JP2004335255A - Manufacturing method of polyolefine microporous membrane - Google Patents

Manufacturing method of polyolefine microporous membrane Download PDF

Info

Publication number
JP2004335255A
JP2004335255A JP2003129256A JP2003129256A JP2004335255A JP 2004335255 A JP2004335255 A JP 2004335255A JP 2003129256 A JP2003129256 A JP 2003129256A JP 2003129256 A JP2003129256 A JP 2003129256A JP 2004335255 A JP2004335255 A JP 2004335255A
Authority
JP
Japan
Prior art keywords
roll
sheet
microporous membrane
rolls
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003129256A
Other languages
Japanese (ja)
Other versions
JP4492917B2 (en
Inventor
Daisuke Inagaki
大助 稲垣
Kazuya Iitani
和也 飯谷
Muneharu Tsuda
宗治 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2003129256A priority Critical patent/JP4492917B2/en
Publication of JP2004335255A publication Critical patent/JP2004335255A/en
Application granted granted Critical
Publication of JP4492917B2 publication Critical patent/JP4492917B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably provide a polyolefine microporous membrane with a basic property kept suitable as a separator for a lithium ion secondary cell, and having a small MD (machine direction) maximum shrinkage stress. <P>SOLUTION: When a heat solution of polyolefine in the middle of a cooling process is cast, a peripheral speed of a first roll is made faster than that of a second roll, and preferably, a film is formed without forming a bank at this time, then a lock means to retain a sheet to the roll is provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、二次電池用セパレータとして使用され、特にリチウムイオン二次電池用セパレータとして好適に使用される、ポリオレフィン製微多孔膜の製造方法に関する。
【0002】
【従来の技術】
ポリオレフィンを素材とする微多孔膜は、種々の電池にセパレータとして使用されており、なかでも、近年需要が急増しているリチウムイオン二次電池において好適に使用されている。ポリオレフィン製微多孔膜は、基本的特性として、電子絶縁性に優れる、電解液含浸によりイオン透過性を有する、耐電解液性・ 耐酸化性に優れる、適度の強度を持っている、130〜150℃程度で孔閉塞効果を有する等の性能を具備しており、これらが好適に使用される理由とみられる。
【0003】
しかしながら、リチウムイオン二次電池の性能競争激化に伴いポリオレフィン製微多孔膜に対する要求は厳しくなってきている。例えば、電池の高容量・高密度化には微多孔膜の薄膜化が不可欠であり、これに伴う成膜技術は年々高度なものとなっている。
更には電池の高温試験時の、膜収縮による短絡を未然に防ぐため、セパレータの低熱収縮応力化が求められている。
【0004】
これまでに収縮応力が小さいセパレータとして多くの提案がなされている。例えば特許文献1の微多孔膜では、TD(機械方向と垂直の方向)の収縮応力を低減する目的で収縮応力緩和工程においてTD方向に0.95倍以下の収縮を行い、安全性が向上することを開示している。しかしこれはTDの収縮応力を小さくした技術であり、MD(機械方向)の収縮応力低減には充分な効果が得られていない。
【0005】
MDの収縮応力が大きいと、特に角型電池などでセパレータがターン部毎に固定された場合、電池の高温試験時にMDの収縮、破膜によって電極が露出することによる短絡が発生する恐れがある。またMDの収縮応力がTD方向への収縮応力にも影響を与え、好ましくない。
そのためMD配向を低減させる方法が必要であり、同一延伸条件でMD最大収縮応力を抑えることを目的に、特許文献2ではアクリル樹脂について、特許文献3では熱可塑性樹脂についてそれぞれ圧延をすることなくシートを成型することでMDの収縮応力が押さえられることを報告している。
しかしながらその方法だけでは今のポリオレフィン製微多孔膜へのニーズに応えるには不充分であった。
【0006】
つまり、最近のポリオレフィン製微多孔膜製造法の傾向として、微多孔膜の耐熱性・機械的強度向上等のために、より高分子量のポリオレフィンが用いられてきている。特に最近では超高分子量のポリオレフィンが用いられてきているため、樹脂粘度が増加し、キャスト時にMDの配向がより高くなったり、その高い粘度のために成膜しにくい傾向にある。この対策としては例えばキャスト時のロール間にバンクがないよう成膜したり、スリーブベルトによる成膜法が取られてはいるが、成膜が不安定で膜厚分布が悪くなったり、シートがロール上で蛇行してしまったりしていた。
【0007】
【特許文献1】
特開2001−81221号公報
【特許文献2】
特開2002−3620号公報
【特許文献3】
特開平9−164581号公報
【0008】
【発明が解決しようとする課題】
本発明は、リチウムイオン二次電池用セパレータとして好適な、基本的性能を保持しつつ、MDの収縮応力が小さいポリオレフィン製微多孔膜を安定して提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は前記課題を解決したものである。即ち、本発明は、下記の通りである。
(1)(A)ポリオレフィンと可塑剤を混練し、熱溶液としてTダイから押出し、2本のロールの間に狭持し、冷却後ゲル状シートとする工程の後、(B)そのゲル状シートを延伸する工程を経て、(C)延伸後可塑剤を抽出する工程を含む微多孔膜の製造方法であって、(A)工程において、第1ロールの周速度Avと第2ロールの周速度Bvが、下記式(1)を満足することを特徴とする微多孔膜の製造方法。
2 ≧ Av/Bv > 1(1)
(2)(A)の工程において、第1ロールと第2ロールとの間にバンク(樹脂溜り)の発生がないことを特徴とする前記(1)記載の微多孔膜の製造方法。
(3)(A)の工程において、1つ以上のロールにシートを止着する係止手段を設けることを特徴とする前記(1)、または(2)記載の微多孔膜の製造方法。
【0010】
【発明の実施の形態】
本発明について、特にその好ましい実施形態を中心に、具体的に説明する。
本発明の特徴はキャスト時の製膜方法に有り、すわなち、キャストをするときの第1ロールの周速度Avと第2ロールの周速度Bvの速度比Av/Bvは1より大きいことが必要であり、速度比Av/Bvが2を超えると成膜安定性にかけ、また、理由は定かではないが、速度比Av/Bvが1を超えると、MD方向の配向が小さくなり更に膜厚分布が改善される傾向にある。したがって、速度比Av/Bvが1より大きく2以下であることが必要であり、より好ましくは1より大きく1.2以下にすることが好ましい。
【0011】
ここで、第1ロールとは、熱溶液がTダイから押出された後、最初に狭持される2本のロールのうち、ゲル状シートと接触する部分が第2ロールより小さい方のロールのことを指し、第2ロールは、ゲル状シートと接触する部分が第1ロールより大きい方のロールで、後の工程にゲル状シートを送る役割を果たすロールのことを指す。同様に必要があれば、Tダイから近い方から第3ロール、第4ロールとしたロールを追加することができる。第3ロールがTダイの真下にあるときは、周速度の速い方のロールを第1ロール、周速度の遅い方のロールを第2ロールとする。
【0012】
ゲル状シートを狭持するためには、第1ロールと第2ロールは逆回転させることが必要であり、それぞれの周速度は逆方向の速度である。このときの第2ロール周速度は、ポリオレフィン熱溶液の押出し量、ダイス形状、膜厚、膜幅などにもよるが、生産性と成膜制御性を両立させる観点から、押出し量が20kg/h換算で0.1以上20m/分以下が好ましく、より好ましくは0.3以上15m/分以下、さらに好ましくは0.5以上5m/分以下である。
【0013】
キャストする際には2本のロール間にポリオレフィン熱溶液のバンクがあってもなくてもよいが、バンクがないとシートが圧延されにくくなりMD方向の配向が小さくなるという理由からないほうが好ましい。
本発明でいうバンクとは、2本のロールに挟まれたポリオレフィン熱溶液があまることで、樹脂溜りとして2本のロール間にあるものをいい、一般に次の二つのような方法をとることで、2本のロール間にバンクがない状態にすることができる。
【0014】
(1)一定の押出し量、押出し条件下で、2本のロール間にバンクがある状態から、2本のロール間の距離を広げることで、ポリオレフィン熱溶液をロール間にあまらせないようにする。
(2)一定の押出し量、押出し条件下で、2本のロール間にバンクがある状態から、第1及び第2ロール周速度を上げ、ポリオレフィン熱溶液の引き取り速度を上げることで、ポリオレフィン熱溶液をロール間にあまらせないようにする。
【0015】
また、本発明でいう止着する係止手段とは、ポリオレフィン熱溶液もしくはシートが、引取りロールなどで引っ張られたり、押出し機の押出し量変動等が起きてもロール上で滑らせないこと、もしくはシートの滑りを軽減させることを主たる目的に施される手段である。
ここでいう滑らない状態とは、シートと接触するロールの周速度がシートの走行速度と同じであるか、シートと接触するロールとシートが、速度の違いによる縦や横方向の不連続的なズレを生じることのない状態をいい、本発明においてはシートと接触するロールと、シートとの速度比が0.9以上1.1以下である範囲をいう。また、滑っている状態から各々の速度が少しでも近づいたときは滑りが軽減されたといえ、滑っている状態から何らかの係止手段の導入によって各々の速度が近づく度合いが大きければ、その係止手段の滑り止め効果は高いという。
【0016】
このような係止手段は様々あり、使用に際しては特に限定はしないが、中でも凹凸加工が滑りの軽減に高い効果をもっているため好ましい。
ここでいう凹凸加工とは、材料の表面に起伏を生じさせる加工をいい、加工方法の1例を挙げると、ブラスト加工、歯車形状加工、エンボス加工、ローレット目加工等がある。ロールに付ける凹凸加工法においては特に限定しないが、ローレット目が加工も容易で滑りの低減効果も高いので好ましい。
【0017】
本発明の止着する係止手段はロールの全面に付与してもよいし一部でもよい。押しあとが残るという観点から両端の一部に付与することが望ましいが、シートに係る位置に施さなければ効果がない。用途によっては全面に付与しても良い。この係止手段を施すロールの素材は特に限定はしないが、耐久性の高い金属が好ましく、係止手段を施すロールの位置、数も特に限定しないが、第3ロールに設けるのが滑り軽減の効果が高く好ましい。
【0018】
また、ロールに温調機能を持たせシートの徐冷やアニーリング処理をしても良い。温調は誘電加熱でも熱溶媒加熱でもよいが、伝熱性のよい水やオイルといった流体を用いる熱溶媒加熱が好ましく、高温まで用いることのできるオイル温調がより好ましい。
また、シートへの滑り止め効果が発現すれば、ロール間でシートを圧着してもしなくても良いが、確実に止着させるためには圧着することが望ましい。
【0019】
本発明における延伸後フィルムのTD方向の膜厚分布は4μm以下が好ましく、より好ましくは2μm以下である。4μmより大きいと目的の厚みの製品収率が悪く好ましくない。
本発明における微多孔膜の突刺強度は、1N/25μm以上20N/25μm以下が好ましく、より好ましくは3N/25μm以上10N/25μm以下である。
【0020】
また、本発明における微多孔膜のMD最大収縮応力は0.1MPa以上10MPa以下が好ましく、突刺強度が7N/25μmになるように成膜した場合は、0.5以上5MPa以下が好ましく、0.7以上1.5MPa以下の範囲がより好ましい。0.5MPaより小さいと必然的にTD方向の収縮応力が大きくなり、電池組み立て時に膜収縮による短絡が発生したり電池の高温試験時に膜収縮による短絡が発生する恐れがある。5MPaより大きいと例えば角型電池などでセパレータがターン部毎に固定された場合、電池の高温試験時にMDの収縮、破膜によって電極が露出することによる短絡が発生する恐れがある。
【0021】
本発明の微多孔膜は、例えば、以下の(a)〜(d)の工程を含む製造方法により得られる。
(a)ポリオレフィン及び可塑剤からなる混合物を溶融混練し、熱溶液とする。
(b)熱溶液を押出し、ゲル状シートに成型して冷却固化させる。
(c)得られたゲル状シートを延伸する。
(d)延伸後、可塑剤を抽出する。
【0022】
本発明で使用されるポリオレフィンとは、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセンおよび1−オクテンのホモ重合体、または共重合体であって、上記重合体の混合物でもかまわない。多孔膜の性能の観点から、ポリエチレンおよびその共重合体が好ましい。
ここでいう可塑剤とは、沸点以下の温度でポリオレフィンと均一な溶液を形成しうる有機化合物の事であり、具体的にはデカリン、キシレン、ジオクチルフタレート、ジブチルフタレート、ステアリルアルコール、オレイルアルコール、デシルアルコール、ノニルアルコール、ジフェニルエーテル、n−デカン、n−ドデカン、パラフィン油等が挙げられる。このうちパラフィン油、ジオクチルフタレートが好ましい。可塑剤の割合は特に限定されないが、得られる膜の気孔率の観点から20wt%以上が好ましく、粘度の観点から90wt%以下が好ましい。より好ましくは50wt%から70wt%である。
【0023】
この発明で使用される抽出溶媒としては、ポリオレフィンに対して貧溶媒であり、且つ可塑剤に対しては良溶媒であり、沸点がポリオレフィンの融点よりも低いものが望ましい。このような抽出溶媒としては、例えば、n−ヘキサンやシクロヘキサン等の炭化水素類、塩化メチレンや1,1,1−トリクロロエタン等ハロゲン化炭化水素類、エタノールやイソプロパノール等のアルコール類、アセトンや2−ブタノン等のケトン類が挙げられる。この中から選択し、単独若しくは混合して用いられる。
【0024】
上記ポリオレフィン組成物と可塑剤を混練し、熱溶液として押出し冷却後ゲル状シートとする工程は、例えば押出機に樹脂組成物と可塑剤を供給し、200℃程度で溶融混練したあと、通常のハンガーコートダイから結晶化温度以下に温調された冷却ロール上へキャストすることによって連続的にシート化することができる。
ここでいう熱溶液の温度は150〜300℃の範囲であることが好ましい。ゲル状シートの厚さは、延伸倍率や最終段階での微多孔膜の厚さにもよるが、0.1〜3mmが好ましい。熱溶液を押出して冷却する温度としては、10〜130℃が好ましい。
【0025】
延伸工程は可塑剤を抽出する前に少なくとも1回行う。延伸はテンター法による同時二軸延伸が好ましい。延伸温度は常温からポリオレフィンの融点、好ましくは80〜150℃、さらに好ましくは100〜140℃である。延伸倍率は面積倍率で4〜400倍が好ましく、より好ましくは8〜200倍、さらに好ましくは16〜100倍である。セパレータとして十分な強度を確保する観点から延伸倍率は4倍以上、延伸の容易性、気孔率の確保等の観点から400倍以下が好ましい。
【0026】
次に(d)の抽出工程では、前記の抽出溶媒に、(c)で得られた延伸膜を浸漬することにより可塑剤を抽出し、その後充分に乾燥させる。
必要に応じて、熱固定工程を加えることも可能である。この熱固定工程では、可塑剤抽出後の膜を一軸延伸機や同時二軸延伸機を使用して、MD或いはTD方向に延伸後、膜を縮小させることにより、収縮応力の緩和を行う。以上の方法で得られたポリオレフィン製微多孔膜は、必要に応じて、プラズマ照射、界面活性剤含浸或いは塗布、表面グラフト等の表面処理を施すことができる。
以上のような製法で得られたポリオレフィン製微多孔膜は、従来と同一延伸条件でもMDの配向が小さく、更に膜厚の分布も良い。
【0027】
以下、実施例及び比較例によって発明を具体的に説明するが、これらは本発明の範囲を制限しない。本発明で用いた各種物性は、以下の試験方法に基づいて測定した。
(1)膜厚
ダイヤルゲージ(尾崎製作所:「PEACOCK No.25」(商標))にて測定した。
(2)膜厚分布
得られた二軸延伸後フィルム(膜幅58cm)の膜厚をダイヤルゲージにてTD方向に5cm間隔で測定し、この測定をMD方向に連続的に5列行い、最大値および最小値の差を算出した。
【0028】
(3)突刺強度
カトーテック製「KES−G5ハンディー圧縮試験器」(商標)を用いて、針先端の曲率半径0.5mm、突刺速度2mm/secの条件で突刺試験を行い、最大突刺荷重(N)を測定した。測定値に25μm/膜厚を乗じることによって25μm換算突刺強度(N)とした。
【0029】
(4)MD最大収縮応力(MPa)
得られた微多孔膜を、熱機械的分析装置(SHIMADZU TMA−50、商標)を用いて、温度を昇温走査し収縮荷重(N)の測定を行った。測定条件は、サンプル形状;幅3mm×長さ10mm、初期荷重;9.8mN、温度走査範囲30〜200℃、昇温速度;10℃/minである。MD最大収縮応力は、得られた収縮荷重曲線における最大収縮荷重(N)を下記式に代入し算出した。
MD最大収縮応力(Pa)=最大収縮荷重(N)/(A×T)
A:サンプル幅(m)
T:サンプル厚み(m)
【0030】
【実施例】
[実施例1]
Mv30万のHDPE30重量部、Mv200万のUHDPE25重量部、Mv70万のHDPE15重量部、Mv12万のエチレン/プロピレンコポリマー30重量部に、酸化防止剤を 0.3重量部添加して混合物を得た。この混合物を35重量部になるように、二軸押出し機にフィーダーを介して投入した。さらに、流動パラフィンを65重量部となるように、押出し機のシリンダーに注入した。溶融混練は、温度200℃、スクリュー回転数280rpm、吐出量12kg/hの条件で行った。
【0031】
続いて、溶融混練されたポリマー組成物をT−ダイを経てロール上に押出し、第1ロールの周速度が第2ロールの1.2倍となるようにそれぞれ0.72m/分、0.6m/分としてバンクを形成させながらキャストした。
このときの第3ロールの速度Cと、第3ロール上のシートの速度Dとの速度比C/Dは1.12であり、0.9以上1.1以下の範囲ではなく、滑りが観察された。
【0032】
次に、同時二軸テンター延伸機に導き二軸延伸を行った。延伸条件は、MD倍率7.0倍、TD倍率6.4倍、温度120℃である。次に、メチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して可塑剤を抽出除去し、その後メチルエチルケトンを乾燥除去することにより、微多孔膜を得た。得られた微多孔膜について、120℃で熱固定を行った。
【0033】
[実施例2]
第1ロールと第2ロールの周速度をそれぞれ0.84m/分、0.7m/分として、ロール間にバンクがないようキャストする以外は実施例1と同様に行った。
【0034】
[実施例3]
ローレット目加工(JIS B 0951−1962)をロール面積全体の26%分をロールの両端にそれぞれ施した第3ロールで引き取る以外は、実施例1と同様に行った。このときの第3ロールの速度Cと、第3ロール上のシートの速度Dとの速度比C/Dは1.01であり、0.9以上1.1以下の範囲であったため、滑りはみられなかった。
【0035】
[実施例4]
ローレット目加工(JIS B 0951−1962)をロール面積全体の26%分をロールの両端にそれぞれ施した第3ロールで引き取り、第1ロールと第2ロールの周速度をそれぞれ0.84m/分、0.7m/分として、ロール間にバンクがないようキャストする以外は実施例1と同様に行った。
【0036】
[比較例1]
第1ロールと第2ロール周速度をそれぞれ0.6m/分とし、等速にして成型する以外は、実施例1と同様に行った。
【0037】
[比較例2]
第1ロールと第2ロール周速度をそれぞれ0.75m/分とし、等速にして成型する以外は、実施例2と同様に行った。
【0038】
[比較例3]
第1ロールと第2ロール周速度をそれぞれ0.6m/分とし、等速にして成型する以外は、実施例3と同様に行った。
【0039】
[比較例4]
第1ロールと第2ロール周速度をそれぞれ0.75m/分とし、等速にして成型する以外は、実施例4と同様に行った。
【0040】
【表1】

Figure 2004335255
【0041】
上記表1に示すように、実施例で得られた本発明の微多孔膜は、膜厚分布が小さく、MD最大収縮応力も小さい。比較例ではこれらを共に満足させていないことが分かる。
【0042】
【発明の効果】
本発明の方法によれば、熱可塑性樹脂シート作成時に第1ロールを第2ロールの周速度より大きくすることでMD配向の小さい微多孔膜を安定して得ることができ、このときバンクを形成することなく成膜し、ロールにシートを係止する手段を持たせれば更にMDの収縮応力の小さい微多孔膜をより安定して得ることができる。
【図面の簡単な説明】
【図1】キャスト成型機の一例を示す模式図である。
【図2】ローレット目付きロールの一例を示す模式図である。
【符号の説明】
1 T−ダイ
2 第1ロール
3 第2ロール
4 第3ロール
5 バンク(樹脂溜り)
6 熱可塑性樹脂溶液
7 ローレット目加工
8 ロール[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a microporous polyolefin membrane, which is used as a separator for a secondary battery, and particularly suitably used as a separator for a lithium ion secondary battery.
[0002]
[Prior art]
BACKGROUND ART Microporous membranes made of polyolefin are used as separators in various batteries, and are particularly suitably used in lithium-ion secondary batteries, whose demand has been rapidly increasing in recent years. The microporous film made of polyolefin has, as its basic properties, excellent electronic insulation, has ion permeability by impregnation with an electrolyte, has excellent resistance to electrolyte and oxidation, has moderate strength, It has performances such as having a pore closing effect at about ° C, which seems to be the reason why these are preferably used.
[0003]
However, demands for polyolefin microporous membranes have become stricter with intensified performance competition for lithium ion secondary batteries. For example, thinning of a microporous film is indispensable for increasing the capacity and density of a battery, and the film forming technology accompanying this is becoming more advanced year by year.
Further, in order to prevent short circuit due to film shrinkage at the time of high temperature test of the battery, it is required to lower the heat shrinkage stress of the separator.
[0004]
Many proposals have been made so far as separators having a small shrinkage stress. For example, in the microporous membrane of Patent Document 1, in order to reduce the contraction stress in the TD (direction perpendicular to the machine direction), the contraction in the contraction stress relaxation step is 0.95 times or less in the TD direction to improve safety. It is disclosed that. However, this is a technique in which the contraction stress of the TD is reduced, and a sufficient effect has not been obtained in reducing the contraction stress in the MD (machine direction).
[0005]
When the shrinkage stress of the MD is large, especially when the separator is fixed for each turn part in a rectangular battery or the like, a short circuit may occur due to the MD shrinkage and the exposure of the electrode due to the film breakage during the high temperature test of the battery. . Further, the shrinkage stress of MD affects the shrinkage stress in the TD direction, which is not preferable.
Therefore, a method for reducing the MD orientation is required. For the purpose of suppressing the MD maximum shrinkage stress under the same stretching conditions, Patent Document 2 discloses an acrylic resin and Patent Document 3 describes a thermoplastic resin without rolling. Reports that the shrinkage stress of MD can be suppressed by molding.
However, this method alone was not sufficient to meet the current demand for polyolefin microporous membranes.
[0006]
That is, as a tendency of the recent method for producing a microporous membrane made of polyolefin, a higher molecular weight polyolefin is used in order to improve heat resistance and mechanical strength of the microporous membrane. Particularly, since ultrahigh molecular weight polyolefins have recently been used, the viscosity of the resin increases, and the orientation of MD during casting tends to be higher, and film formation tends to be difficult due to the high viscosity. As a countermeasure, for example, a film is formed so that there is no bank between rolls at the time of casting, or a film forming method using a sleeve belt is taken. However, film formation is unstable and film thickness distribution is deteriorated, I meandered on the roll.
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2001-81221 [Patent Document 2]
JP 2002-3620 A [Patent Document 3]
Japanese Patent Application Laid-Open No. Hei 9-164581
[Problems to be solved by the invention]
An object of the present invention is to stably provide a polyolefin microporous membrane having a small MD shrinkage stress while maintaining basic performance, which is suitable as a separator for a lithium ion secondary battery.
[0009]
[Means for Solving the Problems]
The present invention has solved the above problems. That is, the present invention is as follows.
(1) (A) A step of kneading a polyolefin and a plasticizer, extruding from a T-die as a hot solution, sandwiching between two rolls, and forming a gel-like sheet after cooling; A method for producing a microporous membrane, comprising a step of (C) extracting a plasticizer after stretching through a step of stretching a sheet, wherein in the step (A), the peripheral speed Av of the first roll and the peripheral speed of the second roll A method for producing a microporous membrane, wherein the speed Bv satisfies the following expression (1).
2 ≧ Av / Bv> 1 (1)
(2) The method for producing a microporous membrane according to (1), wherein no bank (resin pool) is generated between the first roll and the second roll in the step (A).
(3) The method for producing a microporous membrane according to (1) or (2), wherein in the step (A), a locking means for fixing the sheet to one or more rolls is provided.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be specifically described, particularly focusing on its preferred embodiments.
The feature of the present invention lies in the film forming method at the time of casting, that is, the speed ratio Av / Bv of the peripheral speed Av of the first roll and the peripheral speed Bv of the second roll at the time of casting is larger than 1. If the speed ratio Av / Bv exceeds 2, the film formation stability is affected. Also, although the reason is not clear, if the speed ratio Av / Bv exceeds 1, the orientation in the MD direction becomes small, and the film thickness further increases. The distribution tends to improve. Therefore, the speed ratio Av / Bv needs to be larger than 1 and equal to or smaller than 2, and more preferably, larger than 1 and equal to or smaller than 1.2.
[0011]
Here, the first roll is, of the two rolls that are first sandwiched after the hot solution is extruded from the T-die, a portion of the two rolls in contact with the gel-like sheet that is smaller than the second roll. The second roll refers to a roll having a portion in contact with the gel-like sheet larger than the first roll and serving to send the gel-like sheet to a subsequent process. Similarly, if necessary, it is possible to add third and fourth rolls from the side closer to the T-die. When the third roll is directly below the T-die, the roll with the higher peripheral speed is the first roll, and the roll with the lower peripheral speed is the second roll.
[0012]
In order to hold the gel-like sheet, it is necessary to rotate the first roll and the second roll in reverse, and the peripheral speeds of the respective rolls are opposite to each other. The peripheral speed of the second roll at this time depends on the extrusion amount of the polyolefin hot solution, the die shape, the film thickness, the film width, etc., but from the viewpoint of achieving both productivity and film formation controllability, the extrusion amount is 20 kg / h. It is preferably from 0.1 to 20 m / min in terms of conversion, more preferably from 0.3 to 15 m / min, even more preferably from 0.5 to 5 m / min.
[0013]
At the time of casting, a bank of the polyolefin hot solution may or may not be provided between the two rolls. However, without the bank, it is more preferable that the sheet is not easily rolled and the orientation in the MD direction is reduced.
The bank referred to in the present invention means a resin pool between two rolls as a polyolefin hot solution sandwiched between two rolls, and is generally obtained by the following two methods. And a state where there is no bank between the two rolls.
[0014]
(1) From a state in which there is a bank between two rolls under a constant extrusion amount and extrusion conditions, by increasing the distance between the two rolls, the polyolefin hot solution is prevented from being diffused between the rolls. I do.
(2) From a state where there is a bank between two rolls under a constant amount of extrusion and extrusion conditions, by increasing the peripheral speed of the first and second rolls and increasing the take-up speed of the polyolefin thermal solution, the polyolefin thermal solution is increased. Between rolls.
[0015]
Further, the locking means to be fixed in the present invention, the polyolefin hot solution or sheet is pulled by a take-up roll or the like, or does not slip on the roll even if the extrusion amount variation of the extruder occurs. Alternatively, it is a means mainly applied to reduce the slip of the seat.
The non-slip state here means that the peripheral speed of the roll contacting the sheet is the same as the traveling speed of the sheet, or the roll and the sheet contacting the sheet are discontinuous in the vertical and horizontal directions due to the difference in speed. It refers to a state in which no deviation occurs, and in the present invention, refers to a range in which the speed ratio between the roll contacting the sheet and the sheet is 0.9 or more and 1.1 or less. In addition, when each speed approaches even slightly from the sliding state, it can be said that the slip is reduced.If the degree of each speed approaches by introducing some locking means from the sliding state is large, the locking means The anti-slip effect is high.
[0016]
There are various types of such locking means, and there is no particular limitation on the use of the locking means, but among them, uneven processing is preferable because it has a high effect in reducing slip.
Here, the concavo-convex processing refers to processing that causes undulations on the surface of the material. Examples of the processing method include blast processing, gear shape processing, embossing, and knurling. Although there is no particular limitation on the method of processing the concavities and convexities applied to the roll, knurling is preferable because the processing is easy and the effect of reducing slip is high.
[0017]
The locking means for fixing according to the present invention may be provided on the entire surface of the roll or may be a part thereof. Although it is desirable to apply it to a part of both ends from the viewpoint that the post-press remains, there is no effect unless it is applied to the position related to the sheet. Depending on the application, it may be applied to the entire surface. The material of the roll to which the locking means is applied is not particularly limited, but a metal having high durability is preferable. The position and the number of the rolls to which the locking means are applied are not particularly limited. High effect and preferred.
[0018]
Further, the roll may be provided with a temperature control function, and the sheet may be gradually cooled or annealed. The temperature control may be dielectric heating or hot solvent heating, but hot solvent heating using a fluid such as water or oil having good heat conductivity is preferable, and oil temperature control that can be used up to high temperatures is more preferable.
Further, if the effect of preventing slippage on the sheet is exhibited, the sheet may or may not be pressure-bonded between the rolls. However, it is preferable to press-bond the sheet in order to securely fix it.
[0019]
The film thickness distribution in the TD direction of the stretched film in the invention is preferably 4 μm or less, more preferably 2 μm or less. If it is larger than 4 μm, the product yield of the target thickness is unfavorably low.
The piercing strength of the microporous membrane in the present invention is preferably from 1 N / 25 μm to 20 N / 25 μm, more preferably from 3 N / 25 μm to 10 N / 25 μm.
[0020]
Further, the MD maximum shrinkage stress of the microporous film in the present invention is preferably 0.1 MPa or more and 10 MPa or less, and when formed so that the piercing strength is 7 N / 25 μm, it is preferably 0.5 or more and 5 MPa or less. A range of 7 to 1.5 MPa is more preferable. If it is less than 0.5 MPa, the shrinkage stress in the TD direction inevitably increases, and a short circuit may occur due to film shrinkage during battery assembly or a short circuit may occur due to film shrinkage during a high temperature test of the battery. If the pressure is higher than 5 MPa, for example, when the separator is fixed for each turn portion in a rectangular battery or the like, a short circuit may occur due to the shrinkage of the MD and the exposure of the electrode due to the film breakage during the high temperature test of the battery.
[0021]
The microporous membrane of the present invention is obtained, for example, by a manufacturing method including the following steps (a) to (d).
(A) A mixture comprising a polyolefin and a plasticizer is melt-kneaded to form a hot solution.
(B) The hot solution is extruded, molded into a gel-like sheet, and cooled and solidified.
(C) The obtained gel-like sheet is stretched.
(D) After stretching, the plasticizer is extracted.
[0022]
The polyolefin used in the present invention is a homopolymer or a copolymer of ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and 1-octene. It can be a mixture. From the viewpoint of the performance of the porous membrane, polyethylene and a copolymer thereof are preferred.
The plasticizer as referred to herein is an organic compound capable of forming a uniform solution with a polyolefin at a temperature not higher than the boiling point.Specifically, decalin, xylene, dioctyl phthalate, dibutyl phthalate, stearyl alcohol, oleyl alcohol, decyl Examples include alcohol, nonyl alcohol, diphenyl ether, n-decane, n-dodecane, paraffin oil and the like. Of these, paraffin oil and dioctyl phthalate are preferred. The ratio of the plasticizer is not particularly limited, but is preferably 20 wt% or more from the viewpoint of porosity of the obtained film, and is preferably 90 wt% or less from the viewpoint of viscosity. More preferably, the content is 50 wt% to 70 wt%.
[0023]
The extraction solvent used in the present invention is preferably a poor solvent for the polyolefin and a good solvent for the plasticizer, and has a boiling point lower than the melting point of the polyolefin. Examples of such an extraction solvent include hydrocarbons such as n-hexane and cyclohexane; halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane; alcohols such as ethanol and isopropanol; And ketones such as butanone. It is selected from these and used alone or in combination.
[0024]
The step of kneading the polyolefin composition and the plasticizer, extruding a hot solution into a gel-like sheet after cooling, for example, supplying the resin composition and the plasticizer to an extruder, kneading at about 200 ° C., A continuous sheet can be formed by casting from a hanger coat die onto a cooling roll adjusted to a crystallization temperature or lower.
Here, the temperature of the hot solution is preferably in the range of 150 to 300 ° C. The thickness of the gel-like sheet depends on the stretching ratio and the thickness of the microporous membrane in the final stage, but is preferably 0.1 to 3 mm. The temperature at which the hot solution is extruded and cooled is preferably from 10 to 130 ° C.
[0025]
The stretching step is performed at least once before extracting the plasticizer. The stretching is preferably simultaneous biaxial stretching by a tenter method. The stretching temperature is from room temperature to the melting point of the polyolefin, preferably 80 to 150 ° C, more preferably 100 to 140 ° C. The stretching ratio is preferably from 4 to 400 times, more preferably from 8 to 200 times, even more preferably from 16 to 100 times, in area ratio. The stretching ratio is preferably 4 times or more from the viewpoint of securing sufficient strength as a separator, and 400 times or less from the viewpoint of easiness of stretching and porosity.
[0026]
Next, in the extraction step (d), the plasticizer is extracted by immersing the stretched film obtained in (c) in the above-mentioned extraction solvent, and then sufficiently dried.
If necessary, a heat setting step can be added. In the heat setting step, the film after the extraction of the plasticizer is stretched in the MD or TD direction using a uniaxial stretching machine or a simultaneous biaxial stretching machine, and then the film is contracted to reduce the shrinkage stress. The polyolefin microporous film obtained by the above method can be subjected to surface treatment such as plasma irradiation, surfactant impregnation or application, surface grafting, etc., as necessary.
The polyolefin microporous membrane obtained by the above-described production method has a small MD orientation and a good film thickness distribution even under the same stretching conditions as before.
[0027]
Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but these do not limit the scope of the present invention. Various physical properties used in the present invention were measured based on the following test methods.
(1) Film thickness was measured with a dial gauge (Ozaki Seisakusho: "PEACK No. 25" (trademark)).
(2) Film thickness distribution The film thickness of the obtained biaxially stretched film (film width 58 cm) was measured at intervals of 5 cm in the TD direction using a dial gauge, and this measurement was continuously performed in five rows in the MD direction. The difference between the value and the minimum was calculated.
[0028]
(3) Puncture strength A puncture test was performed using a “KES-G5 Handy Compression Tester” (trademark) manufactured by Kato Tech under the conditions of a radius of curvature of the needle tip of 0.5 mm and a puncture speed of 2 mm / sec, and a maximum puncture load ( N) was measured. The measured value was multiplied by 25 μm / film thickness to obtain a 25 μm converted puncture strength (N).
[0029]
(4) Maximum MD shrinkage stress (MPa)
The temperature of the obtained microporous membrane was measured using a thermomechanical analyzer (SHIMADZU TMA-50, trade name), and the shrinkage load (N) was measured. The measurement conditions are as follows: sample shape; width 3 mm × length 10 mm, initial load: 9.8 mN, temperature scanning range 30 to 200 ° C., heating rate: 10 ° C./min. The MD maximum shrinkage stress was calculated by substituting the maximum shrinkage load (N) in the obtained shrinkage load curve into the following equation.
MD maximum shrinkage stress (Pa) = maximum shrinkage load (N) / (A × T)
A: Sample width (m)
T: Sample thickness (m)
[0030]
【Example】
[Example 1]
0.3 parts by weight of an antioxidant was added to 30 parts by weight of HDPE having a Mv of 300,000, 25 parts by weight of UHDPE having a Mv of 2 million, 15 parts by weight of HDPE having a Mv of 700,000, and 30 parts by weight of an ethylene / propylene copolymer having a Mv of 120,000. This mixture was fed to a twin-screw extruder via a feeder so as to be 35 parts by weight. Further, liquid paraffin was injected into the cylinder of the extruder so as to be 65 parts by weight. Melt kneading was performed at a temperature of 200 ° C., a screw rotation speed of 280 rpm, and a discharge rate of 12 kg / h.
[0031]
Subsequently, the melt-kneaded polymer composition was extruded onto a roll through a T-die, and the peripheral speed of the first roll was 0.72 m / min and 0.6 m, respectively, such that the peripheral speed of the second roll was 1.2 times that of the second roll. / Min while casting to form a bank.
At this time, the speed ratio C / D between the speed C of the third roll and the speed D of the sheet on the third roll is 1.12, which is not in the range of 0.9 or more and 1.1 or less, and slippage is observed. Was done.
[0032]
Next, it was guided to a simultaneous biaxial tenter stretching machine to perform biaxial stretching. The stretching conditions are as follows: MD magnification 7.0 times, TD magnification 6.4 times, and temperature 120 ° C. Next, the mixture was led to a methyl ethyl ketone tank, and was sufficiently immersed in methyl ethyl ketone to extract and remove the plasticizer. Thereafter, methyl ethyl ketone was dried and removed to obtain a microporous membrane. The resulting microporous membrane was heat-set at 120 ° C.
[0033]
[Example 2]
Example 1 was repeated except that the peripheral speeds of the first roll and the second roll were set to 0.84 m / min and 0.7 m / min, respectively, and that there was no bank between the rolls.
[0034]
[Example 3]
The knurling (JIS B 0951-1962) was carried out in the same manner as in Example 1 except that 26% of the entire roll area was pulled off by third rolls provided on both ends of the roll. At this time, the speed ratio C / D between the speed C of the third roll and the speed D of the sheet on the third roll was 1.01, which was in the range of 0.9 or more and 1.1 or less. I didn't see it.
[0035]
[Example 4]
The knurling (JIS B 0951-1962) was taken up by third rolls each having 26% of the entire roll area applied to both ends of the rolls, and the peripheral speeds of the first roll and the second roll were each 0.84 m / min. The operation was performed in the same manner as in Example 1 except that the casting was performed so that there was no bank between the rolls at 0.7 m / min.
[0036]
[Comparative Example 1]
The same operation as in Example 1 was performed, except that the peripheral speed of the first roll and the second roll was 0.6 m / min, respectively, and molding was performed at a constant speed.
[0037]
[Comparative Example 2]
The same operation as in Example 2 was performed, except that the peripheral speed of the first roll and the second roll was 0.75 m / min, respectively, and molding was performed at a constant speed.
[0038]
[Comparative Example 3]
Example 3 was carried out in the same manner as in Example 3, except that the peripheral speed of the first roll and the second roll was 0.6 m / min, and molding was performed at a constant speed.
[0039]
[Comparative Example 4]
Example 4 was carried out in the same manner as in Example 4, except that the first roll and the second roll had a peripheral speed of 0.75 m / min, respectively, and were molded at a constant speed.
[0040]
[Table 1]
Figure 2004335255
[0041]
As shown in Table 1, the microporous film of the present invention obtained in the examples has a small film thickness distribution and a small MD maximum shrinkage stress. It can be seen that both of these are not satisfied in the comparative example.
[0042]
【The invention's effect】
According to the method of the present invention, a microporous film having a small MD orientation can be stably obtained by making the first roll greater than the peripheral speed of the second roll during the preparation of the thermoplastic resin sheet. If the roll is provided with a means for locking the sheet, the microporous film having a smaller MD shrinkage stress can be obtained more stably.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a cast molding machine.
FIG. 2 is a schematic view illustrating an example of a knurled roll.
[Explanation of symbols]
1 T-die 2 First roll 3 Second roll 4 Third roll 5 Bank (resin pool)
6 Thermoplastic resin solution 7 Knurling 8 Roll

Claims (3)

(A)ポリオレフィンと可塑剤を混練し、熱溶液としてTダイから押出し、2本のロールの間に狭持し、冷却後ゲル状シートとする工程の後、(B)そのゲル状シートを延伸する工程を経て、(C)延伸後可塑剤を抽出する工程を含む微多孔膜の製造方法であって、(A)工程において、第1ロールの周速度Avと第2ロールの周速度Bvが、下記式(1)を満足することを特徴とする微多孔膜の製造方法。
2 ≧ Av/Bv > 1(1)
(A) Kneading a polyolefin and a plasticizer, extruding from a T-die as a hot solution, sandwiching between two rolls, and after cooling into a gel-like sheet, (B) stretching the gel-like sheet And (C) extracting the plasticizer after stretching, wherein in the step (A), the peripheral speed Av of the first roll and the peripheral speed Bv of the second roll are increased. And a method for producing a microporous membrane characterized by satisfying the following formula (1).
2 ≧ Av / Bv> 1 (1)
(A)の工程において、第1ロールと第2ロールとの間にバンク(樹脂溜り)の発生がないことを特徴とする請求項1記載の微多孔膜の製造方法。2. The method for producing a microporous membrane according to claim 1, wherein in the step (A), no bank (resin pool) is generated between the first roll and the second roll. (A)の工程において、1つ以上のロールにシートを止着する係止手段を設けることを特徴とする請求項1、または2記載の微多孔膜の製造方法。3. The method for producing a microporous membrane according to claim 1, wherein in the step (A), a locking means for fixing the sheet to one or more rolls is provided.
JP2003129256A 2003-05-07 2003-05-07 Method for producing polyolefin microporous membrane Expired - Fee Related JP4492917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003129256A JP4492917B2 (en) 2003-05-07 2003-05-07 Method for producing polyolefin microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003129256A JP4492917B2 (en) 2003-05-07 2003-05-07 Method for producing polyolefin microporous membrane

Publications (2)

Publication Number Publication Date
JP2004335255A true JP2004335255A (en) 2004-11-25
JP4492917B2 JP4492917B2 (en) 2010-06-30

Family

ID=33505157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129256A Expired - Fee Related JP4492917B2 (en) 2003-05-07 2003-05-07 Method for producing polyolefin microporous membrane

Country Status (1)

Country Link
JP (1) JP4492917B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006056929A (en) * 2004-08-17 2006-03-02 Asahi Kasei Chemicals Corp Method for producing polyolefin fine porous membrane
WO2008069216A1 (en) * 2006-12-04 2008-06-12 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane
JP2010007053A (en) * 2008-05-30 2010-01-14 Asahi Kasei E-Materials Corp Microporous polyolefin film
WO2010101214A1 (en) * 2009-03-06 2010-09-10 国立大学法人 群馬大学 Method for producing super high molecular weight polyethylene film
US7902679B2 (en) 2001-03-05 2011-03-08 Megica Corporation Structure and manufacturing method of a chip scale package with low fabrication cost, fine pitch and high reliability solder bump
US8021976B2 (en) 2002-10-15 2011-09-20 Megica Corporation Method of wire bonding over active area of a semiconductor circuit
JP5979375B2 (en) * 2010-08-31 2016-08-24 国立大学法人群馬大学 Method for producing a porous membrane made of ultrahigh molecular weight polyethylene
CN115207562A (en) * 2022-08-29 2022-10-18 上海恩捷新材料科技有限公司 Diaphragm stretching and fixing device, fixing system, stretching device, diaphragm and diaphragm preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133762A (en) * 1979-04-06 1980-10-17 Asahi Chem Ind Co Ltd Manufacture of separator with horizontal rib
JPH03149748A (en) * 1989-11-02 1991-06-26 Nippon Muki Kk Manufacture of ribbed separator and manufacturing device thereof
JPH03175011A (en) * 1989-12-05 1991-07-30 Ishikawajima Harima Heavy Ind Co Ltd Stock guide in calender device
JPH04224924A (en) * 1990-12-27 1992-08-14 Canon Inc Manufacture of substrate for optical recording medium
JP2000218690A (en) * 1999-01-29 2000-08-08 Toray Ind Inc Method for producing thermoplastic resin sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133762A (en) * 1979-04-06 1980-10-17 Asahi Chem Ind Co Ltd Manufacture of separator with horizontal rib
JPH03149748A (en) * 1989-11-02 1991-06-26 Nippon Muki Kk Manufacture of ribbed separator and manufacturing device thereof
JPH03175011A (en) * 1989-12-05 1991-07-30 Ishikawajima Harima Heavy Ind Co Ltd Stock guide in calender device
JPH04224924A (en) * 1990-12-27 1992-08-14 Canon Inc Manufacture of substrate for optical recording medium
JP2000218690A (en) * 1999-01-29 2000-08-08 Toray Ind Inc Method for producing thermoplastic resin sheet

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8138079B2 (en) 1998-12-21 2012-03-20 Megica Corporation Method of wire bonding over active area of a semiconductor circuit
US7902679B2 (en) 2001-03-05 2011-03-08 Megica Corporation Structure and manufacturing method of a chip scale package with low fabrication cost, fine pitch and high reliability solder bump
US8158508B2 (en) 2001-03-05 2012-04-17 Megica Corporation Structure and manufacturing method of a chip scale package
US9142527B2 (en) 2002-10-15 2015-09-22 Qualcomm Incorporated Method of wire bonding over active area of a semiconductor circuit
US8742580B2 (en) 2002-10-15 2014-06-03 Megit Acquisition Corp. Method of wire bonding over active area of a semiconductor circuit
US8021976B2 (en) 2002-10-15 2011-09-20 Megica Corporation Method of wire bonding over active area of a semiconductor circuit
US8026588B2 (en) 2002-10-15 2011-09-27 Megica Corporation Method of wire bonding over active area of a semiconductor circuit
US9153555B2 (en) 2002-10-15 2015-10-06 Qualcomm Incorporated Method of wire bonding over active area of a semiconductor circuit
JP2006056929A (en) * 2004-08-17 2006-03-02 Asahi Kasei Chemicals Corp Method for producing polyolefin fine porous membrane
WO2008069216A1 (en) * 2006-12-04 2008-06-12 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane
KR20140046029A (en) * 2006-12-04 2014-04-17 아사히 가세이 케미칼즈 가부시키가이샤 Polyolefin microporous membrane
JP5586152B2 (en) * 2006-12-04 2014-09-10 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
KR101723275B1 (en) 2006-12-04 2017-04-04 아사히 가세이 케미칼즈 가부시키가이샤 Polyolefin microporous membrane
JP2010007053A (en) * 2008-05-30 2010-01-14 Asahi Kasei E-Materials Corp Microporous polyolefin film
JPWO2010101214A1 (en) * 2009-03-06 2012-09-10 国立大学法人群馬大学 Method for producing ultra high molecular weight polyethylene film
JP5614746B2 (en) * 2009-03-06 2014-10-29 国立大学法人群馬大学 Method for producing ultra high molecular weight polyethylene film
US9133315B2 (en) 2009-03-06 2015-09-15 National University Corporation Gunma University Method for producing ultrahigh molecular weight polyethylene film
WO2010101214A1 (en) * 2009-03-06 2010-09-10 国立大学法人 群馬大学 Method for producing super high molecular weight polyethylene film
JP5979375B2 (en) * 2010-08-31 2016-08-24 国立大学法人群馬大学 Method for producing a porous membrane made of ultrahigh molecular weight polyethylene
CN115207562A (en) * 2022-08-29 2022-10-18 上海恩捷新材料科技有限公司 Diaphragm stretching and fixing device, fixing system, stretching device, diaphragm and diaphragm preparation method

Also Published As

Publication number Publication date
JP4492917B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
KR101319912B1 (en) Polyethylene microporous membrane, process for production thereof, and battery separator
KR101340396B1 (en) Microporous polyolefin membrane, its production method, battery separator, and battery
KR101342994B1 (en) Polyolefin composition, its production method, and a battery separator made therefrom
KR101389779B1 (en) Polyethylene microporous membrane, process for production thereof, and battery separator
JP6680206B2 (en) Polyolefin microporous membrane, battery separator and battery
KR101716249B1 (en) Polyolefin microporous membrane and method for producing same
KR102266028B1 (en) Multilayer, microporous polyolefin membrane, and production method thereof
JP5979375B2 (en) Method for producing a porous membrane made of ultrahigh molecular weight polyethylene
US20200303705A1 (en) Microporous polyolefin film, separator for battery, and production processes therefor
KR102223395B1 (en) Polyolefin microporous film, separator for non-aqueous electrolyte secondary battery, wound product of polyolefin microporous film, non-aqueous electrolyte secondary battery, and method for producing polyolefin microporous film
KR101231752B1 (en) Method for producing polyolefin microporous film and microporous film
WO2006104165A1 (en) Process for producing microporous polyolefin film and microporous polyolefin film
US20110104468A1 (en) Microporous polyolefin multi layer film and preparing method thereof
JP6100022B2 (en) Method for producing polyolefin microporous membrane
CN110461925B (en) Polyolefin microporous membrane and method for producing polyolefin microporous membrane
US10770707B2 (en) Battery separator and method of manufacturing same
KR20170018329A (en) Polyolefin microporous film, method for producing same and separator for batteries
US20120282514A1 (en) Microporous membranes, methods for making same and their use as battery separator films
KR101852803B1 (en) Method of manufacturing a microporous polyethylene film
JP4492917B2 (en) Method for producing polyolefin microporous membrane
JP6596329B2 (en) Method for producing polyolefin microporous membrane
CN111933873A (en) Diaphragm with uniform aperture and preparation method thereof
JP4925238B2 (en) Method for producing polyolefin microporous membrane
JP4600970B2 (en) Method for producing polyolefin microporous membrane
JP2023012902A (en) Porous film and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060428

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100401

R150 Certificate of patent or registration of utility model

Ref document number: 4492917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees