JP4600970B2 - Method for producing polyolefin microporous membrane - Google Patents

Method for producing polyolefin microporous membrane Download PDF

Info

Publication number
JP4600970B2
JP4600970B2 JP2003399670A JP2003399670A JP4600970B2 JP 4600970 B2 JP4600970 B2 JP 4600970B2 JP 2003399670 A JP2003399670 A JP 2003399670A JP 2003399670 A JP2003399670 A JP 2003399670A JP 4600970 B2 JP4600970 B2 JP 4600970B2
Authority
JP
Japan
Prior art keywords
stretching
magnification
microporous membrane
ratio
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003399670A
Other languages
Japanese (ja)
Other versions
JP2005162773A (en
Inventor
博司 畑山
佳史 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2003399670A priority Critical patent/JP4600970B2/en
Publication of JP2005162773A publication Critical patent/JP2005162773A/en
Application granted granted Critical
Publication of JP4600970B2 publication Critical patent/JP4600970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は電池セパレータとして有効なポリオレフィン微多孔膜の生産性に優れた製造方法に関する。   The present invention relates to a production method excellent in productivity of a polyolefin microporous membrane effective as a battery separator.

ポリオレフィン微多孔膜は、種々の電池用セパレータとして広く使用されている。ポリオレフィン樹脂は有機溶媒に対する耐性に優れ、また電子絶縁性にも優れることなどから、特にリチウムイオン二次電池において多用されている。
近年、携帯機器の多機能化、軽量化が急速に進み、電池には高容量化、高エネルギー密度化が求められ、その達成のためにセパレータには薄膜化が強く望まれている。薄膜化されたセパレータには、厚みの均一性や高温での低収縮性という安全性能が従来以上に要求される。
Polyolefin microporous membranes are widely used as various battery separators. Polyolefin resins are often used particularly in lithium ion secondary batteries because they are excellent in resistance to organic solvents and in electronic insulation.
In recent years, multi-functionalization and weight reduction of portable devices are rapidly progressing, and batteries are required to have high capacity and high energy density, and in order to achieve these, thinning of separators is strongly desired. The thinned separator is required to have safety performance such as uniformity of thickness and low shrinkage at high temperature.

微多孔膜の厚さにムラがある場合、リチウムイオンの透過抵抗が場所によって異なり、電池内での電流分布が不均一となる。特定部分に電流が集中することによりデンドライトの成長を促す可能性や発熱等を引き起こす場合がある。また熱収縮率が大きい場合、電池がなんらかの異常により内部温度が上昇した時に、セパレータの収縮により電極端部が接触する恐れがあり内部短絡を招く可能性がある。電池内でセパレータはMD方向に捲回されており、収縮の起こりやすいTD方向の収縮を抑えることが特に重要である。
主なセパレータの製造方法としてポリマーと可塑剤よりなる組成物から、相分離プロセスにより微多孔膜前駆体を形成せしめ、これに可塑剤抽出除去のプロセスや、さらに延伸のプロセスを組み合わせることにより微多孔膜とする製造方法がある。このような公知技術の中には微多孔膜の厚み均一性改善、収縮性改善についてもいくつか提案されている。
If the thickness of the microporous film is uneven, the lithium ion transmission resistance varies depending on the location, and the current distribution in the battery becomes non-uniform. Concentration of current at a specific portion may cause dendrite growth or heat generation. When the thermal shrinkage rate is large, when the internal temperature of the battery rises due to some abnormality, there is a possibility that the end of the electrode may come into contact with the separator due to the shrinkage, which may cause an internal short circuit. In the battery, the separator is wound in the MD direction, and it is particularly important to suppress shrinkage in the TD direction where shrinkage easily occurs.
As a main separator manufacturing method, a microporous membrane precursor is formed from a composition consisting of a polymer and a plasticizer by a phase separation process. There is a manufacturing method for forming a film. Among such known techniques, several proposals have been made for improving the thickness uniformity and shrinkage of the microporous membrane.

厚み均一性を目的として特許文献1では、ポリオレフィンと溶剤とからなるシート状成形物をベルトプレス機にて圧延処理した後、延伸及び、脱溶剤処理を行うことにより厚みが均一な微多孔膜の製造方法を開示している。特許文献2では、ベルトプレス機での圧延処理における加圧力と加圧時間を規定することにより均一な微多孔膜の製造方法を開示している。しかしながら特許文献1、特許文献2に記載されているような溶剤を70%以上含むようなシートを加熱圧延する場合、シートからの溶剤のブリードアウト量が多く、連続的に均一圧延を実施することは困難であり、安定した品質を維持する事は難しい。さらに圧延と延伸を併用し、圧延倍率を延伸倍率よりも大きくすることにより均一で高強度な微多孔膜を得ているが、ベルトプレス機による高倍率の圧延は、連続製造プロセスにおいて困難である。また特許文献1で開示されている実施例では、厚みばらつき(最大値と最小値の差)が2μm〜8μmであり必ずしも厚み均一性に優れているとは言い難い。   In Patent Document 1, for the purpose of thickness uniformity, a sheet-like molded product made of polyolefin and a solvent is rolled by a belt press machine, and then stretched and desolvated to perform a microporous film having a uniform thickness. A manufacturing method is disclosed. Patent Document 2 discloses a method for producing a uniform microporous film by defining a pressing force and a pressing time in a rolling process using a belt press. However, when a sheet containing 70% or more of the solvent as described in Patent Document 1 or Patent Document 2 is heated and rolled, the amount of bleed out of the solvent from the sheet is large, and uniform rolling is continuously performed. It is difficult to maintain stable quality. Furthermore, a uniform and high-strength microporous film is obtained by using rolling and stretching in combination and making the rolling ratio larger than the stretching ratio, but high-magnification rolling with a belt press machine is difficult in a continuous production process. . Moreover, in the Example currently disclosed by patent document 1, the thickness dispersion | variation (difference of the maximum value and minimum value) is 2 micrometers-8 micrometers, and it cannot be said that it is necessarily excellent in thickness uniformity.

特許文献2では圧延での加圧時間を長くすることで厚みのさらに均一な微多孔膜を得ているが、実施例に開示されているような長い加熱時間を付与するためには生産ライン速度を低下させる、もしくは大規模な設備での実施が必要となり生産性が低い。
また、特許文献3では、一度巻き取られた製品を再度巻き直して平滑にする方法が開示されているが、工程の追加となりセパレータの物性ムラが生じる可能性があり生産性が低い。
低熱収縮性を目的として特許文献4では、特定の温度で熱処理することによりMD方向の熱収縮率が20%以下であり、TD方向の熱収縮率が15%以下である微多孔膜および製造方法を開示しているが、可塑剤抽出後の熱処理により配向を緩和させることは、透過性の低下や厚み不均一性という問題がある。
In Patent Document 2, a microporous film having a more uniform thickness is obtained by increasing the pressing time in rolling. However, in order to provide a long heating time as disclosed in the examples, the production line speed The productivity is low because it is necessary to reduce the energy consumption or to implement in large-scale equipment.
Further, Patent Document 3 discloses a method of rewinding and smoothing a product once wound up, but it adds a process and may cause uneven physical properties of the separator, resulting in low productivity.
For the purpose of low heat shrinkability, Patent Document 4 discloses a microporous film having a heat shrinkage rate of 20% or less in the MD direction and a heat shrinkage rate of 15% or less in the TD direction by heat treatment at a specific temperature and a manufacturing method. However, relaxing the orientation by heat treatment after the plasticizer extraction has a problem of reduced permeability and nonuniform thickness.

また、特許文献5では、延伸工程において、縦延伸倍率と横延伸倍率の比を0.5以上3以下とすることで突刺強度が大きく、裂けにくいポリオレフィン微多孔膜の製造方法を開示している。しかしながら延伸ムラの発生を左右する延伸初期、すなわち面積倍率が4倍未満の延伸過程でのMDおよびTD延伸倍率の関係についてはなんら着目されていない。特許文献5の実施例3,4に記載されているような高MD倍率の逐次延伸ではTD延伸時に延伸ムラが生じる場合がある。実施例1,2に記載されている同時二軸延伸においても、面積倍率が4倍未満の延伸過程におけるMDおよびTD延伸倍率の関係次第では延伸ムラが生じる可能性があるが、全く言及されていない。
特開2000−230072号公報 特開2002−292753号公報 特開平8−39688号公報 特開平9−12756号公報 特開平9−3228号公報
Patent Document 5 discloses a method for producing a polyolefin microporous membrane that has a high puncture strength and is difficult to tear by setting the ratio of the longitudinal draw ratio and the transverse draw ratio to 0.5 or more and 3 or less in the stretching step. . However, no attention has been paid to the relationship between the MD and TD stretch ratios in the initial stage of stretching, which affects the occurrence of stretching unevenness, that is, in the stretching process in which the area ratio is less than 4 times. In sequential stretching at a high MD ratio as described in Examples 3 and 4 of Patent Document 5, stretching unevenness may occur during TD stretching. Even in the simultaneous biaxial stretching described in Examples 1 and 2, stretching unevenness may occur depending on the relationship between the MD and TD stretching ratios in the stretching process in which the area ratio is less than 4 times. Absent.
JP 2000-230072 Japanese Patent Application Laid-Open No. 2002-292753 JP-A-8-39688 Japanese Patent Laid-Open No. 9-12756 Japanese Patent Laid-Open No. 9-3228

本発明は、リチウムイオン二次電池用等のセパレータとして好適に使用し得る、均一な厚み分布と低熱収縮性を併せ持ち、生産性にも優れたポリオレフィン微多孔膜の製造方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a polyolefin microporous membrane that can be suitably used as a separator for a lithium ion secondary battery or the like, has both a uniform thickness distribution and low heat shrinkage, and is excellent in productivity. And

本発明者らは前記課題に対して鋭意研究を重ねた結果、ポリオレフィン微多孔膜の製造方法において、面積倍率が4倍未満の延伸過程では、(MD延伸倍率−1)/(TD延伸倍率−1)>1の関係を満たし、且つ最終的な総面積倍率が4倍以上であることで、厚み分布、及び低熱収縮性に優れた微多孔膜を簡便に製造できることを見出し、本発明を為すに至った。   As a result of intensive studies on the above problems, the inventors of the present invention have made (MD stretching ratio-1) / (TD stretching ratio-) in the process of stretching a polyolefin microporous membrane with an area ratio of less than 4 times. 1) It has been found that a microporous membrane excellent in thickness distribution and low heat shrinkability can be easily produced by satisfying the relationship of> 1 and having a final total area magnification of 4 times or more, thus achieving the present invention. It came to.

すなわち、本発明は下記の通りである。
(1)ポリオレフィン樹脂と可塑剤とを溶融混練し、得られた溶融物をシート状に成形した後、延伸、脱可塑剤処理をするポリオレフィン微多孔膜の製造方法において、面積倍率が4倍未満の延伸過程では、(MD延伸倍率−1)/(TD延伸倍率−1)>1の関係を満たし、且つ最終的な総面積倍率が4倍以上であることを特徴とするポリオレフィン微多孔膜の製造方法。
(2)延伸方法が同時二軸延伸であることを特徴とする(1)記載のポリオレフィン微多孔膜の製造方法。
That is, the present invention is as follows.
(1) In a method for producing a polyolefin microporous membrane in which a polyolefin resin and a plasticizer are melt-kneaded and the resulting melt is formed into a sheet and then subjected to stretching and deplasticizing treatment, the area magnification is less than 4 times. The polyolefin microporous membrane characterized by satisfying the relationship of (MD draw ratio-1) / (TD draw ratio-1)> 1 and having a final total area ratio of 4 times or more. Production method.
(2) The method for producing a polyolefin microporous membrane according to (1), wherein the stretching method is simultaneous biaxial stretching.

本発明の製造方法では、面積倍率が4倍未満の延伸過程では、(MD延伸倍率−1)/(TD延伸倍率−1)>1の関係を満たす条件で延伸を行うことで、均一な厚み分布と低熱収縮性を併せ持ち、生産性にも優れたポリオレフィン微多孔膜の製造方法を提供することができる。   In the production method of the present invention, in the stretching process in which the area ratio is less than 4 times, the film is stretched under the conditions satisfying the relationship of (MD stretch ratio-1) / (TD stretch ratio-1)> 1, thereby obtaining a uniform thickness. It is possible to provide a method for producing a polyolefin microporous membrane having both distribution and low heat shrinkage and excellent productivity.

本発明のポリオレフィン微多孔膜の製造方法について、特にその好ましい形態を中心に、以下詳細に説明する。
本発明において使用するポリオレフィン樹脂とは、通常の押出、射出、インフレーション、及びブロー成形に使用するポリオレフィン樹脂をいい、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、及び1−オクテンのホモ重合体及び共重合体等を使用することができる。また、これらのホモ重合体及び共重合体の群から選んだポリオレフィンを単独、もしくは混合して使用することもできる。前記重合体の代表例としては、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン、アイソタクティックポリプロピレン、アタクティックポリプロピレン、ポリブテン、エチレンプロピレンラバー等が挙げられる。本発明の製造方法によって得られた微多孔膜を電池セパレータとして使用する場合、低融点樹脂であり、かつ高強度の要求性能から、特に高密度ポリエチレンを主成分とする樹脂を使用することが好ましい。
The method for producing a polyolefin microporous membrane of the present invention will be described in detail below, particularly focusing on its preferred form.
The polyolefin resin used in the present invention refers to a polyolefin resin used for normal extrusion, injection, inflation, and blow molding, and includes ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and Homopolymers and copolymers of 1-octene can be used. In addition, polyolefins selected from the group of these homopolymers and copolymers can be used alone or in combination. Representative examples of the polymer include low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, ultrahigh molecular weight polyethylene, isotactic polypropylene, atactic polypropylene, polybutene, and ethylene propylene rubber. . When the microporous membrane obtained by the production method of the present invention is used as a battery separator, it is preferable to use a resin having a high melting point polyethylene as a main component because it is a low-melting-point resin and requires high strength. .

本発明において使用するポリオレフィン樹脂原料及び本発明の微多孔膜の粘度平均分子量は、5万以上1200万未満が好ましく、さらに好ましくは10万以上400万未満、最も好ましくは20万以上200万未満である。粘度平均分子量が5万より小さいと、溶融成形の際のメルトテンションが小さくなり成形性が低下しやすい上に、十分な絡み合いを付与し得難く低強度となりやすい。粘度平均分子量が1200万を越えると、均一な溶融混練を得難い傾向があり、シートの成形性、特に厚み安定性に劣る傾向がある。
なお、本発明で使用されるポリオレフィン組成物には、本発明の利点を損なわない範囲で必要に応じて、フェノール系やリン系やイオウ系等の酸化防止剤、ステアリン酸カルシウムやステアリン酸亜鉛等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料等の公知の添加剤を混合して使用できる。
The viscosity average molecular weight of the polyolefin resin raw material used in the present invention and the microporous membrane of the present invention is preferably from 50,000 to less than 12 million, more preferably from 100,000 to less than 4 million, and most preferably from 200,000 to less than 2 million. is there. When the viscosity average molecular weight is less than 50,000, the melt tension at the time of melt molding becomes small and the moldability tends to be lowered, and it is difficult to impart sufficient entanglement and the strength tends to be low. When the viscosity average molecular weight exceeds 12 million, there is a tendency that uniform melt-kneading is difficult to obtain, and the sheet formability, particularly thickness stability, tends to be inferior.
In addition, the polyolefin composition used in the present invention includes phenolic, phosphorus-based, sulfur-based antioxidants, calcium stearate, zinc stearate, and the like, as necessary, as long as the advantages of the present invention are not impaired. Known additives such as metal soaps, ultraviolet absorbers, light stabilizers, antistatic agents, antifogging agents, and coloring pigments can be mixed and used.

本発明において使用する可塑剤としては、 ポリオレフィン樹脂と混合した際にポリオレフィン樹脂の融点以上において均一溶液を形成しうる不揮発性溶媒であれば良い。例えば、流動パラフィンやパラフィンワックス等の炭化水素類、フタル酸ジオクチルやフタル酸ジブチル等のエステル類、オレイルアルコールやステアリルアルコール等の高級アルコールが挙げられる。特にポリオレフィン樹脂がポリエチレンの場合、流動パラフィンは、ポリエチレンと相溶性の高く延伸時に樹脂と可塑剤の剥離が起こりにくいために均一な延伸を実施しやすく好ましい。   The plasticizer used in the present invention may be any non-volatile solvent that can form a uniform solution above the melting point of the polyolefin resin when mixed with the polyolefin resin. Examples thereof include hydrocarbons such as liquid paraffin and paraffin wax, esters such as dioctyl phthalate and dibutyl phthalate, and higher alcohols such as oleyl alcohol and stearyl alcohol. In particular, when the polyolefin resin is polyethylene, liquid paraffin is preferable because it is highly compatible with polyethylene and is easy to perform uniform stretching because the resin and the plasticizer do not easily peel during stretching.

本発明において使用するポリオレフィン樹脂と可塑剤の比率については、均一な溶融混練が可能な比率であり、シート状の微多孔膜前駆体を形成しうるのに充分な比率であり、かつ生産性を損なわない程度であれば良い。具体的には、ポリオレフィン樹脂と可塑剤からなる組成物中に占めるポリオレフィン樹脂の重量分率は、好ましくは10〜70%、更に好ましくは20〜60%である。ポリオレフィン樹脂の重量分率が10%より小さいと、溶融成形時のメルトテンションが不足しやすく成形性が低下する傾向がある。また延伸時にかかる延伸応力が小さくなり均一延伸が不十分となる場合がある。一方、重量分率が70%を越える場合は、押出し負荷の増大から生産性が向上しにくい。   The ratio of the polyolefin resin and the plasticizer used in the present invention is a ratio capable of uniform melt-kneading, is a ratio sufficient to form a sheet-like microporous membrane precursor, and has a high productivity. It is sufficient if it is not damaged. Specifically, the weight fraction of the polyolefin resin in the composition comprising the polyolefin resin and the plasticizer is preferably 10 to 70%, more preferably 20 to 60%. If the weight fraction of the polyolefin resin is smaller than 10%, the melt tension at the time of melt molding tends to be insufficient, and the moldability tends to be lowered. Moreover, the stretching stress applied during stretching may be reduced, and uniform stretching may be insufficient. On the other hand, when the weight fraction exceeds 70%, it is difficult to improve productivity due to an increase in extrusion load.

本発明においてポリオレフィン樹脂と可塑剤を溶融混練する方法は、ポリオレフィン樹脂を押出機、ニーダー等の樹脂混練装置に投入し、樹脂を加熱溶融させながら任意の比率で可塑剤を導入し、更に樹脂と可塑剤よりなる組成物を混練することにより、均一溶液を得る方法が好ましい。また、予め樹脂と可塑剤を混練したものを投入しても良い。投入するポリオレフィン樹脂の形態は、粉末状、顆粒状、ペレット状の何れでも良い。また、このような方法によって混練する場合は、可塑剤の形態は常温液体であることが好ましい。
押出機としては、単軸スクリュー式押出機、二軸異方向スクリュー式押出機、二軸同方向スクリュー式押出機等が使用できる。特に二軸スクリュー押出し機は、分子鎖の絡み合いを十分に与えるせん断応力をかけられる点で好ましい。溶融混練時の温度は、均一な混練物を得るために140℃以上が好ましく、300℃以下が好ましい。より好ましくは160〜250℃である。
In the present invention, the polyolefin resin and the plasticizer are melt-kneaded by introducing the polyolefin resin into a resin kneading apparatus such as an extruder or kneader, introducing the plasticizer at an arbitrary ratio while heating and melting the resin, A method of obtaining a uniform solution by kneading a composition comprising a plasticizer is preferred. Moreover, what knead | mixed resin and a plasticizer previously may be thrown in. The polyolefin resin to be introduced may be in any form of powder, granules, and pellets. Moreover, when knead | mixing by such a method, it is preferable that the form of a plasticizer is a normal temperature liquid.
As an extruder, a single screw type extruder, a biaxial different direction screw type extruder, a biaxial same direction screw type extruder, etc. can be used. In particular, the twin screw extruder is preferable in that it can apply a shearing stress that sufficiently entangles molecular chains. The temperature at the time of melt kneading is preferably 140 ° C. or higher, and preferably 300 ° C. or lower in order to obtain a uniform kneaded product. More preferably, it is 160-250 degreeC.

本発明において、溶融物を押し出して冷却固化させシート状の微多孔膜前駆体を製造する方法は、樹脂と可塑剤の均一溶液をTダイ等を介してシート状に押し出し、熱伝導体に接触させて樹脂の結晶化温度より充分に低い温度まで冷却することにより行うことが好ましい。本発明では、せん断流れ下で溶融物を押し出した後にシート状に冷却固化させることにより、得られたシートはTD方向に比べMD方向に強く配向している。ポリオレフィンと可塑剤の溶融物は可塑剤が含まれているために、せん断下ではポリオレフィン分子は容易に引き伸ばされやすく、MD方向に配列したシートが得られる。ここで言うMD方向とは、機械方向、すなわちセパレータの連続製膜時の巻き取り方向であり、TD方向とはMD方向に垂直な幅方向のことである。ポリオレフィン溶融物、もしくはポリオレフィン溶液は一般に粘弾性流体であり、せん断速度によりせん断粘度が変化する非ニュートン流体である。粘弾性流体であるがゆえに、せん断速度が小さい時は粘度が一定であるが、せん断速度が大きい場合は粘度が減少する。押し出し時のせん断速度は1秒−1以上1000秒−1以下が好ましく、10秒−1以上800秒−1以下がより好ましい。せん断速度は押出し量に比例しTダイの幅に反比例するために、1秒−1以下の場合は押出し量が少なく製品幅が小さい、すなわち生産速度、生産量が低下する。せん断速度が1秒−1以上では、Tダイ等の内部でのせん断配向が大きく、高度にMD配向し高強度となる傾向がある。さらに分子鎖が溶融配向しているので、結晶化のエントロピー変化が小さくなり、結晶化がより生じやすくなるために高強度が期待できることからも好ましい。せん断速度が1000秒−1以上の場合は、粘度の低下が大きく製膜しにくい場合がある。冷却固化に用いられる熱伝導体としては、金属、水、空気、あるいは可塑剤自身が使用できるが、特に金属製のロールに接触させて冷却する方法が最も熱伝導の効率が高く好ましい。また、金属製のロールに接触させる際に、ロール間で挟み込む等してカレンダー成形または熱間圧延を施すと、更に熱伝導の効率が高まり、またシートが配向して膜強度が増し、シートの表面平滑性も向上するため好ましい。 In the present invention, a method for producing a sheet-like microporous membrane precursor by extruding a melt and cooling and solidifying is performed by extruding a uniform solution of a resin and a plasticizer into a sheet form via a T-die and the like and contacting the heat conductor. And cooling to a temperature sufficiently lower than the crystallization temperature of the resin. In the present invention, by extruding the melt under shear flow and then cooling and solidifying into a sheet shape, the obtained sheet is oriented more strongly in the MD direction than in the TD direction. Since the melt of the polyolefin and the plasticizer contains the plasticizer, the polyolefin molecules are easily stretched under shear, and a sheet arranged in the MD direction is obtained. The MD direction referred to here is the machine direction, that is, the winding direction during continuous film formation of the separator, and the TD direction is the width direction perpendicular to the MD direction. Polyolefin melts or polyolefin solutions are generally viscoelastic fluids and are non-Newtonian fluids whose shear viscosity varies with shear rate. Because of the viscoelastic fluid, the viscosity is constant when the shear rate is low, but the viscosity decreases when the shear rate is high. Shear rate -1 preferably 1000 seconds or less 1 sec -1 or more at the time of extrusion, more preferably 10 sec -1 to 800 sec -1. Since the shear rate is proportional to the extrusion amount and inversely proportional to the width of the T-die, when it is 1 second- 1 or less, the extrusion amount is small and the product width is small, that is, the production speed and the production amount are reduced. When the shear rate is 1 second −1 or more, shear orientation in the inside of the T die or the like is large, and there is a tendency that MD orientation is high and the strength is high. Furthermore, since the molecular chains are melt-oriented, the entropy change in crystallization is reduced, and crystallization is more likely to occur, so that high strength can be expected. When the shear rate is 1000 seconds −1 or more, there is a case where the viscosity is greatly reduced and film formation is difficult. As the heat conductor used for cooling and solidification, metal, water, air, or the plasticizer itself can be used. In particular, a method of cooling by contacting with a metal roll has the highest heat conduction efficiency and is preferable. Also, when contacted with a metal roll, calendering or hot rolling such as sandwiching between rolls further increases the efficiency of heat conduction, and the sheet is oriented to increase the film strength. Since surface smoothness also improves, it is preferable.

本発明では延伸過程に特長がある。延伸過程において、面積倍率が4倍未満の延伸過程では、(MD延伸倍率−1)/(TD延伸倍率−1)>1の関係を満たし、且つ最終的な総面積倍率が4倍以上であることが均一な厚み分布と低熱収縮性を併せ持つために必須である。面積倍率とはMD延伸倍率とTD延伸倍率の積のことである。MD延伸倍率、TD延伸倍率とは、微多孔膜前駆体を1としたときの延伸倍率で、逐次延伸の場合も、微多孔膜前駆体の原反に対する倍率と定義する。本発明の要件、「面積倍率が4倍未満の延伸過程では、(MD延伸倍率−1)/(TD延伸倍率−1)>1の関係を満たす」ということは、図1で折れ線または曲線が、MD延伸倍率>TD延伸倍率、かつMD延伸倍率<4/TD延伸倍率の領域を通過することを意味する。   The present invention is characterized by the stretching process. In the stretching process, in the stretching process in which the area ratio is less than 4 times, the relationship of (MD stretching ratio-1) / (TD stretching ratio-1)> 1 is satisfied, and the final total area ratio is 4 times or more. Is essential to have both a uniform thickness distribution and low heat shrinkage. The area magnification is the product of the MD stretch ratio and the TD stretch ratio. The MD stretch ratio and the TD stretch ratio are the stretch ratios when the microporous membrane precursor is 1, and are defined as the ratio of the microporous membrane precursor to the original fabric even in the case of sequential stretching. The requirement of the present invention, “in the drawing process where the area magnification is less than 4 times, (MD draw ratio−1) / (TD draw ratio−1)> 1” is satisfied. , MD stretch ratio> TD stretch ratio, and MD stretch ratio <4 / TD.

面積倍率が4倍未満の延伸過程では、(MD延伸倍率−1)/(TD延伸倍率−1)は、1.2以上20以下の範囲が好ましく、1.4以上10以下の範囲がさらに好ましい。値が1.2以上の場合は、厚みムラ、TD収縮ともにさらに良くなる傾向があり好ましい。20より大きい場合は、MD方向の延伸応力があまりに大きくなり、延伸時に膜を保持しているチャック部分から膜が外れてしまう懸念や保持圧の増加による膜破れの懸念があり、安定した延伸が困難な場合がある。また最終的な総面積倍率は、9倍以上100倍以下の範囲が好ましく、9倍以上50倍以下の範囲がさらに好ましい。総面積倍率が9倍未満の場合は、膜に十分な強度を付与できない場合があり、100倍以上では膜破断により生産性が低下する可能性がある。   In the stretching process in which the area ratio is less than 4 times, (MD draw ratio-1) / (TD draw ratio-1) is preferably in the range of 1.2 to 20, more preferably in the range of 1.4 to 10. . A value of 1.2 or more is preferable because both thickness unevenness and TD shrinkage tend to be improved. If it is larger than 20, the stretching stress in the MD direction becomes too large, and there is a concern that the film may be detached from the chuck portion holding the film during stretching, or there is a concern of film breakage due to an increase in holding pressure, and stable stretching It can be difficult. The final total area magnification is preferably in the range of 9 to 100 times, more preferably in the range of 9 to 50 times. When the total area magnification is less than 9 times, sufficient strength may not be imparted to the film, and when it is 100 times or more, productivity may be reduced due to film breakage.

本発明の製膜方法により得られるシート状の微多孔膜前駆体は、ポリオレフィン樹脂が、折り畳まれたラメラや伸び切り鎖からなる微結晶、微結晶が大きく成長した球晶、結晶間を繋ぐ非晶部として存在し、可塑剤が、結晶間、球晶間、非晶部内部に存在した不均一な構造である。これらのシートを延伸した際に、延伸応力が大きい場合は、結晶状態の折り畳まれたラメラを引き伸ばすために十分なエネルギーを付与できるため均一な構造が得られやすい。延伸応力が小さい場合は、折り畳まれたラメラを引き伸ばすために十分なエネルギーを付与できずに、ポリオレフィン結晶間のタイ分子や細いフィブリルなどの弱い部分に応力が集中するために延伸ムラが生じやすい傾向がある。延伸ムラが生じると言うことは、高度に延伸が施された部分と施されていない部分が存在し、厚みや孔径、透過性などが不均一となる原因になる。簡潔に述べると延伸応力が大きいと均一に延伸が施される。   The sheet-like microporous membrane precursor obtained by the film-forming method of the present invention comprises a polyolefin resin, a microcrystal consisting of a folded lamella or an extended chain, a spherulite with a large growth of microcrystals, a non-bonding crystal It is a heterogeneous structure that exists as crystal parts and the plasticizer exists between crystals, between spherulites, and inside amorphous parts. When these sheets are stretched, if the stretching stress is large, sufficient energy can be applied to stretch the folded lamella in the crystalline state, so that a uniform structure is easily obtained. When the stretching stress is small, sufficient energy cannot be applied to stretch the folded lamella, and the stress concentrates on weak parts such as tie molecules and thin fibrils between polyolefin crystals, which tends to cause uneven stretching. There is. When stretching unevenness occurs, there are a portion that has been highly stretched and a portion that has not been stretched, which causes uneven thickness, pore diameter, permeability, and the like. Briefly, stretching is performed uniformly when the stretching stress is large.

本発明の製膜方法により得られるシート状の微多孔膜前駆体は、TD方向の延伸応力が小さく、MD方向の延伸応力が著しく大きい。これはシート製膜時の配向の異方性によるものである。延伸応力の大きいMD方向への延伸は、均一な延伸が可能であり、延伸応力の小さいTD方向の延伸は、不均一な延伸となりやすい。延伸後に均一な厚みの微多孔膜を得るためには、面積倍率が4倍未満の延伸過程で延伸応力の大きいMD方向の延伸をTD方向の延伸よりも優先的に施すことが必要である。具体的には、面積倍率が4倍未満の延伸過程で、(MD延伸倍率−1)/(TD延伸倍率−1)>1の関係で延伸倍率を制御することにより均一な延伸を施すことが可能である。面積倍率が4倍以上に達した後は、MD方向、TD方向をどちらを優先しても均一な延伸が可能である。これは面積倍率が4倍以上に達すると球晶内のラメラは引き伸ばされて網目状の均一なフィブリル構造となり得るためである。本発明を満たす範囲であれば、同時二軸延伸に、逐次延伸、多段延伸、多数回延伸等のいずれの方法を併用することも構わないが、延伸が同時二軸延伸であることが均一延伸の観点から最も好ましい。ここでいう同時二軸延伸とはMD方向の延伸とTD方向の延伸が同時に施される手法であり、各方向の変形率は異なっても良い。逐次二軸延伸とは、MD方向、またはTD方向の延伸が独立して施される手法であり、MD方向、またはTD方向に延伸がなされている際、他方向が非拘束状態、または定長に固定されている状態である。   The sheet-like microporous membrane precursor obtained by the film forming method of the present invention has a small stretching stress in the TD direction and a remarkably large stretching stress in the MD direction. This is due to the anisotropy of the orientation during film formation. Stretching in the MD direction with a large stretching stress can be performed uniformly, and stretching in the TD direction with a small stretching stress tends to be non-uniform stretching. In order to obtain a microporous film having a uniform thickness after stretching, it is necessary to preferentially perform stretching in the MD direction with a large stretching stress over stretching in the TD direction in a stretching process with an area ratio of less than 4 times. Specifically, in the stretching process in which the area ratio is less than 4 times, uniform stretching can be performed by controlling the stretching ratio in the relationship of (MD stretching ratio-1) / (TD stretching ratio-1)> 1. Is possible. After the area magnification reaches 4 times or more, uniform stretching is possible regardless of which of the MD direction and the TD direction is given priority. This is because when the area magnification reaches 4 times or more, the lamellae in the spherulites are stretched to form a network-like uniform fibril structure. As long as the present invention is satisfied, any method such as sequential stretching, multi-stage stretching, and multiple-time stretching may be used in combination with simultaneous biaxial stretching, but uniform stretching is that the stretching is simultaneous biaxial stretching. From the viewpoint of Here, the simultaneous biaxial stretching is a method in which stretching in the MD direction and stretching in the TD direction are simultaneously performed, and the deformation rate in each direction may be different. Sequential biaxial stretching is a technique in which stretching in the MD direction or TD direction is performed independently. When stretching is performed in the MD direction or TD direction, the other direction is in an unconstrained state or a constant length. It is in a fixed state.

さらに理由は定かではないが、面積倍率が4倍未満の延伸過程で、(MD延伸倍率−1)/(TD延伸倍率−1)>1の関係で延伸倍率を制御した時の面積倍率4倍以上の微多孔膜では、突刺強度が同程度でありながらもTD方向の熱収縮が小さい微多孔膜が得ることができる。
延伸の温度は、ポリオレフィン微多孔膜の融点Tm ℃より50℃低い温度からTm ℃未満の範囲の温度が好ましく、更に好ましくはポリオレフィン微多孔膜の融点Tm ℃より40℃低い温度からTm ℃未満の範囲の温度である。延伸温度がTm℃より50℃低い温度未満であると延伸性が低下する傾向があり、また延伸後の歪み成分が残りやすく、高温における収縮の点で不十分となりやすい。延伸温度がTm℃以上であると、微多孔膜が融解し透過性能を損なう傾向がある。
Furthermore, although the reason is not clear, the area ratio is 4 times when the draw ratio is controlled in the relationship of (MD draw ratio-1) / (TD draw ratio-1)> 1 in the drawing process where the area ratio is less than 4 times. With the above microporous film, it is possible to obtain a microporous film having a similar puncture strength but small thermal shrinkage in the TD direction.
The stretching temperature is preferably a temperature in the range of 50 ° C. lower than the melting point Tm ° C. of the polyolefin microporous membrane to less than Tm ° C., more preferably 40 ° C. lower than the melting point Tm ° C. of the polyolefin microporous membrane to less than Tm ° C. The temperature in the range. If the stretching temperature is less than 50 ° C. lower than Tm ° C., the stretchability tends to decrease, and the strain component after stretching tends to remain, which tends to be insufficient in terms of shrinkage at high temperatures. When the stretching temperature is Tm ° C. or higher, the microporous membrane tends to melt and impair the permeation performance.

可塑剤を抽出する方法はバッチ式、連続式のいずれでもよいが、抽出溶剤に微多孔膜を浸漬することにより可塑剤を抽出し、充分に乾燥させ、可塑剤を微多孔膜から実質的に除去することが必要である。微多孔膜の収縮を抑えるために、浸漬、乾燥の一連の工程中に微多孔膜の端部を拘束することは好ましい。また、抽出後の微多孔膜中の可塑剤残存量は1重量%未満にすることが好ましい。
本発明において使用する抽出溶剤は、ポリオレフィンに対して貧溶媒であり、かつ可塑剤に対して良溶媒であり、沸点がポリオレフィン微多孔膜の融点より低いことが望ましい。このような抽出溶剤としては、 例えば、n−ヘキサンやシクロヘキサン等の炭化水素類、塩化メチレンや1,1,1−トリクロロエタン等のハロゲン化炭化水素類、エタノールやイソプロパノール等のアルコール類、ジエチルエーテルやテトラヒドロフラン等のエーテル類、アセトンや2−ブタノン等のケトン類が挙げられる。
The method of extracting the plasticizer may be either a batch type or a continuous type. However, the plasticizer is extracted by immersing the microporous membrane in an extraction solvent and sufficiently dried, so that the plasticizer is substantially removed from the microporous membrane. It is necessary to remove. In order to suppress the shrinkage of the microporous membrane, it is preferable to constrain the end of the microporous membrane during a series of steps of immersion and drying. Further, the residual amount of plasticizer in the microporous membrane after extraction is preferably less than 1% by weight.
The extraction solvent used in the present invention is preferably a poor solvent for polyolefin and a good solvent for plasticizer, and its boiling point is preferably lower than the melting point of the polyolefin microporous membrane. Examples of such extraction solvents include hydrocarbons such as n-hexane and cyclohexane, halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane, alcohols such as ethanol and isopropanol, diethyl ether, Examples include ethers such as tetrahydrofuran and ketones such as acetone and 2-butanone.

本発明の製造方法において、本発明の利点を損なわない範囲で各延伸過程に引き続いて、または後に熱固定及び熱緩和等の熱処理工程を加えることは、微多孔膜の収縮をさらに抑制する効果がある。
また、本発明の製造方法においては、本発明の利点を損なわない範囲で後処理を行っても良い。後処理としては、例えば、界面活性剤等による親水化処理、及び電離性放射線等による架橋処理等が挙げられる。
本発明の製造方法により製造される微多孔膜の最終的な膜厚は1〜100μmが好ましく、5〜50μmがさらに好ましい。膜厚が1μmより小さいと機械強度が不十分となる場合があり、また、100μmより大きいとセパレータの占有体積が増えるため、電池の高容量化の点において不利となる傾向がある。
In the production method of the present invention, adding a heat treatment step such as heat fixation and thermal relaxation after each stretching step within a range not impairing the advantages of the present invention has the effect of further suppressing the shrinkage of the microporous membrane. is there.
Moreover, in the manufacturing method of this invention, you may post-process in the range which does not impair the advantage of this invention. Examples of the post-treatment include a hydrophilic treatment with a surfactant and the like, and a crosslinking treatment with ionizing radiation.
The final film thickness of the microporous membrane produced by the production method of the present invention is preferably 1 to 100 μm, and more preferably 5 to 50 μm. If the film thickness is smaller than 1 μm, the mechanical strength may be insufficient, and if it is larger than 100 μm, the occupied volume of the separator increases, which tends to be disadvantageous in terms of increasing the battery capacity.

気孔率は、好ましくは25%〜60%、より好ましくは30%〜55%の範囲である。気孔率が25%未満では、透過性が低下しやすく、一方60%を超えると機械強度が低下しやすい。本発明の微多孔膜の突き刺し強度は、3.0N以上が好ましく、4.0N以上が更に好ましい。3.0N未満では、電池用セパレータとして使用した場合に、脱落した活物質等によってセパレータが破れやすくなる。   The porosity is preferably in the range of 25% to 60%, more preferably 30% to 55%. If the porosity is less than 25%, the permeability tends to decrease, while if it exceeds 60%, the mechanical strength tends to decrease. The puncture strength of the microporous membrane of the present invention is preferably 3.0N or more, and more preferably 4.0N or more. If it is less than 3.0N, when used as a battery separator, the separator is easily broken by the dropped active material or the like.

次に、実施例によって本発明をさらに詳細に説明するが、これらは本発明の範囲を制限しない。実施例における試験方法は次の通りである。
<微多孔膜の評価>
(1)膜厚
ダイヤルゲージ(尾崎製作所:商標、PEACOCK No.25)にて測定した。MD300mm×TD300mmのサンプルを微多孔膜から切り出し、格子状に16箇所(4点×4点)の膜厚を測定した。得られた平均値を膜厚とした。
(2)突刺強度
カトーテック製、商標、KES−G5ハンディー圧縮試験器を用いて、針先端の曲率半径0.5mm、突刺速度2mm/secの条件で突刺試験を行い、最大突刺荷重を突刺強度(N)とした。
(3)熱収縮率
MD100mm×TD100mmのサンプルを微多孔膜から切り出し120℃下のオーブン中に水平に置き1時間放置した。その後、空冷しTD長さ(mm)を測定した。
収縮率(%)=(1−TD長さ(mm)/100)×100
(4)厚みムラ
MD360mm×TD360mmのサンプルを微多孔膜から切り出し、格子状に16箇所(4点×4点)の膜厚を測定した。得られた膜厚の標準偏差を厚みムラとした。
厚みムラ(μm)=(Σ(各箇所の膜厚−膜厚平均値)/15)1/2
The invention will now be described in more detail by way of examples, which do not limit the scope of the invention. The test methods in the examples are as follows.
<Evaluation of microporous membrane>
(1) Film thickness Measured with a dial gauge (Ozaki Seisakusho: trademark, PEACOCK No. 25). A sample of MD 300 mm × TD 300 mm was cut out from the microporous membrane, and the film thickness at 16 points (4 points × 4 points) in a lattice shape was measured. The average value obtained was taken as the film thickness.
(2) Puncture strength Using a Kato-Tech, trademark, KES-G5 handy compression tester, a puncture test is performed under the conditions of a radius of curvature of the needle tip of 0.5 mm and a puncture speed of 2 mm / sec. (N).
(3) Thermal shrinkage A sample of MD 100 mm × TD 100 mm was cut out from the microporous membrane and placed horizontally in an oven at 120 ° C. and left for 1 hour. Then, it cooled with air and measured TD length (mm).
Shrinkage rate (%) = (1-TD length (mm) / 100) × 100
(4) Thickness unevenness A sample of MD 360 mm × TD 360 mm was cut out from the microporous film, and the film thickness was measured at 16 points (4 points × 4 points) in a lattice shape. The standard deviation of the obtained film thickness was defined as thickness unevenness.
Thickness unevenness (μm) = (Σ (thickness of each location - average film thickness) 2/15) 1/2

[実施例1]
Mv27万のHDPE60重量部、Mv95万のHDPE40重量部に、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を0.3重量部添加し、タンブラーブレンダーを用いてドライブレンドし、ポリマー等混合物を得た。得られたポリマー等混合物を、フィーダーにより直径37mmの二軸同方向スクリュー式押出機フィード口へ供給した。また、流動パラフィン(37.78℃における動粘度7.59×10 −5/s)をプランジャーポンプにより二軸押出機シリンダーへ注入した。
[Example 1]
As an antioxidant, pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] was added as an antioxidant to 60 parts by weight of HDPE having an Mv of 270,000 and 40 parts by weight of HDPE having an Mv of 950,000. Part by weight was added and dry blended using a tumbler blender to obtain a polymer mixture. The obtained mixture of polymers and the like was fed to a feed port of a twin screw co-directional screw type extruder having a diameter of 37 mm by a feeder. Further, liquid paraffin (kinematic viscosity at 37.78 ° C .: 7.59 × 10 −5 m 2 / s) was injected into the twin-screw extruder cylinder by a plunger pump.

溶融混練し押し出される全混合物(100重量部)中に占める流動パラフィン量比は65重量部となるように、フィーダー及びポンプを調整した。溶融混練条件は、設定温度200℃、スクリュー回転数180rpm、吐出量12kg/hで行った。続いて、溶融混練物をTダイを経て表面温度25℃に制御された冷却ロール間に押出し、厚み1000μmのシート状のポリオレフィン組成物を得た。
次に、得られたシートより80mm四方に切り出しバッチ二軸延伸機(岩本製作所製)を用い、延伸温度123℃で延伸を行った。延伸は、面積倍率6倍までは(MD−1)/(TD−1)=2.0になるように、具体的には、MD倍率が3倍、TD倍率が2倍になるように一定速度で同時二軸延伸した。その後、引き続きMD倍率が7倍にTD倍率が7倍になるように同時二軸延伸を行った。次に枠に四方を固定し塩化メチレン中に浸漬して流動パラフィンを抽出除去し乾燥して微多孔膜を得た。
The feeder and pump were adjusted so that the liquid paraffin content ratio in the total mixture (100 parts by weight) melted and kneaded and extruded was 65 parts by weight. The melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 180 rpm, and a discharge rate of 12 kg / h. Subsequently, the melt-kneaded product was extruded through a T-die between cooling rolls controlled at a surface temperature of 25 ° C. to obtain a sheet-like polyolefin composition having a thickness of 1000 μm.
Next, the obtained sheet was cut into 80 mm square and stretched at a stretching temperature of 123 ° C. using a batch biaxial stretching machine (manufactured by Iwamoto Seisakusho). Stretching is constant so that (MD-1) / (TD-1) = 2.0 up to an area magnification of 6 times, specifically, the MD magnification is 3 times and the TD magnification is 2 times. Simultaneous biaxial stretching at speed. Thereafter, simultaneous biaxial stretching was performed so that the MD magnification was 7 times and the TD magnification was 7 times. Next, the four sides were fixed to a frame and immersed in methylene chloride to extract and remove liquid paraffin, followed by drying to obtain a microporous membrane.

得られた微多孔膜の膜厚、膜厚ムラ、熱収縮率、突刺強度の値を表1に示した。以下の実施例、および比較例についての値も同様に表1に示した。また延伸倍率過程を図1に示した。以下の実施例、および比較例についても同様に表1に示した。   Table 1 shows the values of the film thickness, film thickness unevenness, thermal contraction rate, and puncture strength of the obtained microporous film. The values for the following examples and comparative examples are also shown in Table 1. The stretching ratio process is shown in FIG. The following examples and comparative examples are also shown in Table 1.

[実施例2]
延伸を、面積倍率10倍までは(MD−1)/(TD−1)=4.0になるように、具体的には、MD倍率が5倍、TD倍率が2倍になるように一定速度で同時二軸延伸した。その後、引き続きMD倍率が7倍にTD倍率が7倍になるように同時二軸延伸を行った以外は実施例1と同様にして微多孔膜を得た。
[Example 2]
Stretching is constant so that (MD-1) / (TD-1) = 4.0 up to an area magnification of 10 times, specifically, MD magnification is 5 times and TD magnification is 2 times. Simultaneous biaxial stretching at speed. Thereafter, a microporous membrane was obtained in the same manner as in Example 1 except that the simultaneous biaxial stretching was performed so that the MD magnification was 7 times and the TD magnification was 7 times.

比較例4
延伸を、面積倍率4倍未満では(MD−1)/(TD−1)>8.3になるように、具体的には、MD倍率が3倍になるように一軸延伸した。その後、引き続きMD倍率が7倍にTD倍率が7倍になるように一定速度で同時二軸延伸を行った以外は実施例1と同様にして微多孔膜を得た。
[ Comparative Example 4 ]
Stretching was uniaxially stretched so that (MD-1) / (TD-1)> 8.3 when the area magnification was less than 4 times, specifically, the MD magnification was 3 times. Thereafter, a microporous membrane was obtained in the same manner as in Example 1 except that the simultaneous biaxial stretching was performed at a constant speed so that the MD magnification was 7 times and the TD magnification was 7 times.

[実施例
シート状のポリオレフィン組成物の厚みを600μmとし延伸を、面積倍率10倍までは(MD−1)/(TD−1)=4.0になるように、具体的には、MD倍率が5倍、TD倍率が2倍になるように一定速度で同時二軸延伸した。その後、引き続きMD倍率が7倍にTD倍率が7倍になるように同時二軸延伸を行った以外は実施例1と同様にして微多孔膜を得た。
[Example 3 ]
Specifically, the sheet-like polyolefin composition has a thickness of 600 μm and is stretched so that (MD-1) / (TD-1) = 4.0 until the area magnification is 10 times, specifically, the MD magnification is 5 times. The TD magnification was simultaneously biaxially stretched at a constant speed so as to be 2 times. Thereafter, a microporous membrane was obtained in the same manner as in Example 1 except that the simultaneous biaxial stretching was performed so that the MD magnification was 7 times and the TD magnification was 7 times.

[実施例
Mv27万のHDPE30重量部、Mv95万のHDPE40重量部、Mv35万のLDPE30重量部に、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を0.3重量部添加し、タンブラーブレンダーを用いてドライブレンドし、ポリマー等混合物を得た。得られたポリマー等混合物を、フィーダーにより直径37mmの二軸同方向スクリュー式押出機フィード口へ供給した。また、流動パラフィン(37.78℃における動粘度7.59×10 -52/s)をプランジャーポンプにより二軸押出機シリンダーへ注入した。
[Example 4 ]
30 parts by weight of HDPE of Mv 270,000, 40 parts by weight of HDPE of Mv 950,000, 30 parts by weight of LDPE of Mv 350,000, pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) as an antioxidant ) Propionate] was added, and dry blended using a tumbler blender to obtain a polymer mixture. The obtained mixture of polymers and the like was fed to a feed port of a twin screw co-directional screw type extruder having a diameter of 37 mm by a feeder. Further, liquid paraffin (kinematic viscosity at 37.78 ° C .: 7.59 × 10 −5 m 2 / s) was injected into the twin-screw extruder cylinder by a plunger pump.

溶融混練し押し出される全混合物(100重量部)中に占める流動パラフィン量比は65重量部となるように、フィーダー及びポンプを調整した。溶融混練条件は、設定温度200℃、スクリュー回転数180rpm、吐出量12kg/hで行った。続いて、溶融混練物をTダイを経て表面温度25℃に制御された冷却ロール間に押出し、厚み600μmのシート状のポリオレフィン組成物を得た。
次に、得られたシートより80mm四方に切り出しバッチ二軸延伸機(岩本製作所製)を用い、延伸温度121℃で延伸を行った。延伸は、面積倍率10倍までは(MD−1)/(TD−1)=4.0になるように、具体的には、MD倍率が5倍、TD倍率が2倍になるように一定速度で同時二軸延伸した。その後、引き続きMD倍率が7倍にTD倍率が7倍になるように同時二軸延伸を行った。次に枠に四方を固定し塩化メチレン中に浸漬して流動パラフィンを抽出除去し乾燥して微多孔膜を得た。
The feeder and pump were adjusted so that the liquid paraffin content ratio in the total mixture (100 parts by weight) melted and kneaded and extruded was 65 parts by weight. The melt-kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 180 rpm, and a discharge rate of 12 kg / h. Subsequently, the melt-kneaded product was extruded through a T-die between cooling rolls controlled at a surface temperature of 25 ° C. to obtain a sheet-like polyolefin composition having a thickness of 600 μm.
Next, the obtained sheet was cut into 80 mm square and stretched at a stretching temperature of 121 ° C. using a batch biaxial stretching machine (manufactured by Iwamoto Seisakusho). Stretching is constant so that (MD-1) / (TD-1) = 4.0 up to an area magnification of 10 times, specifically, MD magnification is 5 times and TD magnification is 2 times. Simultaneous biaxial stretching at speed. Thereafter, simultaneous biaxial stretching was performed so that the MD magnification was 7 times and the TD magnification was 7 times. Next, the four sides were fixed to a frame and immersed in methylene chloride to extract and remove liquid paraffin, followed by drying to obtain a microporous membrane.

[実施例
吐出量10kg/hとし、厚み270μmのシート状のポリオレフィン組成物を得た。次に、得られたシートより120mm四方に切り出しバッチ二軸延伸機(岩本製作所製)を用い、延伸温度121℃で延伸を行った。延伸を、面積倍率10.8倍までは(MD−1)/(TD−1)=1.3になるように、具体的には、MD倍率が3.6倍、TD倍率が3倍になるように一定速度で同時二軸延伸した。その後、引き続きMD倍率が4倍にTD倍率が4倍になるように同時二軸延伸を行った以外は実施例1と同様にして微多孔膜を得た。
[Example 5 ]
A sheet-like polyolefin composition having a discharge amount of 10 kg / h and a thickness of 270 μm was obtained. Next, the obtained sheet was cut into a 120 mm square and stretched at a stretching temperature of 121 ° C. using a batch biaxial stretching machine (manufactured by Iwamoto Seisakusho). Stretching is such that (MD-1) / (TD-1) = 1.3 until the area magnification is 10.8 times, specifically, the MD magnification is 3.6 times and the TD magnification is 3 times. Simultaneously biaxial stretching was performed at a constant speed. Thereafter, a microporous membrane was obtained in the same manner as in Example 1 except that simultaneous biaxial stretching was performed so that the MD magnification was 4 times and the TD magnification was 4 times.

[実施例
シート状ポリオレフィン組成物を連続して同時二軸テンターへ導き、面積倍率2.6倍までは(MD−1)/(TD−1)=3.3になるように、具体的には、(1)MD倍率が2倍、TD倍率が1.3倍になるように一定速度で、面積倍率2.6倍以上5.4倍までは(MD−1)/(TD−1)>2.2になるように、具体的には、(2)MD倍率が3倍、TD倍率が1.8倍になるように一定速度で、さらに面積倍率5.4倍以上10.4倍までは(MD−1)/(TD−1)>1.9になるように、具体的には、(3)MD倍率が4倍、TD倍率2.6倍になるように段階的に延伸倍率を変化させ、その後MD倍率が7倍に、TD倍率が7倍になるようにスムーズに同時二軸延伸を行った以外は実施例1と同様にして微多孔膜を得た。
[Example 6 ]
Specifically, the sheet-like polyolefin composition is continuously led to a simultaneous biaxial tenter, and (MD-1) / (TD-1) = 3.3 up to 2.6 times the area magnification, 1) The MD magnification is 2 times and the TD magnification is 1.3 times at a constant speed, and the area magnification is 2.6 times to 5.4 times (MD-1) / (TD-1)> 2. Specifically, (2) The MD magnification is 3 times and the TD magnification is 1.8 times at a constant speed, and the area magnification is 5.4 times to 10.4 times ( MD-1) / (TD-1)> 1.9, specifically, (3) Stretch ratio is changed stepwise so that MD magnification is 4 times and TD magnification is 2.6 times. Then, a microporous membrane was obtained in the same manner as in Example 1 except that the simultaneous biaxial stretching was performed smoothly so that the MD magnification was 7 times and the TD magnification was 7 times.

[比較例1]
延伸を、面積倍率6倍までは(MD−1)/(TD−1)=0.5になるように、具体的には、MD倍率が2倍、TD倍率が3倍になるように一定速度で同時二軸延伸した。その後、引き続きMD倍率が7倍にTD倍率が7倍になるように同時二軸延伸を行った以外は実施例1と同様にして微多孔膜を得た。
[Comparative Example 1]
Stretching is constant so that (MD-1) / (TD-1) = 0.5 until the area magnification is 6 times, specifically, the MD magnification is 2 times and the TD magnification is 3 times. Simultaneous biaxial stretching at speed. Thereafter, a microporous membrane was obtained in the same manner as in Example 1 except that the simultaneous biaxial stretching was performed so that the MD magnification was 7 times and the TD magnification was 7 times.

[比較例2]
延伸を、面積倍率10倍までは(MD−1)/(TD−1)=0.25になるように、具体的には、MD倍率が2倍、TD倍率が5倍になるように一定速度で同時二軸延伸した。その後、引き続きMD倍率が7倍にTD倍率が7倍になるように同時二軸延伸を行った以外は実施例1と同様にして微多孔膜を得た。
[Comparative Example 2]
Stretching is constant so that (MD-1) / (TD-1) = 0.25 until the area magnification is 10 times, specifically, the MD magnification is 2 times and the TD magnification is 5 times. Simultaneous biaxial stretching at speed. Thereafter, a microporous membrane was obtained in the same manner as in Example 1 except that the simultaneous biaxial stretching was performed so that the MD magnification was 7 times and the TD magnification was 7 times.

[比較例3]
延伸を、面積倍率16倍までは(MD−1)/(TD−1)=1になるように、具体的には、MD倍率が4倍にTD倍率が4倍になるように一定速度で同時二軸延伸を行った以外は実施例6と同様にして微多孔膜を得た。
[Comparative Example 3]
Stretching at a constant speed so that (MD-1) / (TD-1) = 1 until the area magnification is 16 times, specifically, the MD magnification is 4 times and the TD magnification is 4 times. A microporous membrane was obtained in the same manner as in Example 6 except that simultaneous biaxial stretching was performed.

Figure 0004600970
Figure 0004600970

表1から明らかなように本発明の製造方法により製造された微多孔膜は、比較例1,2、3に比べ均一な厚み分布と低熱収縮性を併せ持つことがわかる。   As is apparent from Table 1, the microporous membrane produced by the production method of the present invention has both a uniform thickness distribution and low heat shrinkability as compared with Comparative Examples 1, 2, and 3.

本発明の製造方法によるポリオレフィン微多孔膜は、特に電池セパレータとして好適に利用できる。   The polyolefin microporous membrane produced by the production method of the present invention can be suitably used particularly as a battery separator.

実施例および比較例における、延伸過程でのMD倍率とTD倍率の変化を示すグラフである。It is a graph which shows the change of MD magnification and TD magnification in an extending process in an Example and a comparative example.

Claims (1)

ポリオレフィン樹脂と可塑剤とを溶融混練し、得られた溶融物をシート状に成形した後、延伸、脱可塑剤処理をするポリオレフィン微多孔膜の製造方法において、
前記延伸が、面積倍率が4倍未満の延伸過程では、(MD延伸倍率−1)/(TD延伸倍率−1)>1の関係を満たし、最終的な総面積倍率が4倍以上であり、
前記延伸が同時二軸延伸であり、
且つ前記延伸のプロファイルが、MD延伸倍率を縦軸、TD延伸倍率を横軸とした場合に折れ線又は曲線となることを特徴とするポリオレフィン微多孔膜の製造方法。
In the method for producing a polyolefin microporous membrane, which is obtained by melt-kneading a polyolefin resin and a plasticizer, molding the obtained melt into a sheet, and then performing stretching and deplasticizing treatment.
Said stretching in the stretching process of the area magnification is less than 4 times, be a (MD draw ratio -1) / met (TD stretching ratio -1)> 1 relationship, ultimately total area ratio is 4 times or more ,
The stretching is simultaneous biaxial stretching,
The method for producing a microporous polyolefin membrane is characterized in that the stretching profile is a polygonal line or a curve when the MD stretching ratio is the vertical axis and the TD stretching ratio is the horizontal axis .
JP2003399670A 2003-11-28 2003-11-28 Method for producing polyolefin microporous membrane Expired - Lifetime JP4600970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003399670A JP4600970B2 (en) 2003-11-28 2003-11-28 Method for producing polyolefin microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003399670A JP4600970B2 (en) 2003-11-28 2003-11-28 Method for producing polyolefin microporous membrane

Publications (2)

Publication Number Publication Date
JP2005162773A JP2005162773A (en) 2005-06-23
JP4600970B2 true JP4600970B2 (en) 2010-12-22

Family

ID=34724151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003399670A Expired - Lifetime JP4600970B2 (en) 2003-11-28 2003-11-28 Method for producing polyolefin microporous membrane

Country Status (1)

Country Link
JP (1) JP4600970B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101852803B1 (en) * 2011-07-22 2018-04-27 도레이 카부시키가이샤 Method of manufacturing a microporous polyethylene film
EP2963083B1 (en) 2013-02-27 2018-05-02 Toray Industries, Inc. Porous polyolefin film, battery separator obtained using same, and processes for producing these
CN105552280B (en) 2016-03-07 2018-09-11 上海恩捷新材料科技股份有限公司 A kind of preparation method of lithium ion battery separator
CN114024091B (en) * 2021-11-08 2023-08-08 溧阳月泉电能源有限公司 Lithium ion secondary battery diaphragm and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105235A (en) * 2000-07-26 2002-04-10 Asahi Kasei Corp Polyolefin microporous film and its manufacturing method
JP2003138050A (en) * 2001-10-31 2003-05-14 Asahi Kasei Corp Porous polyolefin film
JP2004083866A (en) * 2002-06-25 2004-03-18 Tonen Chem Corp Method for producing of polyolefin micro-porous film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105235A (en) * 2000-07-26 2002-04-10 Asahi Kasei Corp Polyolefin microporous film and its manufacturing method
JP2003138050A (en) * 2001-10-31 2003-05-14 Asahi Kasei Corp Porous polyolefin film
JP2004083866A (en) * 2002-06-25 2004-03-18 Tonen Chem Corp Method for producing of polyolefin micro-porous film

Also Published As

Publication number Publication date
JP2005162773A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP4397121B2 (en) Polyolefin microporous membrane
JP4733232B2 (en) Polyolefin microporous membrane and wound product
JP5630827B2 (en) POLYOLEFIN POROUS MEMBRANE, ITS MANUFACTURING METHOD, AND ITS MANUFACTURING DEVICE
WO2006104165A1 (en) Process for producing microporous polyolefin film and microporous polyolefin film
US9616607B2 (en) Process for producing microporous polyolefin film
KR101231752B1 (en) Method for producing polyolefin microporous film and microporous film
WO2006106783A1 (en) Microporous polyolefin film and process for producing the same
KR101410279B1 (en) Method for producing polyolefin microporous film
JP4677663B2 (en) Polyolefin microporous membrane
JP3917721B2 (en) Method for producing microporous membrane
JPWO2008069216A1 (en) Polyolefin microporous membrane
JP6548430B2 (en) METHOD FOR PRODUCING POLYOLEFIN MICROPOROUS FILM, SEPARATOR FOR BATTERY, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JP5171012B2 (en) Method for producing polyolefin microporous membrane
WO2015190487A1 (en) Polyolefin microporous film, method for producing same and separator for batteries
KR20170041195A (en) Polyolefin microporous membrane and method for manufacturing same, separator for nonaqueous-electrolyte secondary cell, and nonaqueous-electrolyte secondary cell
JP4220329B2 (en) Polyolefin microporous membrane and method for producing the same
JP6596329B2 (en) Method for producing polyolefin microporous membrane
JP4600970B2 (en) Method for producing polyolefin microporous membrane
JP2004099799A (en) Rolled item of fine porous membrane made of polyolefin
JP4713441B2 (en) Method for producing polyolefin microporous membrane
JP5057414B2 (en) Method for producing microporous membrane and use of microporous membrane obtained by the production method
JP3597224B2 (en) Method for smoothing polyolefin film
JP2016121327A (en) Method of producing polyolefin microporous film
CN114207003A (en) Polyolefin microporous membrane, laminate, and battery
JP4925238B2 (en) Method for producing polyolefin microporous membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100922

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4600970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350