン製微多孔膜の厚みは、膜強度の観点より1μm以上であることが好ましく、5μm以上がより好ましい。また、透過性の観点より50μm以下であることが好ましく、30μm以下がより好ましい。   The thickness of the polyolefin microporous membrane of the present embodiment is preferably 1 μm or more, more preferably 5 μm or more from the viewpoint of membrane strength. Moreover, it is preferable that it is 50 micrometers or less from a viewpoint of permeability, and 30 micrometers or less are more preferable.

また、本実施の形態のポリオレフィン製微多孔膜の突刺強度は、0.2N/μm以上であることが好ましく、0.22N/μm以上がより好ましい。突刺強度が低いと(0.2N/μm未満であると)、電池用セパレータとして使用される場合、電極材等の鋭利部が微多孔膜に突き刺さり、ピンホールや亀裂が発生しやすくなったり、外部からの電池の衝撃試験などにおいて変形しやすくなる傾向にある。   Further, the puncture strength of the polyolefin microporous membrane of the present embodiment is preferably 0.2 N / μm or more, and more preferably 0.22 N / μm or more. When the puncture strength is low (less than 0.2 N / μm), when used as a battery separator, sharp parts such as electrode materials pierce the microporous film, and pinholes and cracks are likely to occur. It tends to be easily deformed in an external battery impact test or the like.

次に、本実施の形態のポリオレフィン製微多孔膜の製造方法について説明するが、得られる微多孔膜が上記特性を有していれば、ポリマー種、溶媒種、押出方法、延伸方法、抽出方法、開孔方法、熱固定・熱処理方法などにおいて、何ら限定されることはない。   Next, a method for producing a polyolefin microporous membrane according to the present embodiment will be described. If the resulting microporous membrane has the above characteristics, a polymer species, a solvent species, an extrusion method, a stretching method, and an extraction method. In the opening method, heat setting / heat treatment method and the like, there is no limitation.

本実施の形態のポリオレフィン製微多孔膜の製造方法としては、少なくともポリオレフィンと可塑剤を含有する樹脂組成物を溶融混練し押出してシート状物を得る工程、前記シート状物を延伸してフィルムを得る工程、前記シート状物又は前記フィルムから可塑剤を抽出する工程、前記フィルムを熱固定する工程を含むことが好ましい。   As a method for producing a polyolefin microporous membrane according to the present embodiment, a step of melt-kneading and extruding a resin composition containing at least polyolefin and a plasticizer to obtain a sheet-like material, and stretching the sheet-like material to form a film It is preferable to include the process of obtaining, the process of extracting a plasticizer from the said sheet-like material or the said film, and the process of heat-setting the said film.

本実施の形態のポリオレフィン製微多孔膜は、例えば以下の(a)〜(e)の工程からなる方法により得られる。
(a)ポリオレフィン単体、ポリオレフィン混合物、ポリオレフィン溶媒混合物及びポリオレフィン混練物のいずれかのポリマー材料を溶解混練する。
(b)溶解物を押出し、シート状に成型して冷却固化させる。必要に応じて可塑剤および無機剤を抽出する。
(c)得られたシートを一軸以上の方向へ延伸を行う。
(d)延伸後、必要に応じて可塑剤および無機剤を抽出する。
(e)つづいて熱固定及び熱処理を行う。
The polyolefin microporous membrane of the present embodiment is obtained, for example, by a method comprising the following steps (a) to (e).
(A) Dissolving and kneading any polymer material of a single polyolefin, a polyolefin mixture, a polyolefin solvent mixture and a polyolefin kneaded product.
(B) The melted material is extruded, formed into a sheet, and cooled and solidified. If necessary, a plasticizer and an inorganic agent are extracted.
(C) The obtained sheet is stretched in a direction of one axis or more.
(D) After stretching, a plasticizer and an inorganic agent are extracted as necessary.
(E) Next, heat setting and heat treatment are performed.

本実施の形態で使用されるポリオレフィンとは、エチレン、プロピレンのホモ重合体、またはエチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセンおよび1−オクテン、ノルボルネンの共重合体であって、上記重合体の混合物でもかまわない。中でも、微多孔膜の性能を向上させる観点から、ポリエチレンおよびその共重合体が好ましい。このようなポリオレフィンの重合触媒としては、チーグラー・ナッタ系触媒、フィリップス系触媒、メタロセン触媒などが挙げられる。ポリオレフィンは、1段重合法によって得られたものでもよいし、多段重合法によって得られたものでもよい。   The polyolefin used in this embodiment is a homopolymer of ethylene or propylene, or a copolymer of ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and 1-octene, norbornene In addition, a mixture of the above polymers may be used. Among these, polyethylene and copolymers thereof are preferable from the viewpoint of improving the performance of the microporous membrane. Examples of such polyolefin polymerization catalysts include Ziegler-Natta catalysts, Phillips catalysts, metallocene catalysts, and the like. The polyolefin may be obtained by a one-stage polymerization method or may be obtained by a multi-stage polymerization method.

供給するポリマーの組成としては、二種類以上のポリオレフィンをブレンドすることが好ましい。これによりヒューズ温度とショート温度のコントロールが可能となる。より好ましくは二種類以上のポリエチレンをブレンドすることであり、粘度平均分子量(Mv)が50万以上の超高分子量ポリエチレンと、粘度平均分子量(Mv)が50万未満のポリエチレンとを含むのが好ましい。ブレンドするポリエチレンは、孔が閉塞せずに、より高温で熱固定が行えるという点から、高密度のホモポリマーであることが好ましい。   As the composition of the polymer to be supplied, it is preferable to blend two or more kinds of polyolefins. This makes it possible to control the fuse temperature and the short-circuit temperature. More preferably, two or more types of polyethylene are blended, and it is preferable to include an ultrahigh molecular weight polyethylene having a viscosity average molecular weight (Mv) of 500,000 or more and a polyethylene having a viscosity average molecular weight (Mv) of less than 500,000. . The polyethylene to be blended is preferably a high-density homopolymer from the viewpoint that heat setting can be performed at a higher temperature without clogging the pores.

また、ポリマー材料全体の粘度平均分子量(Mv)は10万以上120万以下であることが好ましい。より好ましくは30万以上80万以下である。粘度平均分子量(Mv)が10万未満では溶融時の耐破膜性が十分でなくなるおそれがあり、120万を超えると押出工程が困難となったり、溶融時の収縮力の緩和が遅く、耐熱性に劣るおそれがある。   Moreover, it is preferable that the viscosity average molecular weights (Mv) of the whole polymer material are 100,000 or more and 1.2 million or less. More preferably, it is 300,000 or more and 800,000 or less. If the viscosity average molecular weight (Mv) is less than 100,000, the film-breaking resistance at the time of melting may be insufficient, and if it exceeds 1,200,000, the extrusion process becomes difficult, the relaxation of the shrinkage force at the time of melting is slow, and heat resistance May be inferior.

これらに、ポリエチレンよりも高融点のポリオレフィンであるポリプロピレンなどをブレンドすることは、耐熱性を高めるばかりか、抽出後の延伸・緩和工程において、ポリエチレン単体よりも高温で操作できるようになり、また、微多孔膜の強度、熱収縮率、孔径を維持しながらも、引張伸度を低減させることが可能となる。更には、理由は定かではないが、高延伸倍率下でも破断しにくいという効果もあるため特に好ましい。   Blending these with polypropylene, which is a polyolefin having a higher melting point than polyethylene, not only increases heat resistance, but also enables operation at higher temperatures than polyethylene alone in the stretching / relaxation process after extraction, It is possible to reduce the tensile elongation while maintaining the strength, heat shrinkage rate, and pore diameter of the microporous membrane. Furthermore, although the reason is not clear, it is particularly preferable because it has an effect that it is difficult to break even under a high draw ratio.

上記のようなブレンドによる耐熱性の向上は、本願の低熱収縮性と組み合わさることで、高温での耐破膜性がより良好となるため好ましい。   The improvement in heat resistance by blending as described above is preferable because the film resistance at high temperatures becomes better by combining with the low heat shrinkability of the present application.

また、ステアリン酸カルシウムやステアリン酸亜鉛等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料などの公知の添加剤も混合して使用することが出来る。   Also, known additives such as metal soaps such as calcium stearate and zinc stearate, ultraviolet absorbers, light stabilizers, antistatic agents, antifogging agents, and coloring pigments can be mixed and used.

さらに、アルミナ、チタニアなどに代表されるような無機剤を添加することもできる。この無機剤は全工程内のいずれかで全量あるいは一部を抽出してもよいし、製品中に残存させてもよい。   Furthermore, inorganic agents such as alumina and titania can be added. The inorganic agent may be extracted in whole or in part in any of the entire steps, or may remain in the product.

本実施の形態で使用される可塑剤とは、沸点以下の温度でポリオレフィンと均一な溶液を形成しうる有機化合物のことであり、具体的にはデカリン、キシレン、ジオクチルフタレート、ジブチルフタレート、ステアリルアルコール、オレイルアルコール、デシルアルコール、ノニルアルコール、ジフェニルエーテル、n−デカン、n−ドデカン、パラフィン油等が挙げられる。このうちパラフィン油、ジオクチルフタレートが好ましい。   The plasticizer used in the present embodiment is an organic compound that can form a uniform solution with polyolefin at a temperature below the boiling point, specifically decalin, xylene, dioctyl phthalate, dibutyl phthalate, stearyl alcohol. Oleyl alcohol, decyl alcohol, nonyl alcohol, diphenyl ether, n-decane, n-dodecane, paraffin oil and the like. Of these, paraffin oil and dioctyl phthalate are preferred.

可塑剤の割合は特に限定されないが、得られる微多孔膜の気孔率の観点から20質量%以上が好ましく、粘度の観点から90質量%以下が好ましい。より好ましくは50質量%以上70質量%以下である。   Although the ratio of a plasticizer is not specifically limited, 20 mass% or more is preferable from a viewpoint of the porosity of the microporous film obtained, and 90 mass% or less is preferable from a viscosity viewpoint. More preferably, it is 50 mass% or more and 70 mass% or less.

可塑剤の抽出に用いられる抽出溶媒としては、ポリオレフィンに対して貧溶媒、可塑剤に対しては良溶媒であり、かつ、沸点がポリオレフィンの融点よりも低いものが望ましい。このような抽出溶媒としては、例えば、n−ヘキサンやシクロヘキサン等の炭化水素類、塩化メチレンや1,1,1−トリクロロエタン、フルオロカーボン系等ハロゲン化炭化水素類、エタノールやイソプロパノール等のアルコール類、アセトンや2−ブタノン等のケトン類が挙げられる。この中から選択し、単独若しくは混合して使用する。これらの抽出溶媒は、可塑剤の抽出後に蒸留などにより再生し、再度使用しても構わない。   The extraction solvent used for the extraction of the plasticizer is preferably a poor solvent for the polyolefin, a good solvent for the plasticizer, and a boiling point lower than the melting point of the polyolefin. Examples of such extraction solvents include hydrocarbons such as n-hexane and cyclohexane, halogenated hydrocarbons such as methylene chloride, 1,1,1-trichloroethane, and fluorocarbons, alcohols such as ethanol and isopropanol, and acetone. And ketones such as 2-butanone. It selects from these and uses it individually or in mixture. These extraction solvents may be regenerated by distillation after extraction of the plasticizer and used again.

溶融混練される全混合物中に占める可塑剤と無機剤との合計重量割合は、膜の透過性と製膜性の観点より20〜95質量%が好ましく、30〜80質量%がより好ましい。   The total weight ratio of the plasticizer and the inorganic agent in the entire mixture to be melt-kneaded is preferably 20 to 95% by mass and more preferably 30 to 80% by mass from the viewpoint of membrane permeability and film-forming property.

また、溶融混練時の熱劣化とそれによる品質悪化を防止する観点より、混合物中に酸化防止剤を配合することが好ましい。酸化防止剤の濃度は、全ポリオレフィン重量に対して、0.3質量%以上が好ましく、0.5質量%以上がより好ましい。また、5.0質量%以下が好ましく、3.0質量%以下がより好ましい。   Moreover, it is preferable to mix | blend antioxidant in a mixture from a viewpoint of preventing the heat deterioration at the time of melt-kneading, and the quality deterioration by it. The concentration of the antioxidant is preferably 0.3% by mass or more, and more preferably 0.5% by mass or more with respect to the total polyolefin weight. Moreover, 5.0 mass% or less is preferable and 3.0 mass% or less is more preferable.

酸化防止剤としては、1次酸化防止剤であるフェノール系酸化防止剤が好ましく、2,6−ジ−t−ブチル−4−メチルフェノール、ペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート等が挙げられる。なお、2次酸化防止剤も併用して使用可能であり、トリス(2,4−ジ−t−ブチルフェニル)フォスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4−ビフェニレン−ジフォスフォナイト等のリン系酸化防止剤、ジラウリル−チオ−ジプロピオネート等のイオウ系酸化防止剤などが挙げられる。   As the antioxidant, a phenolic antioxidant which is a primary antioxidant is preferable, and 2,6-di-t-butyl-4-methylphenol, pentaerythrityl-tetrakis- [3- (3,5- Di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, and the like. Secondary antioxidants can also be used in combination, such as tris (2,4-di-t-butylphenyl) phosphite, tetrakis (2,4-di-t-butylphenyl) -4,4- Examples thereof include phosphorus-based antioxidants such as biphenylene-diphosphonite and sulfur-based antioxidants such as dilauryl-thio-dipropionate.

溶融混練及び押出しの方法として、まず、原材料の一部或いは全部を必要に応じてヘンシェルミキサー、リボンブレンダー、タンブラーブレンダー等で事前混合する。少量の場合は、手で撹拌してもよい。次いで、全ての原材料について、一軸押出機、二軸押出機等のスクリュー押出機、ニーダー、ミキサー等により溶融混練し、T型ダイや環状ダイ等より押出される。   As a method of melt kneading and extrusion, first, a part or all of raw materials are premixed by a Henschel mixer, a ribbon blender, a tumbler blender, or the like as necessary. If the amount is small, it may be stirred by hand. Next, all the raw materials are melt-kneaded by a screw extruder such as a single screw extruder or a twin screw extruder, a kneader, a mixer or the like, and extruded from a T-die or an annular die.

溶融混練は、原料ポリマーに酸化防止剤を所定の濃度で混合した後、窒素雰囲気に置換し、窒素雰囲気を維持した状態で行うことが好ましい。溶融混練時の温度は、160℃以上が好ましく、180℃以上がさらに好ましい。また300℃未満が好ましく、240℃未満がより好ましく、230℃未満がさらに好ましい。   The melt-kneading is preferably performed in a state where the raw material polymer is mixed with an antioxidant at a predetermined concentration and then replaced with a nitrogen atmosphere and the nitrogen atmosphere is maintained. The temperature during melt kneading is preferably 160 ° C. or higher, and more preferably 180 ° C. or higher. Moreover, less than 300 degreeC is preferable, less than 240 degreeC is more preferable, and less than 230 degreeC is further more preferable.

本実施の形態でいう溶融物には、無機剤抽出工程で抽出可能な未溶融の無機剤を含んでもよい。また、溶融混練され均一化された溶融物は、膜品位向上のためスクリーンを通過させるのが好ましい。   The melt referred to in the present embodiment may include an unmelted inorganic agent that can be extracted in the inorganic agent extraction step. In addition, the melted and kneaded and homogenized melt is preferably passed through a screen to improve film quality.

次に、ゲルシートの成形について説明する。ゲルシートの成形方法としては、溶融混練し押出された溶融物を、圧縮冷却により固化させるのが好ましい。冷却方法としては、冷風や冷却水等の冷却媒体に直接接触させる方法、冷媒で冷却したロールやプレス機に接触させる方法等が挙げられるが、冷媒で冷却したロールやプレス機に接触させる方法が、厚み制御が優れる点で好ましい。   Next, the formation of the gel sheet will be described. As a method for forming the gel sheet, it is preferable to solidify the melted and kneaded and extruded melt by compression cooling. Examples of the cooling method include a method of directly contacting a cooling medium such as cold air or cooling water, a method of contacting a roll or press machine cooled with a refrigerant, and a method of contacting a roll or press machine cooled with a refrigerant. , Which is preferable in terms of excellent thickness control.

続いて実施される、延伸と可塑剤抽出、或いは延伸と可塑剤抽出と無機剤抽出ついては、それらの順序、方法及び回数については特に制限はない。無機剤抽出は、必要に応じて行わなくてもよい。   The stretching, plasticizer extraction, or stretching, plasticizer extraction, and inorganic agent extraction, which are subsequently performed, are not particularly limited in order, method, and number of times. The inorganic agent extraction may not be performed as necessary.

延伸方法としては、ロール延伸機によるMD一軸延伸、テンターによるTD一軸延伸、ロール延伸機とテンター、或いはテンターとテンターとの組み合わせによる逐次二軸延伸、同時二軸テンターやインフレーション成形による同時二軸延伸などが挙げられる。延伸倍率はトータルの面倍率で、所望の引張強度、引張伸度を得るために、8倍以上が好ましく、15倍以上がより好ましく、30倍以上がさらに好ましく、40倍以上が特に好ましい。中でも、同時又は逐次二軸延伸が好ましい。また、すべての工程の総延伸倍率は同様の理由から、50倍以上が好ましく、60倍以上がより好ましい。   As stretching methods, MD uniaxial stretching using a roll stretching machine, TD uniaxial stretching using a tenter, sequential biaxial stretching using a roll stretching machine and a tenter, or a combination of a tenter and a tenter, simultaneous biaxial stretching using a simultaneous biaxial tenter or inflation molding. Etc. The draw ratio is a total area ratio, and in order to obtain desired tensile strength and tensile elongation, it is preferably 8 times or more, more preferably 15 times or more, further preferably 30 times or more, and particularly preferably 40 times or more. Among these, simultaneous or sequential biaxial stretching is preferable. Further, for the same reason, the total draw ratio in all steps is preferably 50 times or more, more preferably 60 times or more.

可塑剤抽出においては、抽出溶媒に浸漬、あるいはシャワーすることにより可塑剤を抽出する。その後、充分に乾燥させる。   In the plasticizer extraction, the plasticizer is extracted by dipping or showering in an extraction solvent. Then, it is sufficiently dried.

熱固定の方法としては、所定の温度雰囲気及び所定の緩和率で緩和操作を行う。テンターやロール延伸機を利用して行うことができる。緩和操作とは、膜のMD及び/又はTDへの縮小操作のことである。緩和率とは、緩和操作後の膜のMD寸法を操作前の膜のMD寸法で除した値、或いは緩和操作後のTD寸法を操作前の膜のTD寸法で除した値、或いはMD、TD双方を緩和した場合は、MDの緩和率とTDの緩和率を乗じた値のことである。所定の緩和率としては、熱収縮率の観点より0.9以下が好ましく、0.8以下であることがより好ましい。また、しわ発生防止と気孔率及び透過性の観点より0.6以上であることが好ましい。緩和操作は、MD、TD両方向で行ってもよいが、MD或いはTD片方だけの緩和操作でも、操作方向だけでなく操作と垂直方向についても、熱収縮率を低減することが可能である。この緩和操作の前に、1.5倍以上、より好ましくは1.8倍以上の延伸を施すことによって、高強度で、かつ、大孔径化された微多孔膜が得られ易くなる。   As a heat setting method, a relaxation operation is performed in a predetermined temperature atmosphere and a predetermined relaxation rate. It can be performed using a tenter or a roll stretching machine. The relaxation operation is an operation for reducing the film to MD and / or TD. The relaxation rate is a value obtained by dividing the MD dimension of the film after the relaxation operation by the MD dimension of the film before the operation, or a value obtained by dividing the TD dimension after the relaxation operation by the TD dimension of the film before the operation, or MD, TD When both are relaxed, it is a value obtained by multiplying the MD relaxation rate and the TD relaxation rate. The predetermined relaxation rate is preferably 0.9 or less, and more preferably 0.8 or less, from the viewpoint of the heat shrinkage rate. Moreover, it is preferable that it is 0.6 or more from a viewpoint of wrinkle generation | occurrence | production prevention, a porosity, and permeability | transmittance. The relaxation operation may be performed in both the MD and TD directions. However, even with the relaxation operation of only one of the MD and TD, it is possible to reduce the thermal contraction rate not only in the operation direction but also in the operation and the vertical direction. By subjecting the film to stretching 1.5 times or more, more preferably 1.8 times or more before this relaxation operation, it becomes easy to obtain a microporous membrane having a high strength and a large pore diameter.

この可塑剤抽出後の延伸及び緩和操作は、好ましくはTD方向に行う。熱収縮率及び大孔径化の観点より、緩和操作及び緩和操作前の延伸工程における温度としては、いずれも好ましくは125℃以上であり、少なくともいずれか一方が好ましくは130℃以上、より好ましくは132℃以上である。緩和操作及び緩和操作前の延伸工程における温度が上記範囲であると、ポリオレフィンがポリエチレンの場合、融点付近で延伸・緩和操作を行うこととなり、従来の微多孔膜と比較して、大孔径かつ低熱収縮率のものが得られ易い。更には、理由は定かではないが、低伸度の膜であっても破膜性に優れた微多孔膜が得られ易い。このような従来とは異なる、より高温条件で延伸・緩和でき、また、総延伸倍率が大きいような条件下であっても破断しにくいという観点からも、ポリオレフィンとして、ポリエチレン以外にポリプロピレンがブレンドされていることが好ましい。   The stretching and relaxation operations after the plasticizer extraction are preferably performed in the TD direction. From the viewpoints of heat shrinkage and increase in pore size, the temperature in the stretching step before the relaxation operation and the relaxation operation is preferably 125 ° C or higher, and at least one of them is preferably 130 ° C or higher, more preferably 132 ° C. It is above ℃. When the temperature in the stretching step before the relaxation operation and the relaxation operation is in the above range, when the polyolefin is polyethylene, the stretching / relaxation operation is performed in the vicinity of the melting point, which has a larger pore diameter and lower heat than conventional microporous membranes. A product with a shrinkage rate is easily obtained. Furthermore, although the reason is not clear, it is easy to obtain a microporous film having excellent film breaking property even with a low elongation film. Polypropylene is blended as a polyolefin in addition to polyethylene from the viewpoint that it can be stretched and relaxed under higher temperature conditions, which are different from conventional ones, and it is difficult to break even under conditions where the total draw ratio is large. It is preferable.

また、本実施の形態のポリオレフィン微多孔膜には、電子線照射、プラズマ照射、界面活性剤塗布、化学的改質などの表面処理を施すこともできる。   In addition, the polyolefin microporous film of the present embodiment can be subjected to a surface treatment such as electron beam irradiation, plasma irradiation, surfactant coating, or chemical modification.

以下に実施例を示して、本実施の形態をより詳細に説明する。
[測定方法]
本明細書中の物性等の測定方法は以下の通りである。
(1)粘度平均分子量(Mv)
ASTM−D4020に基づき、デカリン溶媒における135℃での極限粘度[η]を求める。ポリエチレンのMvは次式により算出した。
[η]=6.77×10-4Mv0.67
ポリプロピレンについては、次式によりMvを算出した。
[η]=1.10×10-4Mv0.80
Hereinafter, the present embodiment will be described in more detail with reference to examples.
[Measuring method]
The measuring method of the physical property etc. in this specification is as follows.
(1) Viscosity average molecular weight (Mv)
Based on ASTM-D4020, the intrinsic viscosity [η] at 135 ° C. in a decalin solvent is determined. Mv of polyethylene was calculated by the following formula.
[Η] = 6.77 × 10 −4 Mv 0.67
For polypropylene, Mv was calculated by the following formula.
[Η] = 1.10 × 10 −4 Mv 0.80

(2)膜厚(μm)
東洋精機製の微小測厚器、KBM(商標)を用いて室温23±2℃で測定した。
(2) Film thickness (μm)
The measurement was performed at a room temperature of 23 ± 2 ° C. using a fine thickness measuring instrument manufactured by Toyo Seiki, KBM (trademark).

(3)気孔率(%)
10cm×10cm角の試料を微多孔膜から切り取り、その体積(cm3)と質量(g)を求め、それらと膜密度(g/cm3)より、次式を用いて計算した。
気孔率=(体積−質量/膜密度)/体積×100
なお、膜密度は材料密度より計算した。
(3) Porosity (%)
A sample of 10 cm × 10 cm square was cut from the microporous membrane, its volume (cm 3 ) and mass (g) were determined, and calculated from these and the film density (g / cm 3 ) using the following formula.
Porosity = (volume−mass / film density) / volume × 100
The film density was calculated from the material density.

(4)透気度(sec)
JIS P−8117に準拠し、ガーレー式透気度計(東洋精器(株)製、G−B2(商標))を用いた。内筒重量は567gで、直径28.6mm、645mm2の面積を空気100mlが通過する時間を測定した。
(4) Air permeability (sec)
In accordance with JIS P-8117, a Gurley type air permeability meter (G-B2 (trademark), manufactured by Toyo Seiki Co., Ltd.) was used. The inner cylinder weight was 567 g, and the time required for 100 ml of air to pass through an area of 28.6 mm in diameter and 645 mm 2 was measured.

(5)透気量
空気の透過速度定数Rgasは、透気度(sec)から次式を用いて求めた。測定は室温23℃の室内で実施した。
Rgas(m3 /(m2 ・sec・ Pa))=0.0001/透気度/0.0006424/(0.01276×101325)
(5) Air permeability The air permeation rate constant Rgas was determined from the air permeability (sec) using the following equation. The measurement was carried out indoors at room temperature 23 ° C.
Rgas (m 3 / (m 2 · sec · Pa)) = 0.0001 / air permeability / 0.0006424 / (0.01276 × 101325)

(6)透水量
直径41mmのステンレス製の透液セルに、予めアルコールに浸しておいた微多孔膜をセットし、該膜のアルコールを水で洗浄したあと約50000Paの差圧で水を透過させ、120秒間経過した際の透水量(cm3)から、単位時間・単位圧力・単位面積当たりの透水量を計算し、これを透水度(cm3 /(cm2 ・sec・Pa))とした。測定は室温23℃の室内で実施した。水の透過速度定数Rliq は透水度(cm3 /(cm2 ・sec ・Pa))から次式を用いて求めた。
Rliq (m3 /(m2 ・sec・ Pa))=透水度/100
(6) Water permeability A microporous membrane previously immersed in alcohol is set in a stainless steel permeation cell having a diameter of 41 mm, and after the alcohol in the membrane is washed with water, water is allowed to permeate at a differential pressure of about 50000 Pa. The water permeation amount per unit time, unit pressure, and unit area was calculated from the water permeation amount (cm 3 ) when 120 seconds passed, and this was defined as the water permeability (cm 3 / (cm 2 · sec · Pa)). . The measurement was carried out indoors at room temperature 23 ° C. The water permeation rate constant Rliq was determined from the water permeability (cm 3 / (cm 2 · sec · Pa)) using the following equation.
Rliq (m 3 / (m 2 · sec · Pa)) = water permeability / 100

(7)突刺強度(N/μm)
カトーテック製のハンディー圧縮試験器KES−G5(商標)を用いて、開口部の直径11.3mmの試料ホルダーで微多孔膜を固定した。次に固定された微多孔膜の中央部を、針先端の曲率半径0.5mm、突刺速度2mm/secで、25℃雰囲気下にて突刺試験を行うことにより、最大突刺荷重(N)に1/膜厚(μm)を乗じた突刺強度(N/μm)を算出した。
(7) Puncture strength (N / μm)
Using a handy compression tester KES-G5 (trademark) manufactured by Kato Tech, the microporous membrane was fixed with a sample holder having a diameter of 11.3 mm at the opening. Next, the central portion of the fixed microporous membrane is subjected to a puncture test in a 25 ° C. atmosphere at a radius of curvature of the needle tip of 0.5 mm and a puncture speed of 2 mm / sec. / Puncture strength (N / μm) multiplied by film thickness (μm) was calculated.

(8)引張強度(MPa)、引張伸度(%)
JIS K7127に準拠し、島津製作所製の引張試験機、オートグラフAG−A型(商標)を用いて、MD及びTDサンプル(形状;幅10mm×長さ100mm)について測定した。また、サンプルはチャック間を50mmとし、サンプルの両端部(各25mm)の片面にセロハンテープ(日東電工包装システム(株)製、商品名:N.29)を貼ったものを用いた。更に、試験中のサンプル滑りを防止するために、引張試験機のチャック内側に、厚み1mmのフッ素ゴムを貼り付けた。
引張伸度(%)は、破断に至るまでの伸び量(mm)をチャック間距離(50mm)で除して、100を乗じることにより求めた。
引張強度(MPa)は、破断時の強度を、試験前のサンプル断面積で除することで求めた。
また、MDとTDの値を合計することにより、MD引張伸度とTD引張伸度の合計(%)を求めた。なお、測定は、温度23±2℃、チャック圧0.30MPa、引張速度200mm/分(チャック間距離を50mm確保できないサンプルにあっては、ひずみ速度400%/分)で行った。
(8) Tensile strength (MPa), tensile elongation (%)
Based on JIS K7127, it measured about MD and TD sample (shape; width 10mm x length 100mm) using the tensile tester by Shimadzu Corporation, and autograph AG-A type (trademark). Moreover, the sample used the thing which stuck the cellophane tape (the Nitto Denko Packaging System Co., Ltd. make, brand name: N.29) to the single side | surface of the both ends (each 25mm) of the sample between chuck | zippers 50mm. Furthermore, in order to prevent sample slipping during the test, 1 mm-thick fluororubber was affixed inside the chuck of the tensile tester.
The tensile elongation (%) was obtained by dividing the amount of elongation (mm) up to fracture by the distance between chucks (50 mm) and multiplying by 100.
The tensile strength (MPa) was obtained by dividing the strength at break by the sample cross-sectional area before the test.
Moreover, the sum (%) of MD tensile elongation and TD tensile elongation was calculated | required by totaling the value of MD and TD. The measurement was performed at a temperature of 23 ± 2 ° C., a chuck pressure of 0.30 MPa, and a tensile speed of 200 mm / min (in the case of a sample where the distance between chucks cannot be secured 50 mm, the strain rate is 400% / min).

(9)130℃熱収縮率(%)
MD方向に100mm、TD方向に100mmに切り取り、130℃のオーブン中に1時間静置した。このとき、温風が直接サンプルにあたらないよう、2枚の紙にはさんだ。オーブンから取り出し冷却した後、長さ(mm)を測定し、以下の式にてMD熱収縮率及びTD熱収縮率を算出した。(サンプル長が確保できないものに関しては、100mm×100mmに入る範囲で、可能な限り長いサンプル。)
MD熱収縮率(%)=(100−加熱後のMDの長さ)/100×100
TD熱収縮率(%)=(100−加熱後のTDの長さ)/100×100
(9) 130 ° C. heat shrinkage (%)
It was cut to 100 mm in the MD direction and 100 mm in the TD direction, and left in an oven at 130 ° C. for 1 hour. At this time, it was sandwiched between two sheets of paper so that the warm air would not directly hit the sample. After taking out from the oven and cooling, the length (mm) was measured, and the MD thermal contraction rate and TD thermal contraction rate were calculated by the following equations. (For samples for which the sample length cannot be secured, the sample is as long as possible within the range of 100 mm × 100 mm.)
MD thermal shrinkage (%) = (100− MD length after heating) / 100 × 100
TD heat shrinkage rate (%) = (100−length of TD after heating) / 100 × 100

(10)バブルポイント(MPa)
ASTM F316-86に準拠し、エタノール溶媒で測定した。連続的な泡が確認された点をバブルポイントとした。
(10) Bubble point (MPa)
Based on ASTM F316-86, measurement was performed with an ethanol solvent. The point at which continuous bubbles were confirmed was defined as the bubble point.

(11)高速熱破膜性(耐破膜性)
厚さ10μmのニッケル箔A(長さ100mm×幅25mm)、ニッケル箔B(長さ100mm×幅15mm)、電解液に30分以上浸したセパレータ(MD長さ75mm×TD長さ25mm)、中心に10mm×10mmの窓を設けたアラミカフィルム(商標)、スライドガラス(長さ75mm×幅25mm)、ガラス板(長さ25mm×幅20mm)を用意する。
図1のように、スライドガラス、ニッケル箔A、セパレータ、アラミカフィルム、ニッケル箔B、ガラス板の順に重ね合わせ、クリップで固定した。
上記セルに熱電対を繋ぎ、オーブン内に静置した。その後5℃/minの速度で昇温し、150℃に達したのち150℃1時間のホールドを行った。このときのインピーダンス変化を、LCRメーターにて交流10mV,1kHzの条件下で測定した。この測定において、インピーダンスが150℃に保持した時点から、60分以上1000Ω以上の絶縁状態を保持できたものをA、30分以上保持できたものをB、10分以上保持できたものをC、5分以上保持できたものをD、5分保持できなかったものをEとした。
なお、規定の電解液の組成比は以下の通りであった。
溶媒の組成比(体積比):炭酸プロピレン/炭酸エチレン/γ−ブチルラクトン=1/1/2
溶質の組成比:上記溶媒にてLiBF4を1mol/リットルの濃度になるように溶解させた。
(11) High-speed thermal film resistance (film resistance)
10 μm thick nickel foil A (length 100 mm × width 25 mm), nickel foil B (length 100 mm × width 15 mm), separator immersed in electrolyte for 30 minutes or more (MD length 75 mm × TD length 25 mm), center Aramica film (trademark) provided with a 10 mm × 10 mm window, a slide glass (length 75 mm × width 25 mm), and a glass plate (length 25 mm × width 20 mm) are prepared.
As shown in FIG. 1, slide glass, nickel foil A, separator, aluminum film, nickel foil B, and glass plate were stacked in this order and fixed with clips.
A thermocouple was connected to the cell and left in the oven. Thereafter, the temperature was raised at a rate of 5 ° C./min. After reaching 150 ° C., holding was performed at 150 ° C. for 1 hour. The change in impedance at this time was measured with an LCR meter under conditions of AC 10 mV and 1 kHz. In this measurement, from the time when the impedance was held at 150 ° C., A was able to maintain an insulation state of 60 Ω or more and 1000 Ω or more, B was able to hold for 30 minutes or more, B was able to hold 10 minutes or more, A sample that could be held for 5 minutes or more was designated D, and a sample that could not be held for 5 minutes was designated E.
The composition ratio of the prescribed electrolyte solution was as follows.
Composition ratio (volume ratio) of solvent: propylene carbonate / ethylene carbonate / γ-butyllactone = 1/1/2
Solute composition ratio: LiBF 4 was dissolved in the above solvent to a concentration of 1 mol / liter.

[電池の作製,及び評価]
(1)正極の作製
活物質としてリチウムコバルト複合酸化物LiCoO2を92.2質量%、導電剤としてリン片状グラファイトとアセチレンブラックをそれぞれ2.3質量%、バインダーとしてポリフッ化ビニリデン(PVDF)3.2質量%をN-メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターで塗付し、130℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、正極の活物質塗付量は250g/m2,活物質嵩密度は3.00g/cm3になるようにした。これを幅約40mmに切断して帯状にした。
(2)負極の作製
活物質として人造グラファイト96.9質量%、バインダーとしてカルボキシメチルセルロースのアンモニウム塩1.4質量%とスチレン-ブタジエン共重合体ラテックス1.7質量%を精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗付し、120℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、負極の活物質塗付量は106g/m2,活物質嵩密度は1.35g/cm3になるようにした。これを幅約40mmに切断して帯状にした。
(3)非水電解液の調製
エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPF6を濃度1.0mol/リットルとなるように溶解させて調製した。(4)電池組立
ポリオレフィン製微多孔膜を用いたセパレータ,帯状正極及び帯状負極を、帯状負極、セパレータ、帯状正極、セパレータの順に重ねて渦巻状に複数回捲回することで電極板積層体を作製した。この電極板積層体を平板状にプレス後、アルミニウム製容器に収納し、アルミニウム製リードを正極集電体から導出して電池蓋に、ニッケル製リードを負極集電体から導出して容器底に溶接した。さらにこの容器内に前記した非水電解液を注入し封口した。こうして作製されるリチウムイオン電池は、縦(厚み)6.3mm,横30mm,高さ48mmの大きさで、公称放電容量が620mAhとなるように設計した。
(5)電池評価(25℃雰囲気下)
上記のようにして組み立てたリチウムイオン電池にて、電流値310mA(0.5C),終止電池電圧4.2Vの条件で6時間定電流定電圧(CCCV)充電を行った。このとき充電終了直前の電流値はほぼ0の値となった。その後、25℃雰囲気下で1週間放置(エージング)した。
その次に、電流値620mA(1.0C),終止電池電圧4.2Vの条件で3時間定電流定電圧(CCCV)充電し、一定電流値(CC)620mAで電池電圧3.0Vまで放電放する、というサイクルを行った。このときの放電容量を初回放電容量とした。
(a)さらに前述のサイクルを300回繰り返した。このサイクルにおいて、初回放電容量に対する300サイクル目の容量の割合(%)を容量維持率とした。この容量維持率が高いことは、サイクル特性が良好であることを意味する。
(b)別途、(a)のサイクル試験の前の電池の衝撃試験をするため、1.9mの高さからコンクリート床に繰り返し10回落下させた。その後電池を解体し、観察した。捲回体の変形がほとんど見られなかったものをAとし、わずかに見られたものをB、容易に変形が確認できたものをCとした。
[Production and evaluation of batteries]
(1) Production of positive electrode 92.2% by mass of lithium cobalt composite oxide LiCoO 2 as an active material, 2.3% by mass of flake graphite and acetylene black as a conductive agent, and polyvinylidene fluoride (PVDF) 3 as a binder A slurry was prepared by dispersing 2% by mass in N-methylpyrrolidone (NMP). This slurry was applied to one side of a 20 μm thick aluminum foil serving as a positive electrode current collector with a die coater, dried at 130 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material coating amount of the positive electrode was 250 g / m 2 , and the active material bulk density was 3.00 g / cm 3 . This was cut into a width of about 40 mm to form a strip.
(2) Production of negative electrode 96.9% by mass of artificial graphite as an active material, 1.4% by mass of ammonium salt of carboxymethylcellulose and 1.7% by mass of styrene-butadiene copolymer latex as a binder were dispersed in purified water to form a slurry. Was prepared. This slurry was applied to one side of a 12 μm thick copper foil serving as a negative electrode current collector with a die coater, dried at 120 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material coating amount of the negative electrode was set to 106 g / m 2 , and the active material bulk density was set to 1.35 g / cm 3 . This was cut into a width of about 40 mm to form a strip.
(3) Preparation of Nonaqueous Electrolytic Solution Prepared by dissolving LiPF 6 as a solute in a mixed solvent of ethylene carbonate: ethyl methyl carbonate = 1: 2 (volume ratio) to a concentration of 1.0 mol / liter. (4) Battery assembly A separator using a microporous membrane made of polyolefin, a strip-like positive electrode, and a strip-like negative electrode are stacked in the order of the strip-like negative electrode, the separator, the strip-like positive electrode, and the separator, and wound in a spiral shape to make an electrode plate laminate. Produced. This electrode plate laminate is pressed into a flat plate shape, and then stored in an aluminum container. The aluminum lead is led out from the positive electrode current collector to the battery lid, and the nickel lead is led out from the negative electrode current collector to the bottom of the container. Welded. Further, the non-aqueous electrolyte described above was poured into this container and sealed. The lithium ion battery thus produced was designed to have a length (thickness) of 6.3 mm, a width of 30 mm, a height of 48 mm and a nominal discharge capacity of 620 mAh.
(5) Battery evaluation (at 25 ° C atmosphere)
The lithium ion battery assembled as described above was charged with a constant current and constant voltage (CCCV) for 6 hours under the conditions of a current value of 310 mA (0.5 C) and a final battery voltage of 4.2 V. At this time, the current value immediately before the end of charging was almost zero. Then, it was left (aged) for 1 week in an atmosphere at 25 ° C.
Next, the battery was charged at a constant current and constant voltage (CCCV) for 3 hours under the conditions of a current value of 620 mA (1.0 C) and a termination battery voltage of 4.2 V, and discharged to a battery voltage of 3.0 V at a constant current value (CC) of 620 mA. The cycle of doing. The discharge capacity at this time was defined as the initial discharge capacity.
(A) Further, the above cycle was repeated 300 times. In this cycle, the ratio (%) of the capacity at the 300th cycle to the initial discharge capacity was defined as the capacity maintenance rate. A high capacity retention rate means good cycle characteristics.
(B) Separately, for the impact test of the battery before the cycle test of (a), the battery was repeatedly dropped 10 times from a height of 1.9 m onto the concrete floor. Thereafter, the battery was disassembled and observed. A specimen in which almost no deformation of the wound body was observed was designated as A, a specimen that was slightly seen was designated as B, and a specimen in which the deformation was easily confirmed was designated as C.

[実施例1]
Mvが70万のホモポリマーのポリエチレンを47質量%、Mv30万のホモポリマーのポリエチレンを46質量%、Mv40万のポリプロピレンを7質量%とを、タンブラーブレンダーを用いてドライブレンドした。得られた純ポリマー混合物99質量%に酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を1質量%添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また流動パラフィン(37.78℃における動粘度7.59×10-52/s)を押出機シリンダーにプランジャーポンプにより注入した。
溶融混練し、押し出される全混合物中に占める流動パラフィン量比が65質量%となるように、フィーダー及びポンプを調整した。溶融混練条件は、設定温度200℃であり、スクリュー回転数240rpm、吐出量12kg/hで行った。
続いて、溶融混練物を、T−ダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、厚み2000μmのゲルシートを得た。
次に、同時二軸テンター延伸機に導き、二軸延伸を行った。設定延伸条件は、MD倍率7.0倍、TD倍率7.0倍、設定温度125℃であった。
次に、メチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して流動パラフィンを抽出除去し、その後メチルエチルケトンを乾燥除去した。
次に、TDテンターに導き、熱固定を行った。熱固定時の延伸温度・倍率は128℃・2.0倍で行い、その後の緩和時の温度・緩和率を133℃、0.80とした。
得られたポリオレフィン製微多孔膜の物性を表1に示した。
[Example 1]
Using a tumbler blender, 47% by mass of homopolymer polyethylene having an Mv of 700,000, 46% by mass of homopolymer polyethylene having an Mv of 300,000, and 7% by mass of polypropylene having an Mv of 400,000 were dry blended using a tumbler blender. 1% by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant was added to 99% by mass of the obtained pure polymer mixture, and the tumbler was again added. A dry blend was performed using a blender to obtain a polymer mixture. The obtained mixture of polymers and the like was substituted with nitrogen and then fed to the twin-screw extruder with a feeder under a nitrogen atmosphere. Liquid paraffin (kinematic viscosity at 37.78 ° C .: 7.59 × 10 −5 m 2 / s) was injected into the extruder cylinder by a plunger pump.
The feeder and pump were adjusted so that the liquid paraffin content ratio in the total mixture melt-kneaded and extruded was 65% by mass. The melt kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 240 rpm, and a discharge rate of 12 kg / h.
Subsequently, the melt-kneaded material was extruded and cast on a cooling roll controlled at a surface temperature of 25 ° C. through a T-die, thereby obtaining a gel sheet having a thickness of 2000 μm.
Next, it led to the simultaneous biaxial tenter stretching machine, and biaxial stretching was performed. The set stretching conditions were an MD magnification of 7.0 times, a TD magnification of 7.0 times, and a preset temperature of 125 ° C.
Next, the solution was introduced into a methyl ethyl ketone tank and sufficiently immersed in methyl ethyl ketone to extract and remove liquid paraffin, and then the methyl ethyl ketone was removed by drying.
Next, it was led to a TD tenter and heat fixed. The stretching temperature and magnification during heat setting were 128 ° C. and 2.0 times, and the temperature and relaxation rate during the subsequent relaxation were 133 ° C. and 0.80.
Table 1 shows the physical properties of the obtained polyolefin microporous membrane.

[実施例2]
二軸延伸温度が120℃である以外は、実施例1と同様に行った。得られたポリオレフィン製微多孔膜の物性を表1に示した。
[Example 2]
It carried out similarly to Example 1 except the biaxial stretching temperature being 120 degreeC. Table 1 shows the physical properties of the obtained polyolefin microporous membrane.

[実施例3]
押し出し後の原反厚みを900μm、二軸延伸温度が122℃、熱固定時の延伸温度・倍率を130℃・2.0倍で行い、その後の緩和時の温度・緩和率を135℃、0.80とした以外は、実施例1と同様に行った。得られたポリオレフィン製微多孔膜の物性を表1に示した。
[Example 3]
The thickness of the original fabric after extrusion is 900 μm, the biaxial stretching temperature is 122 ° C., the stretching temperature and magnification during heat setting are 130 ° C. and 2.0 times, and the temperature and relaxation rate during the subsequent relaxation are 135 ° C., 0 The same procedure as in Example 1 was performed except that. Table 1 shows the physical properties of the obtained polyolefin microporous membrane.

[実施例4]
Mvが250万のホモポリマーのポリエチレンを30質量%と、Mvが25万のホモポリマーのポリエチレンを70質量%とを用い、押し出し後の原反厚みを2400μm、熱固定時の延伸温度・倍率を125℃・1.9倍で行い、その後の緩和時の温度・緩和率を132℃、0.7とした以外は、実施例1と同様に行った。得られたポリオレフィン製微多孔膜の物性を表1に示した。
[Example 4]
Using 30% by mass of homopolymer polyethylene with an Mv of 2.5 million and 70% by mass of homopolymer polyethylene with an Mv of 250,000, the original thickness after extrusion is 2400 μm, and the stretching temperature and magnification at the time of heat setting are The same procedure as in Example 1 was performed except that the temperature and relaxation rate during the subsequent relaxation were set at 132 ° C. and 0.7 at 125 ° C. and 1.9 times. Table 1 shows the physical properties of the obtained polyolefin microporous membrane.

[実施例5]
純ポリマー混合物99質量%に、Mvが50万のホモポリマーのポリエチレンを使用し、熱固定時の延伸温度を125℃とした以外は、実施例1と同様に行った。得られたポリオレフィン製微多孔膜の物性を表1に示した。
[Example 5]
The same procedure as in Example 1 was performed except that homopolymer polyethylene having an Mv of 500,000 was used for 99% by mass of the pure polymer mixture, and the stretching temperature during heat setting was 125 ° C. Table 1 shows the physical properties of the obtained polyolefin microporous membrane.

[実施例6]
押し出し後の原反厚みを1800μm、二軸延伸倍率を5×5倍、二軸延伸温度を115℃、熱固定時の延伸温度・倍率を125℃・1.7倍で行い、その後の緩和時の温度・緩和率を131℃、0.70とした以外は、実施例4と同様に行った。得られたポリオレフィン製微多孔膜の物性を表1に示した。
[Example 6]
After extruding, the original thickness is 1800μm, the biaxial stretching ratio is 5 × 5 times, the biaxial stretching temperature is 115 ° C, and the stretching temperature and magnification at the time of heat setting are 125 ° C and 1.7 times. Was performed in the same manner as in Example 4 except that the temperature and relaxation rate were set to 131 ° C. and 0.70. Table 1 shows the physical properties of the obtained polyolefin microporous membrane.

[実施例7]
Mvが120万のホモポリマーのポリエチレンを使用し、二軸延伸温度を128℃とした以外は、実施例5と同様に行った。得られたポリオレフィン製微多孔膜の物性を表1に示した。
[Example 7]
The same operation as in Example 5 was performed except that homopolymer polyethylene having an Mv of 1,200,000 was used and the biaxial stretching temperature was set to 128 ° C. Table 1 shows the physical properties of the obtained polyolefin microporous membrane.

[実施例8]
Mvが70万のホモポリマーのポリエチレンを45質量%、Mv30万のホモポリマーのポリエチレンを40質量%、Mv40万のポリプロピレンを15質量%のブレンド物を用い、二軸延伸温度を123℃とした以外は、実施例1と同様に行った。得られたポリオレフィン製微多孔膜の物性を表1に示した。
[Example 8]
Using a blend of 45% by mass of homopolymer polyethylene with an Mv of 700,000, 40% by mass of homopolymer polyethylene with an Mv of 300,000, and 15% by mass of polypropylene with an Mv of 400,000, and a biaxial stretching temperature of 123 ° C. Was carried out in the same manner as in Example 1. Table 1 shows the physical properties of the obtained polyolefin microporous membrane.

[実施例9]
Mvが70万のホモポリマーのポリエチレンを45質量%、Mv30万のホモポリマーのポリエチレンを30質量%、Mv40万のポリプロピレンを25質量%のブレンド物を用い、二軸延伸温度を123℃とした以外は、実施例1と同様に行った。得られたポリオレフィン製微多孔膜の物性を表1に示した。
[Example 9]
Using a blend of 45% by mass of homopolymer polyethylene with an Mv of 700,000, 30% by mass of homopolymer polyethylene with an Mv of 300,000, and 25% by mass of polypropylene with an Mv of 400,000, and a biaxial stretching temperature of 123 ° C. Was carried out in the same manner as in Example 1. Table 1 shows the physical properties of the obtained polyolefin microporous membrane.

[実施例10]
ゲルシートの厚みを1600μm、熱固定時の延伸温度を125℃、その後の緩和時の温度を130℃とした以外は、実施例1と同様に行った。得られたポリオレフィン製微多孔膜の物性を表1に示した。
[Example 10]
The same procedure as in Example 1 was performed except that the gel sheet thickness was 1600 μm, the stretching temperature during heat setting was 125 ° C., and the temperature during subsequent relaxation was 130 ° C. Table 1 shows the physical properties of the obtained polyolefin microporous membrane.

[実施例11]
Mvが250万のホモポリマーのポリエチレンを30質量%と、Mvが25万のホモポリマーのポリエチレンを60質量%と、Mv40万のポリプロピレンを10質量%を用い、熱固定時の延伸・緩和温度を128℃、133℃とした以外は、実施例4と同様に行った。得られたポリオレフィン製微多孔膜の物性を表1に示した。
[Example 11]
30% by mass of homopolymer polyethylene with Mv of 2.5 million, 60% by mass of homopolymer polyethylene with Mv of 250,000, and 10% by mass of polypropylene with Mv of 400,000. It carried out similarly to Example 4 except having set it as 128 degreeC and 133 degreeC. Table 1 shows the physical properties of the obtained polyolefin microporous membrane.

[比較例1]
熱固定時の延伸温度・倍率を120℃・1.5倍で行い、その後の緩和時の温度・緩和率を125℃、0.80とした以外は、実施例1と同様に行った。得られたポリオレフィン製微多孔膜の物性を表1に示した。
[Comparative Example 1]
The same procedure as in Example 1 was performed except that the stretching temperature and magnification during heat setting were 120 ° C. and 1.5 times, and the temperature and relaxation rate during the subsequent relaxation were 125 ° C. and 0.80. Table 1 shows the physical properties of the obtained polyolefin microporous membrane.

[比較例2]
熱固定時の延伸温度・倍率を122℃・1.3倍で行い、緩和を施さないこと以外は、実施例2と同様に行った。得られたポリオレフィン製微多孔膜の物性を表1に示した。
[Comparative Example 2]
The same procedure as in Example 2 was conducted except that the stretching temperature and magnification during heat setting were 122 ° C. and 1.3 times, and no relaxation was performed. Table 1 shows the physical properties of the obtained polyolefin microporous membrane.

[比較例4]
Mvが70万のホモポリマーのポリエチレンを30質量%と、Mvが30万であるホモポリエチレンを15質量%と、Mv40万のホモポリマーのポリプロピレンを5質量%、ジオクチルフタレート(DOP)30.6質量%、微紛シリカ18.4質量%、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を1質量%添加し、混合した。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。
溶融混練条件は、設定温度200℃であり、スクリュー回転数240rpm、吐出量12kg/hで行った。
続いて、溶融混練物を、T−ダイを経て表面温度80℃に制御された冷却ロール上に押出しキャストすることにより、厚さ110μmのゲルシートを得た。
このゲルシートからDOP、微紛シリカを抽出除去し、微多孔膜を得た。該微多孔膜を2枚重ねて110℃で5倍縦方向に延伸した後、TDテンターに導き、130℃で横方向に2倍延伸した。その後、130℃でTD緩和率0.80とした。
得られたポリオレフィン製微多孔膜の物性を表1に示した。
[Comparative Example 4]
30% by mass of homopolymer polyethylene with an Mv of 700,000, 15% by mass of homopolyethylene with an Mv of 300,000, 5% by mass of homopolymer polypropylene with an Mv of 400,000, 30.6% by mass of dioctyl phthalate (DOP) %, 18.4% by mass of fine silica, 1% by mass of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant and mixed. did. The obtained mixture of polymers and the like was substituted with nitrogen and then fed to the twin-screw extruder with a feeder under a nitrogen atmosphere.
The melt kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 240 rpm, and a discharge rate of 12 kg / h.
Subsequently, the melt-kneaded material was extruded and cast on a cooling roll controlled at a surface temperature of 80 ° C. through a T-die, thereby obtaining a gel sheet having a thickness of 110 μm.
DOP and fine silica were extracted and removed from this gel sheet to obtain a microporous membrane. Two microporous membranes were stacked and stretched 5 times in the longitudinal direction at 110 ° C., and then led to a TD tenter and stretched 2 times in the lateral direction at 130 ° C. Thereafter, the TD relaxation rate was set to 0.80 at 130 ° C.
Table 1 shows the physical properties of the obtained polyolefin microporous membrane.

Figure 0005586152
Figure 0005586152

表1の結果から、以下のことが分かる。
(1)バブルポイント、長さ方向及び幅方向の引張強度及び130℃における幅方向の熱収縮率が特定範囲に調整された実施例1〜11のポリオレフィン製微多孔膜は、耐衝撃性及び耐破膜性のバランスが良好であり、これを用いて製造された電池は、容量維持率に優れていた。
(2)比較例1及び2のポリオレフィン製微多孔膜は、バブルポイントが1MPaを超えており、十分な孔径を有していないため、容量維持率に劣っていた。
4)比較例4のポリオレフィン製微多孔膜は、TD引張強度が50MPa未満であり、また、MD引張伸度とTD引張伸度の合計が250%を超えているため、繰り返しの衝撃に対して微多孔膜が変形しやすく、耐衝撃性に劣っていた。
(5)実施例11のポリオレフィン製微多孔膜は、実施例5及び7と比較すると、Mvが50万以上のポリエチレンと50万未満のポリエチレン、更にはポリプロピレンとがブレンドされているため、耐破膜性、耐衝撃性共に優れていた。
(6)実施例8及び9のポリオレフィン製微多孔膜は、実施例1と比較しポリプロピレンの含有量が高い。そのため、高温で熱固定が可能であるばかりか、引張伸度も低くなり、耐破膜性、耐衝撃性共に優れた結果となった。
(7)実施例4のポリオレフィン製微多孔膜は、実施例6と比較すると、総延伸倍率が高く引張伸度が低いため、耐衝撃性に優れていた。
(8)実施例1のポリオレフィン製微多孔膜は、実施例10と比較すると、気孔率が低いために容量維持率はやや劣るものの、高強度で低熱収縮率であるため、耐破膜性、耐衝撃性共に優れていた。
以上の結果から、本実施の形態のポリオレフィン微多孔膜は、大孔径でありながら、バランスに優れた強度と引張伸度、低熱収縮性を有していた。従って、本実施の形態のポリオレフィン製微多孔膜を電池用セパレータに使用することにより、電池特性と電池安全性のバランスに優れた二次電池を得ることができる。
From the results in Table 1, the following can be understood.
(1) The polyolefin microporous membranes of Examples 1 to 11 in which the bubble point, the tensile strength in the length direction and the width direction, and the thermal shrinkage in the width direction at 130 ° C. were adjusted to a specific range, The balance of the film breaking property was good, and the battery produced using this had an excellent capacity retention rate.
(2) The polyolefin microporous membranes of Comparative Examples 1 and 2 had an inferior capacity retention rate because their bubble points exceeded 1 MPa and they did not have a sufficient pore size.
( 4) The microporous membrane made of polyolefin of Comparative Example 4 has a TD tensile strength of less than 50 MPa, and the sum of MD tensile elongation and TD tensile elongation exceeds 250%. The microporous membrane was easily deformed and had poor impact resistance.
(5) Compared with Examples 5 and 7, the polyolefin microporous membrane of Example 11 is blended with polyethylene having an Mv of 500,000 or more, polyethylene with less than 500,000, and further polypropylene, so Both film properties and impact resistance were excellent.
(6) The polyolefin microporous membranes of Examples 8 and 9 have a higher polypropylene content than Example 1. Therefore, not only was heat fixation possible at a high temperature, but also the tensile elongation was low, and both the film resistance and the impact resistance were excellent.
(7) Compared with Example 6, the polyolefin microporous membrane of Example 4 was superior in impact resistance because of its high total draw ratio and low tensile elongation.
(8) The polyolefin microporous membrane of Example 1 has a lower porosity and a lower capacity retention rate than Example 10, but has a high strength and a low thermal shrinkage rate. Excellent impact resistance.
From the above results, the polyolefin microporous membrane of the present embodiment had a strength, tensile elongation, and low heat shrinkability with excellent balance while having a large pore diameter. Therefore, by using the polyolefin microporous membrane of the present embodiment for a battery separator, a secondary battery having an excellent balance between battery characteristics and battery safety can be obtained.

本発明は、物質の分離や選択透過分離膜、及び隔離材等に用いられているポリオレフィン製微多孔膜に関し、特にリチウムイオン電池などに用いられるセパレータとしての産業上利用可能性を有する。   The present invention relates to a polyolefin microporous membrane used for separation of substances, permselective separation membranes, separators, and the like, and has industrial applicability particularly as a separator used in lithium ion batteries and the like.

高速熱破膜性(耐破膜性)の測定試験に用いたセルの断面図を示す。1・・・セパレータ;2・・・ニッケル箔A;3・・・ニッケル箔B;4・・・アラミカフィルム;5・・・ガラス板;6・・・スライドガラス;7・・・熱電対;8・・・10×10mmの窓Sectional drawing of the cell used for the measurement test of high-speed thermal film-breaking property (film-breaking resistance) is shown. DESCRIPTION OF SYMBOLS 1 ... Separator; 2 ... Nickel foil A; 3 ... Nickel foil B; 4 ... Aramika film; 5 ... Glass plate; 6 ... Slide glass; ; 8 ... 10x10mm window

Claims (8)

バブルポイントが1MPa以下であり、長さ方向の引張強度、幅方向の引張強度が各々50MPa以上であり、下記方法Aにより測定された130℃におけるTD熱収縮率が20%以下であり、ポリマー材料全体の粘度平均分子量が30万以上80万以下であるポリオレフィン製微多孔膜であって、
前記ポリオレフィンが、ポリエチレンである、又は、ポリエチレン及びポリプロピレンのブレンドである、ポリオレフィン微多孔膜。
[方法A]
MDに100mm、TDに100mmに切り取り、130℃のオーブン中に1時間静置した。このとき、温風が直接サンプルにあたらないよう、2枚の紙にはさんだ。オーブンから取り出し冷却した後、長さ(mm)を測定し、以下の式にてTD熱収縮率を算出した(サンプル長が確保できないものに関しては、100mm×100mmに入る範囲で、可能な限り長いサンプル。)。
TD熱収縮率(%)=(100−加熱後のTDの長さ)/100×100
ここで、MDは長さ方向を意味し、TDは幅方向を意味する。
The bubble point is 1 MPa or less, the tensile strength in the length direction and the tensile strength in the width direction are each 50 MPa or more, and the TD heat shrinkage at 130 ° C. measured by the following method A is 20% or less. A polyolefin microporous membrane having an overall viscosity average molecular weight of 300,000 to 800,000,
A polyolefin microporous membrane, wherein the polyolefin is polyethylene or a blend of polyethylene and polypropylene.
[Method A]
Cut to 100 mm in MD and 100 mm in TD , it was left in an oven at 130 ° C. for 1 hour. At this time, it was sandwiched between two sheets of paper so that the warm air would not directly hit the sample. After taking out from the oven and cooling, the length (mm) was measured, and the TD heat shrinkage was calculated by the following formula (for samples where the sample length could not be secured, it was as long as possible within the range of 100 mm x 100 mm) sample.).
TD heat shrinkage rate (%) = (100−length of TD after heating) / 100 × 100
Here, MD means the length direction, and TD means the width direction.
透水量透気量の比が1.7×10-3以上2.3×10-3未満である、請求項1に記載のポリオレフィン製微多孔膜。 2. The polyolefin microporous membrane according to claim 1, wherein a ratio of water permeability / air permeability is 1.7 × 10 −3 or more and less than 2.3 × 10 −3 . MD引張伸度とTD引張伸度の合計が20〜250%である、請求項1又は2に記載のポリオレフィン製微多孔膜。   The polyolefin microporous membrane according to claim 1 or 2, wherein the total of MD tensile elongation and TD tensile elongation is 20 to 250%. MD引張伸度とTD引張伸度の合計が20〜200%である、請求項3に記載のポリオレフィン製微多孔膜。   The polyolefin microporous film according to claim 3, wherein the total of MD tensile elongation and TD tensile elongation is 20 to 200%. 粘度平均分子量が50万以上の超高分子量ポリエチレンと、粘度平均分子量が50万未満のポリエチレンとを含有する、請求項1〜4のいずれか1項に記載のポリオレフィン製微多孔膜。   The polyolefin microporous film according to any one of claims 1 to 4, comprising ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 500,000 or more and polyethylene having a viscosity average molecular weight of less than 500,000. 気孔率が20%以上60%以下である、請求項1〜5のいずれか1項に記載のポリオレフィン製微多孔膜。   The polyolefin microporous membrane according to any one of claims 1 to 5, having a porosity of 20% or more and 60% or less. 請求項1〜6のいずれか1項に記載のポリオレフィン製微多孔膜からなる電池用セパレータ。   A battery separator comprising the polyolefin microporous membrane according to any one of claims 1 to 6. 請求項7に記載の電池用セパレータを備える非水電解液二次電池。   A nonaqueous electrolyte secondary battery comprising the battery separator according to claim 7.
JP2008548298A 2006-12-04 2007-12-04 Polyolefin microporous membrane Active JP5586152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008548298A JP5586152B2 (en) 2006-12-04 2007-12-04 Polyolefin microporous membrane

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006326454 2006-12-04
JP2006326454 2006-12-04
PCT/JP2007/073422 WO2008069216A1 (en) 2006-12-04 2007-12-04 Polyolefin microporous membrane
JP2008548298A JP5586152B2 (en) 2006-12-04 2007-12-04 Polyolefin microporous membrane

Publications (2)

Publication Number Publication Date
JPWO2008069216A1 JPWO2008069216A1 (en) 2010-03-18
JP5586152B2 true JP5586152B2 (en) 2014-09-10

Family

ID=39492101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008548298A Active JP5586152B2 (en) 2006-12-04 2007-12-04 Polyolefin microporous membrane

Country Status (4)

Country Link
JP (1) JP5586152B2 (en)
KR (3) KR20120032539A (en)
CN (1) CN101568575B (en)
WO (1) WO2008069216A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200125473A (en) 2019-04-26 2020-11-04 아사히 가세이 가부시키가이샤 Ethylene polymer particles and molded article
US10947361B2 (en) 2016-11-08 2021-03-16 Asahi Kasei Kabushiki Kaisha Ethylene polymer, stretched molded article and microporous membrane

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5546144B2 (en) * 2009-03-05 2014-07-09 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
JP5685056B2 (en) * 2009-11-06 2015-03-18 旭化成ケミカルズ株式会社 Method for producing polyolefin stretch molded article
JP5942145B2 (en) * 2012-05-09 2016-06-29 旭化成株式会社 Polyolefin microporous membrane and method for producing the same
CN104769027B (en) * 2012-08-29 2019-11-05 国立大学法人群马大学 The manufacturing method and polyethylene perforated membrane of polyethylene perforated membrane
CN105209161B (en) * 2013-05-07 2017-12-01 帝人株式会社 Liquid filter base material
KR101490814B1 (en) * 2013-09-02 2015-02-16 장태우 Method for Separating Synthetic Resin and Oil from Exhausted Separator of Lithium Ion Secondary Battery
CN105449140A (en) * 2014-08-27 2016-03-30 宁德时代新能源科技股份有限公司 Separator and lithium ion secondary battery
CN105161661A (en) * 2015-10-14 2015-12-16 中航锂电(洛阳)有限公司 Composite diaphragm for lithium ion battery, preparation method of composite diaphragm, and lithium ion battery
CN107418018A (en) * 2017-04-18 2017-12-01 苏州海凌达电子科技有限公司 A kind of ultracapacitor polyethylene diagrams
CN108807821B (en) 2018-06-20 2021-03-19 宁德新能源科技有限公司 Separator and electrochemical device
WO2020179101A1 (en) * 2019-03-04 2020-09-10 旭化成株式会社 Polyolefin microporous membrane
JP6741884B1 (en) * 2019-03-04 2020-08-19 旭化成株式会社 Microporous polyolefin membrane
CN112795066B (en) * 2019-11-13 2023-10-24 上海恩捷新材料科技有限公司 Polyolefin microporous membrane
CN113964448B (en) * 2020-07-01 2023-12-15 华为技术有限公司 Separator, method for manufacturing separator, battery, electronic device, and mobile device
WO2022002094A1 (en) * 2020-07-01 2022-01-06 华为技术有限公司 Separator and manufacturing method therefor, and battery, electronic device, and mobile device
KR20230050646A (en) 2021-10-08 2023-04-17 서가연 An umbrella with a tripod

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246322A (en) * 1994-03-11 1995-09-26 Mitsubishi Chem Corp Modified polyolefin porous membrane and filter using the same
JPH10258462A (en) * 1996-11-19 1998-09-29 Mitsui Chem Inc High molecular weight polyolefin porous film and its manufacture
JPH1160789A (en) * 1997-08-08 1999-03-05 Asahi Chem Ind Co Ltd Production of microporous film
JP2004323820A (en) * 2003-04-11 2004-11-18 Asahi Kasei Chemicals Corp Polyolefin microporous membrane and method for producing the same
JP2004335255A (en) * 2003-05-07 2004-11-25 Asahi Kasei Chemicals Corp Manufacturing method of polyolefine microporous membrane
JP2006045328A (en) * 2004-08-04 2006-02-16 Asahi Kasei Chemicals Corp Method for producing polyolefin fine porous film
JP2006056929A (en) * 2004-08-17 2006-03-02 Asahi Kasei Chemicals Corp Method for producing polyolefin fine porous membrane
JP2006124652A (en) * 2004-09-30 2006-05-18 Asahi Kasei Chemicals Corp Microporous polyolefin film
JP2006321841A (en) * 2005-05-17 2006-11-30 Asahi Kasei Chemicals Corp Microporous polyethylene film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1128835C (en) * 1999-02-19 2003-11-26 东燃化学株式会社 Polyolefin microporous film and method for preparing same
JP4780960B2 (en) * 2002-08-28 2011-09-28 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane and evaluation method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246322A (en) * 1994-03-11 1995-09-26 Mitsubishi Chem Corp Modified polyolefin porous membrane and filter using the same
JPH10258462A (en) * 1996-11-19 1998-09-29 Mitsui Chem Inc High molecular weight polyolefin porous film and its manufacture
JPH1160789A (en) * 1997-08-08 1999-03-05 Asahi Chem Ind Co Ltd Production of microporous film
JP2004323820A (en) * 2003-04-11 2004-11-18 Asahi Kasei Chemicals Corp Polyolefin microporous membrane and method for producing the same
JP2004335255A (en) * 2003-05-07 2004-11-25 Asahi Kasei Chemicals Corp Manufacturing method of polyolefine microporous membrane
JP2006045328A (en) * 2004-08-04 2006-02-16 Asahi Kasei Chemicals Corp Method for producing polyolefin fine porous film
JP2006056929A (en) * 2004-08-17 2006-03-02 Asahi Kasei Chemicals Corp Method for producing polyolefin fine porous membrane
JP2006124652A (en) * 2004-09-30 2006-05-18 Asahi Kasei Chemicals Corp Microporous polyolefin film
JP2006321841A (en) * 2005-05-17 2006-11-30 Asahi Kasei Chemicals Corp Microporous polyethylene film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10947361B2 (en) 2016-11-08 2021-03-16 Asahi Kasei Kabushiki Kaisha Ethylene polymer, stretched molded article and microporous membrane
KR20200125473A (en) 2019-04-26 2020-11-04 아사히 가세이 가부시키가이샤 Ethylene polymer particles and molded article

Also Published As

Publication number Publication date
CN101568575B (en) 2013-06-05
KR101723275B1 (en) 2017-04-04
KR20090088389A (en) 2009-08-19
CN101568575A (en) 2009-10-28
KR20120032539A (en) 2012-04-05
JPWO2008069216A1 (en) 2010-03-18
WO2008069216A1 (en) 2008-06-12
KR20140046029A (en) 2014-04-17

Similar Documents

Publication Publication Date Title
JP5586152B2 (en) Polyolefin microporous membrane
US10680223B2 (en) Laminated separator, polyolefin microporous membrane, and separator for electricity storage device
JP5216327B2 (en) Polyolefin microporous membrane
JP4753446B2 (en) Polyolefin microporous membrane
JP5213443B2 (en) Polyolefin microporous membrane
JP4931911B2 (en) Polyolefin microporous membrane
JP5572334B2 (en) Polyolefin microporous membrane
WO2009136648A1 (en) Separator for high power density lithium‑ion secondary cell
WO2006025323A1 (en) Microporous polyolefin film and separator for storage cell
JP6823718B2 (en) Polyolefin microporous membranes, separators for power storage devices, and power storage devices
KR102264032B1 (en) Method for producing polyolefin microporous membrane and polyolefin microporous membrane
JP4964565B2 (en) Polyethylene microporous membrane
JP2008106237A (en) Microporous membrane made of polyolefin
JP5592745B2 (en) Polyolefin microporous membrane
JP4979252B2 (en) Polyolefin microporous membrane
JP5909411B2 (en) Polyolefin microporous membrane and method for producing the same
JP2009138159A (en) Microporous membrane
JP2011074119A (en) Method for producing polyolefin microporous membrane
JP2016121327A (en) Method of producing polyolefin microporous film
JP6741884B1 (en) Microporous polyolefin membrane

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140722

R150 Certificate of patent or registration of utility model

Ref document number: 5586152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350