JPH04212264A - Polyethylene poromeric film for cell separator - Google Patents

Polyethylene poromeric film for cell separator

Info

Publication number
JPH04212264A
JPH04212264A JP3008177A JP817791A JPH04212264A JP H04212264 A JPH04212264 A JP H04212264A JP 3008177 A JP3008177 A JP 3008177A JP 817791 A JP817791 A JP 817791A JP H04212264 A JPH04212264 A JP H04212264A
Authority
JP
Japan
Prior art keywords
film
polyethylene
molecular weight
average molecular
pore diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3008177A
Other languages
Japanese (ja)
Inventor
Yoshifumi Nishimura
佳史 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP3008177A priority Critical patent/JPH04212264A/en
Publication of JPH04212264A publication Critical patent/JPH04212264A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a safe and reliable cell separator composed of a single poromeric film by defining a viscosity average molecular weight, and a crystallization degree of a polyethylene, and concurrently defining an average pore diameter, a maximum pore diameter and a range of porosity of a poromeric film. CONSTITUTION:A polyethylene which is 160,000 to 2,000,000 and 60 to 90% in viscosity average molecular weight and in crystallization degree, respectively, is used. And a poromeric film is 50mu or less in thickness, 0.01 to 1.0mu in average pore diameter, 1mu or less in maximum diameter and 50 to 80% in porosity. In this constitution, the film is prevented from failing, making a dent, being damaged and so on, so that a non-porous condition is thereby kept on, even if temperature within a cell is increased almost up to a melting point due to external short circuiting and the like so as to be kept on as it is, or so as to be gradually lowered, the chemical reaction within the cell is surely restrained, and the cell high in safety and reliability is thereby provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電池セパレーター用ポ
リエチレン微多孔膜に関し、さらに詳しくは、非水電解
質電池セパレーター用ポリエチレン微多孔膜に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microporous polyethylene membrane for battery separators, and more particularly to a microporous polyethylene membrane for non-aqueous electrolyte battery separators.

【0002】0002

【従来の技術】近年、小型電子機器の普及に伴い、それ
らの電源である電池の小型化、軽量化、高出力化、安全
化に対する期待は極めて大きなものとなっている。特に
、外部短絡等による電池発火のような事故が起こってい
るため、安全性に対する要求が高まってきている。
BACKGROUND OF THE INVENTION In recent years, with the spread of small electronic devices, there have been extremely high expectations for the batteries that serve as their power source to be smaller, lighter, higher output, and safer. In particular, safety requirements are increasing as accidents such as battery fires due to external short circuits and the like are occurring.

【0003】そのような電池セパレーターとしては種々
の物が知られており、例えば、特開昭60−23954
号公報に見られるようなポリプロピレン、ポリエチレン
製の微細孔を有するフィルムが提案されており、より安
全性を高める目的で、特開平1−258358号公報に
見られるような多孔性支持材の片面に、融点120℃以
下の低融点樹脂からなる微多孔膜を張り合わせたセパレ
ーターが提案されている。
Various types of battery separators are known, such as those disclosed in Japanese Patent Application Laid-Open No. 60-23954.
Films made of polypropylene or polyethylene with micropores as seen in Japanese Patent Application Laid-open No. 1-258358 have been proposed. , a separator has been proposed in which a microporous membrane made of a low melting point resin with a melting point of 120° C. or less is laminated together.

【0004】0004

【発明が解決しようとする課題】しかしながら、特開昭
60−23954号公報においては、溶融点以上の温度
における安全性の維持については言及されておらず、信
頼性の高い電池セパレーターとしては疑問があった。ま
た、特開平1−258358号公報に示されているよう
に、微多孔膜と、微多孔膜あるいは不織布との二枚張り
合わせのセパレーターでは、セパレーターの厚さが厚く
なり、その分、同一容積の電池において活物質の量が減
少するため、エネルギー密度が高くコンパクトな電池の
要望に答えられないと言う問題があった。
[Problems to be Solved by the Invention] However, JP-A No. 60-23954 does not mention maintaining safety at temperatures above the melting point, and there are doubts about its use as a highly reliable battery separator. there were. In addition, as shown in JP-A-1-258358, in a separator made of two layers of a microporous membrane and a microporous membrane or nonwoven fabric, the thickness of the separator becomes thicker, and the same volume of the separator increases. Since the amount of active material in the battery is reduced, there is a problem in that the demand for a compact battery with high energy density cannot be met.

【0005】本発明者は、1枚の微多孔膜で、より安全
・確実な電池セパレーターの開発を目的に研究を進めた
結果、新たな思想に基づく微多孔膜からなる電池セパレ
ーターの開発に成功し、本発明を完成した。
[0005] As a result of conducting research with the aim of developing a safer and more reliable battery separator using a single microporous membrane, the present inventor succeeded in developing a battery separator composed of a microporous membrane based on a new concept. and completed the present invention.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、次のような構成をとる。すなわち、本発
明は、粘度平均分子量16万〜200万、結晶化度60
%〜90%のポリエチレンからなり、膜厚50μ以下、
平均孔径0.01μ〜1.0μ、最大孔径1μ以下、気
孔率50%〜80%を有することを特徴とする電池セパ
レーター用ポリエチレン微多孔膜である。
[Means for Solving the Problems] In order to achieve the above object, the present invention has the following configuration. That is, the present invention has a viscosity average molecular weight of 160,000 to 2,000,000 and a crystallinity of 60.
% to 90% polyethylene, film thickness 50μ or less,
This is a polyethylene microporous membrane for battery separators, characterized by having an average pore diameter of 0.01 μm to 1.0 μm, a maximum pore diameter of 1 μm or less, and a porosity of 50% to 80%.

【0007】本発明における微多孔膜の膜厚は、50μ
以下である。膜厚が50μより厚い場合は電池内容積に
おけるセパレーターの占有率は少なくとも10%以上と
なり、電池の小型化、高エネルギー化を妨げる原因とな
る。また、内部短絡を起こさない程度の膜厚が必要なこ
とから小型軽量電池や高出力型うず巻き型電池のセパレ
ーターには20〜40μのものが好ましい。
[0007] The thickness of the microporous membrane in the present invention is 50 μm.
It is as follows. When the film thickness is thicker than 50 μm, the separator occupies at least 10% of the internal volume of the battery, which hinders miniaturization and higher energy storage of the battery. Further, since the film needs to have a thickness that does not cause internal short circuits, a separator of 20 to 40 μm is preferable for small and lightweight batteries and high-output spiral-wound batteries.

【0008】微多孔膜の孔は、当然のことながら連通状
態にあり、平均孔径が0.01μ〜1.0μであること
が必須であり、好ましくは0.01μ〜0.5μ、通気
性や電解液の浸透性を考慮したとき0.1〜0.5μが
更に好ましい。平均孔径が0.01μ未満になると電解
液の浸透性が著しく低下し、又、1.0μより大きいと
短絡が起り易くなる。
[0008] The pores of the microporous membrane are, of course, in a communicating state, and it is essential that the average pore diameter is 0.01μ to 1.0μ, preferably 0.01μ to 0.5μ, and has good air permeability. When considering the permeability of the electrolytic solution, 0.1 to 0.5μ is more preferable. If the average pore size is less than 0.01μ, the permeability of the electrolytic solution is significantly reduced, and if it is larger than 1.0μ, short circuits are likely to occur.

【0009】また、最大孔径は、加熱溶融時に閉塞しう
る程度の微小さが必要であり、かつ内部短絡を引き起こ
さない孔径であり、1μ以下であることが必須であり、
好ましくは0.7μ以下である。最大孔径が1μより大
きくなると内部短絡が起り易くなる。本発明で言うとこ
ろの気孔率は、以下の式で表わされる。
[0009] Furthermore, the maximum pore diameter must be so small that it can become clogged during heating and melting, and must not cause an internal short circuit, and must be 1 μm or less.
Preferably it is 0.7μ or less. If the maximum pore diameter is larger than 1 μm, internal short circuits are likely to occur. The porosity as referred to in the present invention is expressed by the following formula.

【0010】 気孔率=(空孔容積/微多孔膜容積)×100空孔容積
=微多孔膜容積−(乾燥重量/樹脂密度)本発明の微多
孔膜の気孔率は50〜80%でなければならなく、好ま
しくは55〜80%である。気孔率が50%未満ではイ
オン透過性等の透過性能が優れた膜を得ることが出来な
い。また、気孔率が80%以上では内部短絡等のトラブ
ル発生率が高くなる。
Porosity = (pore volume / microporous membrane volume) × 100 pore volume = microporous membrane volume - (dry weight / resin density) The porosity of the microporous membrane of the present invention must be 50 to 80%. However, it is preferably 55 to 80%. If the porosity is less than 50%, a membrane with excellent permeability such as ion permeability cannot be obtained. Furthermore, if the porosity is 80% or more, the rate of occurrence of troubles such as internal short circuits increases.

【0011】本発明の最も重要である構成は、粘度平均
分子量16万〜200万、結晶化度60%〜90%のポ
リエチレン、好ましくは、粘度平均分子量20万〜18
0万、結晶化度60%〜85%のポリエチレンを用いる
ことであり、この構成が電池セパレーターの信頼性を高
めることに大きく貢献する。すなわち、電池セパレータ
ーにおいて、外部短絡等によって電池内部温度が上昇し
、微多孔膜素材の融点付近の温度に達した時、微多孔膜
が無孔化し、電池内部での化学反応が抑制されるが、電
池内部の温度は急激に低下することなく、徐々に下がる
傾向を示す。このことは、融点付近の温度に微多孔膜が
長時間置かれ、かつ狭持状態にさらされることをしめし
ている。このとき、微多孔膜の素材が変形し易いと、無
孔した微多孔膜に欠陥、穴、破れ等が生じ、再度化学反
応が始まり、電池内部温度が上昇して、電解液がガス化
して、発火、爆発にいたる可能性があり、電池セパレー
ターとしての信頼性に劣ることになる。ところが、本発
明で開示するように粘度平均分子量16万〜200万、
結晶化度60%〜90%のポリエチレンを用いることに
より、融点付近の温度において変形しにくくなる。 しかしながら、過度に分子量が高くなった場合すなわ粘
度平均分子量が200万以上になった時には、流動性が
悪く薄膜にするのが困難になり、実用的でなくなる。ま
た、結晶化度が90%以上になった場合には、破れ易く
なる。
The most important component of the present invention is polyethylene with a viscosity average molecular weight of 160,000 to 2,000,000 and a crystallinity of 60% to 90%, preferably a viscosity average molecular weight of 200,000 to 180,000.
Polyethylene with a crystallinity of 60% to 85% is used, and this configuration greatly contributes to increasing the reliability of the battery separator. In other words, in a battery separator, when the internal temperature of the battery rises due to an external short circuit and reaches a temperature near the melting point of the microporous membrane material, the microporous membrane becomes non-porous and the chemical reaction inside the battery is suppressed. , the temperature inside the battery does not drop suddenly, but tends to drop gradually. This indicates that the microporous membrane is kept at a temperature close to its melting point for a long time and exposed to a pinched state. At this time, if the material of the microporous membrane is easily deformed, defects, holes, tears, etc. will occur in the non-porous membrane, and the chemical reaction will start again, raising the internal temperature of the battery and causing the electrolyte to gasify. , there is a possibility of ignition or explosion, resulting in poor reliability as a battery separator. However, as disclosed in the present invention, the viscosity average molecular weight is 160,000 to 2,000,000,
By using polyethylene with a crystallinity of 60% to 90%, it becomes difficult to deform at temperatures near the melting point. However, when the molecular weight becomes too high, that is, when the viscosity average molecular weight exceeds 2 million, the fluidity becomes poor and it becomes difficult to form a thin film, making it impractical. Moreover, when the degree of crystallinity is 90% or more, it becomes easy to break.

【0012】本発明でいうところのポリエチレンとして
は、エチレンを重合した結晶性単独重合体もしくはエチ
レンと10モル%以下のプロピレン、1−ブテン、4−
メチル−1−ペンテン、1−ヘキセンとの共重合体があ
げられる。また、分子量の異なるポリエチレンを混合し
て粘度平均分子量16万〜200万にしてもなんら差し
つかえない。
Polyethylene as referred to in the present invention is a crystalline homopolymer obtained by polymerizing ethylene, or ethylene and 10 mol% or less of propylene, 1-butene, 4-butene, etc.
Examples include copolymers with methyl-1-pentene and 1-hexene. Furthermore, there is no problem in mixing polyethylenes having different molecular weights to obtain a viscosity average molecular weight of 160,000 to 2,000,000.

【0013】また、本発明においては、構造的にはなん
ら規定されるものではないが、穴が三次元的に入り組ん
でいる三次元網目構造(又はスポンジ構造)が構造とし
てはより好ましい。本発明の微多孔膜は、ポリエチレン
に溶剤、可塑剤、無機微粉体等を混合、成形後、抽出及
び乾燥し、さらに延伸を施す等の手段により得ることが
できる。
Further, in the present invention, a three-dimensional network structure (or a sponge structure) in which holes are three-dimensionally intricate is more preferable as a structure, although there is no restriction in terms of structure. The microporous membrane of the present invention can be obtained by mixing polyethylene with a solvent, a plasticizer, an inorganic fine powder, etc., molding, extracting and drying, and further stretching.

【0014】例えば、ポリエチレン樹脂、無機微粉体、
有機液状体の混合組成をそれぞれ5〜70容量%、10
〜55容量%、20〜75容量%とし、ヘンシェルミキ
サ−等の通常の混合機で混合したのち、押出機等の溶融
混練装置により混練し、得られた混練物を押出成形等に
より50〜500μの厚さに成形する。さらに、該成形
物から有機液状体の溶剤を用いて有機液状体を抽出し、
引き続き無機微粉体の抽出溶剤にて無機微粉体を抽出し
多孔膜を得る。そして、必要に応じて所定の厚さまで、
一軸、あるいは二軸延伸機により延伸し、膜厚を調整す
る。
For example, polyethylene resin, inorganic fine powder,
The mixed composition of the organic liquid is 5 to 70% by volume and 10% by volume, respectively.
~55% by volume and 20 to 75% by volume, mixed in a normal mixer such as a Henschel mixer, then kneaded in a melt kneading device such as an extruder, and the resulting kneaded product is extruded to a size of 50 to 500 μm. Form to a thickness of . Furthermore, extracting the organic liquid from the molded product using an organic liquid solvent,
Subsequently, the inorganic fine powder is extracted using an extraction solvent for inorganic fine powder to obtain a porous membrane. Then, if necessary, up to the specified thickness,
The film thickness is adjusted by stretching with a uniaxial or biaxial stretching machine.

【0015】[0015]

【実施例】以下、本発明を実施例によりさらに詳細に説
明するが、本発明は以下の実施例に特に限定されるもの
ではない。尚、実施例における測定方法及び評価方法は
次の通りである。 (1)膜  厚 ダイヤルゲ−ジ(最小目盛り:1μ)にて測定。 (2)平均孔径 ASTM  F−316−70に準拠したハ−フドライ
法により評価した。 (3)最大孔径 ASTM  E−128−61に準拠し、エタノ−ル中
でのバブルポイントから算出した。 (4)気孔率 気孔率=(空孔容積/微多孔膜容積)×100空孔容積
=微多孔膜容積−(乾燥重量/樹脂密度)(5)粘度平
均分子量(Mv) 溶剤(デリカン)を用い、測定温度135℃で測定、次
式により評価した。
[Examples] The present invention will be explained in more detail with reference to examples below, but the present invention is not particularly limited to the following examples. Note that the measurement method and evaluation method in Examples are as follows. (1) Film Measured using a thickness dial gauge (minimum scale: 1μ). (2) Average pore diameter Evaluated by half dry method based on ASTM F-316-70. (3) Maximum pore diameter Calculated from the bubble point in ethanol in accordance with ASTM E-128-61. (4) Porosity Porosity = (pore volume / microporous membrane volume) × 100 pore volume = microporous membrane volume - (dry weight / resin density) (5) Viscosity average molecular weight (Mv) Solvent (Delican) The measurement temperature was 135° C., and the evaluation was performed using the following formula.

【0016】 〔η〕=6.2×10−4Mv0.7 (Chiang
の式)(6)結晶化度 セイコ−電子工業株式会社製、示差走差熱量計DSC2
10型を用い試料約1mgを窒素気流下で融解させた後
、昇温速度10℃/minにて室温より測定し融解に伴
う吸熱ピ−クより評価した。 (7)融  点 セイコ−電子工業株式会社製、示差走差熱量計DSC2
10型を用い試料約1mgを窒素気流下で、昇温速度1
0℃/minにて室温より測定した時の吸熱ピ−ク温度
を融点とした。 (8)高温安定性 セイコ−電子工業株式会社製、熱・応力・歪測定装置T
MA/SS100を用い、定長下にて昇温速度2℃/m
inで試料を室温より昇温させた時の状態より評価した
。 (9)構造観察 液体窒素にて冷却したサンプルを破断させその破断面を
SEMにて観察した。
[η]=6.2×10−4Mv0.7 (Chiang
(Formula) (6) Crystallinity Differential Scanning Calorimeter DSC2 manufactured by Seiko Electronics Industry Co., Ltd.
Approximately 1 mg of the sample was melted under a nitrogen stream using Model 10, and then measured from room temperature at a heating rate of 10° C./min, and evaluated based on the endothermic peak accompanying melting. (7) Melting point Differential scanning calorimeter DSC2 manufactured by Seiko Electronics Industry Co., Ltd.
Approximately 1 mg of the sample was heated using a Type 10 under a nitrogen stream at a heating rate of 1.
The endothermic peak temperature measured from room temperature at 0°C/min was defined as the melting point. (8) High temperature stability Seiko Electronics Industry Co., Ltd., heat/stress/strain measuring device T
Using MA/SS100, heating rate 2℃/m under constant length
Evaluation was made based on the state of the sample when the temperature was raised from room temperature. (9) Structural Observation A sample cooled with liquid nitrogen was fractured, and the fractured surface was observed using a SEM.

【0017】[0017]

【実施例1】微粉珪酸22重量%とジオクチルフタレ−
ト44重量%をヘンシェルミキサ−で混合し、これに粘
度平均分子量30万、結晶化度65%のポリエチレン樹
脂34重量%を添加し、再度ヘンシェルミキサ−で混合
した。
[Example 1] 22% by weight of finely divided silicic acid and dioctyl phthalate
44% by weight of a polyethylene resin having a viscosity average molecular weight of 300,000 and a crystallinity of 65% was added thereto and mixed again in a Henschel mixer.

【0018】該混合物を、30m/mφ二軸押出機に4
50m/m幅のTダイを取り付けたフィルム製造装置で
厚さ95μの膜状に成形した。成形された膜は、1,1
,1−トリクロルエタン中に10分間浸漬し、ジオクチ
ルフタレ−トを抽出した後乾燥し、さらに60℃の25
%苛性ソ−ダ中に60分間浸漬して微粉珪酸を抽出した
後乾燥した。
[0018] The mixture was transferred to a 30 m/mφ twin screw extruder for 4
It was molded into a film with a thickness of 95 μm using a film manufacturing apparatus equipped with a T-die having a width of 50 m/m. The formed membrane is 1,1
, immersed in 1-trichloroethane for 10 minutes to extract dioctyl phthalate, dried, and further heated at 25°C at 60°C.
% caustic soda for 60 minutes to extract fine powder silicic acid, and then dried.

【0019】さらに、該微多孔膜を114℃に加熱され
たロ−ル延伸機により延伸し、118℃の雰囲気下で5
秒間熱処理を行った。得られた膜は、三次元網目構造を
とっており、膜の特性は表の通りである。得られた膜の
高温安定性をテストしたところ融点の135℃より高温
でも切断しなかった。
Further, the microporous membrane was stretched using a roll stretching machine heated to 114°C, and then stretched for 50 minutes in an atmosphere of 118°C.
Heat treatment was performed for seconds. The obtained film has a three-dimensional network structure, and the properties of the film are as shown in the table. When the high temperature stability of the obtained film was tested, it did not break even at temperatures higher than the melting point of 135°C.

【0020】[0020]

【実施例2】粘度平均分子量60万、結晶化度60%の
ポリエチレン樹脂22重量%、微粉珪酸23重量%、ジ
オクチルフタレ−ト55重量%を用いる以外は、実施例
1と同様にして膜を得た。得られた膜は、三次元網目構
造をとっており、膜の特性は表の通りである。
[Example 2] A film was produced in the same manner as in Example 1, except that 22% by weight of polyethylene resin with a viscosity average molecular weight of 600,000 and a crystallinity of 60%, 23% by weight of fine silicic acid, and 55% by weight of dioctyl phthalate were used. I got it. The obtained film has a three-dimensional network structure, and the properties of the film are as shown in the table.

【0021】得られた膜の高温安定性をテストしたとこ
ろ融点の137℃より13℃高温の150℃で切断した
[0021] When the high temperature stability of the obtained film was tested, it was cut at 150°C, which is 13°C higher than the melting point of 137°C.

【0022】[0022]

【実施例3】粘度平均分子量20万、結晶化度65%の
ポリエチレン樹脂を用いる以外は、実施例1と同様にし
て膜を得た。得られた膜の特性は表の通りである。得ら
れた膜の高温安定性をテストしたところ融点の134℃
より高温でも切断しなかった。
Example 3 A membrane was obtained in the same manner as in Example 1, except that a polyethylene resin having a viscosity average molecular weight of 200,000 and a crystallinity of 65% was used. The properties of the obtained membrane are shown in the table. When the high temperature stability of the resulting film was tested, it had a melting point of 134°C.
It did not cut even at higher temperatures.

【0023】[0023]

【実施例4】粘度平均分子量150万、結晶化度70%
のポリエチレン樹脂25重量%、ジオクチルフタレ−ト
に代えて流動パラフィン75重量%を用いヘンシェルミ
キサ−で混合した後、実施例1のフィルム製造機に圧延
機を付随させ厚さ500μの膜状に成形した。
[Example 4] Viscosity average molecular weight 1.5 million, crystallinity 70%
After mixing in a Henschel mixer using 25% by weight of polyethylene resin and 75% by weight of liquid paraffin instead of dioctyl phthalate, a rolling mill was attached to the film manufacturing machine of Example 1 to form a film with a thickness of 500μ. Molded.

【0024】成形された膜は、140℃の温度で二軸延
伸機により延伸し、さらに1,1,1−トリクロルエタ
ン中に10分間浸漬し、流動パラフィンを抽出した後乾
燥し、膜を得た。得られた膜は三次元網目構造をとって
おり、膜の特性は表の通りである。得られた膜の高温安
定性をテストしたところ、融点の140℃より10℃高
温の150℃で切断した。
The formed membrane was stretched using a biaxial stretching machine at a temperature of 140°C, and further immersed in 1,1,1-trichloroethane for 10 minutes to extract liquid paraffin, and then dried to obtain a membrane. Ta. The obtained film has a three-dimensional network structure, and the properties of the film are shown in the table. When the high temperature stability of the obtained film was tested, it was cut at 150°C, which is 10°C higher than the melting point of 140°C.

【0025】[0025]

【比較例1】粘度平均分子量10万のポリエチレン製微
多孔膜(セルガ−ド社製、K−878)を用いて評価し
た。膜の特性は表の通りである。膜の高温安定性をテス
トしたところ融点の135℃より4℃しかもたず、13
9℃で切断した。
[Comparative Example 1] A microporous polyethylene membrane (manufactured by Celguard, K-878) having a viscosity average molecular weight of 100,000 was used for evaluation. The properties of the membrane are shown in the table. When the high temperature stability of the film was tested, it was only 4°C below the melting point of 135°C, 13
Cut at 9°C.

【0026】[0026]

【比較例2】粘度平均分子量150万、結晶化度55%
のポリエチレン樹脂を用いる以外は、実施例4と同様に
して膜を得た。得られた膜の特性は表の通りである。得
られた膜の高温安定性をテストしたところ融点の138
℃より4℃しかもたず、142℃で切断した。
[Comparative Example 2] Viscosity average molecular weight 1.5 million, crystallinity 55%
A membrane was obtained in the same manner as in Example 4, except that the polyethylene resin was used. The properties of the obtained membrane are shown in the table. When the high temperature stability of the obtained film was tested, it had a melting point of 138
It was cut at 142°C, which was only 4°C above 30°C.

【0027】[0027]

【表1】[Table 1]

【0028】[0028]

【発明の効果】本発明によれば、粘度平均分子量16万
〜200万、結晶化度60%〜90%のポリエチレンか
らなり、膜厚50μ以下、平均孔径0.01μ〜1.0
μ、最大孔径1μ以下、気孔率50%〜80%であるポ
リエチレン微多孔膜を電池セパレ−タ−用として利用す
ることにより、外部短絡等によって電池内部温度が上昇
し、融点付近の温度に達し、その温度に保たれている状
態が続くか、その温度が緩やかに低下しても、膜に欠陥
、穴、破れ等が生じることなく、すなわち、無孔化状態
を維持しているため、電池内部での化学反応が確実に抑
制され、安全性が高く、かつ信頼性の高い電池が得られ
る。
According to the present invention, the film is made of polyethylene with a viscosity average molecular weight of 160,000 to 2,000,000, a crystallinity of 60% to 90%, a film thickness of 50 μm or less, and an average pore diameter of 0.01 μ to 1.0 μm.
By using a polyethylene microporous membrane with a maximum pore diameter of 1μ or less and a porosity of 50% to 80% as a battery separator, the internal temperature of the battery will rise due to external short circuits and reach a temperature near the melting point. Even if the temperature is maintained at that temperature or the temperature gradually decreases, the membrane does not develop defects, holes, tears, etc., in other words, it remains non-porous, so the battery Internal chemical reactions are reliably suppressed, resulting in a highly safe and reliable battery.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  粘度平均分子量16万〜200万、結
晶化度60%〜90%のポリエチレンからなり、膜厚5
0μ以下、平均孔径0.01μ〜1.0μ、最大孔径1
μ以下、気孔率50%〜80%を有することを特徴とす
る電池セパレーター用ポリエチレン微多孔膜。
Claim 1: Made of polyethylene with a viscosity average molecular weight of 160,000 to 2,000,000 and a crystallinity of 60% to 90%, with a film thickness of 5
0 μ or less, average pore size 0.01 μ to 1.0 μ, maximum pore size 1
A microporous polyethylene membrane for battery separators, characterized in that it has a porosity of 50% to 80%.
JP3008177A 1990-02-15 1991-01-28 Polyethylene poromeric film for cell separator Withdrawn JPH04212264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3008177A JPH04212264A (en) 1990-02-15 1991-01-28 Polyethylene poromeric film for cell separator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-32344 1990-02-15
JP3234490 1990-02-15
JP3008177A JPH04212264A (en) 1990-02-15 1991-01-28 Polyethylene poromeric film for cell separator

Publications (1)

Publication Number Publication Date
JPH04212264A true JPH04212264A (en) 1992-08-03

Family

ID=26342644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3008177A Withdrawn JPH04212264A (en) 1990-02-15 1991-01-28 Polyethylene poromeric film for cell separator

Country Status (1)

Country Link
JP (1) JPH04212264A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044839A1 (en) * 1996-05-22 1997-11-27 Kureha Chemical Industry Co., Ltd. Porous film and separator for batteries comprising porous film
WO2005015660A1 (en) * 2003-08-06 2005-02-17 Mitsubishi Chemical Corporation Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same
EP3859822A4 (en) * 2018-09-25 2022-01-05 Asahi Kasei Kabushiki Kaisha High-strength separator
WO2022092302A1 (en) * 2020-10-30 2022-05-05 旭化成株式会社 Siloxane dispersed crosslinked separator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044839A1 (en) * 1996-05-22 1997-11-27 Kureha Chemical Industry Co., Ltd. Porous film and separator for batteries comprising porous film
WO2005015660A1 (en) * 2003-08-06 2005-02-17 Mitsubishi Chemical Corporation Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same
US8003262B2 (en) 2003-08-06 2011-08-23 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution secondary battery separator having defined ratio of average pore diameter to maximum pore diameter and nonaqueous electrolyte solution secondary battery using the same
US8597836B2 (en) 2003-08-06 2013-12-03 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution secondary battery separator having filler and controlled impurities
EP3859822A4 (en) * 2018-09-25 2022-01-05 Asahi Kasei Kabushiki Kaisha High-strength separator
WO2022092302A1 (en) * 2020-10-30 2022-05-05 旭化成株式会社 Siloxane dispersed crosslinked separator

Similar Documents

Publication Publication Date Title
US8003261B2 (en) Polyolefin microporous membrane
US6949315B1 (en) Shutdown separators with improved properties
JP6231745B2 (en) Polyolefin microporous membrane and method for producing the same
JP5325405B2 (en) Polyolefin microporous membrane
WO2006025323A1 (en) Microporous polyolefin film and separator for storage cell
JP3917721B2 (en) Method for producing microporous membrane
JPWO2006038532A1 (en) Polyolefin microporous membrane
WO1996027633A1 (en) Microporous polyethylene film and process for producing the film
WO2008069216A1 (en) Polyolefin microporous membrane
JP2011184671A (en) Heat resistant polyolefin microporous film and manufacturing method thereof
US7323274B1 (en) Shutdown separators with improved properties
JP5171012B2 (en) Method for producing polyolefin microporous membrane
JP3682120B2 (en) Composite membrane for battery separator and battery separator
JPH0294356A (en) Polyethylene microporous film for lithium battery separator
JP3236359B2 (en) Polyolefin microporous membrane
JP5592745B2 (en) Polyolefin microporous membrane
JP4033546B2 (en) Method for producing separator for lithium ion secondary battery
US7662518B1 (en) Shutdown separators with improved properties
JPH10298324A (en) Microporous polyolefin film and its production
JPH11268118A (en) Polyolefin porous film, production thereof, and separator film for battery
JPH04212265A (en) Polyethylene poromeric film for cell separator
JP3486785B2 (en) Battery separator and method of manufacturing the same
JPH04212264A (en) Polyethylene poromeric film for cell separator
JP4713441B2 (en) Method for producing polyolefin microporous membrane
JP2003217554A (en) Polyolefin micro porous membrane for battery separator

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514