JP2004323820A - Polyolefin microporous membrane and method for producing the same - Google Patents

Polyolefin microporous membrane and method for producing the same Download PDF

Info

Publication number
JP2004323820A
JP2004323820A JP2003278618A JP2003278618A JP2004323820A JP 2004323820 A JP2004323820 A JP 2004323820A JP 2003278618 A JP2003278618 A JP 2003278618A JP 2003278618 A JP2003278618 A JP 2003278618A JP 2004323820 A JP2004323820 A JP 2004323820A
Authority
JP
Japan
Prior art keywords
stretching
microporous membrane
membrane
battery
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003278618A
Other languages
Japanese (ja)
Other versions
JP4220329B2 (en
Inventor
Hiroshi Hatayama
博司 畑山
Shinya Kawazoe
慎也 河添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2003278618A priority Critical patent/JP4220329B2/en
Publication of JP2004323820A publication Critical patent/JP2004323820A/en
Application granted granted Critical
Publication of JP4220329B2 publication Critical patent/JP4220329B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyolefin microporous membrane having a dense membrane structure and good permeation characteristics together with low shrinkage at a high temperature, making initial battery performance compatible with cycle performance, and suitable as a separator for a secondary battery such as lithium ion secondary battery excellent also in safety, and to provide a method for producing the membrane. <P>SOLUTION: This polyolefin microporous membrane has water permeability/air permeability balance of 0.8×10<SP>-3</SP>-1.7×10<SP>-3</SP>and a bubble point of >0.5 MPa and <1.0 MPa. This method for producing the membrane comprises not less than three times stretching in transverse direction (TD) before extraction as indispensable process and after the extraction, stretching at least in machin direction (MD) is performed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はポリオレフィン微多孔膜、その製造方法及びその電池セパレータへの適用に関する。   The present invention relates to a microporous polyolefin membrane, a method for producing the same, and its application to a battery separator.

ポリオレフィン微多孔膜は、精密濾過膜、電池用セパレータ、コンデンサー用セパレータ等に使用されている。その中で近年、特にリチウムイオン2次電池用途の需要が伸びており、電池の高エネルギー密度化に伴って、セパレータ にも高性能、高安全性が要求されるようになった。
リチウムイオン二次電池用セパレータには、突き刺し強度で表される電池の組立性能と深い関わり合いのある高い機械強度と共に、電池の出力特性を向上させるための高いイオン透過性能、異常発熱時にイオン透過や短絡を抑制し発火等を防ぐ安全性能を併せ持つことが求められている。
Polyolefin microporous membranes are used for microfiltration membranes, battery separators, condenser separators, and the like. In recent years, in particular, demand for lithium ion secondary battery applications has been growing, and as the energy density of batteries has increased, high performance and high safety have also been required for separators.
Lithium-ion secondary battery separators have high mechanical strength that is closely related to battery assembly performance expressed by puncture strength, high ion transmission performance to improve battery output characteristics, and ion transmission during abnormal heat generation. It is also required to have a safety performance that suppresses a short circuit and prevents a fire or the like.

電池の出力特性とは、大電流での放電性能や低温での放電性能といった電流特性や、サイクル特性、高温保存特性といった寿命に関する特性であり、セパレータのイオン透過性能が高い程良く、イオン透過性能と関係深い物性としてはバブルポイントや透気度に代表される気体透過性と、透水量に代表される液体透過性等とされている。また、最近の電池の高エネルギー密度化の要求に伴い、初期容量を高く維持する工夫も重要になってきている。一方、高エネルギー密度化により異常時における発熱量、発熱速度は増大する傾向であり、ヒューズによる電流遮断後もしばらくは高温状態で維持されるために、高温時の膜収縮が低いことが望まれる。   The output characteristics of a battery are current characteristics such as discharge performance at a large current and discharge performance at a low temperature, and life-related characteristics such as cycle characteristics and high-temperature storage characteristics. The higher the separator's ion permeability, the better the ion permeability. Physical properties closely related to the above include gas permeability represented by a bubble point and air permeability, and liquid permeability represented by a water permeability. In addition, with the recent demand for higher energy density of batteries, it has become important to keep the initial capacity high. On the other hand, the amount of heat generated during abnormal times and the rate of heat generation tend to increase due to the increase in energy density, and since the current is maintained at a high temperature for a while even after current interruption by a fuse, it is desired that film shrinkage at high temperatures be low. .

微多孔膜の製造技術において、ポリマーと可塑剤よりなる組成物から、相分離プロセスにより微多孔膜前駆体を形成せしめ、これに可塑剤抽出除去のプロセスや延伸薄膜化のプロセスを適用して微多孔膜とする技術は公知である。このような公知技術の中で、延伸を行う段階を抽出プロセスの前または後に実施するかによって、それぞれ抽出前延伸、または抽出後延伸と呼ぶものとすると、抽出前延伸によるプロセスの場合、効率的にマトリックス樹脂に配向を付与し強度を高めることができ、緻密な小孔径の孔構造を持つ微多孔膜を製造することができる。一方、抽出後延伸によるプロセスの場合、延伸によって界面破壊が支配的に進むので、大孔径で透過性能が高い微多孔膜を得ることができる。   In the microporous membrane manufacturing technology, a microporous membrane precursor is formed from a composition consisting of a polymer and a plasticizer by a phase separation process, and a plasticizer extraction and removal process and a stretched thinning process are applied to the precursor. Techniques for forming a porous membrane are known. In such known techniques, depending on whether the step of performing stretching is performed before or after the extraction process, it is referred to as pre-extraction stretching or post-extraction stretching, respectively. The orientation can be imparted to the matrix resin to increase the strength, and a microporous membrane having a fine pore structure with a small pore size can be manufactured. On the other hand, in the case of the process by stretching after extraction, the interface breakdown predominantly proceeds by stretching, so that a microporous membrane having a large pore size and high permeability can be obtained.

この2つの製法により得られる微多孔膜をリチウムイオン二次電池用セパレータとして用いた場合、上記の機械的特性、電池的特性を考えると相反する特徴を示す。すなわち、抽出前延伸による小孔径膜は、高い機械的強度と共に電池作成時の初期容量の維持に優れるがサイクル特性に劣り、一方、抽出後延伸による大孔径膜は、サイクル特性に優れるが初期容量の低下と機械的強度が弱いという特徴を示す。   When the microporous membrane obtained by these two methods is used as a separator for a lithium ion secondary battery, it exhibits contradictory characteristics in view of the above mechanical characteristics and battery characteristics. In other words, a small-pore membrane formed by stretching before extraction has high mechanical strength and is excellent in maintaining the initial capacity at the time of battery preparation, but is inferior in cycle characteristics. On the other hand, a large-pore membrane formed by stretching after extraction is excellent in cycle properties but has an initial capacity. And the mechanical strength is weak.

機械的強度の強弱については各々の製法に起因することが容易に類推できる。一方、電池的特性の優劣については以下のように解釈できる。すなわち、サイクル特性において小孔径膜が劣る要因は、充放電を繰り返す二次電池内では充放電に伴う正負極活物質の膨張収縮による活物質のはく離や電解液の副反応により生成する物質等による微多孔の目詰まりが徐々に起こるため、小孔径膜では充放電サイクルを重ねる内に目詰まりが激しくなり、初期の電池性能が維持できなくなるためである。一方、大孔径膜は目詰まりしにくく性能が維持される。   It can be easily inferred that the strength of the mechanical strength is caused by each manufacturing method. On the other hand, the superiority of battery characteristics can be interpreted as follows. That is, the factor that the small pore membrane is inferior in the cycle characteristics is due to the material generated by the separation of the active material due to the expansion and contraction of the positive and negative electrode active materials accompanying the charge and discharge and the side reaction of the electrolytic solution in the secondary battery which repeats the charge and discharge. This is because microporous clogging occurs gradually, and in a small-pore membrane, the clogging becomes severe during repeated charge / discharge cycles, and the initial battery performance cannot be maintained. On the other hand, large pore membranes are hardly clogged and maintain their performance.

一方、大孔径膜が電池の初期容量に劣る要因は、表面孔構造の不均一さから初期充放電の際に電流集中によって析出して使われなくなってしまう金属リチウムが多いためと考えられる。電池の初期容量に関してはその重要性にも関わらずあまり着目されてこなかったが、電池の高エネルギー密度化要求の厳しい今日において、初期容量を高く維持しつつ、サイクル特性も維持できるセパレータは非常に有用であると言える。   On the other hand, it is considered that the reason why the large pore membrane is inferior to the initial capacity of the battery is that a large amount of metallic lithium is deposited and is not used due to current concentration at the time of initial charge / discharge due to uneven surface pore structure. Regarding the initial capacity of batteries, despite their importance, little attention has been paid to them.However, in today's strict demand for higher energy density of batteries, separators that can maintain high initial capacity and maintain cycle characteristics are extremely very popular. It can be useful.

また安全性能に関しては、セパレータの機能としてヒューズ機能がある。これは短絡や高温下にさらされるなどにより電池が異常発熱を起こした場合に、微多孔膜の孔を閉塞する事によりイオンの透過を遮断し、更なる発熱の進行を抑制する機能である。しかしながら、高容量化、高密度化が進む現在、異常発熱した際の発熱量は大きく、急激に温度上昇するために、ヒューズ後でも電池内部はセパレータが溶融するような極めて高温に達する場合がある。溶融状態では高度に延伸されたセパレータは大きく収縮し、電極同士が接することにより再短絡した危険な状態となる場合がある。そのため融点以上の高温時での形状保持に優れているセパレータが熱望されており、その中でも大部分の電池ではセパレータはMD方向に巻回されていることから、特にTD方向の形状保持性に優れているセパレータは大変有用であると言える。ここで言うMD方向とは、機械方向、すなわちセパレータの連続製膜時の巻き取り方向であり、TD方向とはMD方向に垂直な幅方向のことである。   As for the safety performance, there is a fuse function as a function of the separator. This is a function of blocking the permeation of ions by closing the pores of the microporous membrane when the battery generates abnormal heat due to a short circuit or exposure to a high temperature, thereby suppressing the further heat generation. However, at present, as the capacity and density are increasing, the amount of heat generated when abnormal heat is generated is large and the temperature rises rapidly, so that even after the fuse, the inside of the battery may reach an extremely high temperature at which the separator melts. . In the molten state, the highly stretched separator shrinks greatly, and when the electrodes come into contact with each other, a dangerous state of re-short circuiting may occur. For this reason, there is a strong demand for a separator having excellent shape retention at a high temperature of the melting point or higher. In most batteries, since the separator is wound in the MD direction, it is particularly excellent in shape retention in the TD direction. The separator is very useful. Here, the MD direction is a machine direction, that is, a winding direction during continuous film formation of the separator, and the TD direction is a width direction perpendicular to the MD direction.

透過性と膜強度の維持を目的として以下の公知の方法では、抽出前延伸と抽出後延伸を併用する等の製法を開示しているが、以下に示す問題点と共にいずれも電池の初期容量の維持には着目しておらず、初期容量を高く維持しつつ、サイクル性も維持可能な微多孔膜を得るには至っていない。
特許文献1では、高透過性ではあるが気孔率が高く電池用セパレータ用途としては膜強度が弱い。
特許文献2では、抽出前延伸と抽出後延伸を併用し、更に熱処理を施すことにより、強度を損なうことなく、自在に透過性能を調節でき、同時に高温における寸法安定性に優れたポリオレフィン微多孔膜を製造する方法が開示されているが、初期容量を高く維持しつつ、サイクル性も維持可能な微多孔膜を得るには至っていない。
また特許文献3では、抽出後の延伸温度を低温に規定することで適度な大きさの貫通孔とシャープな孔径分布を有する微多孔膜の製造方法が開示されているが、これにより得られる膜の孔径は大きく、また気孔率も高くなるため、電池セパレータ用途では電解液の保液性に劣る。孔径が大きくなり、気孔率が高くなる理由は定かではないが、低温で延伸することで局部延伸は生じないが、延伸応力が樹脂自身の延伸配向には使われずに空孔の拡大のみに使われるためであると考えられる。
In the following known methods for the purpose of maintaining the permeability and the membrane strength, the production methods such as using both pre-extraction stretching and post-extraction stretching are disclosed, but together with the problems described below, both of the initial capacity of the battery are reduced. No attention has been paid to maintenance, and a microporous membrane that can maintain the cycle capacity while maintaining a high initial capacity has not yet been obtained.
In Patent Document 1, although having high permeability, the porosity is high and the film strength is low for use as a battery separator.
Patent Document 2 discloses that a microporous polyolefin membrane which can be freely adjusted in permeation performance without impairing strength by simultaneously using stretching before extraction and stretching after extraction and further performing heat treatment, and at the same time, has excellent dimensional stability at high temperatures. Is disclosed, but a microporous membrane which can maintain a high initial capacity and also maintain a cycle property has not been obtained.
Patent Document 3 discloses a method for producing a microporous membrane having a moderately large through-hole and a sharp pore size distribution by regulating the stretching temperature after extraction to a low temperature. Has a large pore size and a high porosity, and therefore has poor electrolyte retention properties in battery separator applications. It is not clear why the pore size increases and the porosity increases, but stretching at low temperatures does not cause local stretching, but the stretching stress is not used for stretching the resin itself, but only for expanding pores. It is thought that it is done.

安全性に関しては、特許文献2では、高温における寸法安定性に優れたポリオレフィン微多孔膜を開示しているが、高温とはどの程度の温度か詳細に記述されておらず、また「熱収縮率は微多孔膜の高温における寸法安定性を評価する指標であり」との記述があるが、熱収縮率の測定条件が100℃、2時間であることから、本発明で問題にしている、セパレータが溶融状態になるような高温時のことを記述したものではない。   Regarding safety, Patent Document 2 discloses a polyolefin microporous membrane having excellent dimensional stability at high temperatures, but does not describe in detail how high the temperature is. Is an index for evaluating the dimensional stability of the microporous membrane at high temperatures. "However, since the measurement condition of the heat shrinkage is 100 ° C. for 2 hours, the separator which is a problem in the present invention, It is not a description of a high temperature at which the material becomes a molten state.

特許文献4では、特定の温度で熱処理することにより縦方向の熱収縮率が20%以下であり、横方向の熱収縮率が15%以下である微多孔膜および製造方法を開示しているが、これは105℃での収縮率であり、ヒューズ温度以下の低温での収縮についてしか着目しておらず、ヒューズ温度以上での収縮については記述されていない。
特許文献5では、ヒューズ温度以上の高温での耐熱性、低収縮性の優れた微多孔膜および製造方法が開示されているが、これにより得られる膜はMD方向に3倍以上の延伸倍率で延伸した後、TD方向に20〜80%縮める工程が必須であるために透過性能が劣る。さらに高強度の観点から、MD方向に3倍以上、好ましくは5〜20倍延伸することが記述されているが、MD方向にのみ著しく延伸するためにMD方向とTD方向の異方性が大きく、縦裂けしやすい構造となりデンドライト析出結晶などによる破膜が起こり易い。ゆえに初期電池特性、サイクル特性、安全性の3者を満たすことはできない。
Patent Document 4 discloses a microporous membrane and a manufacturing method in which the heat shrinkage in the vertical direction is 20% or less and the heat shrinkage in the horizontal direction is 15% or less by heat treatment at a specific temperature. This is a shrinkage rate at 105 ° C., and focuses only on shrinkage at a low temperature equal to or lower than the fuse temperature, but does not describe shrinkage at a fuse temperature or higher.
Patent Document 5 discloses a microporous film excellent in heat resistance and low shrinkage at a high temperature equal to or higher than the fuse temperature and a manufacturing method. The film obtained by this method has a draw ratio of 3 times or more in the MD direction. After stretching, a step of reducing by 20 to 80% in the TD direction is indispensable, so that the transmission performance is inferior. Further, from the viewpoint of high strength, it is described that the film is stretched 3 times or more, preferably 5 to 20 times in the MD direction. However, since the film is significantly stretched only in the MD direction, the anisotropy in the MD direction and the TD direction is large. In this case, the structure is apt to be vertically torn, and the film is easily broken by dendrite precipitation crystals or the like. Therefore, the initial battery characteristics, cycle characteristics, and safety cannot be satisfied.

また特許文献1、及び3では収縮について着目されていない。
大孔径膜のサイクル特性と小孔径膜の初期電池特性、及び高い安全性を併せ持つリチウムイオン二次電池用セパレータ、つまり良好な透過性能と緻密な膜構造、及び高温時の低収縮性を併せ持つ微多孔膜の出現が熱望されていた。
特公平6-21177号公報 特開平11-60789号公報 特許第2657430号公報 特開平9−12756号公報 特開2003−119306号公報
Patent Documents 1 and 3 do not pay attention to shrinkage.
A separator for a lithium ion secondary battery that combines the cycle characteristics of a large pore membrane with the initial battery properties of a small pore membrane, and high safety, that is, a microporous membrane that has both good permeability and a dense membrane structure, and low shrinkage at high temperatures. The emergence of porous membranes has been eagerly desired.
Japanese Patent Publication No. 6-21177 JP-A-11-60789 Japanese Patent No. 2657430 JP-A-9-12756 JP 2003-119306 A

本発明は、良好な透過性能と緻密な膜構造、及び高温時の低収縮性を併せ持ち、リチウムイオン等の二次電池用セパレータとして用いた場合にサイクル特性と初期電池特性を両立でき、安全性にも優れたポリオレフィン微多孔膜及びその製造方法を提供するものである。   The present invention has both good permeability performance, a dense membrane structure, and low shrinkage at high temperatures, and when used as a separator for a secondary battery such as a lithium ion, can achieve both cycle characteristics and initial battery characteristics, and can be used safely. And to provide a method for producing the same.

本発明者らは前記課題に対して鋭意研究を重ねた結果、ポリオレフィン微多孔膜の製造方法において、抽出前及び後の延伸工程の各々で特定の方向及び倍率に延伸させることで、特定範囲の透水量/透気量バランスと特定範囲のバブルポイントを有し、さらに高温時の収縮が低減できること、その膜が電池の初期容量を高く維持しつつ、サイクル性も維持できる安全性に優れたセパレータとして有用であることを見出し、本発明を為すに至った。   The present inventors have conducted intensive studies on the above problems, and as a result, in the method for producing a polyolefin microporous membrane, by stretching in a specific direction and magnification in each of the stretching steps before and after extraction, a specific range of A separator that has a balance of water permeability / air permeability and a specific range of bubble points, is capable of reducing shrinkage at high temperatures, and has excellent safety, in which the membrane maintains a high initial capacity of the battery and maintains cycleability. As a result, the present invention has been found to be useful.

すなわち、本発明は下記の通りである。
(1)透水量/透気量の比が0.8×10−3〜1.7×10−3で且つバブルポイントが0.5MPaを越え1.0MPa未満であることを特徴とするポリオレフィン微多孔膜。
(2)MD方向を固定した状態でのTD方向の収縮率が、150℃において20%未満であることを特徴とする上記(1)に記載のポリオレフィン微多孔膜。
(3)(a)ポリオレフィン樹脂と可塑剤からなる組成物を溶融混練し、押出して冷却固化させシート状に成形する工程、(b)前記工程(a)の後にTD方向に3倍以上の延伸を行う工程、(c)前記工程(b)の後に、前記可塑剤を抽出する工程、(d)前記工程(c)の後に、少なくともMD方向に、少なくとも1回の延伸を行う工程を含むことを特徴とする上記(1)または(2)に記載の微多孔膜の製造方法。
(4)上記(1)または(2)に記載のポリオレフィン製微多孔膜からなることを特徴とする電池用セパレータ。
That is, the present invention is as follows.
(1) Polyolefin fine particles characterized in that the ratio of water permeability / air permeability is 0.8 × 10 −3 to 1.7 × 10 −3 and the bubble point is more than 0.5 MPa and less than 1.0 MPa. Porous membrane.
(2) The microporous polyolefin membrane according to (1), wherein the shrinkage in the TD direction in a state where the MD direction is fixed is less than 20% at 150 ° C.
(3) (a) a step of melt-kneading a composition comprising a polyolefin resin and a plasticizer, extruding, cooling and solidifying to form a sheet, and (b) stretching three or more times in the TD direction after the step (a). (C) extracting the plasticizer after the step (b), and (d) performing at least one stretching in the MD direction at least once after the step (c). The method for producing a microporous membrane according to the above (1) or (2), characterized in that:
(4) A battery separator comprising the polyolefin microporous membrane according to (1) or (2).

本発明のポリオレフィン微多孔膜は、良好な透過性能と緻密な膜構造、及び高温時の低収縮性を併せ持ち、初期電池特性とサイクル特性を両立でき、安全性にも優れたリチウムイオン等の二次電池用セパレータとして好適である。   The microporous polyolefin membrane of the present invention has both good permeability and a dense membrane structure, and low shrinkage at high temperatures, and is capable of satisfying both initial battery characteristics and cycle characteristics and excellent in safety, such as lithium ion. It is suitable as a separator for a secondary battery.

以下、本発明について、特にその好ましい態様を中心に、詳細に説明する。本発明における透水量、透気量とは微多孔膜の単位時間、単位圧力、単位面積当たりの水及び空気の透過量のことであり、水の透過速度定数Rliq(m/(m・sec・Pa))を透水量、空気の透過速度定数Rgas(m/(m・sec・Pa))を透気量とする。
ここで透気量とは、JIS P-8117準拠のガーレー式透気度計にて測定
される透気度の値を換算した値である。
本願発明の膜の、透水量/透気量の比は、0.8×10−3〜1.7×10−3の範囲にあることが必要である。好ましい範囲は1.0×10−3〜1.5×10−3である。この比が0.8×10−3未満では放電特性が低下する傾向にあり、また、1.7×10−3を越えると初期の電池容量が低下する傾向にあるため好ましくない。
Hereinafter, the present invention will be described in detail with particular emphasis on preferred embodiments. The water permeation amount and the air permeation amount in the present invention are the permeation amount of water and air per unit time, unit pressure, and unit area of the microporous membrane, and the water permeation rate constant Rliq (m 3 / (m 2 ··· sec · Pa)) is the amount of water permeation, and the air permeation rate constant Rgas (m 3 / (m 2 · sec · Pa)) is the amount of air permeation.
Here, the air permeability is a value obtained by converting the value of the air permeability measured by a Gurley air permeability meter based on JIS P-8117.
The ratio of water permeability / air permeability of the membrane of the present invention needs to be in the range of 0.8 × 10 −3 to 1.7 × 10 −3 . A preferred range is from 1.0 × 10 −3 to 1.5 × 10 −3 . When the ratio is less than 0.8 × 10 −3 , the discharge characteristics tend to decrease, and when the ratio exceeds 1.7 × 10 −3 , the initial battery capacity tends to decrease, which is not preferable.

透水量は好ましくは3×10−10〜4×10−9/(m・sec・Pa)の範囲にあり、より好ましくは4×10−10〜2×10−9/(m・sec・Pa)、更に好ましくは4×10−10〜1.5×10−9/(m・sec・Pa)である。電池用セパレータに適用する場合、透水量が3×10−10/(m・sec・Pa)より小さいと電解液の含浸速度が遅くなる傾向がある。また、透水量が4×10−9/(m・sec・Pa)より大きいと電解液の保液性が低下する傾向がある。
また、本発明の膜の透気量は好ましくは、3×10−7〜3×10−6/(m・sec・Pa)、より好ましくは4×10−7〜1.5×10−6/(m・sec・Pa)、さ らに好ましくは4×10−7〜1×10−6/(m・sec・Pa)、である。透気量が3×10−7/(m・sec・Pa)より小さいと、電池の低温での放電特性が低下する傾向にあり、また3×10−6/(m・sec・Pa)より大きいと電池セパレータとして使用した場合に正・負極の短絡が起こりやすくなる。
The water permeability is preferably in the range of 3 × 10 −10 to 4 × 10 −9 m 3 / (m 2 · sec · Pa), and more preferably 4 × 10 −10 to 2 × 10 −9 m 3 / ( m 2 · sec · Pa), more preferably 4 × 10 −10 to 1.5 × 10 −9 m 3 / (m 2 · sec · Pa). When applied to a battery separator, if the water permeability is smaller than 3 × 10 −10 m 3 / (m 2 · sec · Pa), the impregnation rate of the electrolyte tends to be slow. If the water permeability is larger than 4 × 10 −9 m 3 / (m 2 · sec · Pa), the liquid retention of the electrolytic solution tends to decrease.
The air permeability of the membrane of the present invention is preferably 3 × 10 −7 to 3 × 10 −6 m 3 / (m 2 · sec · Pa), and more preferably 4 × 10 −7 to 1.5 ×. 10 −6 m 3 / (m 2 · sec · Pa), and more preferably 4 × 10 −7 to 1 × 10 −6 m 3 / (m 2 · sec · Pa). If the air permeability is less than 3 × 10 −7 m 3 / (m 2 · sec · Pa), the discharge characteristics of the battery at low temperatures tend to be reduced, and 3 × 10 −6 m 3 / (m 2 (Sec · Pa), a short circuit between the positive and negative electrodes is likely to occur when used as a battery separator.

また、本願発明の膜のバブルポイントは0.5MPaを越え1MPa未満の範囲にあることが必要である。好ましい範囲は0.6〜0.9MPaである。バブルポイント法は最大孔径を表す簡易な方法として知られているが、バブルポイントが0.5MPa以下では、孔が粗大化して膜強度の低下を招き、電池作成時の巻回不良を引き起こす恐れがあり、一方、1.0MPa以上では孔が緻密すぎて十分なサイクル特性が得られない。   Further, the bubble point of the film of the present invention needs to be in a range of more than 0.5 MPa and less than 1 MPa. A preferred range is 0.6 to 0.9 MPa. The bubble point method is known as a simple method of expressing the maximum pore diameter. However, when the bubble point is 0.5 MPa or less, the pores may be coarsened and the film strength may be reduced, which may cause poor winding during battery production. On the other hand, if the pressure is 1.0 MPa or more, the pores are too dense and sufficient cycle characteristics cannot be obtained.

さらに、本発明膜の大きな特徴は、熱収縮率が20%未満であることである。ここで言う熱収縮とは、MD方向に収縮できないようにMD両端部を固定した状態での150℃におけるTD方向の収縮率である。電池内においてセパレータはMD方向に捲回されており、特に角型の電池においては捲回物を潰した構成となっている。そのためセパレータのMD方向は固定された状態となり収縮は出来ない。一方TD方向は固定されておらず収縮は容易である。150℃での収縮率が20%以上であるとセパレータの収縮が大きいために、ヒューズ機能による電流遮断後に電極が露出し、電極同士が接することにより再短絡し、発熱、発火の危険性が増大する。150℃におけるセパレータの収縮率は20%未満、好ましくは15%未満、さらに好ましくは10%未満である。   Further, a major feature of the film of the present invention is that the heat shrinkage is less than 20%. The term “thermal shrinkage” as used herein refers to a shrinkage ratio in the TD direction at 150 ° C. in a state where both ends of the MD are fixed so as not to shrink in the MD direction. In the battery, the separator is wound in the MD direction, and particularly in a rectangular battery, the wound material is crushed. Therefore, the MD direction of the separator is fixed and cannot be shrunk. On the other hand, the TD direction is not fixed and contraction is easy. If the shrinkage at 150 ° C. is 20% or more, the separator shrinks greatly, so the electrodes are exposed after the current is cut off by the fuse function, and short-circuit occurs again when the electrodes come into contact with each other, increasing the risk of heat generation and ignition. I do. The separator shrinkage at 150 ° C. is less than 20%, preferably less than 15%, more preferably less than 10%.

次に、本発明のポリオレフィン微多孔膜の好ましい製造方法例について説明する。本発明の製造方法の(a)の工程において、ポリオレフィン樹脂と可塑剤を溶融混練する方法は、ポリオレフィン樹脂を押出機、ニーダー等の樹脂混練装置に投入し、樹脂を加熱溶融させながら任意の比率で可塑剤を導入し、更に樹脂と可塑剤よりなる組成物を混練することにより、均一溶液を得る方法が好ましい。また、予め樹脂と可塑剤を混練したものを投入しても良い。投入するポリオレフィン樹脂の形態は、粉末状、顆粒状、ペレット状の何れでも良い。また、このような方法によって混練する場合は、可塑剤の形態は常温液体であることが好ましい。押出機としては、単軸スクリュー式押出機、二軸異方向スクリュー式押出機、二軸同方向スクリュー式押出機等が使用できる。   Next, a preferred example of the method for producing the microporous polyolefin membrane of the present invention will be described. In the step (a) of the production method of the present invention, the method of melt-kneading the polyolefin resin and the plasticizer is as follows. The polyolefin resin is charged into a resin kneading device such as an extruder or a kneader, and the resin is heated and melted at an arbitrary ratio. Is preferable to obtain a uniform solution by introducing a plasticizer and kneading a composition comprising a resin and a plasticizer. Moreover, what kneaded the resin and the plasticizer in advance may be charged. The form of the polyolefin resin to be charged may be any of powder, granule and pellet. When kneading by such a method, the form of the plasticizer is preferably a liquid at room temperature. As the extruder, a single screw type extruder, a twin screw different direction screw type extruder, a twin screw same direction screw type extruder, or the like can be used.

本発明の製造方法の(a)の工程において、押し出して冷却固化させシート状の微多孔膜前駆体を製造する方法は、樹脂と可塑剤の均一溶液をTダイ等を介してシート状に押し出し、熱伝導体に接触させて樹脂の結晶化温度より充分に低い温度まで冷却することにより行うことが好ましい。用いられる熱伝導体としては、金属、水、空気、あるいは可塑剤自身が使用できるが、特に金属製のロールに接触させて冷却する方法が最も熱伝導の効率が高く好ましい。また、金属製のロールに接触させる際に、ロール間で挟み込む等してカレンダー成形または熱間圧延を施すと、更に熱伝導の効率が高まり、またシートが配向して膜強度が増し、シートの表面平滑性も向上するため好ましい。   In the step (a) of the production method of the present invention, the method for producing a sheet-like microporous membrane precursor by extruding and cooling and solidifying is a method of extruding a uniform solution of a resin and a plasticizer into a sheet via a T-die or the like. It is preferable that the heat treatment is performed by contacting with a heat conductor and cooling to a temperature sufficiently lower than the crystallization temperature of the resin. As the heat conductor to be used, metal, water, air, or the plasticizer itself can be used, but a method of cooling by contacting with a metal roll is particularly preferred because it has the highest heat conduction efficiency. Also, when contacting a metal roll, calendering or hot rolling by sandwiching between the rolls, etc., further increases the efficiency of heat conduction, and the sheet is oriented to increase the film strength, and the sheet strength is increased. It is preferable because the surface smoothness is also improved.

圧延する場合、圧延前のシート厚と圧延後のシート厚の比のことを圧延比と呼ぶが、圧延比の好ましい範囲は1.5〜8倍、更に好ましくは2〜5倍の範囲である。ここでいう圧延前のシート厚とはTダイ等のリップ間隔のことを指し、圧延後のシート厚とは圧延後に得られたシートの厚みのことを指す。圧延比が1.5倍未満ではシートの配向が不十分な場合がある。また8倍を越えると均一な膜厚のシートを得にくくなる傾向がある。また、Tダイ出口から圧延ロール接触点までのエアギャップは通常10〜200mmの範囲が好ましい。
圧延ロールの温度は、20℃から110 ℃未満の範囲の温度が好ましく、更に好ましくは70℃から100℃の範囲の温度である。圧延ロールの温度が20℃より低いと圧延性が低下する傾向がある。圧延ロールの温度が110 ℃以上であると、樹脂融点に近く樹脂と可塑剤の均一溶液が十分に固化しにくくなる傾向がある。
In the case of rolling, the ratio between the sheet thickness before rolling and the sheet thickness after rolling is referred to as a rolling ratio. A preferable range of the rolling ratio is 1.5 to 8 times, and more preferably a range of 2 to 5 times. . Here, the sheet thickness before rolling refers to the lip interval of a T-die or the like, and the sheet thickness after rolling refers to the thickness of the sheet obtained after rolling. If the rolling ratio is less than 1.5 times, the orientation of the sheet may be insufficient. On the other hand, if it exceeds 8 times, it tends to be difficult to obtain a sheet having a uniform thickness. The air gap from the exit of the T die to the contact point of the rolling roll is usually preferably in the range of 10 to 200 mm.
The temperature of the rolling roll is preferably in the range of 20 ° C to less than 110 ° C, more preferably in the range of 70 ° C to 100 ° C. If the temperature of the rolling roll is lower than 20 ° C., the rollability tends to decrease. When the temperature of the rolling roll is 110 ° C. or higher, the melting point of the resin tends to be close to the melting point of the resin, and it is difficult to sufficiently solidify a uniform solution of the resin and the plasticizer.

本発明の製造方法の(c)の工程において、可塑剤を抽出する方法はバッチ式、連続式のいずれでもよいが、抽出溶剤に微多孔膜を浸漬することにより可塑剤を抽出し、充分に乾燥させ、可塑剤を微多孔膜から実質的に除去することが肝要である。微多孔膜の収縮を抑えるために、浸漬、乾燥の一連の工程中に微多孔膜の端部を拘束することは好ましい。また、抽出後の微多孔膜中の可塑剤残存量は1重量%未満にすることが好ましい。
本発明の製造方法においては、抽出工程の前に行う延伸を抽出前延伸[(b)工程]と呼び、TD方向に3倍以上延伸を行う工程が必須である。また同時2軸延伸及び逐次2軸延伸を含んでも良い。さらに延伸の回数は、1段延伸、多段延伸、多数回延伸等のいずれでも良く、延伸にはテンター、ロール延伸機等公知の延伸装置を用いることが可能である。
In the step (c) of the production method of the present invention, the method of extracting the plasticizer may be any of a batch type and a continuous type. However, the plasticizer is extracted by immersing the microporous membrane in an extraction solvent and sufficiently extracted. It is important to dry and substantially remove the plasticizer from the microporous membrane. In order to suppress shrinkage of the microporous membrane, it is preferable to restrain the end of the microporous membrane during a series of steps of dipping and drying. Further, it is preferable that the residual amount of the plasticizer in the microporous membrane after extraction is less than 1% by weight.
In the production method of the present invention, the stretching performed before the extraction step is referred to as “pre-extraction stretching (step (b)”), and a step of stretching three times or more in the TD direction is essential. Further, simultaneous biaxial stretching and sequential biaxial stretching may be included. Further, the number of times of stretching may be any of one-stage stretching, multi-stage stretching, many-time stretching, and the like, and a known stretching device such as a tenter or a roll stretching machine can be used for stretching.

本発明における抽出前延伸では、TD方向に3倍以上延伸することが、本発明で言うところの緻密な膜構造を得る上で必須であり、TD方向への延伸倍率は好ましくは4〜10倍である。抽出前延伸では、可塑剤が微多孔膜の微孔内部、結晶間隙、及び非晶部に高次に分散された状態で延伸するので、可塑化効果により延伸性が良くなるとともに、微多孔膜の気孔率の増大を抑制する効果がある。延伸倍率が3倍未満では、続く抽出後の延伸工程を行った時に、緻密な膜構造が維持されず、孔径が粗大化してしまい緻密な膜構造を得られない。一方、延伸倍率が10倍を越えると高温時のTD方向の収縮量が大きくなる傾向がある。   In the stretching before extraction in the present invention, stretching in the TD direction by 3 times or more is indispensable for obtaining a dense membrane structure referred to in the present invention, and the stretching ratio in the TD direction is preferably 4 to 10 times. It is. In the pre-extraction stretching, the plasticizer is stretched in a state in which the plasticizer is highly dispersed in the micropores, crystal gaps, and amorphous portions of the microporous membrane. Has an effect of suppressing an increase in the porosity of the steel. When the stretching ratio is less than 3 times, when a subsequent stretching step after extraction is performed, a dense membrane structure is not maintained, and the pore diameter becomes coarse, so that a dense membrane structure cannot be obtained. On the other hand, if the stretching ratio exceeds 10 times, the amount of shrinkage in the TD direction at high temperatures tends to increase.

延伸温度は、ポリオレフィン微多孔膜の融点Tm ℃より50℃低い温度からTm ℃未満の範囲の温度が好ましく、更に好ましくはポリオレフィン微多孔膜の融点Tm ℃より40℃低い温度からTm ℃より5℃低い温度未満の範囲の温度で行う。延伸温度がTm ℃より50℃低い温度未満であると延伸性が低下する傾向がある。延伸温度がTm ℃以上であると、微多孔膜が融解し透過性能を損なう傾向がある。   The stretching temperature is preferably in the range of from 50 ° C. lower than the melting point Tm ° C. of the polyolefin microporous membrane to less than Tm ° C., and more preferably from 40 ° C. lower than the melting point Tm ° C. of the polyolefin microporous membrane to 5 ° C. below Tm ° C. Perform at temperatures below the lower temperature. If the stretching temperature is lower than a temperature 50 ° C. lower than Tm ° C., the stretchability tends to decrease. If the stretching temperature is higher than Tm ° C., the microporous membrane tends to melt and impair the permeability.

本発明の製造方法においては、抽出工程の後に行う延伸を抽出後延伸[(d)工程]と呼び、少なくともMD方向に、少なくとも1回の延伸工程が必須である。
少なくともMD方向とは、同時2軸延伸及びまたは逐次2軸延伸を含んでも良いことを意味する。また、少なくとも1回とは、1段延伸、多段延伸、または多数回延伸のことをいう。本発明の製造方法において、抽出工程の後に少なくともMD方向に、少なくとも1回の延伸工程が必要な理由は2つある。一つは、抽出後にMD方向に延伸しなければ、バブルポイントが1.0MPa以上となり、電池に組み込んだ時良好なサイクル特性を発現することができない点であり、もう一つは、MD方向に延伸することにより理由は定かではないが高温時の収縮を抑制できる点である。
In the production method of the present invention, the stretching performed after the extraction step is referred to as post-extraction stretching (step (d)), and at least one stretching step is required at least in the MD direction.
At least the MD direction means that simultaneous biaxial stretching and / or sequential biaxial stretching may be included. The term "at least once" means one-stage stretching, multi-stage stretching, or many-time stretching. In the production method of the present invention, at least one stretching step is required at least in the MD direction after the extraction step for two reasons. One is that if the film is not stretched in the MD direction after extraction, the bubble point becomes 1.0 MPa or more, so that good cycle characteristics cannot be exhibited when incorporated into a battery. Although the reason is not clear by stretching, shrinkage at high temperature can be suppressed.

抽出後延伸の倍率は任意の倍率に設定できるが、MD方向のみの倍率では、好ましくは5倍以内、より好ましくは1.1〜3倍、2軸方向の面積倍率で、好ましくは10倍以内、より好ましくは1.4〜6倍である。MD方向に5倍を越えて抽出後延伸すると抽出前延伸と併用したにも関わらず孔径が過度に増大する傾向がある。一方、1.1倍未満ではバブルポイントが1.0MPa以上となる場合がある。
抽出後延伸の温度は、ポリオレフィン微多孔膜の融点Tm ℃より50℃低い温度からTm ℃未満の範囲の温度が好ましく、更に好ましくはポリオレフィン微多孔膜の融点Tm ℃より40℃低い温度からTm ℃より5℃低い温度未満の範囲の温度で行う。延伸温度がTm℃より50℃低い温度未満であると延伸性が低下する傾向があり、また延伸後の歪み成分が残りやすく、高温における形状安定性の点で不十分となりやすい。延伸温度がTm℃以上であると、微多孔膜が融解し透過性能を損なう傾向がある。
The magnification of stretching after extraction can be set to an arbitrary magnification, but in the MD direction only, the magnification is preferably 5 times or less, more preferably 1.1 to 3 times, and the area magnification in the biaxial direction, preferably 10 times or less. , More preferably 1.4 to 6 times. Stretching after extraction by more than 5 times in the MD direction tends to excessively increase the pore size despite being used in combination with stretching before extraction. On the other hand, if it is less than 1.1 times, the bubble point may be 1.0 MPa or more.
The temperature for stretching after extraction is preferably a temperature in the range of 50 ° C. lower than the melting point Tm ° C. of the polyolefin microporous membrane to less than Tm ° C., and more preferably 40 ° C. lower than the melting point Tm ° C. of the polyolefin microporous membrane to Tm ° C. It is performed at a temperature in the range of less than 5 ° C. below the temperature. If the stretching temperature is lower than 50 ° C. lower than Tm ° C., the stretchability tends to decrease, and the strain component after stretching tends to remain, and the shape stability at high temperatures tends to be insufficient. If the stretching temperature is higher than Tm ° C., the microporous membrane tends to melt and impair the permeability.

抽出後延伸は、可塑剤を微多孔膜から実質的に除去した状態で延伸するので、延伸に伴ってポリマー界面の破壊が支配的に生じ、微多孔膜が大孔径化する効果がある。したがって、本発明において必須である抽出前延伸を行わずして抽出後延伸のみを行うと、いたずらに孔径の過度の増大を来たし、延伸配向を微多孔膜に付与できず、結果、低強度となってしまう。
これに比して、抽出前延伸及び抽出後延伸を併用した本発明の製造方法の場合、微多孔膜の強度を損なうことなく、孔径を適度に増加させることができるので有用である。これによりバブルポイントを0.5MPaを越え、1.0MPa未満にすることができ、電池に組み込んだ時良好なサイクル特性を発現することができる。
Since the stretching after the extraction is performed in a state where the plasticizer is substantially removed from the microporous membrane, the polymer interface is predominantly destroyed with the stretching, and the microporous membrane has an effect of increasing the pore diameter. Therefore, when only stretching after extraction is performed without performing stretching before extraction, which is essential in the present invention, an excessive increase in the pore diameter is unnecessarily caused, and stretching orientation cannot be imparted to the microporous membrane. turn into.
In contrast, in the case of the production method of the present invention in which the stretching before extraction and the stretching after extraction are used in combination, the pore size can be appropriately increased without impairing the strength of the microporous membrane, which is useful. As a result, the bubble point can be more than 0.5 MPa and less than 1.0 MPa, and good cycle characteristics can be exhibited when incorporated in a battery.

本発明の製造方法において、本発明の利点を損なわない範囲で各延伸工程に引き続いて、または後に熱固定及び熱緩和等の熱処理工程を加えることは、微多孔膜の高温における形状安定性を高める効果がある。
また、本発明の製造方法においては、本発明の利点を損なわない範囲で後処理を行っても良い。後処理としては、例えば、界面活性剤等による親水化処理、及び電離性放射線等による架橋処理等が挙げられる。
In the production method of the present invention, adding a heat treatment step such as heat setting and thermal relaxation subsequent to or after each stretching step within a range that does not impair the advantages of the present invention enhances the shape stability of the microporous membrane at high temperatures. effective.
In the manufacturing method of the present invention, post-processing may be performed within a range not to impair the advantages of the present invention. Examples of the post-treatment include a hydrophilization treatment with a surfactant or the like and a cross-linking treatment with ionizing radiation or the like.

本発明において使用するポリオレフィン樹脂とは、通常の押出、射出、インフレーション、及びブロー成形に使用する樹脂をいい、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、及び1-オクテンのホモ重合体及び共重合体を使用することができる。また、これらのホモ重合体及び共重合体の群から選んだポリオレフィンを混合して使用することもできる。前記重合体の代表例としては、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン、アイソタクティックポリプロピレン、アタクティックポリプロピレン、ポリブテン、エチレンプロピレンラバー等が挙げられる。本発明の製造方法によって得られた微多孔膜を電池セパレータとして使用する場合、低融点樹脂であり、かつ高強度の要求性能から、特に高密度ポリエチレンを主成分とする樹脂を使用することが好ましい。   The polyolefin resin used in the present invention refers to a resin used for ordinary extrusion, injection, inflation, and blow molding, and includes ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1-hexene. -Octene homopolymers and copolymers can be used. In addition, a polyolefin selected from the group of these homopolymers and copolymers can be used as a mixture. Representative examples of the polymer include low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, ultrahigh molecular weight polyethylene, isotactic polypropylene, atactic polypropylene, polybutene, ethylene propylene rubber, and the like. . When using the microporous membrane obtained by the production method of the present invention as a battery separator, it is a low melting point resin, and from the performance required for high strength, it is particularly preferable to use a resin mainly composed of high-density polyethylene. .

本発明において使用するポリオレフィン樹脂原料及び本発明の微多孔膜の粘度平均分子量は、5万以上1200万未満が好ましく、さらに好ましくは10万以上400万未満、最も好ましくは20万以上200万未満である。粘度平均分子量が5万より小さいと、溶融成形の際のメルトテンションが小さくなり成形性が低下しやすい。粘度平均分子量が1200万を越えると、均一な樹脂組成物を得難くなる傾向がある。
本発明において使用する可塑剤としては、 ポリオレフィン樹脂と混合した際にポリオレフィン樹脂の融点以上において均一溶液を形成しうる不揮発性溶媒であれば良い。例えば、流動パラフィンやパラフィンワックス等の炭化水素類、フタル酸ジオクチルやフタル酸ジブチル等のエステル類、オレイルアルコールやステアリルアルコール等の高級アルコールが挙げられる。
The viscosity average molecular weight of the polyolefin resin raw material used in the present invention and the microporous membrane of the present invention is preferably 50,000 or more and less than 12 million, more preferably 100,000 or more and less than 4,000,000, and most preferably 200,000 or more and less than 2,000,000. is there. If the viscosity average molecular weight is less than 50,000, the melt tension during melt molding is small, and moldability is likely to be reduced. If the viscosity average molecular weight exceeds 12,000,000, it tends to be difficult to obtain a uniform resin composition.
The plasticizer used in the present invention may be a non-volatile solvent that can form a uniform solution at a temperature equal to or higher than the melting point of the polyolefin resin when mixed with the polyolefin resin. Examples thereof include hydrocarbons such as liquid paraffin and paraffin wax, esters such as dioctyl phthalate and dibutyl phthalate, and higher alcohols such as oleyl alcohol and stearyl alcohol.

本発明において使用するポリオレフィン樹脂と可塑剤の比率については、ミクロ相分離を生じせしめ、シート状の微多孔膜前駆体を形成しうるのに充分な 比率であり、かつ生産性を損なわない程度であれば良い。具体的には、ポリオレフィン樹脂と可塑剤からなる組成物中に占めるポリオレフィン樹脂の重量分率は、好ましくは10〜70%、更に好ましくは20〜60%である。ポリオレフィン樹脂の重量分率が10%より小さいと、溶融成形時のメルトテンションが不足しやすく、成形性が低下する傾向がある。一方、重量分率が70%を越える場合は、押出し負荷の増大から生産性が向上しにくい。   The ratio of the polyolefin resin and the plasticizer used in the present invention is a ratio sufficient to cause microphase separation and to form a sheet-like microporous membrane precursor, and to such an extent that productivity is not impaired. I just want it. Specifically, the weight fraction of the polyolefin resin in the composition comprising the polyolefin resin and the plasticizer is preferably 10 to 70%, more preferably 20 to 60%. If the weight fraction of the polyolefin resin is less than 10%, the melt tension during melt molding tends to be insufficient, and the moldability tends to decrease. On the other hand, when the weight fraction exceeds 70%, productivity is hardly improved due to an increase in extrusion load.

本発明において使用する抽出溶剤は、ポリオレフィンに対して貧溶媒であり、かつ可塑剤に対して良溶媒であり、沸点がポリオレフィン微多孔膜の融点より低いことが望ましい。このような抽出溶剤としては、 例えば、n-ヘキサンやシクロヘキサン等の炭化水素類、塩化メチレンや1,1,1-トリクロロエタン等のハロゲン化炭化水素類、エタノールやイソプロパノール等のアルコール類、ジエチルエーテルやテトラヒドロフラン等のエーテル類、アセトンや2-ブタノン等のケトン類が挙げられる。   The extraction solvent used in the present invention is a poor solvent for the polyolefin and a good solvent for the plasticizer, and preferably has a boiling point lower than the melting point of the microporous polyolefin membrane. Examples of such an extraction solvent include hydrocarbons such as n-hexane and cyclohexane, halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane, alcohols such as ethanol and isopropanol, diethyl ether and the like. Examples include ethers such as tetrahydrofuran and ketones such as acetone and 2-butanone.

本発明において使用する組成物には、本発明の利点を損なわない範囲で、さらに目的に応じて、酸化防止剤、結晶核剤、帯電防止剤、難燃剤、滑剤、紫外線吸収剤等の添加剤を混合しても差し支えない。
本発明の微多孔膜とは、実質的にポリオレフィンから構成される多孔体シートまたはフィルムをいい、例えば、精密濾過膜や電池用セパレータとして使用されるものであり、特に電池用セパレータへの用途に適するものである。
本発明の微多孔膜の膜厚は1〜100μmが好ましく、5〜50μmがさらに好ましい。膜厚が1μmより小さいと機械強度が不十分となる場合があり、また、100μmより大きいとセパレータの占有体積が増えるため、電池の高容量化の点において不利となる傾向がある。
In the composition used in the present invention, an additive such as an antioxidant, a crystal nucleating agent, an antistatic agent, a flame retardant, a lubricant, an ultraviolet absorber, etc., within a range not impairing the advantages of the present invention, according to the purpose. Can be mixed.
The microporous membrane of the present invention refers to a porous sheet or film substantially composed of polyolefin, and is used, for example, as a microfiltration membrane or a battery separator, and is particularly used for a battery separator. It is suitable.
The thickness of the microporous membrane of the present invention is preferably 1 to 100 µm, more preferably 5 to 50 µm. If the film thickness is smaller than 1 μm, the mechanical strength may be insufficient, and if it is larger than 100 μm, the volume occupied by the separator increases, which tends to be disadvantageous in terms of increasing the capacity of the battery.

本発明の微多孔膜の気孔率は、好ましくは25%〜60%、より好ましくは30%〜55%の範囲である。気孔率が25%未満では、透過性が低下しやすく、一方60%を超えると機械強度が低下しやすい。本発明の微多孔膜の突き刺し強度は、3.0N以上が好ましく、4.0N以上が更に好ましい。3.0N未満では、電池用セパレータとして使用した場合に、脱落した活物質等によってセパレータが破れやすくなる。   The porosity of the microporous membrane of the present invention is preferably in the range of 25% to 60%, more preferably 30% to 55%. If the porosity is less than 25%, the permeability tends to decrease, while if it exceeds 60%, the mechanical strength tends to decrease. The piercing strength of the microporous membrane of the present invention is preferably at least 3.0N, more preferably at least 4.0N. If it is less than 3.0 N, when used as a battery separator, the separator is easily broken by the dropped active material or the like.

次に、実施例によって本発明をさらに詳細に説明するが、これらは本発明の範囲を制限しない。実施例において示される試験方法は次の通りである。
<微多孔膜の評価>
(1)膜厚
ダイヤルゲージ(尾崎製作所:商標、PEACOCK No.25)にて測定した。
(2)気孔率
10cm角のサンプルを微多孔膜から切り取り、その体積と重量を求め、得られた結果から次式を用いて計算した。
気孔率(%)=(体積(cm)-重量(g)/密度)/体積(cm)×100
(3)突刺強度
カトーテック製、商標、KES-G5ハンディー圧縮試験器を用いて、針先端の曲率半径0.5mm、突刺速度2mm/secの条件で突刺試験を行い、最大突刺荷重を突刺強度(N)とした。
Next, the present invention will be described in more detail by way of examples, which do not limit the scope of the present invention. The test method shown in the examples is as follows.
<Evaluation of microporous membrane>
(1) Film thickness It was measured with a dial gauge (Ozaki Seisakusho: trademark, PEACK No. 25).
(2) Porosity A sample having a size of 10 cm square was cut out from the microporous membrane, and its volume and weight were obtained. From the obtained results, calculation was made using the following equation.
Porosity (%) = (volume (cm 3 ) -weight (g) / density) / volume (cm 3 ) × 100
(3) Piercing strength Using a KAT-G5 handy compression tester manufactured by Kato Tech, a piercing test was performed under the conditions of a radius of curvature of the needle tip of 0.5 mm and a piercing speed of 2 mm / sec. (N).

(4)透気度
JIS P-8117準拠のガーレー式透気度計にて測定した。このときの圧力は0.01276atm、膜面積は6.424cm2 、透過空気量は100ccである。
(5)透気量
空気の透過速度定数Rgasは、透気度(sec)から次式を用いて求められる。測定は室温23℃の室内で実施した。
Rgas(m3 /(m2 ・sec・ Pa))=0.0001/透気度
/0.0006424/(0.01276×101325)
(6)透水量
直径41mmのステンレス製の透液セルに、予めアルコールに浸しておいた微多孔膜をセットし、該膜のアルコールを水で洗浄したあと約50000Paの差圧で水を透過させ、120秒間経過した際の透水量(cm3)から、単位時間・単位圧力・単位面積当たりの透水量を計算し、これを透水度(cm3 /(cm2 ・sec・Pa))とした。測定は室温23℃の室内で実施した。
水の透過速度定数Rliq は透水度(cm3 /(cm2 ・sec ・Pa))から次式
を用いて求められる。
Rliq (m3 /(m2 ・sec・ Pa))=透水度/100
(4) Air permeability Measured with a Gurley air permeability meter according to JIS P-8117. At this time, the pressure was 0.01276 atm, the membrane area was 6.424 cm 2 , and the amount of permeated air was 100 cc.
(5) Air Permeability The air permeation rate constant Rgas is obtained from the air permeability (sec) using the following equation. The measurement was performed in a room at room temperature of 23 ° C.
Rgas (m 3 / (m 2 · sec · Pa)) = 0.0001 / air permeability
/0.0006424/(0.01276×101325)
(6) Water Permeability A microporous membrane previously immersed in alcohol is set in a stainless steel liquid permeable cell having a diameter of 41 mm, and the alcohol of the membrane is washed with water, and then water is permeated at a differential pressure of about 50,000 Pa. , The amount of water per unit time, unit pressure, and unit area was calculated from the amount of water permeation (cm 3 ) after elapse of 120 seconds, and was calculated as the water permeability (cm 3 / (cm 2 · sec · Pa)). . The measurement was performed in a room at room temperature of 23 ° C.
The water transmission rate constant Rliq is determined from the water permeability (cm 3 / (cm 2 · sec · Pa)) using the following equation.
Rliq (m 3 / (m 2 · sec · Pa)) = water permeability / 100

(7)バブルポイント
ASTM F316-86に準拠し、エタノール溶媒で測定した。
(8)粘度平均分子量 Mv
デカヒドロナフタリンへ試料の劣化防止のため2,6-ジ-t-ブチル-4-メチルフェノールを0.1重量%の濃度となるように溶解させ、これ(以下DHNと略す) を試料溶媒として用いる。試料をDHNへ0.1重量%の濃度となるように150℃で溶解させ試料溶液を作成する。作成した試料溶液を10ml採取し、キャノンフェンスケ粘度計(SO100)により135℃での標線間通過秒数(t)を計測する。また、DHNを150℃に加熱した後、10ml採取し、同様の方法により粘度計の標線間を通過する秒数(tB)を計測する。
得られた 通過秒数t、tBを用いて次の換算式により極限粘度[η]を算出
した。
[η]=((1.651t/tB―0.651)0.5― 1)/0.0834
求められた[η]より、ポリエチレンの場合は次式によりMvを算出した。
[η]=6.77×10-4Mv0.67
また、ポリプロピレンの場合は次式によりMvを算出した。
[η]=1.10×10-4Mv0.80
(7) Bubble point Measured with an ethanol solvent according to ASTM F316-86.
(8) Viscosity average molecular weight Mv
To prevent deterioration of the sample, 2,6-di-t-butyl-4-methylphenol was dissolved in decahydronaphthalene to a concentration of 0.1% by weight, and this (hereinafter abbreviated as DHN) was used as a sample solvent. Used. The sample is dissolved in DHN at 150 ° C. to a concentration of 0.1% by weight to prepare a sample solution. 10 ml of the prepared sample solution is sampled, and the number of seconds passed between the marked lines at 135 ° C. (t) is measured by a Cannon-Fenske viscometer (SO100). After heating DHN to 150 ° C., 10 ml was sampled, and the number of seconds (tB) passing between the marked lines of the viscometer was measured by the same method.
Using the obtained passing seconds t and tB, the intrinsic viscosity [η] was calculated by the following conversion formula.
[Η] = ((1.651 t / tB-0.651) 0.5-1) /0.0834
From the obtained [η], in the case of polyethylene, Mv was calculated by the following equation.
[Η] = 6.77 × 10 −4 Mv 0.67
In the case of polypropylene, Mv was calculated by the following equation.
[Η] = 1.10 × 10 −4 Mv 0.80

(9)収縮率
MD50mm×TD40mmのサンプルを微多孔膜から切り取り、幅26mmの2枚のスライドグラスの間に微多孔膜のMD方向がはみ出すように挟む。はみ出た部分を折り返し耐熱テープで固定する。これを80mm×50mm×5mmのガラス板に挟み、150℃下のオーブン中に水平に置き1時間放置する。その後、空冷し、TD幅(mm)の最も短い長さを測定する。
収縮率(%)=(1−最短TD幅(mm)/40)×100
(9) Shrinkage ratio A sample of MD50 mm × TD40 mm is cut out from the microporous membrane and sandwiched between two slide glasses having a width of 26 mm so that the MD direction of the microporous membrane protrudes. Turn over the protruding part and fix with heat resistant tape. This is sandwiched between glass plates of 80 mm × 50 mm × 5 mm, placed horizontally in an oven at 150 ° C., and left for 1 hour. Then, it cools by air and measures the shortest length of TD width (mm).
Shrinkage (%) = (1−shortest TD width (mm) / 40) × 100

<電池の作製,及び評価>
(1)正極の作製
活物質としてリチウムコバルト複合酸化物LiCoOを92.2重量%、導電剤としてリン片状グラファイトとアセチレンブラックをそれぞれ2.3重量%、バインダーとしてポリフッ化ビニリデン(PVDF)3.2重量%をN-メチルピロリドン(NMP)中に分散させてスラリーを調製する。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターで塗付し、130℃で3分間乾燥後、ロールプレス機で圧縮成形する。このとき、正極の活物質塗付量は250g/m,活物質嵩密度は3.00g/cmになるようにする。これを幅約40mmに切断して帯状にする。
<Production and evaluation of battery>
(1) Preparation of positive electrode 92.2% by weight of lithium-cobalt composite oxide LiCoO 2 as an active material, 2.3% by weight of flaky graphite and acetylene black as conductive agents, and polyvinylidene fluoride (PVDF) 3 as a binder A slurry is prepared by dispersing 0.2% by weight in N-methylpyrrolidone (NMP). This slurry is applied to one surface of a 20 μm-thick aluminum foil serving as a positive electrode current collector with a die coater, dried at 130 ° C. for 3 minutes, and then compression-molded by a roll press. At this time, the active material coating amount of the positive electrode is set to 250 g / m 2 , and the active material bulk density is set to 3.00 g / cm 3 . This is cut to a width of about 40 mm to form a band.

(2)負極の作製
活物質として人造グラファイト96.9重量%、バインダーとしてカルボキシメチルセルロースのアンモニウム塩1.4重量%とスチレン-ブタジエン共重合体ラテックス1.7重量%を精製水中に分散させてスラリーを調製する。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗付し、120℃で3分間乾燥後、ロールプレス機で圧縮成形する。このとき、負極の活物質塗付量は106g/m,活物質嵩密度は1.35g/cmになるようにする。これを幅約40mmに切断して帯状にする。
(3)非水電解液の調整
エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPFを濃度1.0mol/リットルとなるように溶解させて調整する。
(2) Preparation of negative electrode 96.9% by weight of artificial graphite as an active material, 1.4% by weight of an ammonium salt of carboxymethyl cellulose and 1.7% by weight of a styrene-butadiene copolymer latex as a binder were dispersed in purified water to form a slurry. Is prepared. This slurry is applied to one surface of a copper foil having a thickness of 12 μm as a negative electrode current collector by a die coater, dried at 120 ° C. for 3 minutes, and then compression-molded by a roll press. At this time, the active material coating amount of the negative electrode is set to 106 g / m 2 , and the active material bulk density is set to 1.35 g / cm 3 . This is cut to a width of about 40 mm to form a band.
(3) Adjustment of Nonaqueous Electrolyte LiPF 6 is dissolved as a solute in a mixed solvent of ethylene carbonate: ethyl methyl carbonate = 1: 2 (volume ratio) so as to have a concentration of 1.0 mol / liter.

(4)電池組立
上記の微多孔膜セパレータ,帯状正極及び帯状負極を、帯状負極、セパレータ、帯状正極、セパレータの順に重ねて渦巻状に複数回捲回することで電極板積層体を作製する。
この電極板積層体を平板状にプレス後、アルミニウム製容器に収納し、アルミニウム製リードを正極集電体から導出して電池蓋に、ニッケル製リードを負極集電体から導出して容器底に溶接する。さらにこの容器内に前記した非水電解液を注入し封口する。こうして作製されるリチウムイオン電池は、縦(厚み)6.3mm,横30mm,高さ48mmの大きさで、公称放電容量が620mAhとなるように設計されている。
(4) Battery assembly The above-described microporous membrane separator, strip-shaped positive electrode, and strip-shaped negative electrode are stacked in the order of strip-shaped negative electrode, separator, strip-shaped positive electrode, and separator, and spirally wound to form an electrode plate laminate.
After pressing this electrode plate laminate into a flat plate shape, it is housed in an aluminum container, an aluminum lead is led out from the positive electrode current collector, and the nickel lead is led out from the negative electrode current collector to the bottom of the container. Weld. Further, the above-mentioned non-aqueous electrolyte is injected into the container and sealed. The lithium-ion battery manufactured in this manner is 6.3 mm in length (thickness), 30 mm in width, and 48 mm in height, and is designed to have a nominal discharge capacity of 620 mAh.

(5)電池評価(25℃雰囲気下)
上記のようにして組み立てたリチウムイオン電池にて、電流値310mA(0.5C),終止電池電圧4.2Vの条件で6時間定電流定電圧(CCCV)充電を行う。このとき充電終了直前の電流値はほぼ0の値となる。その後、25℃雰囲気下で1週間放置(エージング)する。
その次に、電流値620mA(1.0C),終止電池電圧4.2Vの条件で3時間定電流定電圧(CCCV)充電し、一定電流値(CC)620mAで電池電圧3.0Vまで放電放する、というサイクルを行う。このときの放電容量を初回放電容量とする。初回放電容量が公称放電容量に近い値、またはそれ以上の値であることが初期容量が高く維持されていることになり、本発明でいうところの初期電池特性が良好であることの指標となる。
その後、さらに前述のサイクルを300回繰り返す。このサイクルにおいて、初回放電容量に対する300サイクル目の容量の割合(%)を容量維持率とする。容量維持率が高いことがサイクル特性が良いこととなる。
(5) Battery evaluation (under 25 ° C atmosphere)
The lithium ion battery assembled as described above is charged at a constant current and constant voltage (CCCV) for 6 hours under the conditions of a current value of 310 mA (0.5 C) and a final battery voltage of 4.2 V. At this time, the current value immediately before the end of the charging is almost zero. Then, it is left (aged) in a 25 ° C. atmosphere for one week.
Next, the battery was charged at a constant current and constant voltage (CCCV) for 3 hours under the conditions of a current value of 620 mA (1.0 C) and a final battery voltage of 4.2 V, and discharged to a battery voltage of 3.0 V at a constant current value (CC) of 620 mA. Cycle. The discharge capacity at this time is defined as an initial discharge capacity. The initial discharge capacity is a value close to the nominal discharge capacity, or that the initial discharge capacity is higher than the initial discharge capacity is maintained high, which is an index that the initial battery characteristics in the present invention are good. .
Thereafter, the above-described cycle is further repeated 300 times. In this cycle, the ratio (%) of the capacity at the 300th cycle to the initial discharge capacity is defined as the capacity retention rate. The higher the capacity retention ratio, the better the cycle characteristics.

[実施例1]
Mv27万のHDPE60重量部、Mv95万のHDPE40重量部に、酸化防止剤としてペンタエリスリチル-テトラキス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]を0.3重量部添加し、タンブラーブレンダーを用いてドライブレンドし、ポリマー等混合物を得た。得られたポリマー等混合物を、フィーダーにより直径37mmの二軸同方向スクリュー式押出機フィード口へ供給した。また、流動パラフィン(37.78℃における動粘度7.59×10 -5/s)をプランジャーポンプにより二軸押出機シリンダーへ注入した。
[Example 1]
To 60 parts by weight of HDPE having an Mv of 270,000 and 40 parts by weight of HDPE having an Mv of 950,000, 0.3 of pentaerythrityl-tetrakis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant was added. Parts by weight were added and dry blended using a tumbler blender to obtain a mixture of polymers and the like. The obtained mixture of polymers and the like was supplied to a feed port of a twin screw co-rotating screw type extruder having a diameter of 37 mm by a feeder. Liquid paraffin (kinematic viscosity at 37.78 ° C. 7.59 × 10 −5 m 2 / s) was injected into a twin-screw extruder cylinder by a plunger pump.

溶融混練し押し出される全混合物(100重量部)中に占める流動パラフィン量比は62重量部となるように、フィーダー及びポンプを調整した。溶融混練条件は、設定温度200℃、スクリュー回転数180rpm、吐出量12kg/hで行った。続いて、溶融混練物をTダイを経て表面温度85℃に制御された冷却ロール上に押出し、圧延比4倍で圧延することにより、厚み200μmのゲルシートを得た。
次に、得られたシートを横テンター延伸機に導き、延伸温度115℃、延伸倍率5倍で抽出前横延伸した後、10%熱緩和を施した。次に塩化メチレン中に浸漬して流動パラフィンを抽出除去し乾燥した。
The feeder and pump were adjusted such that the liquid paraffin content ratio in the total mixture (100 parts by weight) melt-kneaded and extruded was 62 parts by weight. Melt kneading was performed at a set temperature of 200 ° C., a screw rotation speed of 180 rpm, and a discharge rate of 12 kg / h. Subsequently, the melt-kneaded material was extruded through a T-die onto a cooling roll controlled at a surface temperature of 85 ° C., and was rolled at a rolling ratio of 4 to obtain a gel sheet having a thickness of 200 μm.
Next, the obtained sheet was guided to a horizontal tenter stretching machine, subjected to horizontal stretching before extraction at a stretching temperature of 115 ° C. and a stretching magnification of 5 times, and then subjected to 10% thermal relaxation. Next, it was immersed in methylene chloride to extract and remove liquid paraffin and dried.

次に、上記抽出後膜を多段ロール式縦延伸機に導き、延伸温度110℃、MD方向の総延伸倍率2倍になるように抽出後縦延伸して微多孔膜を得た。
得られた微多孔膜の物性、及びこれをセパレータとして用いた電池の特性を表1に示した。また、以下に示す実施例、比較例の差異を明確にするため、延伸工程比較表を表2として示した。
Next, the membrane after the extraction was guided to a multi-roll longitudinal stretching machine, and the membrane was extracted and longitudinally stretched so as to have a stretching temperature of 110 ° C. and a total stretching ratio of 2 times in the MD direction to obtain a microporous membrane.
Table 1 shows the physical properties of the obtained microporous membrane and the characteristics of a battery using the same as a separator. Further, in order to clarify the differences between the following examples and comparative examples, Table 2 shows a stretching process comparison table.

[実施例2]
圧延比3倍で、ゲルシートの厚みを250μm、抽出後縦延伸の倍率を1.5倍、続いて抽出後横延伸を延伸温度125℃、延伸倍率1.4倍で延伸して10%熱緩和すること以外は実施例1と同様にして微多孔膜を得た。得られた微多孔膜の物性、及びこれをセパレータとして用いた電池の特性を表1に示した。
[Example 2]
At a rolling ratio of 3 times, the thickness of the gel sheet is 250 μm, the magnification of the longitudinal stretching after extraction is 1.5 times, and then the lateral stretching after the extraction is stretched at a stretching temperature of 125 ° C. and a stretching ratio of 1.4 times to 10% thermal relaxation. A microporous membrane was obtained in the same manner as in Example 1 except for performing the above. Table 1 shows the physical properties of the obtained microporous membrane and the characteristics of a battery using the same as a separator.

[実施例3]
ゲルシートの厚みを150μm、抽出後縦延伸の倍率を1.5倍、続いて抽出後横延伸を延伸倍率1.7倍で延伸すること以外は実施例2と同様にして微多孔膜を得た。得られた微多孔膜の物性、及びこれをセパレータとして用いた電池の特性を表1に示した。
[Example 3]
A microporous membrane was obtained in the same manner as in Example 2 except that the thickness of the gel sheet was 150 μm, the stretching ratio after extraction was 1.5 times, and then the stretching after extraction was 1.7 times. . Table 1 shows the physical properties of the obtained microporous membrane and the characteristics of a battery using the same as a separator.

[実施例4]
原料としてMv27万のHDPE30重量部、Mv95万のHDPE40重量部、Mv12万の線状低密度ポリエチレン30重量部を用い、ゲルシートの厚みを150μm、抽出後縦延伸の延伸温度を105℃、抽出後横延伸の延伸温度を110℃とすること以外は実施例2と同様にして微多孔膜を得た。得られた微多孔膜の物性、及びこれをセパレータとして用いた電池の特性を表1に示した。
[Example 4]
As raw materials, 30 parts by weight of Mv270,000 HDPE, 40 parts by weight of Mv950, HDPE, and 30 parts by weight of linear low-density polyethylene, Mv120,000 were used. The thickness of the gel sheet was 150 μm. A microporous film was obtained in the same manner as in Example 2 except that the stretching temperature was 110 ° C. Table 1 shows the physical properties of the obtained microporous membrane and the characteristics of a battery using the same as a separator.

[実施例5]
Tダイから押し出した溶融混練物を、表面温度40℃に制御された冷却ロールで引き取り、厚さ2mmのゲルシートを得た。得られたシートを同時二軸テンターを用いて、延伸温度122℃で7×7倍に抽出前延伸し、続いて塩化メチレン中に浸漬して流動パラフィンを抽出除去し乾燥した。次に延伸温度110℃、延伸倍率1.5倍で抽出後縦延伸し、続いて延伸温度125℃、延伸倍率1.4倍で抽出後横延伸して10%熱緩和することにより微多孔膜を得た。上記以外の押出しまでの工程は実施例1と同様にした。得られた微多孔膜の物性、及びこれをセパレータとして用いた電池の特性を表1に示した。
[Example 5]
The melt-kneaded product extruded from the T-die was taken out by a cooling roll controlled at a surface temperature of 40 ° C. to obtain a gel sheet having a thickness of 2 mm. The obtained sheet was stretched by a simultaneous biaxial tenter at a stretching temperature of 122 ° C. to 7 × 7 before extraction, and then immersed in methylene chloride to extract and remove liquid paraffin and dried. Next, the film is extracted at a stretching temperature of 110 ° C. and a stretching ratio of 1.5 times, and then longitudinally stretched. Subsequently, the film is extracted at a stretching temperature of 125 ° C. and a stretching ratio of 1.4 times, and then transversely stretched to relax the heat by 10%. Got. The steps up to extrusion other than those described above were the same as in Example 1. Table 1 shows the physical properties of the obtained microporous membrane and the characteristics of a battery using the same as a separator.

[比較例1]
抽出後縦延伸しないこと以外は実施例5と同様にして微多孔膜を得た。得られた微多孔膜の物性、及びこれをセパレータとして用いた電池の特性を表1に示した。
[Comparative Example 1]
A microporous membrane was obtained in the same manner as in Example 5, except that longitudinal stretching was not performed after extraction. Table 1 shows the physical properties of the obtained microporous membrane and the characteristics of a battery using the same as a separator.

[比較例2]
Mv28万のHDPE40重量部、ジオクチルフタレート42重量部、ジブチルフタレート18重量部および酸化防止剤として該ポリエチレンに対して0.3重量部のテトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタンを二軸押出機を用いて250℃で混練し、Tダイから押し出して冷却ロールで引き取り厚さ1600μmのゲルシートを得た。得られたシートを同時二軸テンターを用いて、延伸温度130℃で7×7倍に延伸し、続いて塩化メチレン中に浸漬して可塑剤を除去した後、乾燥した。次にこの膜を延伸温度125℃、延伸倍率1.8倍で抽出後横延伸した後、17%熱緩和させ、微多孔膜を得た。得られた微多孔膜の物性、及びこれをセ
パレータとして用いた電池の特性を表1に示した。
[Comparative Example 2]
Mv 280,000 HDPE 40 parts by weight, dioctyl phthalate 42 parts by weight, dibutyl phthalate 18 parts by weight and 0.3 parts by weight of tetrakis- [methylene-3- (3 ′, 5′-di- [t-Butyl-4′-hydroxyphenyl) propionate] methane was kneaded at 250 ° C. using a twin-screw extruder, extruded from a T-die and taken up by a cooling roll to obtain a gel sheet having a thickness of 1600 μm. The obtained sheet was stretched 7 × 7 times at a stretching temperature of 130 ° C. using a simultaneous biaxial tenter, then dipped in methylene chloride to remove the plasticizer, and then dried. Next, the membrane was extracted at a stretching temperature of 125 ° C. and a stretching magnification of 1.8 times and then horizontally stretched, and then thermally relaxed by 17% to obtain a microporous membrane. Table 1 shows the physical properties of the obtained microporous membrane and the characteristics of a battery using the same as a separator.

[比較例3]
最終膜厚を20μmにするように調整した以外は、特開平11-60789号公報実施例2の方法に準拠して(抽出後縦延伸なし)微多孔膜を得た。得られた微多孔膜の物性、及びこれをセパレータとして用いた電池の特性を表1に示した。
[Comparative Example 3]
A microporous membrane was obtained according to the method of Example 2 of JP-A-11-60789 (no longitudinal stretching after extraction) except that the final film thickness was adjusted to 20 μm. Table 1 shows the physical properties of the obtained microporous membrane and the characteristics of a battery using the same as a separator.

[比較例4]
直径37mmの二軸同方向スクリュー式押出機を用いたこと以外は、特許第2657430号公報実施例1の方法に準拠して(抽出後縦延伸なし)微多孔膜を得た。得られた微多孔膜の物性、及びこれをセパレータとして用いた電池の特性を表1に示した。
[Comparative Example 4]
A microporous membrane was obtained according to the method of Example 1 of Japanese Patent No. 2657430 (no longitudinal stretching after extraction), except that a twin screw co-axial screw extruder having a diameter of 37 mm was used. Table 1 shows the physical properties of the obtained microporous membrane and the characteristics of a battery using the same as a separator.

[比較例5]
ゲルシートの厚みを150μm、抽出前の延伸を行わず、抽出後縦延伸の倍率を4倍、続いて抽出後横延伸を延伸温度125℃、延伸倍率2倍で延伸すること以外は実施例1と同様にして微多孔膜を得た。得られた微多孔膜の物性、及びこれをセパレータとして用いた電池の特性を表1に示した。
[Comparative Example 5]
Example 1 except that the thickness of the gel sheet was 150 μm, the stretching before extraction was not performed, the stretching ratio after stretching was 4 times, and then the stretching after extraction was stretched at a stretching temperature of 125 ° C. and a stretching ratio of 2 times. Similarly, a microporous membrane was obtained. Table 1 shows the physical properties of the obtained microporous membrane and the characteristics of a battery using the same as a separator.

Figure 2004323820
Figure 2004323820

Figure 2004323820
Figure 2004323820

表1から明らかなように本発明の微多孔膜は、二次電池用セパレータとして用いた場合、比較例1,3に比べサイクル特性が高く、また比較例2,4,5に比べ初回放電容量が高く維持されており、初期電池特性とサイクル特性を両立できることがわかる。また、実施例では抽出後縦延伸を施しているために得られた微多孔膜の高温時の収縮は抑制されていることがわかる。   As is clear from Table 1, when the microporous membrane of the present invention was used as a separator for a secondary battery, the cycle characteristics were higher than in Comparative Examples 1 and 3, and the initial discharge capacity was higher than in Comparative Examples 2, 4, and 5. Is maintained high, and it can be seen that both initial battery characteristics and cycle characteristics can be achieved. In addition, it can be seen that, in the examples, since the longitudinal stretching was performed after the extraction, the shrinkage of the obtained microporous membrane at a high temperature was suppressed.

本発明のポリオレフィン微多孔膜は、特に電池セパレーターとして好適に利用できる。   The polyolefin microporous membrane of the present invention can be suitably used particularly as a battery separator.

Claims (4)

透水量/透気量の比が0.8×10−3〜1.7×10−3で且つバブルポイントが0.5MPaを越え1.0MPa未満であることを特徴とするポリオレフィン微多孔膜。 A microporous polyolefin membrane, wherein the ratio of water permeability / air permeability is 0.8 × 10 −3 to 1.7 × 10 −3 and the bubble point is more than 0.5 MPa and less than 1.0 MPa. MD方向を固定した状態でのTD方向の収縮率が、150℃において20%未満であることを特徴とする請求項1に記載のポリオレフィン微多孔膜。   2. The microporous polyolefin membrane according to claim 1, wherein the shrinkage in the TD direction in a state where the MD direction is fixed is less than 20% at 150 ° C. 3. (a)ポリオレフィン樹脂と可塑剤からなる組成物を溶融混練し、押出して冷却固化させシート状に成形する工程、(b)前記工程(a)の後に、TD方向に3倍以上の延伸を行う工程、(c)前記工程(b)の後に、前記可塑剤を抽出する工程、(d)前記工程(c)の後に、少なくともMD方向に、少なくとも1回の延伸を行う工程を含むことを特徴とする請求項1又は請求項2に記載の微多孔膜の製造方法。   (A) a step of melt-kneading a composition comprising a polyolefin resin and a plasticizer, extruding, cooling and solidifying to form a sheet, and (b) after the step (a), stretching at least three times in the TD direction. And (c) extracting the plasticizer after the step (b); and (d) performing at least one stretching in at least the MD direction after the step (c). The method for producing a microporous membrane according to claim 1 or 2, wherein 請求項1又は請求項2に記載のポリオレフィン微多孔膜からなることを特徴とする電池用セパレータ。   A battery separator comprising the polyolefin microporous membrane according to claim 1.
JP2003278618A 2003-04-11 2003-07-23 Polyolefin microporous membrane and method for producing the same Expired - Lifetime JP4220329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003278618A JP4220329B2 (en) 2003-04-11 2003-07-23 Polyolefin microporous membrane and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003108109 2003-04-11
JP2003278618A JP4220329B2 (en) 2003-04-11 2003-07-23 Polyolefin microporous membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004323820A true JP2004323820A (en) 2004-11-18
JP4220329B2 JP4220329B2 (en) 2009-02-04

Family

ID=33513086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003278618A Expired - Lifetime JP4220329B2 (en) 2003-04-11 2003-07-23 Polyolefin microporous membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP4220329B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007135952A1 (en) * 2006-05-22 2007-11-29 Panasonic Corporation Separator and nonaqueous electrolyte secondary battery
CN100371057C (en) * 2006-03-22 2008-02-27 广东工业大学 Extraction method for production of polyolefin microporous film
JP2011042805A (en) * 2006-09-29 2011-03-03 Toray Advanced Materials Korea Inc Method for producing polyolefin microporous film
JP2012003841A (en) * 2010-06-14 2012-01-05 Hiramatsu Sangyo Kk Battery separator material, method of manufacturing battery separator, battery separator, and secondary battery
WO2012090632A1 (en) * 2010-12-28 2012-07-05 旭化成イーマテリアルズ株式会社 Polyolefin porous membrane and method of producing the same
EP2612702A1 (en) 2012-01-06 2013-07-10 SK Innovation Co. Ltd. Microporous polyolefin film and method for preparing the same
JP5586152B2 (en) * 2006-12-04 2014-09-10 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
JP2017107848A (en) * 2015-11-30 2017-06-15 住友化学株式会社 Nonaqueous electrolyte secondary battery separator
JP2018137244A (en) * 2018-06-08 2018-08-30 オートモーティブエナジーサプライ株式会社 Nonaqueous battery
US11338250B2 (en) * 2013-05-07 2022-05-24 Teijin Limited Substrate for liquid filter

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0129728D0 (en) 2001-12-12 2002-01-30 Dupont Teijin Films Us Ltd Plymeric film
EP2669322A4 (en) 2011-01-27 2014-11-05 Mitsubishi Plastics Inc Polyolefin resin porous film, and non-aqueous electrolyte cell separator using same
CN102569699A (en) * 2011-12-02 2012-07-11 佛山市金辉高科光电材料有限公司 Preparation method of power lithium battery diaphragm
CN109346656B (en) * 2018-10-12 2021-11-05 深圳中科瑞能实业有限公司 Application of organic coating, pole piece for lithium ion battery and application thereof, lithium ion battery and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310989A (en) * 1992-04-30 1993-11-22 Mitsubishi Kasei Corp Polyethylenic porous film
JPH11279324A (en) * 1998-03-30 1999-10-12 Asahi Chem Ind Co Ltd Polyethylene microporous film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310989A (en) * 1992-04-30 1993-11-22 Mitsubishi Kasei Corp Polyethylenic porous film
JPH11279324A (en) * 1998-03-30 1999-10-12 Asahi Chem Ind Co Ltd Polyethylene microporous film

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100371057C (en) * 2006-03-22 2008-02-27 广东工业大学 Extraction method for production of polyolefin microporous film
US8288038B2 (en) 2006-05-22 2012-10-16 Panasonic Corporation Separator and non-aqueous electrolyte secondary battery
JP2008004536A (en) * 2006-05-22 2008-01-10 Matsushita Electric Ind Co Ltd Separator, and nonaqueous electrolyte secondary battery
WO2007135952A1 (en) * 2006-05-22 2007-11-29 Panasonic Corporation Separator and nonaqueous electrolyte secondary battery
JP2011042805A (en) * 2006-09-29 2011-03-03 Toray Advanced Materials Korea Inc Method for producing polyolefin microporous film
JP5586152B2 (en) * 2006-12-04 2014-09-10 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
JP2012003841A (en) * 2010-06-14 2012-01-05 Hiramatsu Sangyo Kk Battery separator material, method of manufacturing battery separator, battery separator, and secondary battery
WO2012090632A1 (en) * 2010-12-28 2012-07-05 旭化成イーマテリアルズ株式会社 Polyolefin porous membrane and method of producing the same
JP5164296B2 (en) * 2010-12-28 2013-03-21 旭化成イーマテリアルズ株式会社 POLYOLEFIN POROUS MEMBRANE AND METHOD FOR PRODUCING THE SAME
US9941498B2 (en) 2010-12-28 2018-04-10 Asahi Kasei E-Materials Corporation Polyolefin-based porous film and method for producing the same
US10693114B2 (en) 2010-12-28 2020-06-23 Asahi Kasei E-Materials Corporation Polyolefin-based porous film and method for producing the same
KR101547801B1 (en) 2010-12-28 2015-08-26 아사히 가세이 이-매터리얼즈 가부시키가이샤 Polyolefin porous membrane and method of producing the same
US9991488B2 (en) 2010-12-28 2018-06-05 Asahi Kasei E-Materials Corporation Polyolefin-based porous film and method for producing the same
EP2612702A1 (en) 2012-01-06 2013-07-10 SK Innovation Co. Ltd. Microporous polyolefin film and method for preparing the same
JP2013142156A (en) * 2012-01-06 2013-07-22 Sk Innovation Co Ltd Polyolefin-based microporous film and method for producing the same
US11338250B2 (en) * 2013-05-07 2022-05-24 Teijin Limited Substrate for liquid filter
JP2017107848A (en) * 2015-11-30 2017-06-15 住友化学株式会社 Nonaqueous electrolyte secondary battery separator
JP2018137244A (en) * 2018-06-08 2018-08-30 オートモーティブエナジーサプライ株式会社 Nonaqueous battery

Also Published As

Publication number Publication date
JP4220329B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JP4753446B2 (en) Polyolefin microporous membrane
JP5052135B2 (en) Polyolefin microporous membrane and battery separator
JP4986199B2 (en) Polyethylene microporous membrane and battery using the same
JP5236429B2 (en) Polyolefin microporous membrane and separator for electricity storage device
JP6823718B2 (en) Polyolefin microporous membranes, separators for power storage devices, and power storage devices
JP5601681B2 (en) Polyolefin microporous membrane containing inorganic particles and separator for non-aqueous electrolyte battery
TW201838224A (en) Polyolefin microporous membrane, separator for secondary battery with nonaqueous electrolyte, and secondary battery with nonaqueous electrolyte
JP4220329B2 (en) Polyolefin microporous membrane and method for producing the same
JP5008422B2 (en) Polyolefin microporous membrane
CN111244369B (en) Polyolefin microporous membrane
WO2020137336A1 (en) Microporous polyolefin membrane and method for producing microporous polyolefin membrane
JP5876221B2 (en) Polyolefin microporous membrane
JP5592745B2 (en) Polyolefin microporous membrane
JP5295857B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP2012087223A (en) Microporous film, and battery separator
JP5676286B2 (en) Polyolefin microporous membrane
JP6598911B2 (en) Manufacturing method of polyolefin microporous membrane, battery separator, and non-aqueous electrolyte secondary battery
JP6347801B2 (en) Manufacturing method of polyolefin microporous membrane, battery separator, and non-aqueous electrolyte secondary battery
JP5676285B2 (en) Polyolefin microporous membrane
JP7152435B2 (en) Polyolefin microporous membrane
JP5443114B2 (en) Polyolefin microporous membrane
JP6596270B2 (en) Method for producing polyolefin microporous membrane
JP2015136809A (en) Method for producing polyolefin microporous film, battery separator and nonaqueous electrolyte secondary battery
WO2021065283A1 (en) Polyolefin microporous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2012136704A (en) Microporous membrane made of polyethylene and battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4220329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term