JPH04212265A - Polyethylene poromeric film for cell separator - Google Patents

Polyethylene poromeric film for cell separator

Info

Publication number
JPH04212265A
JPH04212265A JP3011724A JP1172491A JPH04212265A JP H04212265 A JPH04212265 A JP H04212265A JP 3011724 A JP3011724 A JP 3011724A JP 1172491 A JP1172491 A JP 1172491A JP H04212265 A JPH04212265 A JP H04212265A
Authority
JP
Japan
Prior art keywords
less
film
temperature
polyethylene
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3011724A
Other languages
Japanese (ja)
Other versions
JP2961387B2 (en
Inventor
Yoshifumi Nishimura
佳史 西村
Yoshihiko Muto
武藤 善比古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26347228&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04212265(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP3011724A priority Critical patent/JP2961387B2/en
Publication of JPH04212265A publication Critical patent/JPH04212265A/en
Application granted granted Critical
Publication of JP2961387B2 publication Critical patent/JP2961387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a cell high in safety and reliability by keeping a non-porous condition, and concurrently and surely restraining chemical reaction within the cell even if temperature within the cell is increased due to external short circuiting and the like. CONSTITUTION:In a polymeric film made of the polyethylene having a viscosity average molecular weight of 160,000 to 2,000,000, a film of 50mu or less in thickness, and pores of 0.01 to 1.0mu in average diameter, and of 1mu or less in maximum diameter and of 50 to 80% in porosity, temperature is increased at a temperature increasing rate of 2 deg.C/min. from room temperature in a state where the length is kept constant with both the ends of the film fixed. A ratio of an evaluated maximum contraction stress (kg/cm<2>) to viscosity average molecular weight in the poromeric film is determined to be 7X0.00001 or less.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電池セパレーター用ポ
リエチレン微多孔膜に関し、さらに詳しくは、非水電解
質電池セパレーター用ポリエチレン微多孔膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyethylene microporous membrane for battery separators, and more particularly to a polyethylene microporous membrane for non-aqueous electrolyte battery separators.

【0002】0002

【従来の技術】近年、小型電子機器の普及に伴い、それ
らの電源である電池の小型化、軽量化、高出力化、安全
化に対する期待は極めて大きなものとなっている。特に
、短絡等による電池発火のような事故が起こっているた
め、安全性に対する要求が高まってきている。
BACKGROUND OF THE INVENTION In recent years, with the spread of small electronic devices, there have been extremely high expectations for the batteries that serve as their power sources to be smaller, lighter, have higher output, and be safer. In particular, as accidents such as battery fires due to short circuits and the like are occurring, demands for safety are increasing.

【0003】そのような電池セパレーターとしては種々
の物が知られており、例えば、特開昭60−23954
号公報にみられるようなポリプロピレン、ポリエチレン
製の微細孔を有するフィルムが提案されており、より安
全性を高める目的で、特開平1−258358号公報に
見られるような多孔性支持材の片面に、融点120℃以
下の低融点樹脂からなる微多孔膜を張り合わせたセパレ
ーターが提案されている。
Various types of battery separators are known, such as those disclosed in Japanese Patent Application Laid-Open No. 60-23954.
Films made of polypropylene or polyethylene with micropores have been proposed as seen in JP-A No. 1-258358, and for the purpose of further increasing safety, films made of polypropylene or polyethylene with micropores as seen in JP-A-1-258358 have been proposed. , a separator has been proposed in which a microporous membrane made of a low melting point resin with a melting point of 120° C. or less is laminated together.

【0004】0004

【発明が解決しようとする課題】しかしながら、特開昭
60−23954号公報においては、溶融点以上の温度
における安全性の維持については言及されておらず、信
頼性の高い電池セパレーターとしては疑問があった。ま
た、特開平1−258358号公報に示されているよう
に、微多孔膜と、微多孔膜あるいは不織布との二枚張り
合わせのセパレーターでは、セパレーターの厚さが厚く
なり、その分、同一容積の電池において活物質の量が減
少するため、エネルギー密度が高くコンパクトな電池の
要望に答えられないと言う問題があった。
[Problems to be Solved by the Invention] However, JP-A No. 60-23954 does not mention maintaining safety at temperatures above the melting point, and there are doubts about its use as a highly reliable battery separator. there were. In addition, as shown in JP-A-1-258358, in a separator made of two layers of a microporous membrane and a microporous membrane or nonwoven fabric, the thickness of the separator becomes thicker, and the same volume of the separator increases. Since the amount of active material in the battery is reduced, there is a problem in that the demand for a compact battery with high energy density cannot be met.

【0005】本発明者は、1枚の微多孔膜で、より安全
・確実な電池セパレーターの開発を目的に研究を進めた
結果、新たな思想に基づく微多孔膜からなる電池セパレ
ーターの開発に成功し、本発明を完成した。
[0005] As a result of conducting research with the aim of developing a safer and more reliable battery separator using a single microporous membrane, the present inventor succeeded in developing a battery separator composed of a microporous membrane based on a new concept. and completed the present invention.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、次のような構成をとる。すなわち、本発
明は、粘度平均分子量16万〜200万のポリエチレン
からなり、厚さ50μ以下、平均孔径0.01μ〜1.
0μ、最大孔径1μ以下、気孔率50%〜80%を有す
る微多孔膜において、両端固定にて定長に保ったまま昇
温速度2℃/minで室温から昇温させ評価した最大収
縮応力(kg/cm2 )と該微多孔膜における粘度平
均分子量の比が7×0.00001以下であることを特
徴とする電池セパレーター用ポリエチレン微多孔膜であ
る。
[Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration. That is, the present invention is made of polyethylene having a viscosity average molecular weight of 160,000 to 2,000,000, a thickness of 50 μm or less, and an average pore diameter of 0.01 μ to 1.5 μm.
0μ, maximum pore diameter of 1μ or less, and porosity of 50% to 80%, the maximum shrinkage stress ( This is a polyethylene microporous membrane for a battery separator, characterized in that the ratio of the viscosity average molecular weight of the microporous membrane to the microporous membrane (kg/cm2) is 7×0.00001 or less.

【0007】本発明における微多孔膜の膜厚は、50μ
以下である。膜厚が50μより厚い場合は電池内容積に
おけるセパレーターの占有率は少なくとも10%以上と
なり、電池の小型化、高エネルギー化を妨げる原因とな
る。また、内部短絡を起こさない程度の膜厚が必要なこ
とから小型軽量電池や高出力型うず巻き型電池のセパレ
ーターには20μ〜40μのものが好ましい。
[0007] The thickness of the microporous membrane in the present invention is 50 μm.
It is as follows. When the film thickness is thicker than 50 μm, the separator occupies at least 10% of the internal volume of the battery, which hinders miniaturization and higher energy storage of the battery. Furthermore, since the film needs to have a thickness that does not cause internal short circuits, a separator of 20 to 40 microns is preferable for small, lightweight batteries and high-output spiral-wound batteries.

【0008】微多孔膜の孔は、当然のことながら連通状
態にあり、平均孔径が0.01μ〜1.0μであること
が必要であり、好ましくは0.01μ〜0.5μ、通気
性や電解液の浸透性を考慮したとき0.1μ〜0.5μ
がさらに好ましい。平均孔径が0.01μ未満では電解
液の浸透性が著しく低下し、又、1.0μより大きくな
ると短絡が起こり易くなる。
[0008] The pores of the microporous membrane are naturally in a communicating state, and the average pore size must be 0.01μ to 1.0μ, preferably 0.01μ to 0.5μ, with good air permeability and 0.1μ to 0.5μ when considering the permeability of the electrolyte
is even more preferable. If the average pore size is less than 0.01μ, the permeability of the electrolytic solution is significantly reduced, and if it is larger than 1.0μ, short circuits are likely to occur.

【0009】また、最大孔径は、加熱溶融時に閉塞しう
る程度の微小さが必要であり、かつ内部短絡を引き起こ
さない孔径であり、1μ以下であることが必須であり、
好ましくは0.7μ以下である。最大孔径が1μより大
きくなると、内部短絡が起こり易くなる。本発明で言う
ところの気孔率は、以下の式で表わされる。
[0009] Furthermore, the maximum pore diameter must be so small that it can become clogged during heating and melting, and must not cause an internal short circuit, and must be 1 μm or less.
Preferably it is 0.7μ or less. When the maximum pore diameter is larger than 1 μm, internal short circuits are likely to occur. The porosity as referred to in the present invention is expressed by the following formula.

【0010】 気孔率=(空孔容積/微多孔膜容積)×100空孔容積
=微多孔膜容積−(乾燥重量/樹脂密度)本発明の微多
孔膜の気孔率は50〜80%でなければならなく、好ま
しくは60〜80%である。気孔率が50%未満ではイ
オン透過性等の透過性能が優れた膜を得ることが出来な
い。また、気孔率が80%より大きい場合は内部短絡等
のトラブル発生率が高くなる。
Porosity = (pore volume / microporous membrane volume) × 100 pore volume = microporous membrane volume - (dry weight / resin density) The porosity of the microporous membrane of the present invention must be 50 to 80%. However, it is preferably 60 to 80%. If the porosity is less than 50%, a membrane with excellent permeability such as ion permeability cannot be obtained. Furthermore, if the porosity is greater than 80%, the rate of occurrence of troubles such as internal short circuits increases.

【0011】本発明の最も重要である構成は、両端固定
にて定長に保ったまま昇温速度2℃/minで室温から
昇温させ評価した最大収縮応力(kg/cm2 )と該
微多孔膜における粘度平均分子量の比が7×0.000
01以下であることであり、この構成が電池セパレータ
ーの信頼性を高めることに大きく貢献する。すなわち、
電池セパレーターにおいて、外部短絡等によって電池内
部温度が上昇し、微多孔膜素材の融点付近の温度に達し
た時、微多孔膜が無孔化し、電池内部での化学反応が抑
制されるが、電池内部の温度は急激に低下することなく
、徐々に下がる傾向を示す。このことは、融点付近の温
度に微多孔膜が長時間置かれ、かつ狭持状態にさらされ
ることを示している。この時、微多孔膜に作用する収縮
力の開放が充分でないと、無孔化した微多孔膜に欠陥、
穴、破れ等が生じ、再生化学反応が始まり、電池内部温
度が上昇して、電解液がガス化して、発火、爆発にいた
る可能性があり、電池セパレーターとしての信頼性に劣
ることになる。ところが、本発明で開示するように両端
固定にて定長に保ったまま昇温速度2℃/minで室温
から昇温させ評価した最大収縮応力(kg/cm2 )
と該微多孔膜における粘度平均分子量の比が7×0.0
0001以下であるようにすることにより、融点付近の
温度において微多孔膜に作用する収縮力の開放が充分と
なり、無孔化した膜に欠陥、穴、破れ等が生じにくくな
り信頼性に優れたものとなる。最大収縮応力(kg/c
m2 )と、該微多孔膜における粘度平均分子量の比が
7×0.00001より大きくなると無孔化した膜が破
れ易くなり、高温安全性が不良となる。
The most important feature of the present invention is the maximum shrinkage stress (kg/cm2) evaluated by raising the temperature from room temperature at a heating rate of 2°C/min while keeping both ends fixed at a constant length and the microporous pores. The ratio of viscosity average molecular weight in the membrane is 7 x 0.000
01 or less, and this configuration greatly contributes to increasing the reliability of the battery separator. That is,
In a battery separator, when the internal temperature of the battery rises due to an external short circuit and reaches a temperature near the melting point of the microporous membrane material, the microporous membrane becomes nonporous and suppresses chemical reactions inside the battery. The internal temperature does not drop suddenly, but tends to drop gradually. This indicates that the microporous membrane is kept at a temperature near its melting point for a long time and exposed to a pinched state. At this time, if the contraction force acting on the microporous membrane is not released sufficiently, defects may occur in the microporous membrane that has become non-porous.
Holes, tears, etc. occur, a regeneration chemical reaction begins, the internal temperature of the battery rises, the electrolyte gasifies, and there is a possibility of ignition or explosion, resulting in poor reliability as a battery separator. However, as disclosed in the present invention, the maximum shrinkage stress (kg/cm2) was evaluated by raising the temperature from room temperature at a heating rate of 2°C/min while keeping both ends fixed at a constant length.
and the viscosity average molecular weight of the microporous membrane is 7×0.0
By making it less than 0001, the contraction force acting on the microporous membrane at a temperature near the melting point is sufficiently released, and the nonporous membrane is less likely to have defects, holes, tears, etc., and has excellent reliability. Become something. Maximum shrinkage stress (kg/c
m2) and the viscosity average molecular weight of the microporous membrane is larger than 7 x 0.00001, the non-porous membrane tends to tear, resulting in poor high-temperature safety.

【0012】粘度平均分子量は、16万〜200万でな
ければならなく、好ましくは20万〜180万である。 粘度平均分子量が200万以上では流動性が悪く薄膜に
するのが困難になり、実用的でなくなり、又、16万未
満の場合は強度的に弱いものとなる。本発明でいうとこ
ろのポリエチレンとしては、エチレンを重合した結晶性
単独重合体もしくはエチレンと10モル%以下のプロピ
レン、1−ブテン、4−メチル−1−ペンテン、1−ヘ
キセンとの共重合体があげられる。
The viscosity average molecular weight must be 160,000 to 2,000,000, preferably 200,000 to 1,800,000. If the viscosity average molecular weight is 2,000,000 or more, the fluidity will be poor and it will be difficult to form a thin film, making it impractical, and if it is less than 160,000, the strength will be weak. In the present invention, polyethylene includes a crystalline homopolymer obtained by polymerizing ethylene or a copolymer of ethylene with 10 mol% or less of propylene, 1-butene, 4-methyl-1-pentene, or 1-hexene. can give.

【0013】また、分子量の異なるポリエチレンを混合
して粘度平均分子量を16万〜200万にしてもなんら
差しつかえない。又、本発明においては、構造的にはな
んら規定されるものではないが、穴が三次元的に入り組
んでいる三次元網目構造(又はスポンジ構造)が構造と
してはより好ましい。
[0013] Furthermore, there is no problem in mixing polyethylenes having different molecular weights to have a viscosity average molecular weight of 160,000 to 2,000,000. Further, in the present invention, a three-dimensional network structure (or sponge structure) in which holes are three-dimensionally intricate is more preferable as a structure, although the structure is not specified in any way.

【0014】本発明の微多孔膜は、ポリエチレンに溶剤
、可塑剤、無機微粉体等を混合、成形後、抽出及び乾燥
し、さらに延伸を施す等の手段により得ることができる
。例えば、ポリエチレン樹脂、無機微粉体、有機液状体
の混合組成をそれぞれ5〜70容量%、10〜55容量
%、20〜75容量%とし、ヘンシェルミキサー等の通
常の混合機で混合したのち、押出機等の溶融混練装置に
より混練し、得られた混練物を押出成形等により50μ
〜500μの厚さに成形する。さらに、該成形物から有
機液状体の溶剤を用いて有機液状体を抽出し、引き続き
無機微粉体の抽出溶剤にて無機微粉体を抽出し多孔膜を
得る。そして、必要に応じて所定の厚さまで、一軸ある
いは二軸延伸機により延伸し、膜厚を調整する。
The microporous membrane of the present invention can be obtained by mixing polyethylene with a solvent, a plasticizer, an inorganic fine powder, etc., molding, extracting and drying, and further stretching. For example, polyethylene resin, inorganic fine powder, and organic liquid have a mixed composition of 5 to 70% by volume, 10 to 55% by volume, and 20 to 75% by volume, respectively, and are mixed in a normal mixer such as a Henschel mixer, and then extruded. The kneaded product is kneaded using a melt kneading device such as a machine, and the resulting kneaded product is extruded to a size of 50 μm.
Mold to ~500μ thickness. Furthermore, the organic liquid is extracted from the molded product using an organic liquid solvent, and then the inorganic fine powder is extracted using an inorganic fine powder extraction solvent to obtain a porous membrane. Then, if necessary, the film is stretched to a predetermined thickness using a uniaxial or biaxial stretching machine to adjust the film thickness.

【0015】[0015]

【実施例】以下、本発明を実施例によりさらに詳細に説
明するが、本発明は実施例に特に限定されるものではな
い。尚、実施例における測定方法及び評価方法は次の通
りである。 (1)膜厚 ダイヤルゲージ(最少目盛り;1μ)にて測定。 (2)平均孔径 ASTM  F−316−70に準拠したハーフドライ
法により評価した。 (3)最大孔径 ASTM  E−128−61に準拠し、エタノール中
でのバブルポイントから算出した。 (4)気孔率 気孔率=(空孔容積/微多孔膜容積)×100空孔容積
=微多孔膜容積−(乾燥重量/樹脂密度)(5)粘度平
均分子量(Mv) 溶剤(デカリン)を用い、測定温度135℃で測定、次
式により評価した。
[Examples] The present invention will be explained in more detail with reference to Examples below, but the present invention is not particularly limited to the Examples. Note that the measurement method and evaluation method in Examples are as follows. (1) Measurement using a film thickness dial gauge (minimum scale: 1μ). (2) Average pore size Evaluated by a half-dry method based on ASTM F-316-70. (3) Maximum pore diameter Calculated from the bubble point in ethanol in accordance with ASTM E-128-61. (4) Porosity Porosity = (pore volume / microporous membrane volume) × 100 pore volume = microporous membrane volume - (dry weight / resin density) (5) Viscosity average molecular weight (Mv) Solvent (decalin) The measurement temperature was 135° C., and the evaluation was performed using the following formula.

【0016】 〔η〕=6.2×10−4  Mv0.7 (Chia
ngの式) (6)最大収縮応力 セイコー電子工業株式会社製、熱・応力・歪測定装置 
 TMA/SS100を用い、定長下にて昇温速度2℃
/minで試料を室温より昇温させ測定した。
[η]=6.2×10−4 Mv0.7 (Chia
ng formula) (6) Maximum shrinkage stress Heat/stress/strain measuring device manufactured by Seiko Electronics Co., Ltd.
Using TMA/SS100, heating rate 2℃ under constant length
The temperature of the sample was raised from room temperature at a rate of 1/min.

【0017】サンプルは巾3mmで、チャック間は10
mmで測定した。尚、応力の計算において断面積は室温
での断面積を用いて計算した。 (7)高温安定性 セイコー電子工業株式会社製、熱・応力・歪測定装置 
 TMA/SS100を用い、定長下にて昇温速度2℃
/minで試料を室温より昇温させた時の状態より評価
した。 (8)構造観察 液体窒素にて冷却後破断させ、その破断面を走査型電子
顕微鏡(SEM)にて観察した。
[0017] The sample has a width of 3 mm, and the distance between the chucks is 10
Measured in mm. In addition, in calculating the stress, the cross-sectional area was calculated using the cross-sectional area at room temperature. (7) High temperature stability Heat/stress/strain measuring device manufactured by Seiko Electronics Industries, Ltd.
Using TMA/SS100, heating rate 2℃ under constant length
Evaluation was made based on the state of the sample when the temperature was raised from room temperature at a rate of /min. (8) Structural Observation After cooling with liquid nitrogen, it was fractured, and the fractured surface was observed with a scanning electron microscope (SEM).

【0018】[0018]

【実施例1】微粉珪酸22重量%とジオクチルフタレー
ト44重量%をヘンシェルミキサーで混合し、ポリエチ
レン樹脂34重量%を添加し、再度ヘンシェルミキサー
で混合した。該混合物を30m/mφ二軸押出機に45
0m/m幅のTダイを取り付けたフィルム製造装置で厚
さ95μの膜状に成形した。
Example 1 22% by weight of finely divided silicic acid and 44% by weight of dioctyl phthalate were mixed in a Henschel mixer, 34% by weight of polyethylene resin was added, and the mixture was mixed again in the Henschel mixer. The mixture was transferred to a 30 m/mφ twin screw extruder for 45 minutes.
It was molded into a film with a thickness of 95 μm using a film manufacturing apparatus equipped with a T-die having a width of 0 m/m.

【0019】成形された膜は、1,1,1−トリクロル
エタン中に10分間浸漬し、ジオクチルフタレートを抽
出した後乾燥し、さらに60℃の25%苛性ソーダ中に
60分間浸漬して、微粉珪酸を抽出した後乾燥した。さ
らに、該微多孔膜を114℃に加熱されたロール延伸機
により膜厚が35μになるように延伸し、118℃の雰
囲気下で5秒間熱処理を行った。得られた膜は三次元網
目構造をとっており、膜の特性は表1の通りである。
The formed membrane was immersed in 1,1,1-trichloroethane for 10 minutes to extract dioctyl phthalate, and then dried, and further immersed in 25% caustic soda at 60°C for 60 minutes to extract finely divided silicic acid. was extracted and dried. Furthermore, the microporous membrane was stretched to a film thickness of 35 μm using a roll stretching machine heated to 114° C., and heat treated for 5 seconds in an atmosphere of 118° C. The obtained film had a three-dimensional network structure, and the properties of the film are shown in Table 1.

【0020】得られた膜の最大収縮応力は12.6kg
/cm2 、最大収縮応力(kg/cm2 )と該微多
孔膜における粘度平均分子量の比は6.3×0.000
01で、160℃より高温でも切断しなかった。
The maximum shrinkage stress of the obtained membrane was 12.6 kg.
/cm2, and the ratio of the maximum shrinkage stress (kg/cm2) to the viscosity average molecular weight of the microporous membrane is 6.3 x 0.000.
No. 01 did not cut even at temperatures higher than 160°C.

【0021】[0021]

【実施例2】ポリエチレン樹脂22重量%、微粉珪酸2
3重量%、ジオクチルフタレート55重量%を用いる以
外は、実施例1と同様にして膜を得た。得られた膜は三
次元網目構造をとっており、膜の特性は表1の通りであ
る。得られた膜の最大収縮応力は5.9kg/cm2 
、最大収縮応力(kg/cm2 )と該微多孔膜におけ
る粘度平均分子量の比は1.0×0.00001で、得
られた膜の高温安定性をテストしたところ150℃で切
断した。
[Example 2] 22% by weight of polyethylene resin, 2% of fine silicic acid
A membrane was obtained in the same manner as in Example 1 except that 3% by weight of dioctyl phthalate and 55% by weight of dioctyl phthalate were used. The obtained film had a three-dimensional network structure, and the properties of the film are shown in Table 1. The maximum shrinkage stress of the obtained membrane was 5.9 kg/cm2
The ratio of the maximum shrinkage stress (kg/cm2) to the viscosity average molecular weight of the microporous membrane was 1.0 x 0.00001, and the resulting membrane was tested for high temperature stability and was cut at 150°C.

【0022】[0022]

【実施例3】ポリエチレン樹脂25重量%、流動パラフ
ィン75重量%を実施例1のフィルム製造機に圧延機を
付随させ厚さ200μの膜状に成形した。成形された膜
は、140℃の温度で二軸延伸機により延伸し、さらに
1,1,1−トリクロルエタン中に10分間浸漬し、流
動パラフィンを抽出した後乾燥し、厚さ30μの膜を得
た。得られた膜は三次元網目構造をとっており、膜の特
性は表1の通りである。
Example 3 25% by weight of polyethylene resin and 75% by weight of liquid paraffin were molded into a film having a thickness of 200 μm using the film manufacturing machine of Example 1 with a rolling mill attached. The formed membrane was stretched using a biaxial stretching machine at a temperature of 140°C, and further immersed in 1,1,1-trichloroethane for 10 minutes to extract liquid paraffin, and then dried to form a membrane with a thickness of 30μ. Obtained. The obtained film had a three-dimensional network structure, and the properties of the film are shown in Table 1.

【0023】得られた膜の最大収縮応力は10.9kg
/cm2 、最大収縮応力(kg/cm2 )と該微多
孔膜における粘度平均分子量の比は0.7×0.000
01で、得られた膜の高温安定性をテストしたところ1
50℃で切断した。
The maximum shrinkage stress of the obtained membrane was 10.9 kg.
/cm2, and the ratio of the maximum shrinkage stress (kg/cm2) to the viscosity average molecular weight of the microporous membrane is 0.7 x 0.000.
When the high temperature stability of the obtained film was tested in 01, 1
Cutting was performed at 50°C.

【0024】[0024]

【比較例】粘度平均分子量10万のポリエチレン製微多
孔膜(セルガード社製、K−878)を用いて評価した
。膜の特性は表1の通りである。又、膜の構造は膜表面
に対してほぼ垂直な穴が連通している二次元構造をとっ
ていた。膜の最大収縮応力は11.9kg/cm2 、
最大収縮応力(kg/cm2 )と該微多孔膜における
粘度平均分子量の比は、11.9×0.00001で、
得られた膜の高温安定性をテストしたところ139℃で
切断した。
[Comparative Example] A microporous polyethylene membrane (manufactured by Celgard, K-878) having a viscosity average molecular weight of 100,000 was used for evaluation. The properties of the membrane are shown in Table 1. Moreover, the structure of the membrane was a two-dimensional structure in which holes substantially perpendicular to the membrane surface were in communication. The maximum shrinkage stress of the membrane is 11.9 kg/cm2,
The ratio of the maximum shrinkage stress (kg/cm2) to the viscosity average molecular weight of the microporous membrane is 11.9 x 0.00001,
The resulting film was tested for high temperature stability and was cut at 139°C.

【0025】[0025]

【表1】[Table 1]

【0026】[0026]

【発明の効果】本発明によれば、粘度平均分子量16万
〜200万のポリエチレンからなり、厚さ50μ以下、
平均孔径0.01μ〜1.0μ、最大孔径1μ以下、気
孔率50%〜80%を有する微多孔膜において、両端固
定にて定長に保ったまま昇温速度2℃/minで室温か
ら昇温させ評価した最大収縮応力(kg/cm2 )と
該微多孔膜における粘度平均分子量の比が7×0.00
001以下であるポリエチレン微多孔膜を電池セパレー
ター用として利用することにより、外部短絡等によって
電池内部温度が上昇し、融点付近の温度に達し、その温
度に保たれている状態が続くか、その温度が緩やかに低
下しても、膜に欠陥、穴、破れ等が生じることなく、す
なわち、無孔化状態を維持しているため、電池内部での
化学反応が確実に抑制され、安全性が高く、かつ信頼性
の高い電池が得られる。
Effects of the Invention According to the present invention, it is made of polyethylene with a viscosity average molecular weight of 160,000 to 2,000,000, has a thickness of 50 μm or less,
A microporous membrane with an average pore diameter of 0.01μ to 1.0μ, a maximum pore diameter of 1μ or less, and a porosity of 50% to 80% is heated from room temperature at a heating rate of 2°C/min while both ends are fixed and a constant length is maintained. The ratio of the maximum shrinkage stress (kg/cm2) evaluated by heating and the viscosity average molecular weight of the microporous membrane is 7 x 0.00.
By using a polyethylene microporous membrane with a molecular weight of 001 or less as a battery separator, the internal temperature of the battery will rise due to an external short circuit, etc., and reach a temperature near the melting point, and whether it will remain at that temperature or not. Even when the battery temperature gradually decreases, there are no defects, holes, or tears in the membrane; in other words, it remains non-porous, so chemical reactions inside the battery are reliably suppressed, making it highly safe. , and a highly reliable battery can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  粘度平均分子量16万〜200万のポ
リエチレンからなり、膜厚50μ以下、平均孔径0.0
1μ〜1.0μ、最大孔径1μ以下、気孔率50%〜8
0%を有する微多孔膜において、両端固定にて定長に保
ったまま昇温速度2℃/minで室温から昇温させ評価
した最大収縮応力(kg/cm2 )と該微多孔膜にお
ける粘度平均分子量の比が7×0.00001以下であ
ることを特徴とする電池セパレーター用ポリエチレン微
多孔膜。
Claim 1: Made of polyethylene with a viscosity average molecular weight of 160,000 to 2,000,000, a film thickness of 50 μm or less, and an average pore diameter of 0.0
1μ to 1.0μ, maximum pore diameter 1μ or less, porosity 50% to 8
The maximum shrinkage stress (kg/cm2) and the average viscosity of the microporous membrane were evaluated by raising the temperature from room temperature at a heating rate of 2°C/min while keeping both ends fixed and a constant length. A microporous polyethylene membrane for battery separators, characterized in that the ratio of molecular weights is 7×0.00001 or less.
JP3011724A 1990-02-21 1991-02-01 Microporous polyethylene membrane for battery separator Expired - Fee Related JP2961387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3011724A JP2961387B2 (en) 1990-02-21 1991-02-01 Microporous polyethylene membrane for battery separator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-38435 1990-02-21
JP3843590 1990-02-21
JP3011724A JP2961387B2 (en) 1990-02-21 1991-02-01 Microporous polyethylene membrane for battery separator

Publications (2)

Publication Number Publication Date
JPH04212265A true JPH04212265A (en) 1992-08-03
JP2961387B2 JP2961387B2 (en) 1999-10-12

Family

ID=26347228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3011724A Expired - Fee Related JP2961387B2 (en) 1990-02-21 1991-02-01 Microporous polyethylene membrane for battery separator

Country Status (1)

Country Link
JP (1) JP2961387B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015660A1 (en) * 2003-08-06 2005-02-17 Mitsubishi Chemical Corporation Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same
JPWO2005061599A1 (en) * 2003-12-24 2007-07-12 旭化成ケミカルズ株式会社 Polyolefin microporous membrane
CN1327547C (en) * 2003-09-25 2007-07-18 索尼株式会社 Secondary battery and its manufacturing method
EP2116372A1 (en) 2007-01-30 2009-11-11 Asahi Kasei E-materials Corporation Multilayer porous membrane and method for producing the same
JP2010270342A (en) * 2010-09-09 2010-12-02 Asahi Kasei E-Materials Corp Polyolefin microporous film
US8349236B2 (en) 2004-12-23 2013-01-08 Toray Advanced Materials Korea Inc. Method of preparing a polyethylene microporous film for a rechargeable battery separator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE538167T1 (en) 2007-01-30 2012-01-15 Asahi Kasei E Materials Corp MICROPOROUS POLYOLEFIN MEMBRANE

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015660A1 (en) * 2003-08-06 2005-02-17 Mitsubishi Chemical Corporation Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same
US8003262B2 (en) 2003-08-06 2011-08-23 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution secondary battery separator having defined ratio of average pore diameter to maximum pore diameter and nonaqueous electrolyte solution secondary battery using the same
US8597836B2 (en) 2003-08-06 2013-12-03 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution secondary battery separator having filler and controlled impurities
CN1327547C (en) * 2003-09-25 2007-07-18 索尼株式会社 Secondary battery and its manufacturing method
JPWO2005061599A1 (en) * 2003-12-24 2007-07-12 旭化成ケミカルズ株式会社 Polyolefin microporous membrane
JP4614887B2 (en) * 2003-12-24 2011-01-19 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
US8349236B2 (en) 2004-12-23 2013-01-08 Toray Advanced Materials Korea Inc. Method of preparing a polyethylene microporous film for a rechargeable battery separator
EP2116372A1 (en) 2007-01-30 2009-11-11 Asahi Kasei E-materials Corporation Multilayer porous membrane and method for producing the same
US9293752B2 (en) 2007-01-30 2016-03-22 Asahi Kasei E-Materials Corporation Multilayer porous membrane and production method thereof
JP2010270342A (en) * 2010-09-09 2010-12-02 Asahi Kasei E-Materials Corp Polyolefin microporous film

Also Published As

Publication number Publication date
JP2961387B2 (en) 1999-10-12

Similar Documents

Publication Publication Date Title
US7323273B1 (en) Shutdown separators with improved properties
US8003261B2 (en) Polyolefin microporous membrane
JP5827512B2 (en) Polyolefin microporous membrane and separator for lithium ion secondary battery
JP3917721B2 (en) Method for producing microporous membrane
WO2006025323A1 (en) Microporous polyolefin film and separator for storage cell
JP2010540692A (en) Microporous membranes and methods of making and using such membranes
WO1996027633A1 (en) Microporous polyethylene film and process for producing the film
JPWO2008069216A1 (en) Polyolefin microporous membrane
JP6100022B2 (en) Method for producing polyolefin microporous membrane
CA2630800A1 (en) Microporous polyolefin membrane, its production method, battery separator and battery
KR102264032B1 (en) Method for producing polyolefin microporous membrane and polyolefin microporous membrane
WO2011152201A1 (en) Polyolefin microporous membrane, separator for battery, and battery
US7323274B1 (en) Shutdown separators with improved properties
JP2000017100A (en) Preparation of polyethylene micro-porous membrane
JP5171012B2 (en) Method for producing polyolefin microporous membrane
JP3682120B2 (en) Composite membrane for battery separator and battery separator
JP5592745B2 (en) Polyolefin microporous membrane
US7662518B1 (en) Shutdown separators with improved properties
JPH04212265A (en) Polyethylene poromeric film for cell separator
JPH11268118A (en) Polyolefin porous film, production thereof, and separator film for battery
JP2003217554A (en) Polyolefin micro porous membrane for battery separator
JP3486785B2 (en) Battery separator and method of manufacturing the same
JP4713441B2 (en) Method for producing polyolefin microporous membrane
JP2951679B2 (en) Microporous membrane for separator of non-aqueous electrolyte battery
JPH04212264A (en) Polyethylene poromeric film for cell separator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees