JPH0294356A - Polyethylene microporous film for lithium battery separator - Google Patents

Polyethylene microporous film for lithium battery separator

Info

Publication number
JPH0294356A
JPH0294356A JP63244511A JP24451188A JPH0294356A JP H0294356 A JPH0294356 A JP H0294356A JP 63244511 A JP63244511 A JP 63244511A JP 24451188 A JP24451188 A JP 24451188A JP H0294356 A JPH0294356 A JP H0294356A
Authority
JP
Japan
Prior art keywords
molecular weight
average molecular
weight
battery
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63244511A
Other languages
Japanese (ja)
Other versions
JP2794179B2 (en
Inventor
Kazuo Matsuda
松田 一雄
Yoshinao Doi
土井 良直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP63244511A priority Critical patent/JP2794179B2/en
Publication of JPH0294356A publication Critical patent/JPH0294356A/en
Application granted granted Critical
Publication of JP2794179B2 publication Critical patent/JP2794179B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To obtain good assemble capability and low electric resistance by making of high density polyethylene having a specified weight-average molecular weight and a specified ratio of weight-average molecular weight to number-average molecular weight, and specifying the thickness, porosity, and electric resistance in an organic electrolyte. CONSTITUTION:A polyethylene microporous film 1 consists of high density polyethylene whose weight average molecular weight is 400,000-2,000,000 and the ratio of weight- average molecular weight to number-average/molecular weight (Mw/Mn) is 25 or less, and in addition its thickness is 20-50mum, porosity is 50-80%, and electric resistance in an organic electrolyte is 0.5-1.5OMEGAcm<2>/piece. If the film thickness is thicker than 50mum, the occupied ratio by the separator is increased and a battery having compact size and high energy density is difficult to obtain. If the film thickness is thinner than 20mum, the generating ratio of internal short circuit is increased. The porosity less than 50% decreases ion permeability, and that more than 80% increases the generation ratio of internal short circuit. Electric resistance more than 1.5OMEGAcm<2>/piece decreases the battery performance and that less than 0.5OMEGAcm<2>/piece increases trouble generation ratio in assembly process.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、リチウム電池セパレーター用ポリエチレン微
多孔膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a polyethylene microporous membrane for lithium battery separators.

〈従来の技術及びその問題点〉 近年、小型電子機器の普及に伴い、それらの電源である
電池の小型化、軽量化、高出力化に対する期待は極めて
大きなものとなっている。電池の小型化、軽量化、高出
力化を実現するためには、正負両極の小型軽量化ととも
に、セパレーターの薄膜化を図ることが必要かつ極めて
重要である。
<Prior Art and its Problems> In recent years, with the spread of small electronic devices, there are extremely high expectations for smaller, lighter weight, and higher output batteries that serve as power sources for these devices. In order to make batteries smaller, lighter, and higher in output, it is necessary and extremely important to make the positive and negative electrodes smaller and lighter, as well as to make the separator thinner.

特に、うす巻き型のリチウム電池の場合、電極面積が大
きくセパレーターを多量に用いるため、その厚さは電池
の小型化に大きな影響を及ぼし、小型化、軽量化、高出
力化を可能にならしめるには、是が非でも薄いセパレー
ターの開発が急務である。
In particular, in the case of thinly wound lithium batteries, the electrode area is large and a large amount of separators are used, so the thickness has a large effect on the miniaturization of the battery, making it possible to make it smaller, lighter, and higher output. Therefore, there is an urgent need to develop thinner separators.

ただし、セパレーターは薄くすればするほど破断や突き
破りあるいは正極に用いている二酸化マンガン等の粒子
による押しつけによって生じる内部短絡等のトラブル発
生率が高くなるため該セパレーターは充分な機械的強度
をも兼ね備えていなければならない。特に近年需要の増
大しているリチウム1次電池のうす巻き型に該セパレー
ターを用いる場合その組立工程特に巻取り工程において
その機械特性、特に膜の厚み方向の圧延耐性が大きな問
題となりつつある。
However, the thinner the separator is, the more likely it is to break, break through, or suffer from internal short circuits caused by particles such as manganese dioxide used in the positive electrode, so the separator must also have sufficient mechanical strength. There must be. Particularly when the separator is used in thinly wound lithium primary batteries, the demand for which has been increasing in recent years, mechanical properties, especially rolling resistance in the thickness direction of the membrane, are becoming a major problem in the assembly process, particularly in the winding process.

従来より電池用セパレーターとしてはガラス繊維セパレ
ーター、ポリプロピレン不織布等が知られているがこれ
らをうす巻き型電池に用いた場合、厚いため電池の体積
の大半をセパレーターが占めてしまう結果となり、正負
両極の活物質の量が減り、優れた電池特性が得られなく
、かつ小型軽量化も不可能である。更に、これらのセパ
レーターを用いて構成された電池は安全性にも問題があ
った。
Conventionally, glass fiber separators, polypropylene nonwoven fabrics, etc. have been known as battery separators, but when these are used in thinly wound batteries, the separators end up occupying most of the volume of the battery due to their thickness. The amount of active material is reduced, and excellent battery characteristics cannot be obtained, and it is also impossible to reduce the size and weight. Furthermore, batteries constructed using these separators also have safety problems.

即ち該電池を外部短絡させた場合短絡電流によるジュー
ル熱で電池内温度が上昇しても該セパレーターは根本的
に大きな孔部(数μ)を有しているためイオンの移動が
阻止出来ず電流が流れ続は電池内温度が上昇して最終的
に電解液の分解によるガスが発生して電池の発火、爆発
等の危険性がある。
In other words, when the battery is short-circuited externally, even if the internal temperature of the battery rises due to Joule heat caused by the short-circuit current, the separator has fundamentally large pores (several microns), so the movement of ions cannot be prevented and the current decreases. If the battery continues to flow, the temperature inside the battery will rise and eventually gas will be generated due to the decomposition of the electrolyte, creating a risk of the battery catching fire or exploding.

一方、薄手のセパレーターとしてはポリオレフィン系微
多孔膜が知られている。例えば特公昭46−4011号
公報に開示されている如く、ポリオレフィン樹脂を溶液
延伸することによって得られる微多孔膜は、薄いという
観点からは優れた膜であり、かつ微多孔のため前述した
電池の安全性も良いが気孔率が30〜45%と小さく、
電池用セパレーターとして用いた場合電解液の含浸性が
悪く、又電池の内部抵抗の増大をもたらすため、電池用
セパレーターとして満足される性能を有していない。
On the other hand, polyolefin microporous membranes are known as thin separators. For example, as disclosed in Japanese Patent Publication No. 46-4011, a microporous membrane obtained by solution-stretching a polyolefin resin is an excellent membrane from the viewpoint of thinness, and because of its microporosity, it can be used for the above-mentioned batteries. It is safe, but has a small porosity of 30-45%.
When used as a battery separator, it has poor electrolyte impregnation properties and increases the internal resistance of the battery, so it does not have satisfactory performance as a battery separator.

また、ポリオレフィン樹脂、無機微粉体及び有機液状体
の場合成膜体より該有機液状体と無機微粉体とを抽出除
去することによって得られる微多孔膜は気孔率が大きく
従って電池用セパレータとして用いた場合電解液の含浸
性も良く、電池の内部抵抗も低く電池用セパレーターと
して優れた性能を有している。しかしながら、該セパレ
ーターは機械特性という観点からは改良が望まれている
In addition, in the case of polyolefin resin, inorganic fine powder, and organic liquid, the microporous membrane obtained by extracting and removing the organic liquid and inorganic fine powder from the film-formed body has a large porosity and is therefore used as a battery separator. It has good impregnability with electrolyte and low internal resistance of batteries, giving it excellent performance as a battery separator. However, improvements in the separator are desired from the viewpoint of mechanical properties.

即ち、例えば特開昭58−59072号公報に開示され
ている如く、該セパレーターの機械的強度は満足出来る
ほどには高くならないため、電池の組立工程で不良品発
生等の問題点が残されている。
That is, as disclosed in JP-A No. 58-59072, for example, the mechanical strength of the separator is not sufficiently high, so problems such as the occurrence of defective products remain in the battery assembly process. There is.

特に該セパレーターをうす巻き型電池用のセパレーター
として用いるには、巻き取り工程でのつき破れ、引き裂
けや正極の二酸化マンガン等の粒子の押しつけによる内
部短絡が大きな問題である。
In particular, when the separator is used as a separator for a thinly wound battery, internal short circuits caused by tearing or tearing during the winding process or by being pressed by particles such as manganese dioxide of the positive electrode are serious problems.

〈問題点を解決するための手段及び作用〉本発明は、上
記の如き問題がなく良好な組立加工性と低い電気抵抗を
有する電池セパレーター用ポリエチレン微多孔膜を提供
するためになされたものである。
<Means and effects for solving the problems> The present invention has been made in order to provide a polyethylene microporous membrane for battery separators that does not have the above problems and has good assembly workability and low electrical resistance. .

即ち、本発明は、重量平均分子量が40万〜200万で
、かつ重量平均分子量/数平均分子量(Hw/Mn)の
比が25以下である高密度ポリエチレンからなり、厚さ
20〜50μ、気孔率50〜80%を有し、有機電解液
中の電気抵抗が0.5〜1.5Ωci/枚であるリチウ
ム電池セパレーター用ポリエチレン微多孔膜である。
That is, the present invention is made of high-density polyethylene having a weight average molecular weight of 400,000 to 2,000,000 and a weight average molecular weight/number average molecular weight (Hw/Mn) ratio of 25 or less, a thickness of 20 to 50 μm, and a pore size. This is a polyethylene microporous membrane for a lithium battery separator, which has an electric resistance of 50 to 80% and an electrical resistance in an organic electrolyte of 0.5 to 1.5 Ωci/sheet.

本発明における微多孔膜の膜厚は、20〜50μである
。小型軽量電池や高出力型のうず巻き型電池のセパレー
ターには20〜38μのものがより好ましい。膜厚が5
0μより厚い場合は電池内容積におけるセパレーターの
占有率は少なくとも10%以上となり電池の小型化高エ
ネルギー化を妨げる原因となる。また、膜厚が20μよ
り薄くなるとつき破りゃ、引き裂き及び押しつけによる
内部短絡のトラブル発生率が高くなる。
The thickness of the microporous membrane in the present invention is 20 to 50μ. A separator of 20 to 38 microns is more preferable for a separator for small, lightweight batteries and high-output spiral-wound batteries. Film thickness is 5
If it is thicker than 0μ, the separator occupies at least 10% of the internal volume of the battery, which hinders miniaturization and higher energy storage of the battery. Moreover, if the film thickness becomes thinner than 20 μm, the probability of occurrence of internal short circuits due to tearing and pressing becomes high.

本発明で言うところの気孔率は以下の式で表わされる。The porosity as referred to in the present invention is expressed by the following formula.

気孔率=空孔容積/多孔膜容積×100空孔容積=含水
重量−絶乾重量 本発明の微多孔膜の気孔率は50〜80%でなければな
らなく、好ましくは60〜80%である。
Porosity = pore volume / porous membrane volume x 100 pore volume = water content - bone dry weight The porosity of the microporous membrane of the present invention must be 50 to 80%, preferably 60 to 80%. .

気孔率が50%未満ではイオン透過性等の透過性能が優
れた膜を得ることが出来ない。特に本発明の微多孔膜を
リチウム電池のセパレーターとして用いた場合には、電
解液のイオン電導性が低いため、気孔率は電池の内部抵
抗に大きな影響を及ぼし、気孔率が小さい場合は、特性
の極めて悪い電池を与えることとなる。また、気孔率が
80%以上ではつき破り、引き裂き及び押しつけによる
内部短絡のトラブル発生率が斉くなる。
If the porosity is less than 50%, a membrane with excellent permeability such as ion permeability cannot be obtained. In particular, when the microporous membrane of the present invention is used as a separator in a lithium battery, the porosity has a large effect on the internal resistance of the battery due to the low ionic conductivity of the electrolyte, and if the porosity is small, the characteristics This will give you a very bad battery. Furthermore, when the porosity is 80% or more, the occurrence of problems such as puncture, tearing, and internal short circuits due to pressing becomes uniform.

本発明の微多孔膜の有機電解液中での電気抵抗は0.5
〜1.5ΩcrA/枚である必要がある。
The electrical resistance of the microporous membrane of the present invention in an organic electrolyte is 0.5
It needs to be ~1.5ΩcrA/sheet.

電気抵抗が1.5ΩcrA/枚以上だと電池特性の優れ
た電池が得られない。また、電気抵抗が0.5Ωci/
枚以下だと特性の優れた電池が得られるが膜の観点から
みると薄膜で高気孔率で大孔径の膜でありどうしても組
立工程でのトラブル発生率が高くなる。ここでいう有機
電解液とはプロピレンカーボネートおよび1,2−ジメ
トキシエタンの混合液に過塩素酸リチウムを溶解したも
のである。
If the electrical resistance is 1.5 ΩcrA/sheet or more, a battery with excellent battery characteristics cannot be obtained. Also, the electrical resistance is 0.5Ωci/
If it is less than 500 ml, a battery with excellent characteristics can be obtained, but from the viewpoint of the membrane, the membrane is thin, has a high porosity, and has a large pore diameter, which inevitably increases the chance of trouble occurring during the assembly process. The organic electrolyte herein refers to a mixture of propylene carbonate and 1,2-dimethoxyethane in which lithium perchlorate is dissolved.

本発明のポリエチレン微多孔膜の重量平均分子量は、4
0〜200万であることが必要である。
The weight average molecular weight of the polyethylene microporous membrane of the present invention is 4
It needs to be between 0 and 2 million.

重量平均分子量が40万未満のものは気孔率が大きく優
れているが機械的強度不足によるつき破り、引き裂き及
び押しつけによる内部短絡のトラブル発生率が低くなら
ない。また、重量平均分子量が200万より大きくなる
と流動性が悪く薄膜にするのがむつかしく、また、孔径
も0.05μ以下と小さく気孔率も低下するので電池性
能の悪いものしか得られない。
Those with a weight average molecular weight of less than 400,000 have excellent porosity, but the occurrence of problems such as tearing, tearing, and internal short circuits due to pressing due to insufficient mechanical strength is not reduced. Furthermore, if the weight average molecular weight is greater than 2,000,000, the fluidity is poor and it is difficult to form a thin film, and the pore size is also small, less than 0.05 μm, and the porosity is reduced, resulting in only poor battery performance.

本発明のポリエチレン微多孔膜の重量平均分子量と数平
均分子量の比(Miy/Mn)は25以下であることが
必要であり、好ましくは15〜5である。
The ratio of weight average molecular weight to number average molecular weight (Miy/Mn) of the polyethylene microporous membrane of the present invention needs to be 25 or less, preferably 15-5.

ポリエチレンの数平均分子量は、主に得られる多孔膜の
機械的特性に影響し、重量平均分子量は主に多孔膜の平
均孔径および気孔率に影響する。
The number average molecular weight of polyethylene mainly affects the mechanical properties of the resulting porous membrane, and the weight average molecular weight mainly affects the average pore diameter and porosity of the porous membrane.

Mw/Mn カ25以上のポリエチレンを用いた場合得
られた微多孔膜は伸びが小さく跪いものとなってしまう
When polyethylene with a Mw/Mn ratio of 25 or more is used, the microporous membrane obtained has low elongation and becomes a floppy membrane.

この重量平均分子量が40〜200万でかつh/Mnが
25以下の高密度ポリエチレンを用いて製膜し、後述す
る延伸工程を経て得られた膜はおどろくべき事に従来の
ポリエチレン微多孔膜を用いた時の電池組立時のトラブ
ル発生率が10%前後だったのに対して1%以下に激減
した。
The film produced using this high-density polyethylene with a weight average molecular weight of 400,000 to 2 million and h/Mn of 25 or less, and subjected to the stretching process described below, is surprisingly superior to conventional polyethylene microporous films. The incidence of trouble during battery assembly was around 10% when used, but this has been drastically reduced to less than 1%.

本発明でいうところのポリエチレンとしてはエチレンを
重合した結晶性の単独重合体もしくはエチレンと10モ
ル%以下のプロピレン、1−ブテン、4−メチル−1−
ペンテン、1−ヘキセンとの共重合体があげられる。
In the present invention, polyethylene is a crystalline homopolymer of ethylene, or ethylene and 10 mol% or less of propylene, 1-butene, 4-methyl-1-
Examples include copolymers with pentene and 1-hexene.

また、分子量の異なるポリエチレンを混合して重量平均
分子量を40万〜200万にしても何ら差しつかえない
Furthermore, there is no problem in mixing polyethylenes having different molecular weights to have a weight average molecular weight of 400,000 to 2,000,000.

なお上記のポリエチレンには必要に応じて酸化防止剤、
紫外線吸収剤、滑剤、アンチブロッキング剤などの各種
の添加剤を本発明の目的を損なわない範囲で添加するこ
とが出来る。
In addition, the above polyethylene may contain antioxidants and
Various additives such as ultraviolet absorbers, lubricants, and anti-blocking agents can be added within the range that does not impair the purpose of the present invention.

本発明の微多孔膜の平均孔径は、0.05〜0.5μの
範囲をもちかつ狭い孔径分布をもっている。
The average pore diameter of the microporous membrane of the present invention is in the range of 0.05 to 0.5μ and has a narrow pore diameter distribution.

本発明の微多孔膜を得る製法の1つとして特公昭59−
37292号公報に開示される如く、ポリエチレン樹脂
をシリカ等の無機微粉体及びミネラルオイル、ジオクチ
ルフタレート等の有機液状体と混合成膜した後、該無機
微粉体、有機液状体を抽出除去し、延伸を特定の条件下
で行なう方法を挙げることができる。
As one of the manufacturing methods for obtaining the microporous membrane of the present invention,
As disclosed in Japanese Patent No. 37292, after forming a film by mixing a polyethylene resin with an inorganic fine powder such as silica and an organic liquid such as mineral oil or dioctyl phthalate, the inorganic fine powder and organic liquid are extracted and removed, and then stretched. One example is a method in which this is carried out under specific conditions.

有機液状体、無機微粉体の抽出を終了した微多孔膜中に
は有機液状体、無機微粉体が膜の性能を損なわない範囲
で残存することが許される。有機液状体の微多孔膜中で
の残存量は3容量%以下、好ましくは2容量%以下であ
り、無機微粉体の微多孔膜中での残存量は3容量%以下
、好ましくは2容量%以下である。即ち■原膜組成とし
てポリエチレン樹脂、無機微粉体、有機液状体の合計量
に対して、ポリエチレン樹脂を20〜50容量%含有す
る原膜を用いること。■無機微粉体、有機液状体を抽出
除去した後延伸するに際し、−軸延伸で延伸倍率が1.
5倍以上となる様に延伸を行うこと。
The organic liquid and the inorganic fine powder are allowed to remain in the microporous membrane after the extraction of the organic liquid and the inorganic fine powder to the extent that they do not impair the performance of the membrane. The residual amount of the organic liquid in the microporous membrane is 3% by volume or less, preferably 2% by volume or less, and the residual amount of the inorganic fine powder in the microporous membrane is 3% by volume or less, preferably 2% by volume. It is as follows. That is, (1) Use a raw film containing 20 to 50% by volume of polyethylene resin based on the total amount of polyethylene resin, inorganic fine powder, and organic liquid. ■When stretching after extracting and removing inorganic fine powder and organic liquid, the stretching ratio is 1.
Stretch it so that it becomes 5 times or more.

上記条件下において本発明の条件を満たすポリエチレン
微多孔膜が得られる。
Under the above conditions, a microporous polyethylene membrane satisfying the conditions of the present invention is obtained.

延伸倍率の具体例を示せば一軸延伸で1.5倍〜5.0
倍の範囲が好ましく、更に好ましくは2.0倍〜3.5
倍である。
A specific example of the stretching ratio is 1.5 to 5.0 in uniaxial stretching.
The range is preferably 2.0 times to 3.5 times, more preferably 2.0 times to 3.5 times.
It's double.

かかる方法により得られる微多孔膜は優れた機械特性及
び高い気孔率を有しているためリチウム電池、特に最近
急速な伸びを示している高出力うす巻き型リチウム電池
のセパレーターとして用いた場合、従来より電池組立工
程上大きな問題であった巻き取り工程でのトラブル発生
率が減少し、歩留り効率の向上と製品としての電池性能
においては小型軽量化、内部抵抗の低下つまり高出力化
が可能となり、極めて有用である。リチウム電池に該セ
パレーターを使用した場合負極Li、正極(:gO、M
n0z等で構成されるボタン型電池においてつき破り等
によるトラブル発生は一切認められなかった。また該セ
パレーターを負極LifI3、正極Mud2からなるう
ず巻き型電池に用いた場合巻き取り工程におけるトラブ
ル発生率の大幅な低下とともに小型軽量化、更には高出
力化という観点より極めて好ましい結果を得た。
The microporous membrane obtained by this method has excellent mechanical properties and high porosity, so it can be used as a separator for lithium batteries, especially high-output thinly wound lithium batteries that have been rapidly growing in recent years. The occurrence of trouble in the winding process, which was a major problem in the battery assembly process, has been reduced, improving yield efficiency, and in terms of battery performance as a product, it has become possible to be smaller and lighter, lower internal resistance, and increase output. Extremely useful. When this separator is used in a lithium battery, the negative electrode Li, the positive electrode (:gO, M
No troubles such as breakage were observed in button-type batteries made of n0z or the like. Furthermore, when this separator was used in a spiral-wound battery consisting of a negative electrode LifI3 and a positive electrode Mud2, very favorable results were obtained from the viewpoints of a significant reduction in the occurrence of trouble in the winding process, a reduction in size and weight, and furthermore, an increase in output.

一般にセパレーターの膜厚は薄くまた気孔率は高くなれ
ばなるほど、つき破り、引き裂き等に起因するトラブル
発生率は高くなると思われるが上記の如く、意外にも本
発明の微多孔膜の場合は該要因による短絡等は著しく減
少した。故に本発明のリチウム電池セパレーター用微多
孔膜は小型軽量、高出力電池を効率よく提供するにあた
り極めて有用である。
In general, it is thought that the thinner the separator film thickness and the higher the porosity, the higher the probability of troubles caused by puncturing, tearing, etc. The number of short circuits caused by these factors has decreased significantly. Therefore, the microporous membrane for lithium battery separators of the present invention is extremely useful in efficiently providing small, lightweight, and high-output batteries.

〔実施例〕〔Example〕

以下実施例、比較例により本発明を更に詳しく説明する
The present invention will be explained in more detail below using Examples and Comparative Examples.

なお実施例における試験方法は次の通りである。The test method in the examples is as follows.

(1)膜  厚: ダイヤルゲージにて読取(最小目盛
り; 1μ)。
(1) Film thickness: Read with a dial gauge (minimum scale: 1μ).

(2)最大孔径!  ASTM E−128−61に準
拠。
(2) Maximum pore diameter! Compliant with ASTM E-128-61.

エタノール中でのバブルポイン トより算出。Bubble point in ethanol Calculated from

(3)気孔率:  (空孔容積/多孔膜容積)xlOO
空孔容空孔容積重含水重量重量 (4)透気度:  JIS−P−8117に準拠。
(3) Porosity: (pore volume/porous membrane volume) xlOO
Pore volume Pore volume Weight Water content Weight (4) Air permeability: Based on JIS-P-8117.

(5)電気抵抗二 使用機種・・・・安藤電気製LCR
メーターAG−4311型 組立−第1図に示す通り (6)重量平均分子量(Mw) :  F’fh÷局(
7)粘度平均分子量UV):  溶剤(デカリン)を用
い、測定温度135℃で測定 [η] =6.2 Xl0−’ Prv’・ア(Chi
angO式) %式% カラム ;東ソー製G700S−G 溶 剤 ;トリクロルベンゼン 測定温度;135°C により測定。
(5) Electrical resistance 2 Model used: Ando Electric LCR
Meter AG-4311 type assembly - As shown in Figure 1 (6) Weight average molecular weight (Mw): F'fh ÷ station (
7) Viscosity average molecular weight UV): Measured using a solvent (decalin) at a measurement temperature of 135°C [η] = 6.2
angO formula) % formula % Column: Tosoh G700S-G Solvent: Trichlorobenzene measurement temperature: Measured at 135°C.

実施例1 微粉珪酸13容量%とジオクチルフタレート61.5容
量%をヘンシェルミキサーで混合し、これに重量平均分
子量60万、Mw/Mn = 15のポリエチレン樹脂
25.5容量%を添加し、再度ヘンシェルミキサーで混
合した。
Example 1 13% by volume of finely divided silicic acid and 61.5% by volume of dioctyl phthalate were mixed in a Henschel mixer, 25.5% by volume of a polyethylene resin having a weight average molecular weight of 600,000 and Mw/Mn = 15 was added thereto, and the mixture was mixed again with a Henschel mixer. Mixed with a mixer.

該混合物を30m/m φ二軸押出機で混練しベレット
にした。このペレットを30m1lIl φ二軸押出機
に450m/m幅のTダイを取付けたフィルム製造装置
にて厚さ100μの膜状に成形した。成形された膜は1
,1.1−)ジクロルエタン中に5分間浸漬し、DoP
を抽出したのち乾燥し、さらに70°Cの20%苛性ソ
ーダ中に30分間浸漬して、微粉珪酸を抽出した後乾燥
した。
The mixture was kneaded into pellets using a 30 m/m φ twin screw extruder. The pellets were molded into a film with a thickness of 100 μm using a film manufacturing apparatus equipped with a 30 ml φ twin screw extruder equipped with a T-die having a width of 450 m/m. The formed membrane is 1
, 1.1-) Soaked in dichloroethane for 5 minutes, DoP
was extracted and dried, and further immersed in 20% caustic soda at 70°C for 30 minutes to extract fine powder silicic acid and then dried.

ついで、当該多孔膜を115°Cに加熱されたロール延
伸機によりタテ方向に2.7倍に延伸し、続いて120
°Cの雰囲気下で10秒間熱処理を行った。得られた膜
の特性を表−1に示す。
Next, the porous membrane was stretched 2.7 times in the vertical direction using a roll stretching machine heated to 115°C, and then stretched at 120°C.
Heat treatment was performed for 10 seconds in an atmosphere of °C. The properties of the obtained film are shown in Table 1.

次にこの微多孔膜を用いたリチウム電池用セパレーター
を負極リチウム、正極二酸化マンガンと共に一般的なコ
ンデンサー用自動巻取機にかけた結果を表−1に示す。
Next, a separator for lithium batteries using this microporous membrane was subjected to a general automatic winding machine for capacitors together with lithium negative electrode and manganese dioxide positive electrode, and the results are shown in Table 1.

更にこのセパレーターを用いて第2図に示すうす巻き型
電池を作成した。
Further, using this separator, a thinly wound battery as shown in FIG. 2 was prepared.

この電池の一20°Cに於けるパルス放電回数を表−1
に示す。
Table 1 shows the number of pulse discharges at 20°C for this battery.
Shown below.

実施例2 重量平均分子量40万でMw/Mn=20のポリエチレ
ンを用い、タテ方向に3倍延伸する以外は、実施例1と
同様に行った。その結果を表−1に示す実施例3 重量平均分子量120万でMw/Mn = 15のポリ
エチレン、ジオクチルフタレートに代えて流動パラフィ
ンを用い、タテ方向に2.3倍延伸する以外は、実施例
1と同様に行った。その結果を表−1に示す。
Example 2 The same procedure as in Example 1 was conducted except that polyethylene with a weight average molecular weight of 400,000 and Mw/Mn=20 was used and stretched 3 times in the longitudinal direction. The results are shown in Table 1. Example 3 Example 1 except that polyethylene with a weight average molecular weight of 1.2 million and Mw/Mn = 15, liquid paraffin was used in place of dioctyl phthalate, and stretched 2.3 times in the longitudinal direction. I did the same thing. The results are shown in Table-1.

比較例1 重量平均分子量20万でMi4/Mn=13のポリエチ
レンを用い、タテ方向に4倍延伸する以外は、実施例1
と同様に行った。その結果を表−1に示す。
Comparative Example 1 Example 1 except that polyethylene with a weight average molecular weight of 200,000 and Mi4/Mn=13 was used and stretched 4 times in the vertical direction.
I did the same thing. The results are shown in Table-1.

比較例2 重量平均分子量20万でMw/Mn = 13のポリエ
チレンを用い、ポリエチレン量を38.4容量%、タテ
方向に4.5倍延伸する以外は、実施例1と同様に行っ
た。その結果を表−1に示す。
Comparative Example 2 The same procedure as in Example 1 was carried out, except that polyethylene with a weight average molecular weight of 200,000 and Mw/Mn = 13 was used, the polyethylene amount was 38.4% by volume, and the polyethylene was stretched 4.5 times in the longitudinal direction. The results are shown in Table-1.

比較例3 タテ方向に2倍かつヨコ方向に2倍延伸する以外は、実
施例1と同様に行った。その結果を表=1に示す。
Comparative Example 3 The same procedure as in Example 1 was carried out except that the film was stretched twice in the vertical direction and twice in the horizontal direction. The results are shown in Table 1.

比較例4 重量平均分子量20万でlaw/Mn = 13のポリ
エチレンを用い、タテ方向に2.5倍延伸する以外は、
実施例1と同様に行った。その結果を表−1に示す。
Comparative Example 4 Polyethylene with a weight average molecular weight of 200,000 and law/Mn = 13 was used, except that it was stretched 2.5 times in the vertical direction.
The same procedure as in Example 1 was carried out. The results are shown in Table-1.

比較例5 重量平均分子量120万でMw/Mn = 14のポリ
エチレンを用い、タテ方向に2倍延伸する以外は、実施
例1と同様に行った。その結果を表−1に示す。
Comparative Example 5 The same procedure as in Example 1 was conducted except that polyethylene with a weight average molecular weight of 1.2 million and Mw/Mn = 14 was used and stretched twice in the longitudinal direction. The results are shown in Table-1.

実施例4 重量平均分子量180万でMw/Mn=20のポリエチ
レン、ジオクチルフタレートに代えて流動パラフィンを
用い、タテ方向に2.0倍延伸する以外は、実施例1と
同様に行った。その結果を表−1に示す。
Example 4 The same procedure as in Example 1 was carried out, except that polyethylene with a weight average molecular weight of 1.8 million and Mw/Mn = 20, liquid paraffin was used instead of dioctyl phthalate, and the film was stretched 2.0 times in the longitudinal direction. The results are shown in Table-1.

比較例6 重量平均分子量60万でMw/Mn = 30のポリエ
チレンを用い、タテ方向に2.7倍延伸する以外は、実
施例1と同様に行った。その結果を表−1に示す。
Comparative Example 6 The same procedure as in Example 1 was conducted except that polyethylene with a weight average molecular weight of 600,000 and Mw/Mn = 30 was used and stretched 2.7 times in the longitudinal direction. The results are shown in Table-1.

〔発明の効果〕〔Effect of the invention〕

本発明によれば重量平均分子量40〜200万のポリエ
チレンからなり厚さが20〜50μであり、気孔率50
〜80%を有し有機電解液中での電気抵抗が0.5〜1
.5Ωd/枚であるポリエチレン微多孔膜をリチウム電
池セパレーター用として利用することにより組立工程に
おける歩留り率の向上を可能にし、かつ電池性能に於い
ては小型軽量化、高出力化を実現することが出来る。
According to the present invention, it is made of polyethylene with a weight average molecular weight of 400,000 to 2,000,000, has a thickness of 20 to 50 μm, and has a porosity of 50 μm.
-80% and electrical resistance in organic electrolyte is 0.5-1
.. By using a polyethylene microporous membrane with a resistance of 5 Ωd/sheet for lithium battery separators, it is possible to improve the yield rate in the assembly process, and in terms of battery performance, it is possible to achieve smaller size, lighter weight, and higher output. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の膜の電気抵抗測定における組立の概
略図、第2図は実施例1で製造した膜を用いたうず巻型
電池の半断面図である。 1は正極、2は微多孔膜、3は負極、4は絶縁板、5は
負極リード、6は正極リード、7はガスケット。 特許出願人 旭化成工業株式会社
FIG. 1 is a schematic diagram of the assembly for measuring the electrical resistance of the membrane of the present invention, and FIG. 2 is a half-sectional view of a spiral-wound battery using the membrane produced in Example 1. 1 is a positive electrode, 2 is a microporous membrane, 3 is a negative electrode, 4 is an insulating plate, 5 is a negative electrode lead, 6 is a positive electrode lead, and 7 is a gasket. Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims]  重量平均分子量が40〜200万でかつ重量平均分子
量/数平均分子量(■_w/■_n)の比が25以下で
ある高密度ポリエチレンからなり、厚さ20〜50μ、
気孔率50〜80%を有し、有機電解液中の電気抵抗が
0.5〜1.5Ωcm^2/枚であるリチウム電池セパ
レーター用ポリエチレン微多孔膜
Made of high-density polyethylene with a weight average molecular weight of 400,000 to 2,000,000 and a weight average molecular weight/number average molecular weight (■_w/■_n) ratio of 25 or less, with a thickness of 20 to 50μ,
Polyethylene microporous membrane for lithium battery separator having a porosity of 50 to 80% and an electrical resistance in an organic electrolyte of 0.5 to 1.5 Ωcm^2/sheet
JP63244511A 1988-09-30 1988-09-30 Polyethylene microporous membrane and lithium battery separator Expired - Lifetime JP2794179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63244511A JP2794179B2 (en) 1988-09-30 1988-09-30 Polyethylene microporous membrane and lithium battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63244511A JP2794179B2 (en) 1988-09-30 1988-09-30 Polyethylene microporous membrane and lithium battery separator

Publications (2)

Publication Number Publication Date
JPH0294356A true JPH0294356A (en) 1990-04-05
JP2794179B2 JP2794179B2 (en) 1998-09-03

Family

ID=17119769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63244511A Expired - Lifetime JP2794179B2 (en) 1988-09-30 1988-09-30 Polyethylene microporous membrane and lithium battery separator

Country Status (1)

Country Link
JP (1) JP2794179B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364334A (en) * 1989-08-03 1991-03-19 Tonen Corp Microporous polyolefin film and its preparation
JPH03105851A (en) * 1989-09-19 1991-05-02 Tonen Corp Separator for lithium battery and lithium battery
JPH06223802A (en) * 1992-10-28 1994-08-12 Asahi Chem Ind Co Ltd Cylindrical electric part separator
US5624627A (en) * 1991-12-27 1997-04-29 Mitsui Petrochemical Industries, Ltd. Process for preparing surface-modified biaxially oriented film of high molecular weight polyethylene
US5641565A (en) * 1991-07-05 1997-06-24 Asahi Kasei Kogyo Kabushiki Kaisha Separator for a battery using an organic electrolytic solution and method for preparing the same
US5683634A (en) * 1992-12-21 1997-11-04 Mitsubishi Chemical Corporation Process of making porous films or sheets
US5759678A (en) * 1995-10-05 1998-06-02 Mitsubishi Chemical Corporation High-strength porous film and process for producing the same
US5948519A (en) * 1994-05-16 1999-09-07 Mitsui Chemicals, Inc. Porous biaxially-oriented film comprising high molecular ethylene/α-olefin copolymer and its use
WO2007015547A1 (en) 2005-08-04 2007-02-08 Tonen Chemical Corporation Polyethylene microporous membrane, process for production thereof, and battery separator
WO2007032450A1 (en) 2005-09-16 2007-03-22 Tonen Chemical Corporation Polyethylene microporous membrane, process for production thereof, and battery separator
US7374843B2 (en) 2002-08-28 2008-05-20 Asahi Kasei Chemicals Corporations Polyolefin microporous membrane and method of evaluating the same
KR100863704B1 (en) * 2006-09-01 2008-10-15 도레이새한 주식회사 Polyethylene microporous films for separator of secondary battery
WO2011121693A1 (en) * 2010-03-30 2011-10-06 パナソニック株式会社 Size aa lithium primary battery and size aaa lithium primary battery
US8349236B2 (en) 2004-12-23 2013-01-08 Toray Advanced Materials Korea Inc. Method of preparing a polyethylene microporous film for a rechargeable battery separator
KR20150009856A (en) 2013-07-17 2015-01-27 제일모직주식회사 Porous polymeric separator and a method for preparing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5452167A (en) * 1977-10-03 1979-04-24 Asahi Chem Ind Co Ltd Porous polyolefin resin membrane, alkali battery separator, and microporous filter
JPS5964339A (en) * 1973-06-28 1984-04-12 ナシヨナル・リサ−チ・デイベロツプメント・コ−ポレイシヨン Oriented polymer
JPS63276868A (en) * 1987-05-08 1988-11-15 Tokuyama Soda Co Ltd Separator for cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964339A (en) * 1973-06-28 1984-04-12 ナシヨナル・リサ−チ・デイベロツプメント・コ−ポレイシヨン Oriented polymer
JPS5452167A (en) * 1977-10-03 1979-04-24 Asahi Chem Ind Co Ltd Porous polyolefin resin membrane, alkali battery separator, and microporous filter
JPS63276868A (en) * 1987-05-08 1988-11-15 Tokuyama Soda Co Ltd Separator for cell

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364334A (en) * 1989-08-03 1991-03-19 Tonen Corp Microporous polyolefin film and its preparation
JPH06104736B2 (en) * 1989-08-03 1994-12-21 東燃株式会社 Polyolefin microporous membrane
JPH03105851A (en) * 1989-09-19 1991-05-02 Tonen Corp Separator for lithium battery and lithium battery
US5641565A (en) * 1991-07-05 1997-06-24 Asahi Kasei Kogyo Kabushiki Kaisha Separator for a battery using an organic electrolytic solution and method for preparing the same
US5840235A (en) * 1991-12-27 1998-11-24 Mitsui Petrochemical Industries, Ltd. Biaxially oriented film of high molecular weight polyethylene, process for preparing the same, surface-modified biaxially oriented film of high molecular weight polyethylene and process for preparing the same
US5650451A (en) * 1991-12-27 1997-07-22 Mitsui Petrochemical Industries, Ltd. Biaxially oriented film of high molecular weight polyethylene, process for preparing the same, surface modified biaxially oriented film of high molecular weight polyethylene and process for preparing the same
US5674919A (en) * 1991-12-27 1997-10-07 Mitsui Petrochemical Industries, Ltd. Biaxially oriented film of high molecular weight polyethylene, process for preparing the same, surface-modified biaxially oriented film of high molecular weight polyethylene and process for preparing the same
US5624627A (en) * 1991-12-27 1997-04-29 Mitsui Petrochemical Industries, Ltd. Process for preparing surface-modified biaxially oriented film of high molecular weight polyethylene
JPH06223802A (en) * 1992-10-28 1994-08-12 Asahi Chem Ind Co Ltd Cylindrical electric part separator
US5683634A (en) * 1992-12-21 1997-11-04 Mitsubishi Chemical Corporation Process of making porous films or sheets
US5948519A (en) * 1994-05-16 1999-09-07 Mitsui Chemicals, Inc. Porous biaxially-oriented film comprising high molecular ethylene/α-olefin copolymer and its use
US5759678A (en) * 1995-10-05 1998-06-02 Mitsubishi Chemical Corporation High-strength porous film and process for producing the same
US7374843B2 (en) 2002-08-28 2008-05-20 Asahi Kasei Chemicals Corporations Polyolefin microporous membrane and method of evaluating the same
US8349236B2 (en) 2004-12-23 2013-01-08 Toray Advanced Materials Korea Inc. Method of preparing a polyethylene microporous film for a rechargeable battery separator
WO2007015547A1 (en) 2005-08-04 2007-02-08 Tonen Chemical Corporation Polyethylene microporous membrane, process for production thereof, and battery separator
WO2007032450A1 (en) 2005-09-16 2007-03-22 Tonen Chemical Corporation Polyethylene microporous membrane, process for production thereof, and battery separator
US8802273B2 (en) 2005-09-16 2014-08-12 Toray Battery Separator Film Co., Ltd Microporous polyethylene membrane, its production method, and battery separator
KR100863704B1 (en) * 2006-09-01 2008-10-15 도레이새한 주식회사 Polyethylene microporous films for separator of secondary battery
WO2011121693A1 (en) * 2010-03-30 2011-10-06 パナソニック株式会社 Size aa lithium primary battery and size aaa lithium primary battery
JPWO2011121693A1 (en) * 2010-03-30 2013-07-04 パナソニック株式会社 AA lithium primary battery and AAA lithium primary battery
JP5631319B2 (en) * 2010-03-30 2014-11-26 パナソニック株式会社 AA lithium primary battery and AAA lithium primary battery
KR20150009856A (en) 2013-07-17 2015-01-27 제일모직주식회사 Porous polymeric separator and a method for preparing the same

Also Published As

Publication number Publication date
JP2794179B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
TWI297707B (en) Microporous membrane made of polyolefin
US9203072B2 (en) Microporous polyolefin film and separator for storage cell
JP4753446B2 (en) Polyolefin microporous membrane
JPH0294356A (en) Polyethylene microporous film for lithium battery separator
JP5325405B2 (en) Polyolefin microporous membrane
TWI700851B (en) Polyolefin microporous membrane, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR101843806B1 (en) Polyolefin microporous membrane, separator for battery, and battery
JP3497569B2 (en) Polyethylene microporous membrane for non-aqueous battery separator
JP2002025531A (en) Separator for battery and lithium secondary battery using it
JP2010007053A (en) Microporous polyolefin film
WO2019093498A1 (en) Separator for electricity storage devices, and electricity storage device
JP4573284B2 (en) Polyethylene microporous membrane
KR102121293B1 (en) Power storage device separator and method for manufacturing same, and power storage device and method for manufacturing same
JPH1160789A (en) Production of microporous film
JP4964565B2 (en) Polyethylene microporous membrane
WO2020137336A1 (en) Microporous polyolefin membrane and method for producing microporous polyolefin membrane
JP2009269941A (en) Microporous polyolefin membrane
JP2009242779A (en) Polyolefin fine porous membrane and separator for storage battery
JP5235324B2 (en) Polyolefin microporous membrane
JP4033546B2 (en) Method for producing separator for lithium ion secondary battery
JP2004323820A (en) Polyolefin microporous membrane and method for producing the same
JP3486785B2 (en) Battery separator and method of manufacturing the same
WO2021065283A1 (en) Polyolefin microporous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2018154834A (en) Method for producing polyolefin microporous film, battery separator, and nonaqueous electrolyte secondary battery
JP2016188374A (en) Method for producing polyolefin microporous film, battery separator, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 11