JP3917721B2 - Method for producing microporous membrane - Google Patents
Method for producing microporous membrane Download PDFInfo
- Publication number
- JP3917721B2 JP3917721B2 JP21442497A JP21442497A JP3917721B2 JP 3917721 B2 JP3917721 B2 JP 3917721B2 JP 21442497 A JP21442497 A JP 21442497A JP 21442497 A JP21442497 A JP 21442497A JP 3917721 B2 JP3917721 B2 JP 3917721B2
- Authority
- JP
- Japan
- Prior art keywords
- stretching
- microporous membrane
- extraction
- temperature
- plasticizer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Cell Separators (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、例えば各種の円筒型電池、角型電池、薄型電池、ボタン型電池、電解コンデンサー等の電池材料に使用されるセパレーターを製造するにあたって好適な手段を提供するものである。
【0002】
【従来の技術】
微多孔膜は、浄水器等の濾材、通気性衣料用途、電池用セパレーターや電解コンデンサー用セパレーター等の材料として従来より使用されてきた。近年では、特にリチウムイオン2次電池用途の需要が伸びており、電池の高エネルギー密度化に伴って、セパレーターにも高性能が要求されるようになった。
【0003】
リチウムイオン2次電池には、電解液や正負極活物質等の薬剤が使用されているので、セパレーターの材質は、耐薬品性を考慮して、ポリオレフィン系ポリマーが一般に使用されており、特に安価なポリエチレンやポリプロピレンが使用されている。
リチウムイオン2次電池等の非水電解液系電池用途のセパレーターに対しては、電極短絡防止機能、高イオン透過性、電池捲回時の組立加工性、電池安全性、および信頼性等が従来より基本性能として要求されてきた。更に近年では、多様化する電池グレードのニーズに応えるべく、孔構造や気孔率等の透過性能を自在に調節する技術や、高温における寸法安定性を調節できる技術の開発が急務となっている。
【0004】
電極短絡防止機能とは、セパレーターが正負両極間に介在して内部短絡を防止する隔壁の役割を果たすことを意味する。内部短絡を防止するためには、セパレーターの高強度、小孔径、適当な膜厚が必要である。2次電池は、充放電によって内部の電極が膨張するため、場合によっては、数十kg/cm2 もの圧力がセパレーターにかかってしまうことがある。また、電極表面は平滑であるとは限らず、種々のサイズの活物質粒子が突起物となっている。このような場合にも、破断しない高強度がセパレーターには要求されている。セパレーターが角型電池や薄型電池用途として使用される場合には、電極とセパレーターを積層捲回したコイルを圧縮してケーシングするため、高強度に対する要求は更に強いと言える。
【0005】
イオン透過性とは、セパレーターが、活物質粒子は透過させず、イオンや電解液のみを透過させる能力を意味する。一般には、オーム損を低減し放電効率を高めるために、高気孔率、低透気度、低電気抵抗等の性能が要求される。しかし近年では、大電流放電を必要としない用途や、電池安全性に対する要求が特に高い用途に対しては、前記高透過性とは対局をなすような緻密なセパレーターが要求されるケースもある。したがって、いかなる要求に対しても、透過性を自在に調節できる柔軟な成形技術を開発することが有用である。
【0006】
組立加工性としては、セパレーターに、機械方向に一定の張力をかけて電極とともに捲回する際、セパレーターが機械方向に伸びないことや、巾方向に寸法変化しないことが要求され、高弾性率が必要となる。
電池安全性とは、電池が外部短絡や過充電等のトラブルにより発熱昇温した際に、セパレーターが自動的に電流を遮断して発熱を止めることにより、電池の暴走や爆発を抑える機能のことを意味する。電池内部の温度が、セパレーターを構成する樹脂の融点近傍まで昇温すると、セパレーターは、熱流動ないし熱変形や熱収縮により細孔を閉塞するか、あるいは電極表面に樹脂が吸収されて絶縁被膜を形成することにより、いわゆるシャットダウン機能を発現する。この機能を発現する温度が低いほど、低温で電流を遮断して発熱を抑える能力があるため、望ましい。また、シャットダウン状態にある温度領域が広いほど、電流を遮断している時間が長くなるため、より激しい発熱による温度上昇にも耐えることができ望ましい。
【0007】
高温における寸法安定性とは、電池製造時の何らかの高温処理や、トラブルによって電池内部が昇温した場合を想定して、セパレーターが熱収縮等により寸法変形する程度を評価するものである。前者の場合にセパレーターが幅方向に収縮変形すると電極が露出して内部短絡し、また長手方向に収縮応力が作用すると捲き締まりが起きたり破断したりして、いずれにせよ電池の生産効率を低下させてしまう。後者の場合のように、電池暴走時に寸法安定性が維持できないと、シャットダウン機能さえ無意味となり、極めて深刻な問題である。このように、シャットダウン機能を損なうことなく、かつ高温における使用に耐えうるセパレーターを製造する技術は確立されていない。
【0008】
微多孔膜の製造技術において、ポリマーと可塑剤よりなる組成物から、相分離プロセスにより微多孔膜前駆体を形成せしめ、これに可塑剤抽出除去のプロセスや延伸薄膜化のプロセスを適用して微多孔膜とする技術は公知である。このような公知技術の中で、延伸を行う段階を抽出プロセスの前または後に実施するかによって、それぞれ抽出前延伸、または抽出後延伸と呼ぶものとする。
【0009】
特公平6−21177号公報および特開平6−240036号公報は、超高分子量成分を含有するポリオレフィン微多孔膜の透過性能の向上や孔径制御を目的として、抽出前延伸と抽出後延伸を組み合わせた技術を開示しているが、高温における寸法安定性が優れた微多孔膜を得るに至っていない。
特開平6−336535号公報は、ポリエチレンとポリプロピレンの混合組成物からなる微多孔膜に抽出前延伸と抽出後延伸を併用して、透過性能を向上し、かつ電池安全性を高める方法を提案しているが、高温における微多孔膜の熱収縮には着目しておらず、高温における寸法安定性が優れた微多孔膜を得るに至っていない。
【0010】
【発明が解決しようとする課題】
従来の微多孔膜の製造技術においては、微多孔膜の強度を損なうことなく、透過性能を自在に調節することは困難であった。すなわち、抽出前延伸のみによるプロセスの場合、効率的に配向を付与し強度を高めることが可能であるが、透過性能の点で自由度がないという欠点があった。一方、抽出後延伸のみによるプロセスの場合、延伸によって界面破壊が支配的に進むので、透過性能が高い微多孔膜を得ることはできるが、透過性能を調節することは困難であり、また強度的にも低いという欠点があった。
【0011】
また、特公平6−21177号公報、特開平6−240036号公報、および特開平6−336535号公報に開示されているように、抽出前延伸と抽出後延伸を併用すれば透過性能を向上することは可能であるが、高温における寸法安定性を改良して、熱収縮しにくい微多孔膜を得ることは難しい。
かくして、当業界においては、透過性能が比較的低い領域から高い領域までの広範囲に渡って調節でき、なおかつ高温における寸法安定性に優れた微多孔膜を得る技術の確立が課題として残されていた。
【0012】
【課題を解決するための手段】
本発明者は、前記課題を解決するために鋭意研究した結果、抽出前延伸と抽出後延伸を併用し、更に熱処理を施すことにより、強度を損なうことなく、自在に透過性能を調節でき、同時に高温における寸法安定性に優れたポリオレフィン微多孔膜を製造する方法を見出し、本発明をなすに至った。
【0013】
即ち、本発明は、(a)ポリオレフィン樹脂と可塑剤からなる組成物を溶融混練し、押し出して冷却固化させシート状に成形する工程、
(b)前記工程aの後に、少なくとも1軸方向に、少なくとも1回の延伸を行う工程、
(c)前記工程bの後に、前記可塑剤を抽出する工程、
(d)前記工程cの後に、少なくとも1軸方向に、少なくとも1回の延伸を行う工程、
(e)前記工程dに続いて、または後に熱処理を施す工程
を含むポリオレフィン微多孔膜の製造方法に関する。
【0014】
また、上記製造方法の熱処理を施す工程において、温度をポリオレフィン微多孔膜の融点Tm ℃より50℃低い温度以上Tm ℃未満とし、かつ、緩和率を10〜50%とすることにより熱緩和させることは、本発明の好ましい実施態様である。本発明の製造方法の(a)の工程において、ポリオレフィン樹脂と可塑剤を溶融混練する第一の方法は、ポリオレフィン樹脂を押出機等の樹脂混練装置に投入し、樹脂を加熱溶融させながら任意の比率で可塑剤を導入し、更に樹脂と可塑剤よりなる組成物を混練することにより、均一溶液を得る方法である。投入するポリオレフィン樹脂の形態は、粉末状、顆粒状、ペレット状の何れでも良い。また、このような方法によって混練する場合は、可塑剤の形態は常温液体であることが好ましい。押出機としては、単軸スクリュー式押出機、二軸異方向スクリュー式押出機、二軸同方向スクリュー式押出機等が使用できる。
【0015】
ポリオレフィン樹脂と可塑剤を溶融混練する第二の方法は、樹脂と可塑剤を予め常温にて混合して分散させ、得られた混合組成物を押出機等の樹脂混練装置に投入して混練することにより、均一溶液を得る方法である。投入する混合組成物の形態については、可塑剤が常温液体である場合はスラリー状とし、可塑剤が常温固体である場合は粉末状等とすれば良い。第一、第二の方法においては、何れもポリオレフィンと可塑剤とを押出機等の混練装置内で混練し均一溶液を得るようにすることが肝要であり、これにより生産性を良くすることができる。
【0016】
本発明の製造方法の(a)の工程において、押し出して冷却固化させシート状の微多孔膜前駆体を製造する第一の方法は、樹脂と可塑剤の均一溶液をTダイ等を介してシート状に押し出し、熱伝導体に接触させて樹脂の結晶化温度より充分に低い温度まで冷却することにより行う。用いられる熱伝導体としては、金属、水、空気、あるいは可塑剤自身が使用できるが、特に金属製のロールに接触させて冷却する方法が最も熱伝導の効率が高く好ましい。また、金属製のロールに接触させる際に、ロール間で挟み込む等してカレンダー成形または熱間圧延を施すと、更に熱伝導の効率が高まり、シートの表面平滑性も向上するため好ましい。
【0017】
シート状の微多孔膜前駆体を製造する第二の方法は、樹脂と可塑剤の均一溶液をサーキュラーダイ等を介して筒状に押し出し、続いてシート状に加工する方法である。
本発明の製造方法の(c)の工程において、可塑剤を抽出する第一の方法は、抽出溶剤が入った容器中に所定の大きさに切り取った微多孔膜を浸漬し充分に洗浄した後に、付着した溶剤を風乾させるか、または熱風によって乾燥させることにより行う。この際、浸漬の操作や洗浄の操作を多数回繰り返して行うと、微多孔膜中に残留する可塑剤が減少するので好ましい。また、浸漬、洗浄、乾燥の一連の操作中に微多孔膜の収縮を抑えるために、微多孔膜の端部を拘束すると好ましい。
【0018】
可塑剤を抽出する第二の方法は、抽出溶剤で満たされた槽の中に連続的に微多孔膜を送り込み、可塑剤を除去するのに充分な時間をかけて槽中に浸漬し、しかる後に付着した溶剤を乾燥させることにより行う。この際、槽内部を多段分割することにより濃度差がついた各槽に順次微多孔膜を送り込む多段法や、微多孔膜の走行方向に対し逆方向から抽出溶剤を供給して濃度勾配をつけるための向流法のような公知の手段を適用すると、抽出効率が高められ好ましい。第一、第二の方法においては、何れも、可塑剤を微多孔膜から実質的に除去することが肝要である。また、抽出溶剤の温度を、溶剤の沸点未満の範囲内で加温すると、可塑剤と溶剤との拡散を促進することができるので抽出効率を高められ更に好ましい。
【0019】
本発明の製造方法においては、抽出工程の前に行う延伸を抽出前延伸[(b)工程]と呼び、少なくとも1軸方向に、少なくとも1回の延伸操作が必須である。少なくとも1軸方向とは、機械方向1軸延伸、幅方向1軸延伸、同時2軸延伸、及び逐次2軸延伸を指すものである。また、少なくとも1回とは、1段延伸、多段延伸、多数回延伸のことを指す。
【0020】
本発明における抽出前延伸は、可塑剤が微多孔膜の微孔内部、結晶間隙、及び非晶部に高次に分散された状態で延伸するので、可塑化効果により延伸性が良くなるとともに、微多孔膜の気孔率の増大を抑制する効果があり、高倍率延伸が実現できるため高強度化が可能である。さらに高強度を実現するためには2軸延伸が好ましく、特に同時2軸延伸が工程の簡略化ができるので最も好ましい。
【0021】
延伸温度は、ポリオレフィン微多孔膜の融点Tm ℃より50℃低い温度以上Tm ℃未満が好ましく、更に好ましくはポリオレフィン微多孔膜の融点Tm ℃より40℃低い温度以上Tm ℃より5℃低い温度未満で行う。延伸温度がTm ℃より50℃低い温度未満であると延伸性が悪くなり、また、延伸後の歪み成分が残り、高温における寸法安定性が低下するので好ましくない。延伸温度がTm ℃以上であると、微多孔膜が融解し透過性能を損なうので好ましくない。延伸倍率は任意の倍率に設定できるが、1軸方向の倍率で好ましくは2〜20倍、さらに好ましくは4〜10倍、また、2軸方向の面積倍率で好ましくは2〜400倍、さらに好ましくは4〜100倍である。
【0022】
本発明の製造方法においては、抽出工程の後に行う延伸を抽出後延伸[(d)工程]と呼び、少なくとも1軸方向に、少なくとも1回の延伸操作が必須である。抽出後延伸は、可塑剤を微多孔膜から実質的に除去した状態で延伸するので、延伸に伴ってポリマー界面の破壊が支配的に生じ、微多孔膜の気孔率を増大させる効果がある。したがって、本発明において必須である抽出前延伸を行わずして抽出後延伸のみを行うと、いたずらに気孔率の過度の増大を来たし、延伸配向を微多孔膜に付与できず、結果、低強度となってしまう。
【0023】
これに比して、抽出前延伸及び抽出後延伸を併用した本発明の製造方法の場合、微多孔膜の強度を損なうことなく、気孔率を増加させることができるので有用である。延伸温度は、ポリオレフィン微多孔膜の融点Tm ℃より50℃低い温度以上Tm ℃未満が好ましく、更に好ましくはポリオレフィン微多孔膜の融点Tm ℃より40℃低い温度以上Tm ℃より5℃低い温度未満で行う。延伸温度がTm ℃より50℃低い温度未満であると延伸性が悪くなり、また延伸後の歪み成分が残り、高温における寸法安定性が低下するので好ましくない。延伸温度がTm ℃以上であると、微多孔膜が融解し透過性能を損なうので好ましくない。延伸倍率は任意の倍率に設定できるが、1軸方向の倍率で5倍以内、2軸方向の面積倍率で20倍以内が好ましい。
【0024】
本発明の製造方法において、熱処理[(e)工程]は、抽出後延伸に引き続いて、または抽出後延伸の後に行うものであり、熱固定または熱緩和の何れかを指すものである。熱固定とは、抽出後延伸時の設定延伸倍率を維持するか、または拘束したまま緊張状態にて熱処理を行う工程を意味し、(A)これに比して、熱緩和とは、緩和状態にて熱処理を行う工程を意味する。熱固定及び熱緩和は、何れも延伸時に発生すると考えられる残留応力や歪み成分を除去して、高温における寸法安定性を高めるとともに、気孔率や透気度に代表される透過性能を調節する機能を有するものである。熱処理の第一の実施の形態は、抽出後延伸に引き続いて連続で行うものであり、例えばテンターのような1軸または2軸延伸機で延伸を行った後に、延伸時の最大設定延伸倍率を維持したまま、または最大設定延伸倍率より小さい倍率に設定して緩和させながら、所定時間の熱処理を行う方法である。熱処理の第二の実施の形態は、抽出後延伸を行った後に断続的に行うものであり、例えばストレッチャーのような試験2軸延伸機で延伸を行った後に、再び微多孔膜を拘束して所定時間の熱処理を行うか、または拘束時の設定倍率より小さい倍率に設定して緩和させながら熱処理を行う方法である。
【0025】
本発明の製造方法でいう緩和率とは、熱処理の工程の際に設定する熱緩和の割合を意味するものであり、好ましくは1〜50%、さらに好ましくは10〜40%である。緩和率が1%未満、特に0%の場合を、本発明では熱固定と呼ぶが、この場合には微多孔膜の高温における寸法安定性が相対的に悪くなる傾向にあり、長時間の熱処理が必要となり生産効率が低下してしまう畏れがある。また、緩和率が50%を越えると、しわや膜厚分布を生む原因となる畏れがある。したがって、本発明においては、10〜50%の範囲内で緩和率を設定し、熱緩和することが好ましい。
【0026】
本発明の製造方法においては、本発明の利点を害さない範囲内で、すなわち、高温における寸法安定性の改良や透過性能の調節を行う上で、これを損なわない程度であれば、後処理を行っても良い。後処理としては、例えば、界面活性剤等による親水化処理、および電離性放射線等による架橋処理が挙げられる。
本発明において使用するポリオレフィン樹脂とは、通常の押出、射出、インフレーション、及びブロー成形に使用する樹脂を指し、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、及び1−オクテンのホモ重合体及び共重合体を使用することができる。また、これらのホモ重合体及び共重合体の群から選んだポリオレフィンを混合して使用することもできる。前記重合体の代表例としては、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン、アイソタクティックポリプロピレン、アタクティックポリプロピレン、ポリブテン、エチレンプロピレンラバー等が挙げられる。本発明の製造方法によって得られた微多孔膜を電池セパレーターとして使用する場合、低融点樹脂であり、かつ高強度の要求性能から、特に高密度ポリエチレンを主成分とする樹脂を使用することが好ましい。
【0027】
本発明において使用するポリオレフィン樹脂の平均分子量は、5万以上100万未満が好ましく、さらに好ましくは10万以上70万未満、そして最も好ましくは20万以上50万未満である。この平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)測定等により得られる重量平均分子量を指すものであるが、一般に平均分子量が100万を越えるような樹脂については、正確なGPC測定が困難であるので、その代用として粘度法による粘度平均分子量をあてることができる。平均分子量が5万より小さいと、溶融成形の際のメルトテンションが無くなり成形性が悪くなったり、また延伸性が悪くなり低強度となったりするので好ましくない。平均分子量が100万を越えると、均一な樹脂組成物を得難くなる傾向があるので、使用しない方が好ましい。
【0028】
本発明において使用するポリオレフィン樹脂の分子量分布は、1以上10未満が好ましく、さらに好ましくは2以上9未満、そして最も好ましくは3以上8未満である。該分子量分布は、GPC測定により得られる重量平均分子量(Mw )と数平均分子量(Mn )の比(Mw /Mn )で表す。分子量分布が10を越えると、延伸性が悪くなる傾向があり、膜厚の局部的な分布や強度低下を来す恐れがある。
【0029】
本発明において使用する可塑剤としては、ポリオレフィン樹脂と混合した際にポリオレフィン樹脂の融点以上において均一溶液を形成しうる不揮発性溶媒であれば良い。例えば、流動パラフィンやパラフィンワックス等の炭化水素類、フタル酸ジオクチルやフタル酸ジブチル等のエステル類、オレイルアルコールやステアリルアルコール等の高級アルコールが挙げられる。
【0030】
本発明において使用するポリオレフィン樹脂と可塑剤の比率については、ミクロ相分離を生じせしめ、シート状の微多孔膜前駆体を形成しうるのに充分な比率であり、かつ生産性を損なわない程度であれば良い。
具体的には、ポリオレフィン樹脂と可塑剤からなる組成物中に占めるポリオレフィン樹脂の重量分率は、好ましくは20〜70%、更に好ましくは30〜60%である。ポリオレフィン樹脂の重量分率が20%より小さいと、溶融成形時のメルトテンションが不足し、成形性に劣るものとなる。ポリオレフィン樹脂の重量分率を20%より小さい比率で実施することも可能であるが、この場合、メルトテンションを高めるために、超高分子量ポリオレフィンを大量に混合する必要が生じてしまい、均一分散性が低下するので好ましくない。
【0031】
本発明において使用する抽出溶剤は、ポリオレフィンに対して貧溶媒であり、かつ可塑剤に対して良溶媒であり、沸点がポリオレフィン微多孔膜の融点より低いことが望ましい。このような抽出溶剤としては、例えば、n−ヘキサンやシクロヘキサン等の炭化水素類、塩化メチレンや1,1,1−トリクロロエタン等のハロゲン化炭化水素類、エタノールやイソプロパノール等のアルコール類、ジエチルエーテルやテトラヒドロフラン等のエーテル類、アセトンや2−ブタノン等のケトン類が挙げられる。さらに、環境適応性、安全性、衛生性を考慮すると、前記溶剤の中でもアルコール類およびケトン類が好適である。
【0032】
本発明において使用する組成物には、さらに目的に応じて、酸化防止剤、結晶核剤、帯電防止剤、難燃剤、滑剤、紫外線吸収剤等の添加剤を混合しても差し支えない。
本発明の微多孔膜とは、実質的にポリオレフィンから構成される多孔体シートまたはフィルムを指し、例えば、セパレーター等の電池材料として使用されるものである。電池の形態は特に限定されず、例えば円筒型電池をはじめとして、角型電池、薄型電池、ボタン型電池、電解コンデンサー等への用途に適するものである。
【0033】
本発明の製造方法を用いて微多孔膜を製造する場合、微多孔膜の膜厚は、1〜500μmとするのが好ましく、10〜100μmとするのがさらに好ましい。膜厚が1μmより小さいと機械強度が不十分となり、また、500μmより大きいとセパレーターの占有体積が増えるため、電池の高容量化の点において不利となり好ましくない。
【0034】
本発明の製造方法を用いて微多孔膜を製造する場合、微多孔膜の透気度は、3000秒/100cc/25μm以下とするのが好ましく、1000秒/100cc/25μm以下とするのがさらに好ましい。該透気度は、透気時間と膜厚との比によって定義される。透気度が3000秒/100cc/25μmより大きいとイオン透過性が悪くなるか、または孔径が極めて小さくなるので、透過性能上、いずれにしても好ましくない。
【0035】
本発明の製造方法を用いて微多孔膜を製造する場合、微多孔膜の気孔率は、20〜80%とするのが好ましく、30〜60%とするのがさらに好ましい。気孔率が20%より小さいと、透気度や電気抵抗に代表されるイオン透過性が不十分となり、80%より大きいと、突き刺し強度や引張強度に代表される強度が不十分となる。
【0036】
本発明の製造方法を用いて微多孔膜を製造する場合、微多孔膜の突き刺し強度は、300g/25μm以上とすることが好ましく、400g/25μm以上とすることがさらに好ましい。突き刺し強度は、突き刺し試験における最大荷重と膜厚の比によって定義される。突き刺し強度が300g/25μmより小さいと、電池を捲回する際に短絡不良等の欠陥が増加するため好ましくない。
【0037】
本発明の製造方法を用いて微多孔膜を製造する場合、微多孔膜の熱収縮率は、微多孔膜の高温における寸法安定性を評価する指標であり、微多孔膜の機械方向または幅方向について、好ましくは20%以下、さらに好ましくは10%以下、そして最も好ましくは5%以下とすることが好ましい。熱収縮率が20%を越えると電池内部での短絡等の安全上のトラブルが発生する原因となるので好ましくない。
【0038】
【発明の実施の形態】
以下、実施例により本発明を詳細に説明する。
実施例において示される試験方法は次の通りである。
(1)膜厚
ダイヤルゲージ(尾崎製作所製PEACOCK NO.25)にて測定した。
(2)気孔率
20cm角の試料を微多孔膜から切り取り、該試料の体積(cm3 )と重量(g)を測定し、得られた結果から次式を用いて、気孔率(%)を計算した。
【0039】
気孔率=100×(1−重量÷(樹脂の密度×体積))
(3)透気度
JIS P−8117に準拠し、ガーレー式透気度計にて測定して求めた透気時間(秒/100cc)、および膜厚(μm)より、次式の通りに膜厚換算し、透気度(秒/100cc/25μm)とした。
【0040】
透気度=透気時間×25÷膜厚
(4)突き刺し強度
圧縮試験機(カトーテック製KES−G5)を用いて、針先端の曲率半径0.5mm、突き刺し速度2mm/秒の条件で突き刺し試験を行い、最大突き刺し荷重(g)および膜厚(μm)より次式の通りに膜厚換算し、突き刺し強度(g/25μm)とした。
【0041】
突き刺し強度=最大突き刺し荷重×25÷膜厚
(5)熱収縮率
20cm角の試料を微多孔膜から切り取り、該試料の四方を拘束しない状態で100℃に加熱された熱風循環式オーブン中に入れ、2時間の加熱処理を行った。微多孔膜の機械方向および幅方向の寸法を、加熱の前後において計測し、次式の通りに熱収縮率(%)を計算した。
【0042】
熱収縮率=100×(1−(加熱後の寸法÷加熱前の寸法))
(6)平均分子量および分子量分布
次の条件により、GPC(ゲルパーミエーションクロマトグラフィー)測定を行い、重量平均分子量(Mw )および数平均分子量(Mn )を求め、平均分子量にはMw を、また分子量分布にはMw /Mn をあてた。
機器:WATERS 150−GPC
温度:140℃
溶媒:1,2,4−トリクロロベンゼン
濃度:0.05%(インジェクション量:500μl)
カラム:Shodex GPC AT−807/S 1本、Tosoh TSK−GELGMH6 −HT 2本
溶解条件:160℃、2.5時間
キャリブレーションカーブ:ポリスチレン標準試料に対してポリエチレン換算定数0.48を用い3次で計算
(7)融点
(株)セイコー電子工業製、示差走査熱量計DSC−210を用い、試料約7mgを窒素気流下に置き、室温から速度10℃/分の割合で昇温した時の吸熱ピーク温度より評価した。
(8)緩和率
抽出後延伸の前の微多孔膜の寸法に対して、抽出後延伸時の設定倍率と、熱処理時の設定倍率の差から、次式のように緩和率(%)を定義した。
【0043】
緩和率=100×(抽出後延伸設定倍率−熱処理設定倍率)
【0044】
【実施例1】
高密度ポリエチレン(重量平均分子量25万、分子量分布7、密度0.956)および該ポリエチレンに対して0.3重量部の2,6−ジ−t−ブチル−p−クレゾールをヘンシェルミキサーを用いてドライブレンドし、35mm二軸押出機に投入した。さらに、押出機に流動パラフィン(37.78℃における動粘度75.9cSt)を注入して200℃で溶融混練し、コートハンガーダイを経て表面温度40℃に制御された冷却ロール上に押出キャストすることにより、厚み1.8mmのシートを得た。ここで組成物の比率は、ポリエチレン45重量部に対して、流動パラフィン55重量部となるように調節した。得られたシートを同時2軸テンター延伸機を用いて抽出前延伸し、続いて塩化メチレン中に浸漬して流動パラフィンを抽出除去し、その後付着した塩化メチレンを乾燥除去した。さらにテンター延伸機を用いて幅方向に抽出後延伸し、続いて幅方向に緩和させつつ熱処理した。成形条件を表1に、また、得られた微多孔膜の物性を表2に記載した。尚、得られた微多孔膜の融点は、133.9℃であった。
【0045】
【実施例2】
熱処理の条件を表1に記載した条件に変更したこと以外は、実施例1と同様にして微多孔膜を得た。得られた微多孔膜の物性を表2に記載した。
【0046】
【実施例3】
抽出後延伸、及び熱処理の条件を表1に記載した条件に変更したこと以外は、実施例1と同様にして微多孔膜を得た。得られた微多孔膜の物性を表2に記載した。
【0047】
【比較例1】
熱処理を施さなかったこと以外は、実施例1と同様にして微多孔膜を得た。得られた微多孔膜の物性を表2に記載した。
【0048】
【実施例4】
実施例1において、抽出後延伸を施した後の微多孔膜を四角形に切り抜き、あらためて枠に固定して、表3の条件で1分間の熱固定を施し微多孔膜を得た。得られた微多孔膜の物性を表4に記載した。
【0049】
【実施例5】
実施例1と同様の方法で得られたシートについて、試験2軸延伸機を用いて、延伸温度120℃で、機械方向に7倍、幅方向に7倍の逐次2軸延伸を行った。続いて塩化メチレン中に浸漬して流動パラフィンを抽出除去し、その後付着した塩化メチレンを乾燥除去した。さらに延伸温度115℃で幅方向に1.5倍の抽出後延伸を行い、熱処理温度120℃、緩和率10%で幅方向に緩和させつつ熱処理を行った。得られた微多孔膜の幅方向の熱収縮率は8%であった。
【0050】
【実施例6】
実施例1において使用した高密度ポリエチレン34重量部、線状共重合ポリエチレン(メルトインデックス0.017、密度0.929、プロピレン含有量1.6モル%)6重量部、流動パラフィン60重量部、および該ポリエチレンに対して0.3重量部の2,6−ジ−t−ブチル−p−クレゾールを混合し、(株)東洋精機製作所社製ラボプラストミルに投入し、200℃で溶融混練した。続いて200℃に加熱した圧縮成形機を用いてシート状に成形した後、水冷式の圧縮成形機を用いて冷却固化させ、厚み1.3mmのシートを得た。得られたシートについて、試験2軸延伸機を用いて、延伸温度120℃で、4×4倍の同時2軸延伸を行った。続いて2−ブタノン中に浸漬して流動パラフィンを抽出除去し、その後付着した2−ブタノンを乾燥除去した。さらに延伸温度115℃で、2×2倍の同時2軸延伸を行い、熱処理温度120℃、緩和率10%で幅方向に緩和させつつ熱処理を行った。得られた微多孔膜の融点は、130.7℃であった。また、微多孔膜の物性は、膜厚40μm、気孔率64%、透気度100秒となり、高い透過性能を有していた。
【0051】
【表1】
【0052】
【表2】
【0053】
【表3】
【0054】
【表4】
【0055】
【発明の効果】
本発明のポリオレフィン微多孔膜の製造方法によれば、高温における寸法安定性を向上することができ、また同時に透過性能を自在に調節することができる柔軟な側面をも有する。その他、微多孔膜のしわ、弛み、膜厚分布等の品位を下落させるような不良の発生を防止することができる。かくして、本発明によって製造された微多孔膜が、特に電池セパレーターとして使用される場合には、高い電池安全性を持ち、また、多様化する電池ニーズに応えるべく、様々な透過性能を持つ微多孔膜を製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a suitable means for manufacturing separators used for battery materials such as various cylindrical batteries, square batteries, thin batteries, button batteries, and electrolytic capacitors.
[0002]
[Prior art]
Microporous membranes have been used in the past as materials for filter media such as water purifiers, breathable apparel, battery separators and electrolytic capacitor separators. In recent years, demand for lithium ion secondary battery applications has been increasing, and as the energy density of batteries has increased, separators have also been required to have high performance.
[0003]
Since lithium ion secondary batteries use chemicals such as electrolytes and positive and negative electrode active materials, the separator material is generally a polyolefin-based polymer in consideration of chemical resistance, and is particularly inexpensive. Polyethylene and polypropylene are used.
For separators for non-aqueous electrolyte batteries such as lithium ion secondary batteries, electrode short-circuit prevention, high ion permeability, assembly workability during battery winding, battery safety, reliability, etc. are conventional. It has been required as a basic performance. Furthermore, in recent years, in order to meet the diversifying needs of battery grades, there is an urgent need to develop a technique for freely adjusting the permeation performance such as the pore structure and porosity and a technique for adjusting the dimensional stability at high temperatures.
[0004]
The electrode short-circuit prevention function means that a separator serves as a partition wall interposed between positive and negative electrodes to prevent an internal short circuit. In order to prevent an internal short circuit, the separator must have high strength, a small pore diameter, and an appropriate film thickness. In secondary batteries, the internal electrode expands due to charging and discharging, so in some cases, several tens of kg / cm. 2 The pressure of things may be applied to the separator. Further, the electrode surface is not necessarily smooth, and active material particles of various sizes are protrusions. Even in such a case, the separator is required to have high strength that does not break. When the separator is used as a prismatic battery or a thin battery, the coil with the electrode and separator laminated and wound is compressed and casing, so that the demand for high strength can be said to be even stronger.
[0005]
Ion permeability means the ability of the separator to transmit only ions and electrolyte without transmitting active material particles. In general, in order to reduce ohmic loss and increase discharge efficiency, performance such as high porosity, low air permeability, and low electrical resistance is required. However, in recent years, for applications that do not require large current discharge, or for applications that require particularly high battery safety, there is a case in which a dense separator that matches the high permeability is required. Therefore, it is useful to develop a flexible molding technique that can freely adjust the permeability for any requirement.
[0006]
As for assembly workability, when the separator is wound with an electrode by applying a constant tension in the machine direction, the separator is required not to extend in the machine direction or to change in dimension in the width direction, and a high elastic modulus is required. Necessary.
Battery safety is a function that suppresses battery runaway and explosion by automatically shutting off the current when the battery heats up due to trouble such as external short circuit or overcharge. Means. When the temperature inside the battery rises to the vicinity of the melting point of the resin constituting the separator, the separator closes the pores due to thermal flow, thermal deformation or thermal contraction, or the resin is absorbed on the electrode surface and the insulating coating is formed. By forming, a so-called shutdown function is exhibited. The lower the temperature at which this function is manifested, the more desirable it is because it has the ability to cut off current at low temperatures to suppress heat generation. Further, the wider the temperature range in the shutdown state, the longer the time during which the current is cut off. Therefore, it is desirable that it can withstand the temperature rise due to more intense heat generation.
[0007]
The dimensional stability at high temperature is an evaluation of the degree to which the separator undergoes dimensional deformation due to thermal contraction or the like, assuming that the temperature inside the battery has risen due to some high-temperature treatment during manufacturing of the battery or due to trouble. In the former case, when the separator shrinks and deforms in the width direction, the electrode is exposed and short-circuits internally, and when the contraction stress acts in the longitudinal direction, tightening occurs and breaks, which lowers the production efficiency of the battery anyway I will let you. If the dimensional stability cannot be maintained during battery runaway as in the latter case, even the shutdown function becomes meaningless, which is a very serious problem. Thus, no technology has been established for producing a separator that can withstand use at high temperatures without impairing the shutdown function.
[0008]
In microporous membrane manufacturing technology, a microporous membrane precursor is formed from a composition consisting of a polymer and a plasticizer by a phase separation process, and a plasticizer extraction removal process and a stretched thinning process are applied to this. A technique for forming a porous film is known. Among such known techniques, the stretching step is referred to as pre-extraction stretching or post-extraction stretching, respectively, depending on whether the stage of stretching is performed before or after the extraction process.
[0009]
Japanese Patent Publication No. 6-21177 and Japanese Patent Application Laid-Open No. 6-240036 combine the pre-extraction stretching and the post-extraction stretching for the purpose of improving the permeation performance and controlling the pore size of the polyolefin microporous membrane containing an ultrahigh molecular weight component. Although the technology is disclosed, a microporous film having excellent dimensional stability at high temperatures has not been obtained.
Japanese Patent Laid-Open No. 6-336535 proposes a method of improving permeation performance and improving battery safety by using a pre-extraction stretching and a post-extraction stretching together on a microporous membrane made of a mixed composition of polyethylene and polypropylene. However, no attention has been paid to the heat shrinkage of the microporous membrane at high temperatures, and no microporous membrane having excellent dimensional stability at high temperatures has been obtained.
[0010]
[Problems to be solved by the invention]
In the conventional microporous membrane manufacturing technology, it is difficult to freely adjust the permeation performance without impairing the strength of the microporous membrane. That is, in the case of a process using only pre-extraction stretching, it is possible to efficiently impart orientation and increase strength, but there is a drawback that there is no degree of freedom in terms of transmission performance. On the other hand, in the case of a process using only stretching after extraction, the interface fracture is dominantly progressed by stretching, so that it is possible to obtain a microporous membrane with high permeation performance, but it is difficult to adjust the permeation performance, and the strength However, there was a drawback of being low.
[0011]
Further, as disclosed in JP-B-6-21177, JP-A-6-240036, and JP-A-6-336535, if the pre-extraction stretching and the post-extraction stretching are used in combination, the permeation performance is improved. Although it is possible, it is difficult to improve the dimensional stability at a high temperature and obtain a microporous film that hardly undergoes thermal shrinkage.
Thus, the establishment of a technology for obtaining a microporous membrane that can be adjusted over a wide range from a relatively low region to a high region and has excellent dimensional stability at a high temperature has been left as a problem in the industry. .
[0012]
[Means for Solving the Problems]
As a result of diligent research to solve the above-mentioned problems, the present inventor has made it possible to freely adjust the permeation performance without sacrificing the strength by using both pre-extraction stretching and post-extraction stretching in combination, and further performing heat treatment. The inventors have found a method for producing a polyolefin microporous membrane having excellent dimensional stability at high temperatures, and have made the present invention.
[0013]
That is, the present invention includes (a) a step of melt-kneading a composition comprising a polyolefin resin and a plasticizer, extruding and solidifying by cooling and forming into a sheet form,
(B) a step of performing at least one stretching in at least one axial direction after the step a;
(C) after the step b, extracting the plasticizer;
(D) a step of performing at least one stretching in at least one axial direction after the step c;
(E) A step of performing a heat treatment subsequent to or after the step d.
The present invention relates to a method for producing a polyolefin microporous membrane comprising
[0014]
In the step of performing the heat treatment in the above production method, the temperature is set to the melting point T of the polyolefin microporous membrane. m More than 50 ℃ lower than T m Less than ℃ and relaxation rate 10 It is a preferred embodiment of the present invention that the thermal relaxation is made to be -50%. In the step (a) of the production method of the present invention, the first method of melting and kneading the polyolefin resin and the plasticizer is an arbitrary method while charging the polyolefin resin into a resin kneading apparatus such as an extruder and heating and melting the resin. This is a method of obtaining a uniform solution by introducing a plasticizer at a ratio and kneading a composition comprising a resin and a plasticizer. The polyolefin resin to be introduced may be in any form of powder, granules, and pellets. Moreover, when knead | mixing by such a method, it is preferable that the form of a plasticizer is a normal temperature liquid. As an extruder, a single screw type extruder, a biaxial different direction screw type extruder, a biaxial same direction screw type extruder, etc. can be used.
[0015]
The second method of melt-kneading a polyolefin resin and a plasticizer is to mix and disperse the resin and the plasticizer at room temperature in advance, and put the obtained mixed composition into a resin kneading apparatus such as an extruder and knead. This is a method for obtaining a uniform solution. The form of the mixed composition to be added may be a slurry when the plasticizer is a liquid at room temperature, and may be a powder or the like when the plasticizer is a solid at room temperature. In the first and second methods, it is important to obtain a uniform solution by kneading polyolefin and a plasticizer in a kneading apparatus such as an extruder, thereby improving productivity. it can.
[0016]
In the step (a) of the production method of the present invention, the first method for producing a sheet-like microporous membrane precursor by extruding and solidifying by cooling is to form a uniform solution of resin and plasticizer through a T-die or the like. Extruded into a shape and brought into contact with a heat conductor, and cooled to a temperature sufficiently lower than the crystallization temperature of the resin. As the heat conductor to be used, metal, water, air, or the plasticizer itself can be used. In particular, a method of cooling by contacting with a metal roll has the highest heat conduction efficiency and is preferable. Moreover, when contacting with a metal roll, it is preferable to perform calendering or hot rolling by, for example, sandwiching between rolls, since the efficiency of heat conduction is further increased and the surface smoothness of the sheet is improved.
[0017]
The second method for producing a sheet-like microporous membrane precursor is a method in which a uniform solution of a resin and a plasticizer is extruded into a cylindrical shape via a circular die and then processed into a sheet shape.
In the step (c) of the production method of the present invention, the first method for extracting the plasticizer is to immerse the microporous membrane cut into a predetermined size in a container containing the extraction solvent and thoroughly wash it. The dried solvent is air-dried or dried by hot air. At this time, it is preferable to repeat the dipping operation and the washing operation many times since the plasticizer remaining in the microporous film is reduced. In order to suppress the shrinkage of the microporous film during a series of operations of immersion, washing, and drying, it is preferable to constrain the end of the microporous film.
[0018]
The second method of extracting the plasticizer is to continuously feed the microporous membrane into a tank filled with the extraction solvent and immerse it in the tank for a sufficient time to remove the plasticizer. This is done by drying the solvent attached later. At this time, the inside of the tank is divided into multiple stages, and a multistage method in which the microporous membrane is sequentially fed to each tank having a concentration difference, or an extraction solvent is supplied from the opposite direction to the traveling direction of the microporous film to create a concentration gradient. Therefore, it is preferable to apply a known means such as a countercurrent method for increasing the extraction efficiency. In both the first and second methods, it is important to substantially remove the plasticizer from the microporous membrane. Further, it is more preferable to heat the extraction solvent within the range below the boiling point of the solvent, since the diffusion between the plasticizer and the solvent can be promoted, and the extraction efficiency is increased.
[0019]
In the production method of the present invention, stretching performed before the extraction step is referred to as pre-extraction stretching [(b) step], and at least one stretching operation is essential in at least one axial direction. The at least uniaxial direction refers to machine direction uniaxial stretching, width direction uniaxial stretching, simultaneous biaxial stretching, and sequential biaxial stretching. In addition, at least once refers to one-stage stretching, multi-stage stretching, and multi-stage stretching.
[0020]
In the stretch before extraction in the present invention, the plasticizer is stretched in a highly dispersed state in the micropores of the microporous membrane, in the crystal gaps, and in the amorphous part. It has the effect of suppressing the increase in the porosity of the microporous membrane, and can achieve high strength because high-stretching can be realized. Furthermore, biaxial stretching is preferable for achieving high strength, and simultaneous biaxial stretching is most preferable because the process can be simplified.
[0021]
The stretching temperature is the melting point T of the polyolefin microporous membrane. m More than 50 ℃ lower than T m The melting point T of the polyolefin microporous membrane is more preferable. m More than 40 ℃ lower than T m The temperature is lower than 5 ° C lower than 5 ° C. Stretching temperature is T m When the temperature is lower than 50 ° C. below 50 ° C., the stretchability is deteriorated, the strain component after stretching remains, and the dimensional stability at high temperature is lowered, which is not preferable. Stretching temperature is T m When the temperature is higher than or equal to ° C., the microporous membrane melts and impairs permeation performance, which is not preferable. The draw ratio can be set to an arbitrary ratio, but it is preferably 2 to 20 times, more preferably 4 to 10 times in terms of the uniaxial direction, and preferably 2 to 400 times, more preferably in terms of the area ratio in the biaxial direction. Is 4 to 100 times.
[0022]
In the production method of the present invention, the stretching performed after the extraction step is called post-extraction stretching [(d) step], and at least one stretching operation is essential in at least one axial direction. Since the stretching after the extraction is performed in a state where the plasticizer is substantially removed from the microporous membrane, the polymer interface breaks predominantly with the stretching, and has an effect of increasing the porosity of the microporous membrane. Therefore, if only the post-extraction stretching is performed without performing the pre-extraction stretching which is essential in the present invention, the porosity is excessively increased, and the stretching orientation cannot be imparted to the microporous film, resulting in low strength. End up.
[0023]
Compared to this, the production method of the present invention using both pre-extraction stretching and post-extraction stretching is useful because the porosity can be increased without impairing the strength of the microporous membrane. The stretching temperature is the melting point T of the polyolefin microporous membrane. m More than 50 ℃ lower than T m The melting point T of the polyolefin microporous membrane is more preferable. m More than 40 ℃ lower than T m The temperature is lower than 5 ° C lower than 5 ° C. Stretching temperature is T m When the temperature is lower than 50 ° C. below 50 ° C., the stretchability is deteriorated, the strain component after stretching remains, and the dimensional stability at high temperature is lowered, which is not preferable. Stretching temperature is T m When the temperature is higher than or equal to ° C., the microporous membrane melts and impairs permeation performance, which is not preferable. The stretching ratio can be set to an arbitrary ratio, but it is preferably within 5 times in the uniaxial direction and within 20 times in the area ratio in the biaxial direction.
[0024]
In the production method of the present invention, the heat treatment [(e) step] is performed subsequent to the post-extraction stretching or after the post-extraction stretching, and indicates either heat setting or heat relaxation. The heat setting means a process of performing heat treatment in a tension state while maintaining a set drawing ratio at the time of drawing after extraction or being restrained, and (A) Thermal relaxation is a relaxed state as compared with this. Means a step of performing a heat treatment. Both heat fixation and thermal relaxation remove residual stress and strain components that are considered to occur during stretching, improve dimensional stability at high temperatures, and adjust the permeation performance represented by porosity and air permeability. It is what has. The first embodiment of the heat treatment is performed continuously following the post-extraction stretching. For example, after stretching with a uniaxial or biaxial stretching machine such as a tenter, the maximum set stretching ratio during stretching is set. This is a method in which heat treatment is performed for a predetermined time while maintaining or relaxing by setting a smaller ratio than the maximum set draw ratio. The second embodiment of the heat treatment is performed intermittently after stretching after extraction. For example, after stretching with a test biaxial stretching machine such as a stretcher, the microporous membrane is restrained again. In this method, heat treatment is performed for a predetermined time, or heat treatment is performed while relaxing by setting a magnification smaller than the set magnification at the time of restraint.
[0025]
The relaxation rate as used in the production method of the present invention means the rate of thermal relaxation set during the heat treatment step, preferably 1 to 50%, more preferably 10 to 40%. The case where the relaxation rate is less than 1%, particularly 0%, is referred to as heat fixation in the present invention. In this case, however, the dimensional stability of the microporous film at a high temperature tends to be relatively deteriorated, and the heat treatment takes a long time. Is necessary, and production efficiency may be reduced. On the other hand, if the relaxation rate exceeds 50%, wrinkles and film thickness distribution may be caused. Therefore, in the present invention, 10 It is preferable to set the relaxation rate within a range of ˜50% and perform thermal relaxation.
[0026]
In the production method of the present invention, within the range that does not impair the advantages of the present invention, that is, when improving the dimensional stability at high temperature and adjusting the permeation performance, post-treatment is performed as long as this is not impaired. You can go. Examples of the post-treatment include a hydrophilic treatment with a surfactant and the like, and a crosslinking treatment with ionizing radiation and the like.
The polyolefin resin used in the present invention refers to a resin used for normal extrusion, injection, inflation, and blow molding. Ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1 -Octene homopolymers and copolymers can be used. In addition, polyolefins selected from the group of these homopolymers and copolymers can be mixed and used. Representative examples of the polymer include low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, ultrahigh molecular weight polyethylene, isotactic polypropylene, atactic polypropylene, polybutene, and ethylene propylene rubber. . When the microporous membrane obtained by the production method of the present invention is used as a battery separator, it is preferable to use a resin having a high melting point polyethylene as a main component because it is a low melting point resin and high strength required performance. .
[0027]
The average molecular weight of the polyolefin resin used in the present invention is preferably from 50,000 to less than 1,000,000, more preferably from 100,000 to less than 700,000, and most preferably from 200,000 to less than 500,000. This average molecular weight refers to a weight average molecular weight obtained by GPC (gel permeation chromatography) measurement or the like, but it is generally difficult to accurately measure GPC for resins having an average molecular weight exceeding 1,000,000. Therefore, as an alternative, the viscosity average molecular weight determined by the viscosity method can be applied. If the average molecular weight is less than 50,000, the melt tension at the time of melt molding is lost and the moldability is deteriorated, and the stretchability is deteriorated and the strength is lowered. If the average molecular weight exceeds 1,000,000, it tends to be difficult to obtain a uniform resin composition.
[0028]
The molecular weight distribution of the polyolefin resin used in the present invention is preferably from 1 to less than 10, more preferably from 2 to less than 9, and most preferably from 3 to less than 8. The molecular weight distribution is a weight average molecular weight (M w ) And number average molecular weight (M n ) Ratio (M w / M n ). When the molecular weight distribution exceeds 10, the stretchability tends to deteriorate, and there is a risk of local distribution of film thickness and strength reduction.
[0029]
The plasticizer used in the present invention may be any non-volatile solvent that can form a uniform solution above the melting point of the polyolefin resin when mixed with the polyolefin resin. Examples thereof include hydrocarbons such as liquid paraffin and paraffin wax, esters such as dioctyl phthalate and dibutyl phthalate, and higher alcohols such as oleyl alcohol and stearyl alcohol.
[0030]
The ratio of the polyolefin resin and the plasticizer used in the present invention is a ratio sufficient to cause microphase separation and form a sheet-like microporous membrane precursor, and does not impair productivity. I just need it.
Specifically, the weight fraction of the polyolefin resin in the composition comprising the polyolefin resin and the plasticizer is preferably 20 to 70%, more preferably 30 to 60%. When the weight fraction of the polyolefin resin is less than 20%, the melt tension at the time of melt molding is insufficient and the moldability is poor. Although it is possible to carry out the polyolefin resin at a weight fraction of less than 20%, in this case, in order to increase the melt tension, it becomes necessary to mix a large amount of ultra-high molecular weight polyolefin, and uniform dispersibility Is unfavorable because it decreases.
[0031]
The extraction solvent used in the present invention is preferably a poor solvent for polyolefin and a good solvent for plasticizer, and its boiling point is preferably lower than the melting point of the polyolefin microporous membrane. Examples of such extraction solvents include hydrocarbons such as n-hexane and cyclohexane, halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane, alcohols such as ethanol and isopropanol, diethyl ether, Examples include ethers such as tetrahydrofuran and ketones such as acetone and 2-butanone. Furthermore, in consideration of environmental adaptability, safety, and hygiene, alcohols and ketones are preferable among the solvents.
[0032]
The composition used in the present invention may further contain additives such as an antioxidant, a crystal nucleating agent, an antistatic agent, a flame retardant, a lubricant, and an ultraviolet absorber depending on the purpose.
The microporous membrane of the present invention refers to a porous sheet or film substantially composed of polyolefin, and is used as a battery material such as a separator, for example. The form of the battery is not particularly limited, and is suitable for use in, for example, a cylindrical battery, a square battery, a thin battery, a button battery, an electrolytic capacitor, and the like.
[0033]
When manufacturing a microporous film using the manufacturing method of this invention, it is preferable that the film thickness of a microporous film shall be 1-500 micrometers, and it is more preferable to set it as 10-100 micrometers. If the film thickness is smaller than 1 μm, the mechanical strength becomes insufficient, and if it is larger than 500 μm, the occupied volume of the separator increases, which is disadvantageous in terms of increasing the capacity of the battery.
[0034]
When producing a microporous membrane using the production method of the present invention, the air permeability of the microporous membrane is preferably 3000 sec / 100 cc / 25 μm or less, more preferably 1000 sec / 100 cc / 25 μm or less. preferable. The air permeability is defined by the ratio between the air permeability time and the film thickness. If the air permeability is larger than 3000 seconds / 100 cc / 25 μm, the ion permeability is deteriorated or the pore diameter is extremely small.
[0035]
When producing a microporous membrane using the production method of the present invention, the porosity of the microporous membrane is preferably 20 to 80%, and more preferably 30 to 60%. When the porosity is less than 20%, ion permeability represented by air permeability and electrical resistance is insufficient, and when it is greater than 80%, strength represented by piercing strength and tensile strength is insufficient.
[0036]
When the microporous membrane is produced using the production method of the present invention, the puncture strength of the microporous membrane is preferably 300 g / 25 μm or more, and more preferably 400 g / 25 μm or more. The piercing strength is defined by the ratio between the maximum load and the film thickness in the piercing test. When the piercing strength is smaller than 300 g / 25 μm, defects such as short circuit failure increase when winding the battery, which is not preferable.
[0037]
When producing a microporous membrane using the production method of the present invention, the thermal shrinkage rate of the microporous membrane is an index for evaluating the dimensional stability of the microporous membrane at high temperatures, and the machine direction or the width direction of the microporous membrane Is preferably 20% or less, more preferably 10% or less, and most preferably 5% or less. If the thermal shrinkage rate exceeds 20%, it causes a safety trouble such as a short circuit inside the battery, which is not preferable.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail by way of examples.
The test methods shown in the examples are as follows.
(1) Film thickness
It measured with the dial gauge (PEACOCK NO.25 by Ozaki Seisakusho).
(2) Porosity
A 20 cm square sample was cut from the microporous membrane, and the volume of the sample (cm Three ) And weight (g) were measured, and the porosity (%) was calculated from the obtained results using the following formula.
[0039]
Porosity = 100 × (1−weight ÷ (resin density × volume))
(3) Air permeability
Based on JIS P-8117, from the air permeability time (seconds / 100 cc) and the film thickness (μm) determined by measuring with a Gurley type air permeability meter, the film thickness is converted according to the following formula. Degree (second / 100 cc / 25 μm).
[0040]
Air permeability = air permeability time × 25 ÷ film thickness
(4) Puncture strength
Using a compression tester (Kato Tech KES-G5), a piercing test was conducted under the conditions of a radius of curvature of the needle tip of 0.5 mm and a piercing speed of 2 mm / second. From the maximum piercing load (g) and film thickness (μm) The film thickness was converted to the puncture strength (g / 25 μm) according to the following formula.
[0041]
Puncture strength = maximum puncture load × 25 ÷ film thickness
(5) Thermal contraction rate
A 20 cm square sample was cut from the microporous membrane, placed in a hot air circulation oven heated to 100 ° C. without restraining the four sides of the sample, and heat-treated for 2 hours. The dimensions of the microporous membrane in the machine direction and the width direction were measured before and after heating, and the thermal shrinkage rate (%) was calculated according to the following formula.
[0042]
Thermal shrinkage = 100 × (1- (dimension after heating ÷ dimension before heating))
(6) Average molecular weight and molecular weight distribution
GPC (gel permeation chromatography) measurement is performed under the following conditions, and the weight average molecular weight (M w ) And number average molecular weight (M n ) And the average molecular weight is M w And M for molecular weight distribution w / M n I was hit.
Equipment: WATERS 150-GPC
Temperature: 140 ° C
Solvent: 1,2,4-trichlorobenzene
Concentration: 0.05% (injection amount: 500 μl)
Column: One Shodex GPC AT-807 / S, Tosoh TSK-GELGMH 6 -HT 2
Dissolution conditions: 160 ° C., 2.5 hours
Calibration curve: 3rd order calculation using polyethylene conversion constant 0.48 against polystyrene standard sample
(7) Melting point
Using a differential scanning calorimeter DSC-210, manufactured by Seiko Denshi Kogyo Co., Ltd., about 7 mg of a sample was placed in a nitrogen stream and evaluated from the endothermic peak temperature when the temperature was increased from room temperature at a rate of 10 ° C./min.
(8) Relaxation rate
The relaxation rate (%) was defined by the following formula from the difference between the set magnification at the time of stretching after extraction and the set magnification at the time of heat treatment with respect to the dimension of the microporous membrane before stretching after extraction.
[0043]
Relaxation rate = 100 × (stretching setting magnification after extraction−heat treatment setting magnification)
[0044]
[Example 1]
High density polyethylene (weight average molecular weight 250,000, molecular weight distribution 7, density 0.956) and 0.3 part by weight of 2,6-di-t-butyl-p-cresol with respect to the polyethylene using a Henschel mixer Dry blended and put into a 35 mm twin screw extruder. Furthermore, liquid paraffin (kinematic viscosity 75.9 cSt at 37.78 ° C.) is injected into the extruder, melted and kneaded at 200 ° C., and extruded and cast onto a cooling roll controlled to a surface temperature of 40 ° C. through a coat hanger die. Thus, a sheet having a thickness of 1.8 mm was obtained. Here, the ratio of the composition was adjusted to be 55 parts by weight of liquid paraffin with respect to 45 parts by weight of polyethylene. The obtained sheet was stretched before extraction using a simultaneous biaxial tenter stretching machine, and subsequently immersed in methylene chloride to extract and remove liquid paraffin, and then the adhered methylene chloride was removed by drying. Furthermore, it extracted after extending | stretching in the width direction using the tenter extending | stretching machine, Then, it heat-processed, relaxing in the width direction. Molding conditions are shown in Table 1, and physical properties of the obtained microporous film are shown in Table 2. The melting point of the obtained microporous membrane was 133.9 ° C.
[0045]
[Example 2]
A microporous membrane was obtained in the same manner as in Example 1 except that the heat treatment conditions were changed to those described in Table 1. Table 2 shows the physical properties of the obtained microporous membrane.
[0046]
[Example 3]
A microporous membrane was obtained in the same manner as in Example 1 except that the conditions for stretching after extraction and heat treatment were changed to the conditions described in Table 1. Table 2 shows the physical properties of the obtained microporous membrane.
[0047]
[Comparative Example 1]
A microporous membrane was obtained in the same manner as in Example 1 except that no heat treatment was performed. Table 2 shows the physical properties of the obtained microporous membrane.
[0048]
[Example 4]
In Example 1, the microporous membrane that had been stretched after extraction was cut into a square shape, re-fixed to a frame, and heat-fixed for 1 minute under the conditions shown in Table 3 to obtain a microporous membrane. Table 4 shows the physical properties of the obtained microporous membrane.
[0049]
[Example 5]
The sheet obtained by the same method as in Example 1 was subjected to sequential biaxial stretching at a stretching temperature of 120 ° C. by 7 times in the machine direction and 7 times in the width direction using a test biaxial stretching machine. Subsequently, it was immersed in methylene chloride to extract and remove the liquid paraffin, and then the attached methylene chloride was removed by drying. Further, the film was extracted and stretched 1.5 times in the width direction at a stretching temperature of 115 ° C., and heat treatment was performed while relaxing in the width direction at a heat treatment temperature of 120 ° C. and a relaxation rate of 10%. The heat shrinkage rate in the width direction of the obtained microporous membrane was 8%.
[0050]
[Example 6]
34 parts by weight of high-density polyethylene used in Example 1, 6 parts by weight of linear copolymer polyethylene (melt index 0.017, density 0.929, propylene content 1.6 mol%), 60 parts by weight of liquid paraffin, and 0.3 parts by weight of 2,6-di-t-butyl-p-cresol was mixed with the polyethylene, put into a lab plast mill manufactured by Toyo Seiki Seisakusho, and melt-kneaded at 200 ° C. Subsequently, after forming into a sheet using a compression molding machine heated to 200 ° C., the sheet was cooled and solidified using a water-cooled compression molding machine to obtain a sheet having a thickness of 1.3 mm. The obtained sheet was simultaneously biaxially stretched 4 × 4 times at a stretching temperature of 120 ° C. using a test biaxial stretching machine. Then, it immersed in 2-butanone, liquid paraffin was extracted and removed, and 2-butanone adhering after that was dried and removed. Furthermore, 2 × 2 times simultaneous biaxial stretching was performed at a stretching temperature of 115 ° C., and heat treatment was performed while relaxing in the width direction at a heat treatment temperature of 120 ° C. and a relaxation rate of 10%. The melting point of the obtained microporous membrane was 130.7 ° C. Further, the physical properties of the microporous film were as follows: the film thickness was 40 μm, the porosity was 64%, and the air permeability was 100 seconds.
[0051]
[Table 1]
[0052]
[Table 2]
[0053]
[Table 3]
[0054]
[Table 4]
[0055]
【The invention's effect】
According to the method for producing a microporous polyolefin membrane of the present invention, the dimensional stability at high temperatures can be improved, and at the same time, it has a flexible side surface that can freely adjust the permeation performance. In addition, it is possible to prevent the occurrence of defects such as wrinkles, slackness, and film thickness distribution of the microporous film. Thus, when the microporous membrane produced by the present invention is used as a battery separator, the microporous membrane has high battery safety and various permeation performances to meet diversifying battery needs. Membranes can be manufactured.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21442497A JP3917721B2 (en) | 1997-08-08 | 1997-08-08 | Method for producing microporous membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21442497A JP3917721B2 (en) | 1997-08-08 | 1997-08-08 | Method for producing microporous membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1160789A JPH1160789A (en) | 1999-03-05 |
JP3917721B2 true JP3917721B2 (en) | 2007-05-23 |
Family
ID=16655569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21442497A Expired - Lifetime JP3917721B2 (en) | 1997-08-08 | 1997-08-08 | Method for producing microporous membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3917721B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103563127A (en) * | 2011-06-17 | 2014-02-05 | 伊赛尔科技有限公司 | Apparatus for manufacturing a fine porous film for a separation film of a battery and method for manufacturing a film using same |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4812919B2 (en) * | 1999-09-24 | 2011-11-09 | 日本板硝子株式会社 | Non-aqueous electrolyte battery separator |
JP4927243B2 (en) * | 2000-01-13 | 2012-05-09 | 東レバッテリーセパレータフィルム合同会社 | Polyolefin microporous membrane |
JP4682347B2 (en) * | 2000-02-15 | 2011-05-11 | 東レ東燃機能膜合同会社 | Method for producing polyolefin microporous membrane |
JP4189961B2 (en) * | 2003-05-29 | 2008-12-03 | 日東電工株式会社 | Porous film |
US8104625B2 (en) | 2004-05-20 | 2012-01-31 | Asahi Kasei Chemicals Corporation | Microporous membrane made of polyolefins |
US7332531B2 (en) * | 2004-06-11 | 2008-02-19 | Sk Corporation | Microporous high density polyethylene film |
KR100683845B1 (en) * | 2004-06-11 | 2007-02-15 | 에스케이 주식회사 | Microporous high density polyethylene film and preparing method thereof |
KR101265556B1 (en) * | 2005-03-29 | 2013-05-20 | 도레이 배터리 세퍼레이터 필름 주식회사 | Process for producing microporous polyolefin film and microporous polyolefin film |
JP5342775B2 (en) * | 2005-03-31 | 2013-11-13 | 東レバッテリーセパレータフィルム株式会社 | Method for producing polyolefin microporous membrane and microporous membrane |
US20090098341A1 (en) * | 2005-03-31 | 2009-04-16 | Tonen Chemical Corporation | Microporous polyolefin membrane and method for producing the same |
KR100943234B1 (en) * | 2005-05-16 | 2010-02-18 | 에스케이에너지 주식회사 | Microporous polyethylene film through liquid-liquid phase separation mechanism and preparing method thereof |
JP5261883B2 (en) * | 2006-03-17 | 2013-08-14 | 日産自動車株式会社 | Bipolar secondary battery |
KR20080029428A (en) * | 2006-09-29 | 2008-04-03 | 도레이새한 주식회사 | Method of manufacturing polyolefin microporous films |
KR100873851B1 (en) * | 2006-09-29 | 2008-12-15 | 도레이새한 주식회사 | Manufacturing method of polyolefin microporous membrane |
JP5586152B2 (en) * | 2006-12-04 | 2014-09-10 | 旭化成イーマテリアルズ株式会社 | Polyolefin microporous membrane |
FR2954595B1 (en) | 2009-12-21 | 2012-03-30 | Bollore | SEPARATOR FILM, ITS MANUFACTURING METHOD, SUPERCAPSET, BATTERY AND CAPACITOR WITH FIM |
JP5097817B2 (en) * | 2010-11-25 | 2012-12-12 | 東レバッテリーセパレータフィルム株式会社 | Polyolefin microporous membrane |
US10573866B2 (en) | 2016-10-24 | 2020-02-25 | Sumitomo Chemical Company, Limited | Separator and secondary battery including the separator |
JP2018144481A (en) | 2017-03-03 | 2018-09-20 | 住友化学株式会社 | Manufacturing method of mix product and kneading machine |
JP2018145010A (en) | 2017-03-03 | 2018-09-20 | 住友化学株式会社 | Transport device and method of manufacturing film |
-
1997
- 1997-08-08 JP JP21442497A patent/JP3917721B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103563127A (en) * | 2011-06-17 | 2014-02-05 | 伊赛尔科技有限公司 | Apparatus for manufacturing a fine porous film for a separation film of a battery and method for manufacturing a film using same |
CN103563127B (en) * | 2011-06-17 | 2016-04-06 | 伊赛尔科技有限公司 | The micro-porous membrane manufacturing installation of battery diffusion barrier, use its film-forming method |
Also Published As
Publication number | Publication date |
---|---|
JPH1160789A (en) | 1999-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3917721B2 (en) | Method for producing microporous membrane | |
JP4397121B2 (en) | Polyolefin microporous membrane | |
JP5497635B2 (en) | Polyolefin microporous membrane, method for producing the same, battery separator and battery | |
JP5216327B2 (en) | Polyolefin microporous membrane | |
JP5403633B2 (en) | Microporous membrane, battery separator and battery | |
JP4753446B2 (en) | Polyolefin microporous membrane | |
JP5202826B2 (en) | Polyethylene microporous membrane, method for producing the same, and battery separator | |
WO2006104165A1 (en) | Process for producing microporous polyolefin film and microporous polyolefin film | |
WO2009136648A1 (en) | Separator for high power density lithium‑ion secondary cell | |
JP6895570B2 (en) | Polyolefin microporous membrane and method for producing polyolefin microporous membrane | |
JP4606532B2 (en) | Polyolefin microporous membrane | |
JP5171012B2 (en) | Method for producing polyolefin microporous membrane | |
JP2000017100A (en) | Preparation of polyethylene micro-porous membrane | |
JP2020079426A (en) | Polyolefin microporous membrane | |
JP4713441B2 (en) | Method for producing polyolefin microporous membrane | |
JP3486785B2 (en) | Battery separator and method of manufacturing the same | |
JPH1067870A (en) | Microporous polyethylene film and its production | |
JP7532843B2 (en) | Polyolefin microporous membrane, battery separator, and secondary battery | |
JP5411550B2 (en) | Polyolefin microporous membrane | |
JPH04212265A (en) | Polyethylene poromeric film for cell separator | |
JPH1067871A (en) | Production of microporous polyethylene film | |
JP2004010701A (en) | Polyolefin membrane | |
JP2008115264A (en) | Porous film | |
JP2020164791A (en) | Polyolefin microporous film and method for producing the same | |
JPH1067879A (en) | Production of microporous polyethylene film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040803 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20050228 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050301 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061003 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061201 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20061226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070209 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100216 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100216 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100216 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100216 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110216 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110216 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120216 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120216 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130216 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140216 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |