JP4925238B2 - Method for producing polyolefin microporous membrane - Google Patents

Method for producing polyolefin microporous membrane Download PDF

Info

Publication number
JP4925238B2
JP4925238B2 JP2004237601A JP2004237601A JP4925238B2 JP 4925238 B2 JP4925238 B2 JP 4925238B2 JP 2004237601 A JP2004237601 A JP 2004237601A JP 2004237601 A JP2004237601 A JP 2004237601A JP 4925238 B2 JP4925238 B2 JP 4925238B2
Authority
JP
Japan
Prior art keywords
roll
bank
polyolefin
microporous membrane
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004237601A
Other languages
Japanese (ja)
Other versions
JP2006056929A5 (en
JP2006056929A (en
Inventor
和也 飯谷
祐介 永島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2004237601A priority Critical patent/JP4925238B2/en
Publication of JP2006056929A publication Critical patent/JP2006056929A/en
Publication of JP2006056929A5 publication Critical patent/JP2006056929A5/ja
Application granted granted Critical
Publication of JP4925238B2 publication Critical patent/JP4925238B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、二次電池用セパレータとして使用され、特にリチウムイオン二次電池用セパレータとして好適に使用される、ポリオレフィン製微多孔膜を製造する方法に関する。   The present invention relates to a method for producing a polyolefin microporous membrane which is used as a separator for a secondary battery, and particularly preferably used as a separator for a lithium ion secondary battery.

近年の携帯電話やノート型パソコンなどの情報関連機器の著しい発達に伴い、小型軽量で且つ高エネルギー容量の電池が要求されている。その中で、リチウムイオン電池は急激に市場を拡大しており、それに伴い、そのセパレータとして使用されているポリオレフィン製微多孔膜への要求レベルはますます高くなってきている。
ポリオレフィン製微多孔膜の品質や性能は、リチウムイオン電池の性能だけでなく、その生産性にも大きく影響を及ぼす。例えば、微多孔膜の厚みが均一でないと、電池の捲回工程において巻きずれ等のトラブルの原因となる。また、微多孔膜の強度が充分でないと、捲回時に破膜したり、異物の突き刺さり等による電池不良の確率が高くなる。
Along with the remarkable development of information-related equipment such as mobile phones and notebook computers in recent years, small and light batteries with high energy capacity are required. Among them, the market for lithium-ion batteries is rapidly expanding, and accordingly, the level of demand for microporous polyolefin membranes used as separators is increasing.
The quality and performance of polyolefin microporous membranes greatly affect not only the performance of lithium ion batteries but also their productivity. For example, if the thickness of the microporous membrane is not uniform, troubles such as winding slippage may occur in the battery winding process. In addition, if the strength of the microporous membrane is not sufficient, the probability of battery failure due to film breakage at the time of winding or piercing of foreign matter increases.

特許文献1では、特定のポリオレフィンと溶媒からなる溶液を調製し、シート状に押出し、冷却しながら一定の引取り比で引取った後、少なくとも一軸方向に加熱延伸し、抽出を行うポリオレフィン微多孔膜の製造方法が提案されている。この方法により、確かに高強度の微多孔膜を低コストで製造できることが期待されるが、開示された方法では厚み均一性の良い微多孔膜を安定して得ることはできなかった。
特開平9−302120号公報
In Patent Document 1, a polyolefin microporous material that is prepared by preparing a solution comprising a specific polyolefin and a solvent, extruding it into a sheet, taking it at a constant take-up ratio while cooling, and then heating and drawing at least in a uniaxial direction to perform extraction. Membrane manufacturing methods have been proposed. Although it is expected that a high-strength microporous membrane can be produced at low cost by this method, a microporous membrane with good thickness uniformity cannot be stably obtained by the disclosed method.
JP-A-9-302120

本発明は、高強度、低収縮で厚み均一性が高いポリオレフィン製微多孔膜を安定して得ることができるポリオレフィン製微多孔膜の製造方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a polyolefin microporous membrane that can stably obtain a polyolefin microporous membrane having high strength, low shrinkage and high thickness uniformity.

本発明は前記課題を解決したものである。即ち本発明は、
(1)ポリオレフィン組成物と可塑剤とを、それらの溶融混練物における可塑剤の含有割合を20〜95wt%にして溶融混練し、Tダイから押出し、バンク(樹脂溜まり)を形成してキャスト成形することによりシートを作成した後、延伸し、可塑剤を抽出するポリオレフィン製微多孔膜の製造方法において、バンクの幅をロール間に挟持された該混練物の全幅に対し6割以上であり、バンクを形成する面側のロールの温度を、バンクが形成されていない面側のロールの温度より1℃以上高くすることを特徴とするポリオレフィン製微多孔膜の製造方法、
(2)ロール温度が、構成するポリオレフィンの融点より30℃低い温度以下、0℃以上であることを特徴とする、(1)に記載のポリオレフィン製微多孔膜の製造方法、
(3)ポリオレフィン組成物として、ポリエチレンを50wt%以上使用することを特徴とする、(1)又は(2)に記載のポリオレフィン製微多孔膜の製造方法、である。
The present invention solves the above problems. That is, the present invention
(1) Polyolefin composition and plasticizer are melt-kneaded with a plasticizer content ratio in the melt-kneaded product of 20 to 95 wt%, extruded from a T-die to form a bank (resin pool), and cast molding In the method for producing a microporous membrane made of polyolefin in which a sheet is prepared by stretching and extracting a plasticizer, the width of the bank is 60% or more with respect to the total width of the kneaded material sandwiched between rolls, A method for producing a polyolefin microporous film, characterized in that the temperature of the roll on the surface side forming the bank is higher by 1 ° C. or more than the temperature of the roll on the surface side where the bank is not formed,
(2) The method for producing a polyolefin microporous membrane according to (1), wherein the roll temperature is 30 ° C. lower than the melting point of the constituting polyolefin, 0 ° C. or higher,
(3) The method for producing a polyolefin microporous membrane according to (1) or (2), wherein polyethylene is used in an amount of 50 wt% or more as the polyolefin composition.

本発明のポリオレフィン製微多孔膜の製造方法によれば、厚み均一性が高く、高強度で低収縮の微多孔膜を、長時間に渡って安定して得ることができる。また、本発明の微多孔膜をリチウムイオン電池に使用することで、高性能で高安全なリチウムイオン電池を生産性良く製造することが可能となる。   According to the method for producing a polyolefin microporous membrane of the present invention, a microporous membrane having high thickness uniformity, high strength and low shrinkage can be stably obtained over a long period of time. Further, by using the microporous membrane of the present invention for a lithium ion battery, it is possible to produce a high performance and high safety lithium ion battery with high productivity.

本発明について具体的に説明する。本発明で使用されるポリオレフィン組成物とは、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン及び1−オクテンのホモ重合体、または共重合体からなる単独物または組成物を意味し、ポリエチレン(エチレンホモ重合体及びエチレンを主とする共重合体を意味する)を50wt%以上用いることが好ましい。ポリオレフィンの製造に使用される触媒に制限は無く、例として、チーグラー・ナッタ系触媒やフィリップス系触媒、メタロセン系触媒などが挙げられる。また、その重合形態にも制限は無く、例として、1段重合や2段以上の多段重合が挙げられる。ポリオレフィンの好ましい粘度平均分子量(Mv)は5〜1500万であり、10〜500万がさらに好ましい。   The present invention will be specifically described. The polyolefin composition used in the present invention is a single or composition comprising a homopolymer or copolymer of ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and 1-octene. It is preferable to use 50 wt% or more of polyethylene (meaning an ethylene homopolymer and a copolymer mainly composed of ethylene). There is no restriction | limiting in the catalyst used for manufacture of polyolefin, For example, a Ziegler-Natta catalyst, a Philips catalyst, a metallocene catalyst, etc. are mentioned. Moreover, there is no restriction | limiting also in the superposition | polymerization form, As an example, 1 step | paragraph polymerization and multistage polymerization of 2 steps | paragraphs or more are mentioned. The preferred viscosity average molecular weight (Mv) of polyolefin is 5 to 15 million, more preferably 10 to 5 million.

溶融混練時の熱劣化とそれによる品質悪化を防止する観点より、酸化防止剤を配合することが好ましい。酸化防止剤の濃度は、全ポリオレフィン重量に対して、0.3wt%以上が好ましく0.5wt%以上がさらに好ましい。また、5.0wt%以下が好ましく、3.0wt%以下がさらに好ましい。
酸化防止剤としては、1次酸化防止剤であるフェノール系酸化防止剤が好ましく、2,6-ジ-t-ブチル-4-メチルフェノール、ペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート等が挙げられる。なお、2次酸化防止剤も併用して使用可能であり、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4-ビフェニレン-ジフォスフォナイト等のリン系酸化防止剤、ジラウリル-チオ-ジプロピオネート等のイオウ系酸化防止剤などが挙げられる。
From the viewpoint of preventing thermal deterioration during melt kneading and quality deterioration due thereto, it is preferable to add an antioxidant. The concentration of the antioxidant is preferably 0.3 wt% or more, more preferably 0.5 wt% or more based on the total weight of the polyolefin. Moreover, 5.0 wt% or less is preferable and 3.0 wt% or less is more preferable.
As the antioxidant, a phenolic antioxidant which is a primary antioxidant is preferable, and 2,6-di-t-butyl-4-methylphenol, pentaerythrityl-tetrakis- [3- (3,5- Di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, and the like. Secondary antioxidants can also be used in combination, such as tris (2,4-di-t-butylphenyl) phosphite, tetrakis (2,4-di-t-butylphenyl) -4,4- Examples thereof include phosphorus antioxidants such as biphenylene-diphosphonite and sulfur antioxidants such as dilauryl-thio-dipropionate.

ポリオレフィン以外のポリマーやその他の有機材料、無機材料についても、本発明の要件及び効果を損なわない範囲で配合することが可能である。さらに、必要に応じて、ステアリン酸カルシウムやステアリン酸亜鉛等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料などの公知の添加剤も、本発明の要件及び効果を損なわない範囲で混合して使用することが出来る。   Polymers other than polyolefin, other organic materials, and inorganic materials can also be blended within a range that does not impair the requirements and effects of the present invention. Furthermore, if necessary, known additives such as metal soaps such as calcium stearate and zinc stearate, ultraviolet absorbers, light stabilizers, antistatic agents, antifogging agents, and coloring pigments are also included in the requirements and It can be used as a mixture as long as the effect is not impaired.

本発明で使用される可塑剤は、沸点以下の温度でポリオレフィンと均一な溶液を形成しうる有機材料のことであり、具体的にはデカリン、キシレン、ジオクチルフタレート、ジブチルフタレート、ステアリルアルコール、オレイルアルコール、デシルアルコール、ノニルアルコール、ジフェニルエーテル、n−デカン、n−ドデカン、パラフィン油等が挙げられる。このうちパラフィン油、ジオクチルフタレートが好ましい。ポリオレフィン組成物との混練物における可塑剤の割合は、膜の透過性と製膜性の観点より20〜95wt%が好ましく、30〜80wt%がさらに好ましい。   The plasticizer used in the present invention is an organic material capable of forming a uniform solution with polyolefin at a temperature below the boiling point, specifically decalin, xylene, dioctyl phthalate, dibutyl phthalate, stearyl alcohol, oleyl alcohol. Decyl alcohol, nonyl alcohol, diphenyl ether, n-decane, n-dodecane, paraffin oil and the like. Of these, paraffin oil and dioctyl phthalate are preferred. The proportion of the plasticizer in the kneaded product with the polyolefin composition is preferably 20 to 95 wt%, more preferably 30 to 80 wt%, from the viewpoint of membrane permeability and film-forming property.

溶融混練の方法としては、例えば、ヘンシェルミキサー、リボンブレンダー、タンブラーブレンダー等で混合後、一軸押出し機、二軸押出し機等のスクリュー押出し機、ニーダー、バンバリーミキサー等により溶融混練させる方法が挙げられる。溶融混練する方法として、連続運転可能な押出し機が生産上好ましく、二軸押出し機が混練性に優れる点でなかでも好ましい。可塑剤は、上記ヘンシェルミキサー等で原料ポリマーと混合しても良く、溶融混練時に押出し機に直接フィードしても良い。溶融混練時の温度は、150〜300℃の範囲であることが好ましい。また、溶融混練を窒素雰囲気で行うことにより、効果的に酸化劣化を防止することが可能である。   Examples of the melt-kneading method include a method of mixing with a Henschel mixer, a ribbon blender, a tumbler blender or the like and then melt-kneading with a screw extruder such as a single screw extruder or a twin screw extruder, a kneader, or a Banbury mixer. As a method of melt-kneading, an extruder capable of continuous operation is preferable for production, and a twin-screw extruder is particularly preferable from the viewpoint of excellent kneadability. The plasticizer may be mixed with the raw material polymer by the Henschel mixer or the like, or may be directly fed to the extruder during melt kneading. The temperature at the time of melt kneading is preferably in the range of 150 to 300 ° C. Further, by performing melt kneading in a nitrogen atmosphere, it is possible to effectively prevent oxidative degradation.

次に、該混練物はTダイより押出され、バンク(樹脂溜り)を形成してキャスト成形することによりシート化される。バンク(樹脂溜り)とは、図1に模式的に示したように、キャスト成形における2本のロール間に食い込まないで、いずれかのロール面上に滞留している細長い樹脂溜りを意味する。
バンクを形成するためには、例えば、2本のロールの間に狭持される前の混練物の厚みがロール隙間寸法より大きくなるように設定し、バンクの形成状況を目視等で観察しながら、ロール回転速度を調整することにより得ることができる。
本発明では、バンクの幅がキャストされる該混練物の全幅に対し6割以上とすることを特徴とする。それにより、厚みが均一で均質なシートが、安定して得られるため、その後の延伸も均一に進行し、結果として高性能で厚みの均一な微多孔膜を得ることができる。バンクの幅は、例えば、目視等で調整した後、デジタルスチルカメラによる撮影により確認される。また、確認により得られる情報を、オートダイス等にフィードバックさせ、バンクをコントロールすることも可能である。
Next, the kneaded material is extruded from a T-die, formed into a sheet by forming a bank (resin pool) and cast molding. As schematically shown in FIG. 1, the bank (resin pool) means an elongated resin pool that does not bite between two rolls in cast molding and stays on one of the roll surfaces.
In order to form a bank, for example, the thickness of the kneaded product before being sandwiched between two rolls is set to be larger than the roll gap dimension, and the formation status of the bank is visually observed. It can be obtained by adjusting the roll rotation speed.
The present invention is characterized in that the width of the bank is 60% or more of the total width of the kneaded product to be cast. Thereby, since a uniform sheet having a uniform thickness can be stably obtained, the subsequent stretching also proceeds uniformly, and as a result, a microporous film having a high performance and a uniform thickness can be obtained. For example, the bank width is confirmed by photographing with a digital still camera after being visually adjusted. It is also possible to control the bank by feeding back information obtained by the confirmation to an auto die or the like.

挟持する2本のロールの温度は、均質なシートを得るため、0℃から主に構成するポリオレフィンの融点より30℃低い温度以下であることが好ましく、0〜100℃がより好ましく、10〜90℃がさらに好ましい。また、厚みが均一で均質なシートを得るために、各々のロールの温度は変動しないようにすることが好ましく、具体的には、設定温度に対し±2℃以内に保持することが好ましい。ロールの温度制御の方法としては、誘電加熱による方法や熱溶媒加熱による方法が挙げられるが、オイルや水のような熱伝導性の良い流体を用いる熱溶媒加熱による方法が好ましい。   In order to obtain a homogeneous sheet, the temperature of the two rolls to be sandwiched is preferably 0 ° C. or lower and 30 ° C. or lower, more preferably 0 to 100 ° C., more preferably 10 to 90 ° C. More preferably. Further, in order to obtain a uniform sheet having a uniform thickness, it is preferable that the temperature of each roll does not fluctuate, and specifically, it is preferable to keep the temperature within ± 2 ° C. with respect to the set temperature. Examples of the method for controlling the temperature of the roll include a method using dielectric heating and a method using heat solvent heating, but a method using heat solvent heating using a fluid having good heat conductivity such as oil or water is preferable.

本発明では、バンクを形成する面側のロール温度を、バンクが形成されていない面側のロール温度より高くすることが、バンクを長時間安定させる観点から好ましく、1℃以上の温度差を設けることがより好ましく、5℃以上の温度差を設けることがさらに好ましい。長時間の運転で、ロール面上には、シートより染み出した可塑剤が付着してくるが、この付着した可塑剤を起点として新たなバンクが発生する可能性があり、厚みバラツキの原因となる。バンクを形成する面側のロール温度を高くすることで、バンクが形成されていない面側のロールに付着する可塑剤を相対的に低減し、結果的に新たなバンクの発生が防止されて安定性は向上したと考えられる。   In the present invention, the roll temperature on the surface side where the bank is formed is preferably higher than the roll temperature on the surface side where the bank is not formed, from the viewpoint of stabilizing the bank for a long time, and a temperature difference of 1 ° C. or more is provided. It is more preferable to provide a temperature difference of 5 ° C. or more. The plasticizer that exudes from the sheet adheres to the roll surface after a long period of operation, but a new bank may be generated starting from this adhered plasticizer, which causes variations in thickness. Become. By increasing the roll temperature on the side where the bank is formed, the plasticizer adhering to the roll on the side where the bank is not formed is relatively reduced, and as a result, generation of new banks is prevented and stable. The nature is considered to have improved.

本発明で得られるシートの厚みは、延伸倍率や目的とする微多孔膜の厚さにもよるが、0.1〜3mmが好ましい。
次に、本発明における延伸は、一軸延伸機や二軸延伸機を用いて1回以上行われるが、同時二軸テンターを用いて延伸することが好ましい。延伸温度は室温から膜を主に構成するポリオレフィンの融点までの範囲が好ましく、80〜135℃がより好ましく、100〜130℃がさらに好ましい。延伸倍率は面積倍率で4〜400倍が好ましく、より好ましくは8〜200倍、さらに好ましくは16〜100倍である。
Although the thickness of the sheet | seat obtained by this invention is based also on a draw ratio and the thickness of the target microporous film, 0.1-3 mm is preferable.
Next, the stretching in the present invention is performed once or more using a uniaxial stretching machine or a biaxial stretching machine, but it is preferable to stretch using a simultaneous biaxial tenter. The stretching temperature is preferably in the range from room temperature to the melting point of the polyolefin mainly constituting the membrane, more preferably from 80 to 135 ° C, and even more preferably from 100 to 130 ° C. The draw ratio is preferably 4 to 400 times, more preferably 8 to 200 times, and still more preferably 16 to 100 times in terms of area ratio.

本発明における抽出において、抽出溶媒としては、ポリオレフィンに対して貧溶媒であり、且つ可塑剤に対しては良溶媒であり、沸点がポリオレフィンの融点よりも低いものが望ましい。このような抽出溶媒としては、例えば、n-ヘキサンやシクロヘキサン等の炭化水素類、メタノール、エタノール、イソプロパノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、テトラヒドロフラン等のエーテル類、塩化メチレン、1,1,1-トリクロロエタン等のハロゲン化炭化水素類等の有機溶媒が挙げられる。この中から選択し、単独若しくは混合して用いられる。これらの抽出溶媒に、延伸により得た膜を浸漬することで可塑剤を抽出し、その後充分に乾燥させる。抽出により、膜中の可塑剤残量を1wt%未満とすることが好ましい。   In the extraction in the present invention, the extraction solvent is preferably a poor solvent for polyolefin and a good solvent for plasticizer, and has a boiling point lower than the melting point of polyolefin. Examples of such extraction solvents include hydrocarbons such as n-hexane and cyclohexane, alcohols such as methanol, ethanol and isopropanol, ketones such as acetone and methyl ethyl ketone, ethers such as tetrahydrofuran, methylene chloride, 1, And organic solvents such as halogenated hydrocarbons such as 1,1-trichloroethane. It selects from these and is used individually or in mixture. The plasticizer is extracted by immersing the film obtained by stretching in these extraction solvents, and then sufficiently dried. It is preferable that the residual amount of plasticizer in the film is less than 1 wt% by extraction.

さらに、可塑剤抽出後に、一軸延伸機や二軸延伸機を用いて1回以上の延伸を行っても良い。この場合、延伸温度は室温から膜を主に構成するポリオレフィンの融点までの範囲が好ましく、80〜135℃がより好ましく、100〜130℃がさらに好ましい。延伸倍率は面積倍率で50倍以下が好ましく、10倍以下がより好ましく、5倍以下がさらに好ましい。
また、可塑剤抽出し乾燥後或いは/及び延伸後に、熱固定を行ってもよい。熱固定とは、微多孔膜を寸法固定或いは緩和操作を行いながら高温環境に置くことで、膜の収縮を低減する操作のことである。緩和操作とは、膜のMD(機械方向)及び/或いはTD(機械方向と垂直方向)への縮小操作のことである。熱固定は、テンターやロール延伸機により行うことができ、延伸工程後に熱固定を行う場合は延伸処理と同一の機械にて行うことも可能である。熱固定の温度としては、熱固定の効果の観点より80℃以上が好ましく、100℃以上がより好ましく、110℃以上がさらに好ましい。また、透過性悪化防止の観点より、膜を主に構成するポリオレフィンの融点以下が好ましく、135℃以下がより好ましい。
Furthermore, after the plasticizer extraction, one or more stretching may be performed using a uniaxial stretching machine or a biaxial stretching machine. In this case, the stretching temperature is preferably in the range from room temperature to the melting point of the polyolefin mainly constituting the membrane, more preferably from 80 to 135 ° C, and even more preferably from 100 to 130 ° C. The draw ratio is preferably 50 times or less, more preferably 10 times or less, and further preferably 5 times or less in terms of area magnification.
Further, heat setting may be performed after the plasticizer is extracted and dried or / and stretched. Thermal fixation is an operation for reducing the shrinkage of the membrane by placing the microporous membrane in a high temperature environment while performing dimension fixing or relaxation operation. The relaxation operation is a reduction operation of the film to MD (machine direction) and / or TD (direction perpendicular to the machine direction). The heat setting can be performed with a tenter or a roll stretching machine. When heat setting is performed after the stretching process, it can be performed with the same machine as the stretching process. The heat setting temperature is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and further preferably 110 ° C. or higher from the viewpoint of the heat setting effect. Further, from the viewpoint of preventing deterioration of permeability, the melting point of the polyolefin mainly constituting the membrane is preferably not higher than 135 ° C., and more preferably 135 ° C. or lower.

本発明の効果を損なわない範囲で、電子線照射、プラズマ照射、界面活性剤塗布、化学的改質などの表面処理を必要に応じ施すことが出来る。
次に、本発明で得られるポリオレフィン製微多孔膜の好ましい物性について述べる。
厚みは、膜強度の観点より3μm以上が好ましく、5μm以上がより好ましい。また、透気度の観点より100μm以下が好ましく、50μmがより好ましい。
厚みバラツキは、電池に使用する際の電池生産性の観点より、5μm以下が好ましく、より好ましくは3μm以下である。
TD最大収縮力は、電池に使用する際の電池安全性の観点より、0〜1.5MPaが好ましく、0〜1.0MPaがより好ましい。
As long as the effects of the present invention are not impaired, surface treatment such as electron beam irradiation, plasma irradiation, surfactant coating, and chemical modification can be performed as necessary.
Next, preferred physical properties of the polyolefin microporous membrane obtained in the present invention will be described.
The thickness is preferably 3 μm or more, more preferably 5 μm or more from the viewpoint of film strength. Moreover, 100 micrometers or less are preferable from a viewpoint of an air permeability, and 50 micrometers is more preferable.
The thickness variation is preferably 5 μm or less, more preferably 3 μm or less, from the viewpoint of battery productivity when used in a battery.
The TD maximum shrinkage force is preferably 0 to 1.5 MPa, more preferably 0 to 1.0 MPa, from the viewpoint of battery safety when used in a battery.

TD最大収縮力バラツキは、電池に使用する際の電池安全性の観点より、30%以下が好ましく、20%以下がさらに好ましい。
気孔率は、透過性の観点から20%以上が好ましく、30%以上がより好ましい。また、膜強度の観点から95%以下が好ましく、80%以下がより好ましく、60%以下がさらに好ましい。
透気度は、1sec以上が好ましく、50sec以上がさらに好ましい。また、電池に使用した際の電池性能の観点より2000sec以下が好ましく、1000sec以下がさらに好ましい。
突刺強度は、電池に使用する際の電池生産性及び電池安全性の観点より、0.5〜25.0N/25μmが好ましく、1.0〜25.0N/25μmがさらに好ましい。
The TD maximum contraction force variation is preferably 30% or less, and more preferably 20% or less, from the viewpoint of battery safety when used in a battery.
The porosity is preferably 20% or more, more preferably 30% or more from the viewpoint of permeability. Further, from the viewpoint of film strength, 95% or less is preferable, 80% or less is more preferable, and 60% or less is more preferable.
The air permeability is preferably 1 sec or more, and more preferably 50 sec or more. Moreover, 2000 sec or less is preferable from a viewpoint of the battery performance at the time of using for a battery, and 1000 sec or less is further more preferable.
The puncture strength is preferably 0.5 to 25.0 N / 25 μm, and more preferably 1.0 to 25.0 N / 25 μm, from the viewpoint of battery productivity and battery safety when used for a battery.

本発明における各種物性は、以下の方法により求めた。
(1)粘度平均分子量Mv
ASTM−D4020に基づき、デカリン溶媒における135℃での極限粘度[η]を求める。ポリエチレンのMvは次式により算出した。
[η]=6.77×10−4Mv0.67
(2)厚み(μm)
東洋精機(株)製の微小測厚器「KBM」(商標)を用いて室温23℃で測定した。
(3)気孔率(%)
10cm×10cm角の試料を微多孔膜から切り取り、その体積(cm)と質量(g)を求め、それらと膜密度(g/cm)より、次式を用いて計算した。
気孔率=(体積−質量/膜密度)/体積×100
なお、膜密度は0.95と一定にして計算した。
Various physical properties in the present invention were determined by the following methods.
(1) Viscosity average molecular weight Mv
Based on ASTM-D4020, the intrinsic viscosity [η] at 135 ° C. in a decalin solvent is determined. Mv of polyethylene was calculated by the following formula.
[Η] = 6.77 × 10 −4 Mv 0.67
(2) Thickness (μm)
The measurement was performed at a room temperature of 23 ° C. using a micro thickness gauge “KBM” (trademark) manufactured by Toyo Seiki Co., Ltd.
(3) Porosity (%)
A sample of 10 cm × 10 cm square was cut out from the microporous membrane, its volume (cm 3 ) and mass (g) were determined, and calculated from these and the film density (g / cm 3 ) using the following formula.
Porosity = (volume−mass / film density) / volume × 100
The film density was calculated at a constant 0.95.

(4)TD最大収縮力(MPa)
(株)島津製作所製の熱機械的分析装置「TMA−50」(商標)を用いて、長さ方向がTDとなるように幅3mm×長さ15mmに切り出した試料を、チャック間距離が10mmとなるようにチャックに固定し、専用プローブにセットする。初期荷重を1.0gとし、30℃より10℃/minの速度にてプローブを200℃まで昇温させ、そのとき発生するTD収縮荷重(g)を測定した。得られた最大のTD収縮荷重(TD最大収縮荷重(g))から下記式を用いてTD最大収縮力を算出した。
TD最大収縮力=(TD最大収縮荷重/(3×t))×9.81
t:サンプル厚み(μm)
(4) TD maximum contraction force (MPa)
Using a thermo-mechanical analyzer “TMA-50” (trademark) manufactured by Shimadzu Corporation, a sample cut into a width of 3 mm and a length of 15 mm so that the length direction is TD, the distance between chucks is 10 mm. Fix it to the chuck so that The initial load was 1.0 g, the probe was heated from 30 ° C. to 200 ° C. at a rate of 10 ° C./min, and the TD contraction load (g) generated at that time was measured. The maximum TD contraction force was calculated from the maximum TD contraction load obtained (TD maximum contraction load (g)) using the following formula.
TD maximum contractile force = (TD maximum contractile load / (3 × t)) × 9.81
t: Sample thickness (μm)

(5)透気度(sec)
JIS P−8117に準拠し、東洋精器(株)製のガーレー式透気度計「G−B2型」(商標)により測定した。
(6)突刺強度(N/25μm)
カトーテック(株)製のハンディー圧縮試験器「KES−G5」(商標)を用いて、針先端の曲率半径0.5mm、突刺速度2mm/secで、25℃雰囲気下にて突刺試験を行うことにより、最大突刺荷重(N)を得た。これに25(μm)/膜厚(μm)を乗じることにより25μm膜厚換算の突刺強度(N/25μm)を算出した。
(7)厚みバラツキ(μm)
厚み測定をTDに等間隔に5点、それをMDに約500mおきに5回行い、最大値と最小値の差を算出し、厚みバラツキとした。
(5) Air permeability (sec)
Based on JIS P-8117, it measured with the Gurley type air permeability meter "G-B2 type" (trademark) by Toyo Seiki Co., Ltd.
(6) Puncture strength (N / 25μm)
Using a handy compression tester “KES-G5” (trademark) manufactured by Kato Tech Co., Ltd., perform a puncture test in a 25 ° C. atmosphere with a radius of curvature of the needle tip of 0.5 mm and a puncture speed of 2 mm / sec. Thus, the maximum piercing load (N) was obtained. By multiplying this by 25 (μm) / film thickness (μm), the puncture strength (N / 25 μm) in terms of film thickness of 25 μm was calculated.
(7) Thickness variation (μm)
Thickness measurement was performed at 5 points at regular intervals on TD and 5 times at intervals of about 500 m on MD, and the difference between the maximum value and the minimum value was calculated to obtain thickness variation.

(8)TD最大収縮力バラツキ(%)
TDに等間隔に5個所、それをMDに約500mおきに5回の合計25個所より、長さ方向がTDとなるように幅3mm×長さ15mmの試料を切り出し、TD最大収縮力の測定を行い、平均値と最大値と最小値を求めた。最大値と最小値の差を平均値で除して100を乗じた値を、TD最大収縮力バラツキとした。
(8) TD maximum contraction force variation (%)
TD maximum contraction force was measured by cutting out a sample with a width of 3 mm and a length of 15 mm so that the length direction would be TD from a total of 25 locations at 5 locations at regular intervals on TD and 5 times at intervals of about 500 m on MD. The average value, the maximum value, and the minimum value were obtained. A value obtained by dividing the difference between the maximum value and the minimum value by the average value and multiplying by 100 was defined as TD maximum contraction force variation.

本発明を実施例に基づいて説明する。
[実施例1]
Mv30万のホモのポリエチレン42.5wt%、Mv70万のホモのポリエチレン42.5wt%、Mv12万のプロピレンが共重合されたポリエチレン15wt%をタンブラーブレンダーを用いてドライブレンドした。得られた純ポリマー混合物99.5wt%に酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を0.5wt%添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また流動パラフィン(37.78℃における動粘度7.59×10−5/s)を押出機シリンダーにプランジャーポンプにより注入した。
The present invention will be described based on examples.
[Example 1]
Using a tumbler blender, 42.5 wt% of homopolyethylene having an Mv of 300,000, 42.5 wt% of homopolyethylene having an Mv of 700,000, and 15 wt% of polyethylene copolymerized with propylene having an Mv of 120,000 were dry blended. 0.5 wt% of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant was added to 99.5 wt% of the obtained pure polymer mixture, By dry blending again using a tumbler blender, a polymer mixture was obtained. The obtained mixture of polymers and the like was substituted with nitrogen and then fed to the twin-screw extruder with a feeder under a nitrogen atmosphere. Further, liquid paraffin (kinematic viscosity at 37.78 ° C .: 7.59 × 10 −5 m 2 / s) was injected into the extruder cylinder by a plunger pump.

溶融混練し、押し出される全混合物中に占める流動パラフィン量比が65wt%となるように、フィーダー及びポンプを調整した。溶融混練条件は、設定温度200℃であり、スクリュー回転数280rpm、吐出量15kg/hで行った。
続いて、押出機で溶融混練された混練物を厚み方向隙間2000μmに調整したTダイを経て、第1ロール(図1の2のロール)を45℃、第2ロール(図1の3のロール)を25℃に温度制御した2本のロール上に押出した。各ロール温調手段は各々の熱溶媒加熱式金型温調機でオイルを設定温度にヒータで加熱してロールに送り込む方式とした(設定温度に対して±1℃で保持可能)。第1ロールと第2ロールの回転速度は同速となるように同調させた。ロール間隙間寸法は1900μmに設定し、ロール速度を調整して、第1ロール側にバンクを形成させながらキャストを行うことで1860μmのシートを得た。この際、ロール間に挟持された該混練物の幅寸法200mmに対して、バンクの幅は7割(140mm)となるように調整した。バンク幅の割合は、目視で概算して設定した後、デジタルスチルカメラで撮影して確認した。
The feeder and pump were adjusted so that the liquid paraffin content ratio in the total mixture melt-kneaded and extruded was 65 wt%. The melt kneading conditions were a set temperature of 200 ° C., a screw rotation speed of 280 rpm, and a discharge rate of 15 kg / h.
Subsequently, after passing through a T-die in which the kneaded material melt-kneaded by the extruder was adjusted to a thickness direction clearance of 2000 μm, the first roll (2 roll in FIG. 1) was 45 ° C. and the second roll (3 roll in FIG. 1). ) Was extruded onto two rolls controlled at 25 ° C. Each roll temperature control means is a system in which oil is heated to a set temperature by a heater with each hot solvent heating type mold temperature controller and sent to the roll (can be held at ± 1 ° C. with respect to the set temperature). The rotation speeds of the first roll and the second roll were synchronized so as to be the same speed. The gap between the rolls was set to 1900 μm, the roll speed was adjusted, and casting was performed while forming a bank on the first roll side to obtain a 1860 μm sheet. At this time, the width of the bank was adjusted to 70% (140 mm) with respect to the width of 200 mm of the kneaded material sandwiched between the rolls. The ratio of bank width was set by visual estimation, and then confirmed by photographing with a digital still camera.

次に、同時二軸テンター延伸機に導き二軸延伸を行った。延伸条件は、MD倍率7.0倍、TD倍率6. 4倍、温度120℃である。次に、メチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して可塑剤を抽出除去し、その後メチルエチルケトンを乾燥除去した。
次に、TDテンターに導き、118℃で、テンター入り幅に対し1.3倍延伸した後、123℃で、テンター入り幅に対し1.1倍まで戻して緩和させることで熱固定を行い、微多孔膜を得た。得られた微多孔膜の物性を表1に示す。
また、上記設定の製造を連続して10時間行ったが、バンクの状態は最初に設定した状態とほぼ変わりなかった。得られた物性のバラツキを表1に示す。
Next, it led to the simultaneous biaxial tenter stretching machine and biaxial stretching was performed. The stretching conditions were an MD magnification of 7.0 times and a TD magnification of 6. 4 times, temperature 120 ° C. Next, it was led to a methyl ethyl ketone bath and sufficiently immersed in methyl ethyl ketone to extract and remove the plasticizer, and then methyl ethyl ketone was removed by drying.
Next, after leading to a TD tenter and stretching 1.3 times the width of the tenter at 118 ° C., the heat fixing is performed by relaxing to 123 ° C. and returning to 1.1 times the width of the tenter. A microporous membrane was obtained. Table 1 shows the physical properties of the obtained microporous membrane.
Moreover, although the above setting was continuously performed for 10 hours, the state of the bank was not substantially different from the initially set state. Table 1 shows the variation in physical properties obtained.

[実施例2]
Mv30万のホモのポリエチレン99.5wt%に酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を0.5wt%添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また流動パラフィン(37.78℃における動粘度7.59×10−5/s)を押出機シリンダーにプランジャーポンプにより注入した。
[Example 2]
0.5 wt% of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant was added to 99.5 wt% of homopolyethylene having an Mv of 300,000, By dry blending again using a tumbler blender, a polymer mixture was obtained. The obtained mixture of polymers and the like was substituted with nitrogen and then fed to the twin-screw extruder with a feeder under a nitrogen atmosphere. Further, liquid paraffin (kinematic viscosity at 37.78 ° C .: 7.59 × 10 −5 m 2 / s) was injected into the extruder cylinder by a plunger pump.

溶融混練し、押し出される全混合物中に占める流動パラフィン量比が55wt%となるように、フィーダー及びポンプを調整した。溶融混練条件は、実施例1と同様である。
続いて、押出機で溶融混練された混練物を厚み方向隙間1600μmに調整したTダイを経て、第1ロール(図1の2のロール)を80℃、第2ロール(図1の3のロール)を70℃に実施例1と同様の手段で温度制御した2本のロール上に押出した。第1ロールと第2ロールの回転速度は同速となるように同調させた。ロール間隙間寸法は1500μmに設定し、ロール速度を調整して、第1ロール側にバンクを形成させながらキャストを行うことで1450μmのシートを得た。この際、ロール間に挟持された該混練物の幅寸法200mmに対して、バンクの幅は7割(140mm)となるように調整した。バンク幅の割合は、目視で概算して設定した後、デジタルスチルカメラで撮影して確認した。
The feeder and pump were adjusted so that the liquid paraffin content ratio in the total mixture melt-kneaded and extruded was 55 wt%. The melt-kneading conditions are the same as in Example 1.
Subsequently, after passing through a T die in which the kneaded material melt-kneaded by the extruder was adjusted to a thickness direction gap of 1600 μm, the first roll (2 roll in FIG. 1) was 80 ° C. and the second roll (3 roll in FIG. 1). ) Was extruded onto two rolls whose temperature was controlled at 70 ° C. by the same means as in Example 1. The rotation speeds of the first roll and the second roll were synchronized so as to be the same speed. The gap between the rolls was set to 1500 μm, the roll speed was adjusted, and casting was performed while forming a bank on the first roll side to obtain a 1450 μm sheet. At this time, the width of the bank was adjusted to 70% (140 mm) with respect to the width of 200 mm of the kneaded material sandwiched between the rolls. The ratio of bank width was set by visual estimation, and then confirmed by photographing with a digital still camera.

次に、同時二軸テンター延伸機に導き二軸延伸を行った。延伸条件は、MD倍率7.0倍、TD倍率6. 4倍、温度123℃である。次に、メチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して可塑剤を抽出除去し、その後メチルエチルケトンを乾燥除去した。
次に、TDテンターに導き、118℃で、テンター入り幅に対し1.4倍延伸した後、129℃で、テンター入り幅に対し1.1倍まで戻して緩和させることで熱固定を行い、微多孔膜を得た。得られた微多孔膜の物性を表1に示す。
また、上記設定の製造を連続して10時間行ったが、バンクの状態は最初に設定した状態とほとんど変わりなかった。得られた物性のバラツキを表1に示す。
Next, it led to the simultaneous biaxial tenter stretching machine and biaxial stretching was performed. The stretching conditions were an MD magnification of 7.0 times and a TD magnification of 6. 4 times, temperature 123 ° C. Next, it was led to a methyl ethyl ketone bath and sufficiently immersed in methyl ethyl ketone to extract and remove the plasticizer, and then methyl ethyl ketone was removed by drying.
Next, it was led to a TD tenter and stretched by 1.4 times with respect to the width including the tenter at 118 ° C., and then heat-fixed at 129 ° C. by relaxing by returning to 1.1 times with respect to the width including the tenter. A microporous membrane was obtained. Table 1 shows the physical properties of the obtained microporous membrane.
In addition, although the above setting was continuously performed for 10 hours, the state of the bank was almost the same as the initially set state. Table 1 shows the variation in physical properties obtained.

比較例4
キャスト工程で2本のロール制御温度を共に45℃とした以外は、実施例1と同様にして微多孔膜を得た。得られた微多孔膜の物性を表1に示す。
また、上記設定の製造を連続して10時間行った。バンクは、ロールに付着した可塑剤に影響されてやや変動したが、設定した幅は維持されていた。得られた物性のバラツキを表1に示す。
[ Comparative Example 4 ]
A microporous membrane was obtained in the same manner as in Example 1 except that both roll control temperatures were 45 ° C. in the casting step. Table 1 shows the physical properties of the obtained microporous membrane.
In addition, the above setting was continuously performed for 10 hours. The bank was slightly affected by the plasticizer adhering to the roll, but the set width was maintained. Table 1 shows the variation in physical properties obtained.

[比較例1]
ロール間に挟持された該混練物の幅寸法200mmに対して、バンクの幅を5割(100mm)となるように調整した以外は、実施例1と同様にして微多孔膜を得た。得られた微多孔膜の物性を表1に示す。
また、上記設定の製造を連続して10時間行った。バンクは、ロールに付着した可塑剤に影響を受け、バンクの幅が3〜7割の間で変動していた。得られた物性のバラツキを表1に示す。
[Comparative Example 1]
A microporous membrane was obtained in the same manner as in Example 1 except that the width of the bank was adjusted to 50% (100 mm) with respect to the width of 200 mm of the kneaded material sandwiched between the rolls. Table 1 shows the physical properties of the obtained microporous membrane.
In addition, the above setting was continuously performed for 10 hours. The bank was affected by the plasticizer adhered to the roll, and the width of the bank varied between 30 and 70%. Table 1 shows the variation in physical properties obtained.

[比較例2]
キャスト工程で2本のロール制御温度を共に45℃とし、バンクを形成させることなくキャストを行ったこと以外は、実施例1と同様にして微多孔膜を得た。得られた微多孔膜の物性を表1に示す。
また、上記設定の製造を連続して10時間行ったが、製膜は安定していた。得られた物性のバラツキを表1に示す。
[Comparative Example 2]
A microporous membrane was obtained in the same manner as in Example 1 except that the two roll control temperatures were 45 ° C. in the casting step, and casting was performed without forming a bank. Table 1 shows the physical properties of the obtained microporous membrane.
Further, although the above setting was continuously performed for 10 hours, the film formation was stable. Table 1 shows the variation in physical properties obtained.

[比較例3]
キャスト工程で2本のロール制御温度を共に70℃とし、バンクを形成させることなくキャストを行ったこと以外は、実施例2と同様にして微多孔膜を得た。得られた微多孔膜の物性を表1に示す。
また、上記設定の製造を連続して10時間行った。バンクを形成しなかったにも関わらず、時間の経過と共に、次第にロールに付着した可塑剤に影響を受け、小さなバンクが断続的に形成/消滅を繰り返した。得られた物性のバラツキを表1に示す。
[Comparative Example 3]
A microporous membrane was obtained in the same manner as in Example 2 except that the two roll control temperatures were set to 70 ° C. in the casting step, and casting was performed without forming a bank. Table 1 shows the physical properties of the obtained microporous membrane.
In addition, the above setting was continuously performed for 10 hours. In spite of the fact that the bank was not formed, the small bank intermittently repeated the formation / disappearance as time passed, affected by the plasticizer that gradually adhered to the roll. Table 1 shows the variation in physical properties obtained.

Figure 0004925238
Figure 0004925238

本発明は、物質の分離や選択透過及び隔離材等に用いられ、特にリチウムイオン電池などのセパレーターとして好適に用いられる、ポリオレフィン製微多孔膜の製造方法として利用される。   INDUSTRIAL APPLICABILITY The present invention is used as a method for producing a microporous membrane made of polyolefin, which is used for separation of substances, selective permeation, separators, and the like, and particularly suitably used as a separator for lithium ion batteries and the like.

本発明におけるキャスト成形の模式図である。It is a schematic diagram of cast molding in the present invention.

符号の説明Explanation of symbols

1 Tダイ
2 第1ロール
3 第2ロール
4 バンク(樹脂溜り)
5 混練物
6 冷却固化ゲルシート
1 T-die 2 1st roll 3 2nd roll 4 Bank (resin pool)
5 Kneaded product 6 Cooled solidified gel sheet

Claims (3)

ポリオレフィン組成物と可塑剤とを、それらの溶融混練物における可塑剤の含有割合を20〜95wt%にして溶融混練し、Tダイから押出し、バンク(樹脂溜まり)を形成してキャスト成形することによりシートを作成した後、延伸し、可塑剤を抽出するポリオレフィン製微多孔膜の製造方法において、バンクの幅をロール間に挟持された該混練物の全幅に対し6割以上であり、
バンクを形成する面側のロールの温度を、バンクが形成されていない面側のロールの温度より1℃以上高くすることを特徴とするポリオレフィン製微多孔膜の製造方法。
By melt-kneading a polyolefin composition and a plasticizer with a plasticizer content in the melt-kneaded product of 20 to 95 wt%, extruding from a T-die, forming a bank (resin pool) and cast molding In the method for producing a microporous polyolefin membrane in which a sheet is drawn and then stretched to extract a plasticizer, the width of the bank is 60% or more with respect to the total width of the kneaded material sandwiched between rolls,
A method for producing a polyolefin microporous film, characterized in that the temperature of the roll on the surface side forming the bank is higher by 1 ° C. or more than the temperature of the roll on the surface side where no bank is formed.
ロールの温度が、構成するポリオレフィンの融点より30℃低い温度以下、0℃以上であることを特徴とする、請求項1に記載のポリオレフィン製微多孔膜の製造方法。   The method for producing a polyolefin microporous membrane according to claim 1, wherein the temperature of the roll is not higher than 30 ° C lower than the melting point of the constituting polyolefin and not lower than 0 ° C. ポリオレフィン組成物として、ポリエチレンを50wt%以上使用することを特徴とする、請求項1又は2に記載のポリオレフィン製微多孔膜の製造方法。   The method for producing a microporous polyolefin membrane according to claim 1 or 2, wherein polyethylene is used in an amount of 50 wt% or more as the polyolefin composition.
JP2004237601A 2004-08-17 2004-08-17 Method for producing polyolefin microporous membrane Expired - Lifetime JP4925238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004237601A JP4925238B2 (en) 2004-08-17 2004-08-17 Method for producing polyolefin microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004237601A JP4925238B2 (en) 2004-08-17 2004-08-17 Method for producing polyolefin microporous membrane

Publications (3)

Publication Number Publication Date
JP2006056929A JP2006056929A (en) 2006-03-02
JP2006056929A5 JP2006056929A5 (en) 2007-09-06
JP4925238B2 true JP4925238B2 (en) 2012-04-25

Family

ID=36104676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004237601A Expired - Lifetime JP4925238B2 (en) 2004-08-17 2004-08-17 Method for producing polyolefin microporous membrane

Country Status (1)

Country Link
JP (1) JP4925238B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070264578A1 (en) * 2006-05-15 2007-11-15 Tonen Chemical Corporation Microporous polyolefin membrane, its production method and battery separator
JP5586152B2 (en) * 2006-12-04 2014-09-10 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
JP2010235707A (en) * 2009-03-30 2010-10-21 Asahi Kasei E-Materials Corp Method for producing polyolefin microporous film
JP6347210B2 (en) * 2012-10-03 2018-06-27 東レ株式会社 Biaxially stretched microporous film

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04276410A (en) * 1991-03-04 1992-10-01 Nippon Steel Corp Controlling method for thickness of polymer sheet
JPH06126765A (en) * 1992-10-21 1994-05-10 Bridgestone Corp Method for feeding band-like material to calender roll
JP3641321B2 (en) * 1996-05-08 2005-04-20 東燃化学株式会社 Method for producing polyolefin microporous membrane
JPH10296766A (en) * 1997-04-23 1998-11-10 Mitsui Chem Inc Calender molding method
JPH1121362A (en) * 1997-07-07 1999-01-26 Mitsubishi Chem Corp Porous polyethylene resin film
JP2000281844A (en) * 1999-03-31 2000-10-10 Mitsui Chemicals Inc Olefinic resin composition and its formed product
JP2004099799A (en) * 2002-09-11 2004-04-02 Asahi Kasei Chemicals Corp Rolled item of fine porous membrane made of polyolefin
JP4121846B2 (en) * 2002-12-16 2008-07-23 東燃化学株式会社 Polyolefin microporous membrane and production method and use thereof
JP4492917B2 (en) * 2003-05-07 2010-06-30 旭化成イーマテリアルズ株式会社 Method for producing polyolefin microporous membrane

Also Published As

Publication number Publication date
JP2006056929A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
US10079378B2 (en) Polyolefin microporous membrane and production method thereof
KR101410279B1 (en) Method for producing polyolefin microporous film
WO2006104165A1 (en) Process for producing microporous polyolefin film and microporous polyolefin film
JP5057654B2 (en) Polyethylene microporous membrane
WO2006106783A1 (en) Microporous polyolefin film and process for producing the same
JP6100022B2 (en) Method for producing polyolefin microporous membrane
US20140335396A1 (en) Microporous Membrane
KR20180015642A (en) Method for manufacturing microporous membrane, microporous membrane, separator for battery and secondary battery
JP5171012B2 (en) Method for producing polyolefin microporous membrane
JP6548430B2 (en) METHOD FOR PRODUCING POLYOLEFIN MICROPOROUS FILM, SEPARATOR FOR BATTERY, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
WO2015190487A1 (en) Polyolefin microporous film, method for producing same and separator for batteries
WO2021033735A1 (en) Polyolefin microporous film, layered body, and battery
TW201840666A (en) Microporous polyolefin membrane and battery including same
JPWO2019163935A1 (en) Porous polyolefin film
JP2002105235A (en) Polyolefin microporous film and its manufacturing method
JP6596329B2 (en) Method for producing polyolefin microporous membrane
JP4925238B2 (en) Method for producing polyolefin microporous membrane
JP2007262203A (en) Microporous film made of polyolefin
JP2003217554A (en) Polyolefin micro porous membrane for battery separator
JP3995467B2 (en) Polyolefin microporous membrane
JP2004099799A (en) Rolled item of fine porous membrane made of polyolefin
JP2018090744A (en) Polyolefin resin, film, microporous film and battery separator
JP2011162669A (en) Porous polypropylene film roll and method for producing the same
JP3995471B2 (en) Polyolefin microporous membrane
JP4507334B2 (en) Polymer blend microporous membrane

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111117

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4925238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350