JP2004099799A - Rolled item of fine porous membrane made of polyolefin - Google Patents

Rolled item of fine porous membrane made of polyolefin Download PDF

Info

Publication number
JP2004099799A
JP2004099799A JP2002265513A JP2002265513A JP2004099799A JP 2004099799 A JP2004099799 A JP 2004099799A JP 2002265513 A JP2002265513 A JP 2002265513A JP 2002265513 A JP2002265513 A JP 2002265513A JP 2004099799 A JP2004099799 A JP 2004099799A
Authority
JP
Japan
Prior art keywords
polyolefin
microporous membrane
winding
porous membrane
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002265513A
Other languages
Japanese (ja)
Inventor
Yasushi Niihara
新原 靖
Hiroshi Hatayama
畑山 博司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Asahi Chemical Co Ltd
Original Assignee
Asahi Kasei Chemicals Corp
Asahi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp, Asahi Chemical Co Ltd filed Critical Asahi Kasei Chemicals Corp
Priority to JP2002265513A priority Critical patent/JP2004099799A/en
Publication of JP2004099799A publication Critical patent/JP2004099799A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolled item of a fine porous membrane made of a polyolefin that is excellent in workability when a manufactured article such as a cell separator or the like is fabricated and that has high strength, is produced at a low cost and is excellent in thickness stability so as to allow for a high winding speed during the winding process in the subsequent step of slitting and rewinding using the rolled item. <P>SOLUTION: The rolled item of the fine porous membrane made of a polyolefin is a rolled item produced by winding the fine porous membrane made of a polyolefin around a tube, wherein the relation among a maximum outer diameter D (mm), a minimum outer diameter d (mm) and a wound length L (m) of the rolled item including the fine porous membrane satisfies the formula represented by 0.01≤(D<SP>2</SP>-d<SP>2</SP>)/L≤0.5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ポリオレフィン製微多孔膜捲回物に関し、特にリチウムイオン二次電池用セパレータとして好適に使用されるポリオレフィン製微多孔膜捲回物に関する。
【0002】
【従来の技術】
ポリオレフィン製微多孔膜は、種々の電池用セパレータとして使用されている。ポリオレフィン樹脂が有機溶媒に対する耐性に優れ、また電子絶縁性にも優れることなどから、特にリチウムイオン二次電池において多用されている。
近年、リチウムイオン二次電池の主用途である携帯電話やパソコン、その他携帯機器の多機能化、軽量化、低コスト化に伴い、電池には高容量化、高エネルギー密度化、及び高生産性が強く求められている。その中で高容量化、高エネルギー化に対し、セパレータには薄膜化が、また薄膜化により低下が懸念される安全性能に対しては高強度化や溶融時の形状保持性が、高生産性として高捲回速度が求められている。
【0003】
また、最近では大型のリチウムイオン二次電池を自動車用、貯蔵用に使用することも検討されており、その際に使用するセパレータは巾の広いもの、巻長の長いものになっている。このような大型のリチウムイオン二次電池の普及を広めるためにも生産性を上げ、低コスト化をはかることが必要になってきている。
【0004】
このようなポリオレフィン製微多孔膜を製造する方法としては、ポリオレフィンのみを製膜し続いて延伸により開孔させる方法、ポリオレフィンと可塑剤よりシートを成形しそれを延伸・抽出、抽出・延伸する方法など種々の方法が提案されている。例えば、重量平均分子量が7×10以上の超高分子量ポリオレフィンを溶媒中で加熱溶解した溶液からゲルシートを成形し、前記ゲルシート中の溶媒量を脱溶媒処理により調整し、次いで加熱延伸した後、残留溶媒を除去することにより超高分子量ポリオレフィンの微多孔膜を製造する方法や縦方向の倍率と横方向の延伸倍率との比が0.5以上3以下で、かつそれぞれの倍率が2以上となることを特徴とするセパレータの製造方法が開示されている。しかしながらこれらの方法ではゲルシートの厚み安定化、薄膜化が困難な点から該捲回物を用いて捲回を行う次工程での捲回性に優れたセパレータとはならなかった。このような厚み均一性を向上させる技術として特許文献1では圧延処理にベルトプレス機を使用する方法が開示されているが、装置自体も高価なものとなり、圧延工程を経なければならず、ベルトの変形のために広幅品の横方向、縦方向の厚み精度がでにくく、価格も高価なものとなってしまう。
【0005】
また、作製し終わった製品を平滑にする方法としては、特許文献2に開示されているように巻き取り直して修正する方法が開示されているが、セパレータの物性むらが生じ、しかも工程の追加になり、高価格のセパレータの供給となってしまい、また、スリット巾が50mm程度の狭いものについて実施されているにすぎない。
【0006】
【特許文献1】
特開2001−2812号公報
【特許文献2】
特開平8−39688号公報
【0007】
【発明が解決しようとする課題】
本発明の課題は、電池セパレーター等の製品を製造する際の作業性に優れたポリオレフィン製微多孔膜捲回物を提供することであり、さらには、高強度、低コストで、該捲回物を用いて捲回を行う次工程での捲回時に高捲回速度が取れるように厚み安定性に優れたポリオレフィン製微多孔膜捲回物を提供することである。
【0008】
【課題を解決するための手段】
本発明者らは、鋭意検討の結果、上記課題を解決しうることを見いだし本発明に到った。すなわち、本発明は、下記の通りである。
(1)管にポリオレフィン製微多孔膜を捲回してなる捲回物であって、多孔膜を含めた最大外径D(mm)と最小外径d(mm)と捲回長L(m)の間に、
0.01 ≦(D−d)/L≦ 0.5
の関係式が成り立つことを特徴とするポリオレフィン製微多孔膜捲回物。
(2)前記微多孔膜の空孔部分が三次元網目構造を備えていることを特徴とする(1)記載のポリオレフィン製微多孔膜捲回物。
(3)前記微多孔膜の横幅が65mm以上であることを特徴とする(1)または(2)記載のポリオレフィン製微多孔膜捲回物。
(4)前記微多孔膜を捲回するための管のサイズが、外径91.8mm以上であることを特徴とする(1)〜(3)いずれかに記載のポリオレフィン製微多孔膜捲回物。
(5)前記微多孔膜の表裏の摩擦係数比が1.5以下であることを特徴とする(1)〜(4)いずれかに記載のポリオレフィン製微多孔膜捲回物。
【0009】
【発明の実施の形態】
以下に本発明を、特にその好ましい態様を中心に、詳細に記述する。
本発明に用いられるポリオレフィンとは、ポリオレフィン単独物及び2種類以上のポリオレフィン混合物である。主たる成分のポリオレフィンとして、例えばポリエチレン、ポリプロピレン、ポリ−4−メチル−1−ペンテンなどが挙げられる。
【0010】
主たる成分以外のポリオレフィンとして、製膜性を損なうことなくまた本発明の要件を外さない範囲で、各種のポリオレフィンを配合することができる。例えば、孔閉塞特性の向上を目的したα―オレフィンコモノマーの含量が高い低融点ポリエチレンや、耐熱性の向上を目的としたポリプロピレン及びポリー4−メチル−1−ペンテン等を配合することができる。また、ポリオレフィン以外のポリマー材料や他の有機及び無機材料についても、電池用セパレータとしての性能を損なうことなく、製膜性を損なうことなく、そして本発明の要件を外さない範囲で配合することができる。
【0011】
本発明で使用されるポリオレフィン組成物には、必要に応じて、フェノール系やリン系やイオウ系等の酸化防止剤、ステアリン酸カルシウムやステアリン酸亜鉛等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料等の公知の添加剤を混合して使用できる。
本発明においては、微多孔膜の空孔部分が三次元網目構造をしていることが好ましい。三次元網目構造である方が、気孔率を大きくとることができ、電気特性が良好になり、好ましい。三次元網目構造とは三次元的に樹脂がネットワーク構造を有しており、その樹脂のネットワーク構造間が連通孔として孔を形成している構造をいう。このような三次元網目構造は、後にのべるような相分離法により、容易に構造を作成することができる。また、三次元網目構造にすることにより透気度(秒/100cc・枚)/厚み(μm)の値を20以下にすることが容易になり、さらに好ましくは18以下にすることができる。
【0012】
本発明では特に限定していないが、機械的強度の観点から空孔率は30〜80%が好ましく、35〜55%が特に望ましい。また、電気絶縁性、電気容量確保の観点から厚みについては5〜50μmが好ましく、10〜45μmが特に好ましい。また、機械的強度の観点から突刺強度は300g以上が好ましく、さらには400g以上が好ましい。
本発明におけるポリオレフィン製微多孔膜捲回物は、捲回物の微多孔膜を含めた最大外径D(mm)と最小外径d(mm)と捲回長L(m)の間に、
(D−d)/L≦0.5、好ましくは0.25、さらに好ましくは0.12以下の関係式が成り立つポリオレフィン製微多孔膜捲回物である。0.5より大きくなると該捲回物を用いて捲回を行う次工程で捲回スピードを上げると巻きズレが発生し、捲回収率に劣るものとなってしまう。0.01未満にするためには、装置を高精度にしなければならず、価格の高いものになってしまう。
また、巻長も好ましくは200m以上、さらに好ましくは400m以上とするのが捲回効率を上げる上で好ましい。
【0013】
本発明においては、微多孔膜の横幅が好ましくは65mm以上、より好ましくは150mm以上、さらに好ましくは300mm以上の横幅においても上記関係式を成り立たせることができる。また、微多孔膜を捲回するための管のサイズが外径91.8mm以上であることが好ましく、91.8mm未満の管を使用すると微多孔膜の積層回数が増加するため捲回した時の張力による変形をより受けやすくなり、該捲回物を用いて捲回を行う次工程で捲回性の良好な微多孔膜を安定的に得られない場合がある。また、そのような管も一般に販売されていないので高価なものとなってしまう。使用する捲回用管としては、通常は内径により称される。外径91.8mmの紙管であれば通常内径76.2mmであり、紙厚みは5〜15mmの範囲にあり、強度により調整される。使用する捲回用管としては、通常市販されている公差が±0.5mmさらに好ましくは±0.3mmの紙管や、プラスチック管を使用すれば良いが、公差が少ない方が好ましいのはいうまでもない。
【0014】
次にポリオレフィン組成物濃度は、該ポリオレフィン組成物と溶媒とからなる混合物総重量の10〜60重量%が好ましく、30〜60重量%がより好ましい。ポリオレフィン組成物濃度が10重量%未満では、ポリオレフィン分子同士、分子内での絡み合いが少なく十分な強度が得られにくいばかりではなく、ダイスから溶融物を押出しシート状に成形する際にネックインが大きく、厚みムラ、配向ムラを引き起こし易い。低倍率延伸でも高強度を達成するためには、濃度が10重量%以上が好ましく、30重量%以上がより好ましい。濃度が60重量%を越えると、ポリオレフィン組成物によっては溶媒を抽出した際に無孔化してしまう場合があることや溶融粘度が高すぎるために厚み安定性に優れたゲルシートを成形することが困難なことから60重量%以下が好ましい。
【0015】
溶媒としては、該ポリオレフィン組成物と溶融混合した際に、均一溶液を形成しうる溶媒であれば特に限定はされない。例えば、ノナン、デカン、ウンデカン、ドデカン、流動パラフィンやパラフィンワックス等の脂肪族または脂環式炭化水素類、ジ−2−エチルヘキシルフタレート、ジイソデシルフタレート、ジヘプチルフタレート等のフタル酸エステル類などがあげられ、単独もしくは混合して用いられる。なかでも流動パラフィン等の溶解性に優れ、不揮発性の溶媒が好ましい。
【0016】
該ポリオレフィン組成物と溶剤の混練方法としては、例えば、ヘンシェルミキサー、リボンブレンダー、タンブラーブレンダー等で混合後、一軸押出し機、二軸押出し機等のスクリュー押出し機、ニーダー、バンバリーミキサー等により溶融混練させる方法が挙げられる。溶融混練する方法としては、連続運転可能な押出し機が好ましく、二軸押出し機が分子鎖の絡み合いを十分に与えるせん断応力をかけられる点でさらに好ましい。溶融混練時の温度は、均一な混練物を得るために160℃以上が好ましく、300℃以下が好ましい。より好ましくは170〜250℃である。
【0017】
次に、得られた溶融混練物をシート状に押し出した後、冷却し、ゲルシートを成形する。シート状に押し出す方法としては、例えば、T−ダイを装着した押出し機より溶融物を押し出す方法が挙げられる。T−ダイのシート状押出し口の厚みは、50〜3000μmの範囲が好ましい。押し出し時のシートが厚すぎると冷却速度が遅く冷却ムラが生じる可能性が、厚みの安定性が劣る可能性が、および厚み方向で結晶サイズが異なり中心部が微細な結晶構造が得られない可能性があることが懸念される。
【0018】
冷却方法としては、弾性変形可能な表面が金属のロールを用いて、面圧着成形することが好ましい。弾性変形可能な表面が金属のロールとは、ロール表面は金属薄膜であり、この金属薄膜に下記に述べる面圧着成形を施してもへこみやキズを生じることなく、変形回復するロールである。このような金属薄膜の内部に弾性を有するロールを内臓しており、外筒の金属薄膜と弾性を有するロールの間には冷却水が充満され内圧がかかった構造を持ったロールである。弾性を有するロールはラバーロールが最も一般的で好ましい。通常の金属ロール同士での圧着は、金属の剛性という特性ゆえにロール同士は線でしか接することができない。そのためにゲルシートを成形する際に圧着部が小さく、厚みムラを起こすことが多い。弾性変形可能な、表面が金属のロール同士、もしくは弾性変形可能な、表面が金属のロールと通常の金属ロールで圧着することにより、内蔵されている弾性を有するロール、および金属薄膜が円弧状に変形し、ロール同士が面で接することが出来るために面圧着が可能となる。本発明において、面圧着とは、ロールの機械方向に接する部分の面圧着幅が2mm以上100mm以下であることを言い、2mm以上50mm以下が好ましく、さらには10mm以上30mm以下が好ましい。2mm未満ではポリオレフィン濃度が10〜60wt%の厚み安定性に優れたゲルシートを安定的に得ることが難しく、100mm以上では金属薄膜の弾性回復が不十分になり、厚み精度が低下しやすい。
【0019】
また、弾性変形可能な、表面が金属のロールを用いて、面圧着成形することにより、表裏の摩擦係数比が1.5以下、さらに好ましくは1.1以下にすることができる。
摩擦係数比が1.5以下とすることにより、該捲回物を用いて捲回を行う次工程での捲回性が良好になり、理由が不明であるが、電解液の含浸性も良好になる。
このように、弾性変形可能な、表面が金属のロールを用い、面圧着し、シートを冷却、固化することにより、例えば、ポリオレフィン濃度が10〜60wt%の厚み安定性の飛躍的に優れたゲルシートを得ることができる。
得られたゲルシートを同時二軸延伸または少なくとも1方向以上の逐次延伸、冷却ロールの引き取り速度とダイス出口の速度比を調整する等の手段により薄膜化できる。厚み精度を向上させるには同時二軸延伸にて3×3倍以上で延伸するのが特に好ましい。しかしながら、この延伸は溶媒抽出後に行っても本発明の効果は達成される。
【0020】
次にゲルシートより溶媒の除去処理を行う。溶剤の除去処理としては、抽出による除去が好ましく、用いる抽出溶剤としては、使用するポリオレフィン組成物に対して貧溶媒であり、且つ使用する溶媒に対しては良溶媒であり、沸点が使用するポリオレフィンの融点よりも低いものが望ましい。このような抽出溶剤として、例えばn−ヘキサンやシクロヘキサン等の炭化水素類、メタノール、エタノール、イソプロパノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、テトラヒドロフラン等のエーテル類、塩化メチレン、1,1,1−トリクロロエタン等のハロゲン化炭化水素類等の有機溶媒などが挙げられ、この中から適宜選択し、単独もしくは混合して用いられる。
【0021】
さらに、本発明では、溶媒除去処理を行った後に、延伸処理、熱処理を行ってもよい。そしてこのような処理を行った微多孔膜を例えば、内径152.4mm(6インチ)の紙管に巻き取る。つぎに所望の幅にスリットを行うが、スリットを行い製品化するには、例えば、通常市販されている公差が±0.5mm以内、さらに好ましくは±0.3mm以内の内径76.2mm(3インチ)、152.4mm(6インチ)、203.2mm(8インチ)等の紙管や、プラスチック製管に巻き取ることができる。特にスリット巾(横幅)が広くなった時には、内径6インチや、8インチの紙管や、プラスチック管に巻くのが好ましい。紙管やプラスチック管の紙、プラスチックの厚みは強度により調整するが、5〜15mmの厚みにて市販されている。
捲回機が3インチの場合にて例えば6インチの紙管をセットするような場合は公知のサイズアップのための治具を使用することができる。
【0022】
以下、実施例及び比較例によって本発明を具体的に説明するが、これらは本発明の範囲を制限しない。本発明で用いた各種物性は、以下の試験方法に基づいて測定した。
(1)膜厚(μm)
東洋精機(株)製の微小測厚器(タイプKBM)を用いて室温23℃で測定した。
(2)気孔率(%)
10cm×10cm角の試料を微多孔膜から切り取り、その体積(cm3 )と質量(g)を求め、それらと膜密度(g/cm3 )より、次式を用いて計算した。
気孔率=(体積−質量/膜密度)/体積×100
なお、膜密度はASTM−D1505に準拠し、密度勾配管法(23℃)により測定した。
(3)透気度(sec)
JIS P−8117に準拠し、ガーレー式透気度計(東洋精器(株)製G−B2型)により測定した。
(4)突刺強度(g/枚)
カトーテック(株)製KES−G5ハンディー圧縮試験器を用いて、室温(23℃)にて針先端の曲率半径0.5mm、突刺速度2mm/secの条件で突刺試験を行うことにより、最大突刺荷重として生の突刺強度(g/枚)が得られた。
【0023】
(5)粘度平均分子量Mv
デカヒドロナフタリンへ試料の劣化防止のため2,6−ジ−t−ブチル−4−メチルフェノールを0.1w%の濃度となるように溶解させ、これ(以下DHNと略す)を試料溶媒として用いる。
試料を試料溶媒へ0.1w%の濃度となるように150℃で溶解させ試料溶液を作成する。作成した試料溶液を10ml採取し、キャノンフェンスケ粘度計(SO100)により135℃での標線間通過秒数(t)を計測する。また、DHNを150℃に加熱した後、10ml採取し、同様の方法により粘度計の標線間を通過する秒数(t)を計測する。得られた通過秒数t、tを用いて次の換算式により極限粘度[η]を算出した。
[η]=((1.651t/t−0.651)0.5−1)/0.0834
求められた[η]より、次式によりMvを算出した。
[η]=6.77×10−4Mv0.67
【0024】
(6)メルトインデックス
特に断りが無い場合は、ASTM−D−1238に準拠して測定した
(7)次工程捲回性テスト
西村製作所(株)製スリッターTH4Cを使用し、走行速度100m/分にて巻き直した時の巻きズレの度合いにより評価した。なお、捲回状態において0.3mm以上のズレが生じたものを巻きズレとした。

Figure 2004099799
とした。
【0025】
(8)捲回方向裏表表面動摩擦係数比
カトーテック株式会社製、KES−SE摩擦試験機を用い、荷重50g、接触子面積10×10=100mm、接触子送りスピード1mm/sec、張力6kPa、温度25℃の条件にて横5×捲回方向20cm(横巾が5cmより小さい場合はその横巾×20cm)のサンプルの捲回方向について表と裏について測定し、その動摩擦係数の大きい方を分子として比を算出した。
【0026】
【実施例1】
Mv27万のポリエチレン35重量%、Mv95万のポリエチレン65重量%の混合物をタンブラーブレンダーを用いてドライブレンドし、ポリオレフィン組成物を得た。得られた組成物30重量%と流動パラフィン70重量%を、二軸押し出し機にて均一な溶融混練を行い、ポリエチレン溶融混練物を得た。溶融混練条件は、設定温度200℃、スクリュー回転数170rpm、吐出量15kg/hrで行った。
【0027】
続いて、溶融混練物を、220℃に保持されたT−ダイ(幅250mm)を用い、溶融混練物をシート状に押し出した。
表面温度60℃に制御された弾性変形可能な金属ロールと弾性変形が不可能な金属冷却ロールで溶融混練物を15mm圧着、冷却することにより、厚み2000μmの厚み安定性に優れたゲルシートを得た。
次に同時ニ軸延伸機を用いて、延伸温度125℃で7×7倍に延伸し、続いて、メチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して流動パラフィンを抽出除去し、その後メチルエチルケトンを乾燥除去した。
【0028】
さらに、テンター延伸機で、横方向に120℃で1.5倍延伸を行い、125℃で熱固定を行い微多孔膜を得た。この微多孔膜を巾300mmにスリットし、内径76.2mm(3インチ)外径91.8mmの紙管に400m捲回した。得られたポリオレフィン製微多孔膜とその捲回物の物性を表1に示した。次工程捲回性テストの結果は良好であった。
【0029】
【実施例2】
スリットした後、内径152.4mm(6インチ)外径172.4mmの紙管に捲回した以外は実施例1と同様にしてポリオレフィン製微多孔膜捲回物を得た。得られた微多孔膜とその捲回物の物性は表1に示した。次工程捲回性テストの結果は最良であった。
【0030】
【実施例3】
スリット巾(横幅)を150mmとした以外は実施例1と同様にしてポリオレフィン製微多孔膜捲回物を得た。得られた微多孔膜とその捲回物の物性は表1に示した。次工程捲回性テストの結果は最良であった。
【0031】
【実施例4】
スリット巾(横幅)を70mmとした以外は実施例1と同様にしてポリオレフィン製微多孔膜捲回物を得た。得られた微多孔膜とその捲回物の物性は表1に示した。次工程捲回性テストの結果は最良であった。
【0032】
【実施例5】
Mv27万のポリエチレン50重量%と流動パラフィン50重量%を、二軸押し出し機にて均一な溶融混練を行い、ポリエチレン溶融混練物を得た。溶融混練条件は、設定温度200℃、スクリュー回転数170rpm、吐出量15kg/hrで行った。溶融混練物を、260℃に保持されたT−ダイ(幅250mm)を用い、溶融混練物をシート状に押し出した。表面温度60℃に制御された弾性変形可能な金属ロールと弾性変形が不可能な金属冷却ロールで溶融混練物を10mm圧着、冷却することにより、厚み1700μmの厚み安定性に優れたゲルシートを得た。それ以外は、実施例1と同様にして微多孔膜を製膜した。この微多孔膜を巾300mmにスリットし、内径76.2mm(3インチ)外径91.8mmの紙管に400m捲回した。得られた微多孔膜とその捲回物の物性を表1に示した。次工程捲回性テストの結果は良好であった。
【0033】
【実施例6】
Mv27万のポリエチレン30重量%、Mv95万のポリエチレン65重量%、メルトインデックス0.5g/10分のポリプロピレン5重量%の混合物をタンブラーブレンダーを用いてドライブレンドし、ポリオレフィン組成物を得た。それ以外は実施例1と同様にして捲回状ポリオレフィン製微多孔膜を得た。得られた微多孔膜とその捲回物の物性を表1に示した。次工程捲回性テストの結果は良好であった。
【0034】
【実施例7】
実施例6の混合物を使用し、この組成物30重量%と流動パラフィン70重量%を、二軸押し出し機にて均一な溶融混練を行い、ポリエチレン溶融混練物を得た。溶融混練条件は、設定温度200℃、スクリュー回転数180rpm、吐出量15kg/hrで行った。
続いて、溶融混練物を、220℃に保持されたT−ダイ(幅250mm)を用い、溶融混練物をシート状に押し出した。
表面温度60℃に制御された弾性変形可能な金属ロールと弾性変形が不可能な金属冷却ロールで溶融混練物を15mm圧着、冷却することにより、厚み1200μmの厚み安定性に優れたゲルシートを得た。
【0035】
次に同時ニ軸延伸機を用いて、延伸温度120℃で7×7倍に延伸し、続いて、メチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して流動パラフィンを抽出除去し、その後メチルエチルケトンを乾燥除去した。
さらに、テンター延伸機で、横方向に125℃で1.3倍延伸を行い、127℃で熱固定を行い微多孔膜を得た。この微多孔膜を巾200mmにスリットし、内径152.4mm(6インチ)外径172.4mmの紙管に400m捲回した。得られた微多孔膜とその捲回物の物性を表1に示した。次工程捲回性テストの結果は最良であった。
【0036】
【比較例1】
実施例1でT−ダイより押し出したシート状の溶融混練物を冷却し、ゲルシートを作製する工程において、弾性変形可能な金属ロールを使用せず、キャスト状にして実施例1と同様にして厚み2000μmの厚み安定性に優れたゲルシートを得た。
次に同時ニ軸延伸機を用いて、延伸温度130℃で7×7倍に延伸し、続いて、メチルエチルケトン槽に導き、メチルエチルケトン中に充分に浸漬して流動パラフィンを抽出除去し、その後メチルエチルケトンを乾燥除去した。
さらに、テンター延伸機で、横方向に120℃で1.5倍延伸を行い、125℃で熱固定を行い微多孔膜を得た。この微多孔膜を巾300mmにスリットし、内径76.2mm(3インチ)外径91.8mmの紙管に400m捲回した。得られた微多孔膜とその捲回物の物性を表1に示した。次工程捲回性テストの結果は不良であった。
【0037】
【比較例2】
実施例1と同様にして溶融混練物を2500μmのシート状に押し出した。表面温度約120℃に制御された加熱加圧ロール式ダブルベルトプレス機を2000μmに圧延しようと試みたが、得られたゲルシートの厚みが安定せず、同時ニ軸延伸の際に破膜したため微多孔膜は得られなかった。
【0038】
【表1】
Figure 2004099799
【0039】
【発明の効果】
本発明により、高強度、低コストで、さらに該捲回物を用いて捲回を行う次工程での捲回時に高捲回速度が取れるように厚み安定性に優れたポリオレフィン製微多孔膜捲回物を提供することが可能となった。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polyolefin microporous membrane wound product, and more particularly to a polyolefin microporous membrane wound product suitably used as a separator for a lithium ion secondary battery.
[0002]
[Prior art]
Polyolefin microporous membranes have been used as various battery separators. Polyolefin resins are widely used, especially in lithium ion secondary batteries, because of their excellent resistance to organic solvents and excellent electronic insulation.
In recent years, as mobile phones, personal computers, and other portable devices, which are the main applications of lithium-ion secondary batteries, have become more multifunctional, lighter, and lower in cost, batteries have increased capacity, higher energy density, and higher productivity. Is strongly required. Among them, separators are required to be thinner for higher capacity and higher energy, and higher safety and shape retention during melting are required for safety performance, which is likely to be reduced due to thinning. Therefore, a high winding speed is required.
[0003]
Recently, the use of large-sized lithium ion secondary batteries for automobiles and storage has been studied, and the separator used at that time has a large width and a long winding length. In order to spread such a large-sized lithium ion secondary battery, it is necessary to increase productivity and reduce cost.
[0004]
As a method for producing such a microporous film made of polyolefin, there are a method of forming a film of only polyolefin and subsequently opening the film by stretching, a method of forming a sheet from polyolefin and a plasticizer, stretching and extracting, and extracting and stretching. Various methods have been proposed. For example, a gel sheet is formed from a solution obtained by heating and dissolving an ultrahigh molecular weight polyolefin having a weight-average molecular weight of 7 × 10 5 or more in a solvent, the solvent amount in the gel sheet is adjusted by a desolvation treatment, and then heat stretching is performed. A method for producing a microporous membrane of ultra-high molecular weight polyolefin by removing the residual solvent or a ratio of the magnification in the longitudinal direction and the stretching ratio in the lateral direction of 0.5 or more and 3 or less, and the respective magnifications of 2 or more A method for producing a separator characterized by the following is disclosed. However, these methods did not provide a separator excellent in the winding property in the next step of winding using the wound material, because it was difficult to stabilize the thickness of the gel sheet and make it thinner. As a technique for improving such thickness uniformity, Patent Literature 1 discloses a method of using a belt press machine for a rolling process. However, the apparatus itself becomes expensive, and a rolling process must be performed. Due to the deformation of the wide product, the thickness accuracy in the horizontal direction and the vertical direction of the wide product is difficult to obtain, and the price becomes expensive.
[0005]
Further, as a method of smoothing the finished product, a method of rewinding and correcting the product as disclosed in Patent Document 2 is disclosed. However, uneven physical properties of the separator occur, and additional steps are required. That is, a high-priced separator is supplied, and only a slit having a slit width of about 50 mm is used.
[0006]
[Patent Document 1]
JP 2001-2812 A [Patent Document 2]
JP-A-8-39688 [0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a polyolefin microporous membrane wound product excellent in workability when manufacturing a product such as a battery separator, and further, has high strength and low cost, and An object of the present invention is to provide a polyolefin microporous membrane wound material having excellent thickness stability so that a high winding speed can be obtained at the time of winding in the next step of winding using.
[0008]
[Means for Solving the Problems]
Means for Solving the Problems As a result of intensive studies, the present inventors have found that the above problems can be solved, and have reached the present invention. That is, the present invention is as follows.
(1) A wound product obtained by winding a polyolefin microporous membrane around a tube, the maximum outer diameter D (mm), the minimum outer diameter d (mm), and the winding length L (m) including the porous membrane. Between,
0.01 ≦ (D 2 −d 2 ) /L≦0.5
A microporous polyolefin membrane wound product characterized by the following relationship:
(2) The rolled polyolefin microporous membrane according to (1), wherein the pores of the microporous membrane have a three-dimensional network structure.
(3) The polyolefin microporous membrane roll according to (1) or (2), wherein the microporous membrane has a width of 65 mm or more.
(4) The microporous polyolefin membrane wound according to any one of (1) to (3), wherein the size of the tube for winding the microporous membrane is 91.8 mm or more in outer diameter. object.
(5) The polyolefin microporous membrane roll according to any one of (1) to (4), wherein the friction coefficient ratio between the front and back surfaces of the microporous membrane is 1.5 or less.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with particular emphasis on preferred embodiments thereof.
The polyolefin used in the present invention is a polyolefin alone or a mixture of two or more polyolefins. Examples of the main component polyolefin include polyethylene, polypropylene, and poly-4-methyl-1-pentene.
[0010]
As the polyolefin other than the main component, various polyolefins can be blended without impairing the film forming property and within the range not departing from the requirements of the present invention. For example, low melting point polyethylene having a high content of α-olefin comonomer for the purpose of improving pore blocking characteristics, polypropylene and poly-4-methyl-1-pentene for the purpose of improving heat resistance can be blended. In addition, polymer materials other than polyolefins and other organic and inorganic materials can also be blended without impairing the performance as a battery separator, without impairing the film-forming properties, and within the range not departing from the requirements of the present invention. it can.
[0011]
In the polyolefin composition used in the present invention, if necessary, phenol-based, phosphorus-based or sulfur-based antioxidants, metal soaps such as calcium stearate and zinc stearate, ultraviolet absorbers, light stabilizers Known additives such as antistatic agents, antifogging agents, and color pigments can be mixed and used.
In the present invention, the pores of the microporous membrane preferably have a three-dimensional network structure. A three-dimensional network structure is preferable because the porosity can be increased and the electrical characteristics are improved. The three-dimensional network structure refers to a structure in which a resin has a network structure three-dimensionally, and holes are formed as communication holes between the network structures of the resin. Such a three-dimensional network structure can be easily formed by a phase separation method as described later. Further, by adopting a three-dimensional network structure, the value of the air permeability (sec / 100 cc · sheet) / thickness (μm) can be easily reduced to 20 or less, more preferably 18 or less.
[0012]
Although not particularly limited in the present invention, the porosity is preferably 30 to 80%, and particularly preferably 35 to 55% from the viewpoint of mechanical strength. The thickness is preferably from 5 to 50 μm, particularly preferably from 10 to 45 μm, from the viewpoint of securing electric insulation and electric capacity. From the viewpoint of mechanical strength, the piercing strength is preferably 300 g or more, and more preferably 400 g or more.
The polyolefin microporous membrane roll in the present invention has a maximum outer diameter D (mm) including the microporous membrane of the roll, a minimum outer diameter d (mm), and a roll length L (m).
This is a polyolefin microporous membrane roll which satisfies the relational expression of (D 2 −d 2 ) /L≦0.5, preferably 0.25, and more preferably 0.12 or less. If it is larger than 0.5, if the winding speed is increased in the next step of winding using the wound material, winding deviation will occur, resulting in poor winding recovery. In order to reduce the value to less than 0.01, the device must be highly accurate, which results in high cost.
The winding length is preferably 200 m or more, more preferably 400 m or more, from the viewpoint of increasing the winding efficiency.
[0013]
In the present invention, the above relational expression can be satisfied even when the width of the microporous membrane is preferably 65 mm or more, more preferably 150 mm or more, and still more preferably 300 mm or more. Further, the size of the tube for winding the microporous membrane is preferably 91.8 mm or more in outer diameter, and the use of a tube having a diameter of less than 91.8 mm increases the number of lamination of the microporous film. In some cases, the microporous membrane having good winding properties may not be stably obtained in the next step of winding using the wound material. Also, such tubes are expensive because they are not generally sold. The winding tube used is usually referred to by the inner diameter. In the case of a paper tube having an outer diameter of 91.8 mm, the inner diameter is usually 76.2 mm, the thickness of the paper is in the range of 5 to 15 mm, and is adjusted by the strength. As the winding tube to be used, a paper tube or a plastic tube having a tolerance of ± 0.5 mm, more preferably ± 0.3 mm, which is generally commercially available, may be used, but it is preferable that the tolerance is smaller. Not even.
[0014]
Next, the concentration of the polyolefin composition is preferably from 10 to 60% by weight, more preferably from 30 to 60% by weight, based on the total weight of the mixture comprising the polyolefin composition and the solvent. If the polyolefin composition concentration is less than 10% by weight, not only is the polyolefin molecule less entangled with each other and sufficient strength is not easily obtained, but also the neck-in becomes large when the melt is extruded from a die and formed into a sheet. , Thickness unevenness and alignment unevenness are easily caused. In order to achieve high strength even at low magnification stretching, the concentration is preferably 10% by weight or more, more preferably 30% by weight or more. If the concentration exceeds 60% by weight, it may be difficult to form a gel sheet having excellent thickness stability because the polyolefin composition may become nonporous when a solvent is extracted or the melt viscosity is too high. Therefore, the content is preferably 60% by weight or less.
[0015]
The solvent is not particularly limited as long as it can form a uniform solution when melt-mixed with the polyolefin composition. Examples include aliphatic or alicyclic hydrocarbons such as nonane, decane, undecane, dodecane, liquid paraffin and paraffin wax, and phthalic acid esters such as di-2-ethylhexyl phthalate, diisodecyl phthalate, and diheptyl phthalate. , Alone or as a mixture. Above all, a non-volatile solvent having excellent solubility such as liquid paraffin is preferable.
[0016]
As a method for kneading the polyolefin composition and the solvent, for example, after mixing with a Henschel mixer, a ribbon blender, a tumbler blender or the like, melt kneading is performed with a screw extruder such as a single screw extruder or a twin screw extruder, a kneader, a Banbury mixer or the like. Method. As a method of melt-kneading, an extruder that can be operated continuously is preferable, and a twin-screw extruder is more preferable in that a shear stress that sufficiently entangles molecular chains can be applied. The temperature at the time of melt-kneading is preferably 160 ° C. or higher, and more preferably 300 ° C. or lower in order to obtain a uniform kneaded product. The temperature is more preferably 170 to 250 ° C.
[0017]
Next, the obtained melt-kneaded material is extruded into a sheet shape, and then cooled to form a gel sheet. As a method of extruding into a sheet, for example, there is a method of extruding a melt from an extruder equipped with a T-die. The thickness of the sheet-shaped extrusion port of the T-die is preferably in the range of 50 to 3000 μm. If the sheet at the time of extrusion is too thick, the cooling rate may be slow and uneven cooling may occur, the stability of the thickness may be poor, and the crystal size differs in the thickness direction and a fine crystal structure at the center may not be obtained. It is feared that there is a possibility.
[0018]
As a cooling method, it is preferable to perform surface compression molding using a metal roll whose surface is elastically deformable. An elastically deformable metal roll is a roll whose surface is a metal thin film, and which recovers deformation without causing dents or scratches even when the metal thin film is subjected to surface compression molding as described below. A roll having elasticity is built in such a metal thin film, and a roll having a structure in which cooling water is filled between the metal thin film and the elastic roll in the outer cylinder and an internal pressure is applied. Rubber rolls are the most common and preferred elastic rolls. In normal pressure bonding between metal rolls, the rolls can only be in contact with each other by wires due to the rigidity of the metal. Therefore, when the gel sheet is formed, the pressure-bonded portion is small, and often causes uneven thickness. Elastically deformable rolls of metal on the surface, or elastically deformable, with a roll of metal on the surface and a normal metal roll, press the roll with elasticity built in, and the metal thin film in an arc shape Since the rolls are deformed and the rolls can be in contact with each other, surface compression can be performed. In the present invention, the term “surface compression” means that the surface compression width of a portion in contact with the machine direction of the roll is 2 mm or more and 100 mm or less, preferably 2 mm or more and 50 mm or less, and more preferably 10 mm or more and 30 mm or less. If it is less than 2 mm, it is difficult to stably obtain a gel sheet having a polyolefin concentration of 10 to 60 wt% and excellent in thickness stability, and if it is 100 mm or more, the elastic recovery of the metal thin film becomes insufficient, and the thickness accuracy tends to decrease.
[0019]
Further, by performing surface compression bonding using a roll of metal whose surface is elastically deformable, the friction coefficient ratio between the front and back surfaces can be made 1.5 or less, more preferably 1.1 or less.
By setting the friction coefficient ratio to 1.5 or less, the winding property in the next step of winding using the wound material is improved, and the impregnation property of the electrolytic solution is also good for unknown reasons. become.
As described above, the elastically deformable gel sheet having a surface excellent in thickness stability with a polyolefin concentration of, for example, 10 to 60 wt% is obtained by surface-pressing using a metal roll, cooling and solidifying the sheet. Can be obtained.
The resulting gel sheet can be formed into a thin film by means of simultaneous biaxial stretching or sequential stretching in at least one direction, adjusting the ratio of the take-up speed of the cooling roll to the speed of the die outlet, and the like. In order to improve the thickness accuracy, it is particularly preferable that the film is stretched by 3 × 3 times or more by simultaneous biaxial stretching. However, the effect of the present invention can be achieved even if this stretching is performed after solvent extraction.
[0020]
Next, the solvent is removed from the gel sheet. As the solvent removal treatment, removal by extraction is preferable, and the extraction solvent used is a poor solvent for the polyolefin composition used, and a good solvent for the solvent used, and a polyolefin used for the boiling point is used. Is preferably lower than the melting point. Examples of such an extraction solvent include hydrocarbons such as n-hexane and cyclohexane, alcohols such as methanol, ethanol, and isopropanol; acetone, ketones such as methyl ethyl ketone; ethers such as tetrahydrofuran; methylene chloride; Examples thereof include organic solvents such as halogenated hydrocarbons such as 1-trichloroethane and the like, which are appropriately selected from these, and used alone or as a mixture.
[0021]
Further, in the present invention, after performing the solvent removal processing, the stretching processing and the heat treatment may be performed. Then, the microporous membrane that has been subjected to such processing is wound around a paper tube having an inner diameter of 152.4 mm (6 inches), for example. Next, slitting is performed to a desired width. In order to perform the slitting and commercialization, for example, a commercially available tolerance having an inner diameter of 76.2 mm (30.5 mm or less, more preferably ± 0.3 mm or less) is preferable. Inches), 152.4 mm (6 inches), 203.2 mm (8 inches), etc., or a plastic tube. In particular, when the slit width (width) is widened, it is preferable to wind it around a paper tube or a plastic tube having an inner diameter of 6 inches or 8 inches. The thickness of paper and plastic of a paper tube or a plastic tube is adjusted depending on the strength, but is commercially available in a thickness of 5 to 15 mm.
When the winding machine is 3 inches and a paper tube of 6 inches is set, for example, a known jig for increasing the size can be used.
[0022]
Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but these do not limit the scope of the present invention. Various physical properties used in the present invention were measured based on the following test methods.
(1) Film thickness (μm)
The measurement was performed at room temperature 23 ° C. using a microthickness meter (type KBM) manufactured by Toyo Seiki Co., Ltd.
(2) Porosity (%)
A sample of 10 cm × 10 cm square was cut out from the microporous membrane, and its volume (cm 3 ) and mass (g) were obtained. From these and the film density (g / cm 3 ), calculation was made using the following equation.
Porosity = (volume−mass / membrane density) / volume × 100
The film density was measured by a density gradient tube method (23 ° C.) in accordance with ASTM-D1505.
(3) Air permeability (sec)
Based on JIS P-8117, it was measured with a Gurley-type air permeability meter (Model G-B2 manufactured by Toyo Seiki Co., Ltd.).
(4) Puncture strength (g / sheet)
Using a KES-G5 handy compression tester manufactured by Kato Tech Co., Ltd., a maximum puncture is performed at room temperature (23 ° C.) at a radius of curvature of the needle tip of 0.5 mm and a puncture speed of 2 mm / sec. Raw piercing strength (g / sheet) was obtained as the load.
[0023]
(5) Viscosity average molecular weight Mv
In order to prevent deterioration of the sample, 2,6-di-t-butyl-4-methylphenol is dissolved in decahydronaphthalene so as to have a concentration of 0.1% by weight, and this (hereinafter abbreviated as DHN) is used as a sample solvent. .
A sample is dissolved in a sample solvent at 150 ° C. so as to have a concentration of 0.1% by weight to prepare a sample solution. 10 ml of the prepared sample solution is sampled, and the number of seconds passed between the marked lines at 135 ° C. (t) is measured by a Cannon-Fenske viscometer (SO100). After heating the DHN to 150 ° C., 10 ml is sampled, and the number of seconds (t B ) passing between the marked lines of the viscometer is measured by the same method. The resulting passage seconds t, was calculated intrinsic viscosity [eta] by the following conversion equation using the t B.
[Η] = ((1.651 t / t B −0.651) 0.5 −1) /0.0834
From the obtained [η], Mv was calculated by the following equation.
[Η] = 6.77 × 10 −4 Mv 0.67
[0024]
(6) Melt index Unless otherwise specified, the melt index was measured according to ASTM-D-1238. (7) Next-step winding property test Using a slitter TH4C manufactured by Nishimura Seisakusho Co., Ltd., at a running speed of 100 m / min. The evaluation was made based on the degree of misalignment when rewinding. In addition, the thing which the gap of 0.3 mm or more generate | occur | produced in the winding state was made into the winding gap.
Figure 2004099799
And
[0025]
(8) Winding direction back-to-front surface dynamic friction coefficient ratio Using a KES-SE friction tester manufactured by Kato Tech Co., Ltd., load 50 g, contact area 10 × 10 = 100 mm 2 , contact feed speed 1 mm / sec, tension 6 kPa, At the temperature of 25 ° C., the winding direction of a sample having a width of 5 × 20 cm in the winding direction (or a width of 20 cm when the width is smaller than 5 cm) is measured for the front and back sides, and the larger one of the dynamic friction coefficients is determined. The ratio was calculated as a numerator.
[0026]
Embodiment 1
A mixture of 35% by weight of Mv270,000 polyethylene and 65% by weight of Mv950,000 polyethylene was dry-blended using a tumbler blender to obtain a polyolefin composition. 30% by weight of the obtained composition and 70% by weight of liquid paraffin were uniformly melt-kneaded with a twin-screw extruder to obtain a polyethylene melt-kneaded product. Melt kneading was performed at a set temperature of 200 ° C., a screw rotation speed of 170 rpm, and a discharge rate of 15 kg / hr.
[0027]
Subsequently, the melt-kneaded product was extruded into a sheet using a T-die (250 mm in width) maintained at 220 ° C.
The melt-kneaded product was pressed and cooled by 15 mm with an elastically deformable metal roll controlled to a surface temperature of 60 ° C. and an elastically deformable metal cooling roll to obtain a 2000 μm-thick gel sheet having excellent thickness stability. .
Next, using a simultaneous biaxial stretching machine, the film is stretched 7 × 7 times at a stretching temperature of 125 ° C., then guided to a methyl ethyl ketone tank, and sufficiently immersed in methyl ethyl ketone to extract and remove liquid paraffin. It was removed by drying.
[0028]
Further, the film was stretched 1.5 times in the transverse direction at 120 ° C. by a tenter stretching machine, and heat-set at 125 ° C. to obtain a microporous membrane. This microporous membrane was slit to a width of 300 mm and wound 400 m around a paper tube having an inner diameter of 76.2 mm (3 inches) and an outer diameter of 91.8 mm. Table 1 shows the physical properties of the obtained polyolefin microporous membrane and its wound product. The result of the next step rollability test was good.
[0029]
Embodiment 2
After slitting, a polyolefin microporous membrane roll was obtained in the same manner as in Example 1 except that the roll was wound around a paper tube having an inner diameter of 152.4 mm (6 inches) and an outer diameter of 172.4 mm. Table 1 shows the physical properties of the obtained microporous membrane and the wound product. The result of the next step winding test was the best.
[0030]
Embodiment 3
A polyolefin microporous membrane roll was obtained in the same manner as in Example 1 except that the slit width (width) was 150 mm. Table 1 shows the physical properties of the obtained microporous membrane and the wound product. The result of the next step winding test was the best.
[0031]
Embodiment 4
A polyolefin microporous membrane roll was obtained in the same manner as in Example 1 except that the slit width (width) was 70 mm. Table 1 shows the physical properties of the obtained microporous membrane and the wound product. The result of the next step winding test was the best.
[0032]
Embodiment 5
Mv270,000 polyethylene 50% by weight and liquid paraffin 50% by weight were uniformly melt-kneaded with a twin screw extruder to obtain a polyethylene melt-kneaded product. Melt kneading was performed at a set temperature of 200 ° C., a screw rotation speed of 170 rpm, and a discharge rate of 15 kg / hr. The melt-kneaded product was extruded into a sheet using a T-die (250 mm in width) maintained at 260 ° C. The melt-kneaded product was pressed and cooled by 10 mm with an elastically deformable metal roll controlled at a surface temperature of 60 ° C. and a metal cooling roll that was not elastically deformable to obtain a gel sheet having a thickness of 1700 μm and excellent in thickness stability. . Otherwise, a microporous membrane was formed in the same manner as in Example 1. This microporous membrane was slit to a width of 300 mm and wound 400 m around a paper tube having an inner diameter of 76.2 mm (3 inches) and an outer diameter of 91.8 mm. Table 1 shows the physical properties of the obtained microporous membrane and the wound product. The result of the next step rollability test was good.
[0033]
Embodiment 6
A mixture of 30% by weight of polyethylene having an Mv of 270,000, 65% by weight of polyethylene having an Mv of 950,000, and 5% by weight of polypropylene having a melt index of 0.5 g / 10 minutes was dry-blended using a tumbler blender to obtain a polyolefin composition. Otherwise in the same manner as in Example 1, a rolled polyolefin microporous membrane was obtained. Table 1 shows the physical properties of the obtained microporous membrane and the wound product. The result of the next step rollability test was good.
[0034]
Embodiment 7
Using the mixture of Example 6, 30% by weight of this composition and 70% by weight of liquid paraffin were uniformly melt-kneaded with a twin-screw extruder to obtain a polyethylene melt-kneaded product. Melt kneading was performed at a set temperature of 200 ° C., a screw rotation speed of 180 rpm, and a discharge rate of 15 kg / hr.
Subsequently, the melt-kneaded product was extruded into a sheet using a T-die (250 mm in width) maintained at 220 ° C.
The melt-kneaded material was pressed and cooled by 15 mm with an elastically deformable metal roll controlled to a surface temperature of 60 ° C. and a metal cooling roll that was not elastically deformable, thereby obtaining a 1200 μm-thick gel sheet having excellent thickness stability. .
[0035]
Next, using a simultaneous biaxial stretching machine, the film is stretched 7 × 7 times at a stretching temperature of 120 ° C., subsequently, guided to a methyl ethyl ketone tank, and sufficiently immersed in methyl ethyl ketone to extract and remove liquid paraffin. It was removed by drying.
Further, the film was stretched 1.3 times in the transverse direction at 125 ° C. by a tenter stretching machine, and heat-set at 127 ° C. to obtain a microporous membrane. This microporous membrane was slit into a width of 200 mm and wound 400 m around a paper tube having an inner diameter of 152.4 mm (6 inches) and an outer diameter of 172.4 mm. Table 1 shows the physical properties of the obtained microporous membrane and the wound product. The result of the next step winding test was the best.
[0036]
[Comparative Example 1]
In the step of cooling the sheet-like melt-kneaded product extruded from the T-die in Example 1 to produce a gel sheet, the thickness is made in the same manner as in Example 1 by forming into a cast without using an elastically deformable metal roll. A gel sheet having a thickness stability of 2000 μm was obtained.
Next, using a simultaneous biaxial stretching machine, the film is stretched 7 × 7 times at a stretching temperature of 130 ° C., subsequently, guided to a methyl ethyl ketone tank, and sufficiently immersed in methyl ethyl ketone to extract and remove liquid paraffin. It was removed by drying.
Further, the film was stretched 1.5 times in the transverse direction at 120 ° C. by a tenter stretching machine, and heat-set at 125 ° C. to obtain a microporous membrane. This microporous membrane was slit to a width of 300 mm and wound 400 m around a paper tube having an inner diameter of 76.2 mm (3 inches) and an outer diameter of 91.8 mm. Table 1 shows the physical properties of the obtained microporous membrane and the wound product. The result of the next step rollability test was poor.
[0037]
[Comparative Example 2]
The melt-kneaded product was extruded into a 2500 μm sheet in the same manner as in Example 1. An attempt was made to roll a heated and pressurized roll-type double belt press controlled to a surface temperature of about 120 ° C. to 2000 μm, but the thickness of the obtained gel sheet was not stable and the film was broken during simultaneous biaxial stretching. No porous membrane was obtained.
[0038]
[Table 1]
Figure 2004099799
[0039]
【The invention's effect】
According to the present invention, a high-strength, low-cost, polyolefin microporous film wound with excellent thickness stability so that a high winding speed can be obtained at the time of winding in the next step of winding using the wound material. It has become possible to provide goods.

Claims (5)

管にポリオレフィン製微多孔膜を捲回してなる捲回物であって、多孔膜を含めた最大外径D(mm)と最小外径d(mm)と捲回長L(m)の間に、
0.01 ≦(D−d)/L≦ 0.5
の関係式が成り立つことを特徴とするポリオレフィン製微多孔膜捲回物。
A wound product obtained by winding a polyolefin microporous membrane in a tube, wherein the maximum outer diameter D (mm) including the porous membrane, the minimum outer diameter d (mm), and the winding length L (m) are included. ,
0.01 ≦ (D 2 −d 2 ) /L≦0.5
A microporous membrane wound product made of polyolefin, characterized in that:
前記微多孔膜の空孔部分が三次元網目構造を備えていることを特徴とする請求項1記載のポリオレフィン製微多孔膜捲回物。2. The polyolefin microporous membrane roll according to claim 1, wherein the pores of the microporous membrane have a three-dimensional network structure. 前記微多孔膜の横幅が65mm以上であることを特徴とする請求項1または2記載のポリオレフィン製微多孔膜捲回物。The polyolefin microporous membrane roll according to claim 1 or 2, wherein the width of the microporous membrane is 65 mm or more. 前記管のサイズが外径91.8mm以上であることを特徴とする請求項1〜3いずれかに記載のポリオレフィン製微多孔膜捲回物。The polyolefin microporous membrane wound product according to any one of claims 1 to 3, wherein the tube has an outer diameter of 91.8 mm or more. 前記微多孔膜の表裏の摩擦係数比が1.5以下であることを特徴とする請求項1〜4いずれかに記載のポリオレフィン製微多孔膜捲回物。The rolled polyolefin microporous membrane according to any one of claims 1 to 4, wherein the friction coefficient ratio between the front and back of the microporous membrane is 1.5 or less.
JP2002265513A 2002-09-11 2002-09-11 Rolled item of fine porous membrane made of polyolefin Pending JP2004099799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002265513A JP2004099799A (en) 2002-09-11 2002-09-11 Rolled item of fine porous membrane made of polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002265513A JP2004099799A (en) 2002-09-11 2002-09-11 Rolled item of fine porous membrane made of polyolefin

Publications (1)

Publication Number Publication Date
JP2004099799A true JP2004099799A (en) 2004-04-02

Family

ID=32264638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002265513A Pending JP2004099799A (en) 2002-09-11 2002-09-11 Rolled item of fine porous membrane made of polyolefin

Country Status (1)

Country Link
JP (1) JP2004099799A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006056929A (en) * 2004-08-17 2006-03-02 Asahi Kasei Chemicals Corp Method for producing polyolefin fine porous membrane
JP2006088255A (en) * 2004-09-22 2006-04-06 Asahi Kasei Chemicals Corp Slit roll manufacturing method and slit roll outside diameter measuring device
WO2008013114A1 (en) * 2006-07-25 2008-01-31 Asahi Kasei Chemicals Corporation Roll of polyolefin microporous film
WO2013172249A1 (en) * 2012-05-14 2013-11-21 東レ株式会社 Film roll
JP2016023255A (en) * 2014-07-22 2016-02-08 旭化成イーマテリアルズ株式会社 Porous film wound material
KR20160094942A (en) 2013-12-06 2016-08-10 도레이 배터리 세퍼레이터 필름 주식회사 Polyolefin microporous film, separator for non-aqueous electrolyte secondary battery, wound product of polyolefin microporous film, non-aqueous electrolyte secondary battery, and method for producing polyolefin microporous film
JP2016191045A (en) * 2015-03-30 2016-11-10 旭化成株式会社 Wound-around body
WO2017115799A1 (en) * 2015-12-28 2017-07-06 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous membrane and method for producing same, method for evaluating laminated polyolefin microporous membrane, roll, and polyolefin microporous membrane
US10246567B2 (en) 2008-12-26 2019-04-02 Asahi Kasei E-Materials Corporation Polyolefin microporous film
JP2021100002A (en) * 2006-11-17 2021-07-01 セルガード エルエルシー Co-extruded multi-layer battery separator
WO2021153792A1 (en) * 2020-01-31 2021-08-05 旭化成株式会社 Microporous film, and method for producing same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006056929A (en) * 2004-08-17 2006-03-02 Asahi Kasei Chemicals Corp Method for producing polyolefin fine porous membrane
JP2006088255A (en) * 2004-09-22 2006-04-06 Asahi Kasei Chemicals Corp Slit roll manufacturing method and slit roll outside diameter measuring device
JP4531507B2 (en) * 2004-09-22 2010-08-25 旭化成イーマテリアルズ株式会社 Slit roll manufacturing method and slit roll outer diameter measuring device
WO2008013114A1 (en) * 2006-07-25 2008-01-31 Asahi Kasei Chemicals Corporation Roll of polyolefin microporous film
KR101050023B1 (en) 2006-07-25 2011-07-19 아사히 가세이 케미칼즈 가부시키가이샤 Polyolefin microporous membrane wound material and its manufacturing method
JP5188970B2 (en) * 2006-07-25 2013-04-24 旭化成イーマテリアルズ株式会社 Polyolefin microporous film wound product for battery separator and method for producing the same
JP2021100002A (en) * 2006-11-17 2021-07-01 セルガード エルエルシー Co-extruded multi-layer battery separator
US10246567B2 (en) 2008-12-26 2019-04-02 Asahi Kasei E-Materials Corporation Polyolefin microporous film
JPWO2013172249A1 (en) * 2012-05-14 2016-01-12 東レ株式会社 Film roll
WO2013172249A1 (en) * 2012-05-14 2013-11-21 東レ株式会社 Film roll
KR20160094942A (en) 2013-12-06 2016-08-10 도레이 배터리 세퍼레이터 필름 주식회사 Polyolefin microporous film, separator for non-aqueous electrolyte secondary battery, wound product of polyolefin microporous film, non-aqueous electrolyte secondary battery, and method for producing polyolefin microporous film
JP2016023255A (en) * 2014-07-22 2016-02-08 旭化成イーマテリアルズ株式会社 Porous film wound material
JP2016191045A (en) * 2015-03-30 2016-11-10 旭化成株式会社 Wound-around body
JP2018100419A (en) * 2015-03-30 2018-06-28 旭化成株式会社 Wound-around body
WO2017115799A1 (en) * 2015-12-28 2017-07-06 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous membrane and method for producing same, method for evaluating laminated polyolefin microporous membrane, roll, and polyolefin microporous membrane
JPWO2017115799A1 (en) * 2015-12-28 2018-10-25 東レ株式会社 Polyolefin microporous membrane and production method thereof, laminated polyolefin microporous membrane, roll and evaluation method of polyolefin microporous membrane
WO2021153792A1 (en) * 2020-01-31 2021-08-05 旭化成株式会社 Microporous film, and method for producing same
JPWO2021153792A1 (en) * 2020-01-31 2021-08-05
CN115023460A (en) * 2020-01-31 2022-09-06 旭化成株式会社 Microporous membrane and method for producing same
US20230056490A1 (en) * 2020-01-31 2023-02-23 Asahi Kasei Kabushiki Kaisha Microporous Film, and Method for Producing Same
EP4098437A4 (en) * 2020-01-31 2023-11-15 Asahi Kasei Kabushiki Kaisha Microporous film, and method for producing same
JP7437421B2 (en) 2020-01-31 2024-02-22 旭化成株式会社 Microporous membrane and its manufacturing method
CN115023460B (en) * 2020-01-31 2024-04-05 旭化成株式会社 Microporous membrane and method for producing same

Similar Documents

Publication Publication Date Title
JP5216327B2 (en) Polyolefin microporous membrane
US10079378B2 (en) Polyolefin microporous membrane and production method thereof
JP6555128B2 (en) Polyolefin microporous membrane, separator for non-aqueous electrolyte secondary battery, polyolefin microporous membrane roll, non-aqueous electrolyte secondary battery, and method for producing polyolefin microporous membrane
WO2006104165A1 (en) Process for producing microporous polyolefin film and microporous polyolefin film
JPWO2008069216A1 (en) Polyolefin microporous membrane
JP7395827B2 (en) porous polyolefin film
JP2003103626A (en) Polyolefin microporous film and method for manufacturing the same
EP3181622B1 (en) Polyolefin microporous membrane and method for manufacturing same, separator for nonaqueous-electrolyte secondary cell, and nonaqueous-electrolyte secondary cell
KR20140021033A (en) Method for producing polyolefin microporous film
JP7207300B2 (en) porous polyolefin film
JPH1160789A (en) Production of microporous film
JPWO2015190487A1 (en) Polyolefin microporous film, method for producing the same, and battery separator
JP2011042805A (en) Method for producing polyolefin microporous film
JP5450944B2 (en) Polyolefin microporous membrane, battery separator and battery
JP2004099799A (en) Rolled item of fine porous membrane made of polyolefin
JP2021038379A (en) Porous polyolefin film
JP5592745B2 (en) Polyolefin microporous membrane
CN112063006B (en) Polyolefin microporous membrane and preparation method thereof
JPWO2018180713A1 (en) Polyolefin microporous membrane and battery using the same
JP6603565B2 (en) Microporous membrane, battery separator and battery
JP6596270B2 (en) Method for producing polyolefin microporous membrane
JP2003138050A (en) Porous polyolefin film
JP4600970B2 (en) Method for producing polyolefin microporous membrane
JP2022048093A (en) Polyolefin microporous film and battery separator
JP2003012850A (en) Fine porous film made of polyolefin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080115

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080507

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080711

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113