JP2012136704A - Microporous membrane made of polyethylene and battery using the same - Google Patents

Microporous membrane made of polyethylene and battery using the same Download PDF

Info

Publication number
JP2012136704A
JP2012136704A JP2012029848A JP2012029848A JP2012136704A JP 2012136704 A JP2012136704 A JP 2012136704A JP 2012029848 A JP2012029848 A JP 2012029848A JP 2012029848 A JP2012029848 A JP 2012029848A JP 2012136704 A JP2012136704 A JP 2012136704A
Authority
JP
Japan
Prior art keywords
polyethylene
microporous membrane
battery
weight
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012029848A
Other languages
Japanese (ja)
Inventor
Yoshifumi Nishimura
佳史 西村
Shunsuke Oki
俊介 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2012029848A priority Critical patent/JP2012136704A/en
Publication of JP2012136704A publication Critical patent/JP2012136704A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a microporous membrane made of polyethylene which has excellent productivity and characteristics, also has excellent safety achieved by a perfect fuse effect, and is used for a battery, and to provide a battery using the microporous membrane.SOLUTION: The microporous membrane made of polyethylene is composed of a composition at least comprising: 10 to 95 wt.% of high density polyethylene having the viscosity-average molecular weight of 100,000 to 4,000,000; and 5 to 90 wt.% of polyethylene having a melting point of >125°C and ≤132°C.

Description

本発明は、ポリエチレン製微多孔膜、特に負極として、リチウムイオンを挿入可能な炭素材料、金属リチウム、リチウム合金等を用いている電池に使用されるイオン透過性、機械特性、安全性に優れるポリエチレン製微多孔膜、及びそれを使用した電池に関するものである。   The present invention is a polyethylene microporous membrane, in particular, polyethylene having excellent ion permeability, mechanical properties, and safety used for a battery using a carbon material capable of inserting lithium ions, lithium metal, lithium alloy, etc. as a negative electrode. The present invention relates to a microporous membrane and a battery using the same.

近年の携帯電話、ノート型パーソナルコンピュータ、PDAといった情報関連機器の目覚しい発達に伴い、小型軽量で且つ高エネルギー容量の電池が要求されている。各種電池が研究・開発・販売されている中、特にリチウムイオン電池が市場を拡大させており、それに用いられるセパレータとしてポリエチレン製微多孔膜が用いられている。   With the remarkable development of information-related devices such as mobile phones, notebook personal computers, and PDAs in recent years, small and light batteries with high energy capacity are required. While various types of batteries are being researched, developed, and sold, lithium ion batteries are expanding the market, and polyethylene microporous membranes are used as separators used in such batteries.

このリチウムイオン電池を始めとした電池用のセパレータとしては、優れた電池特性を発揮することができる高いイオン透過性、電池組立時や取り扱い時に耐え得る優れた機械特性、過充電時等の温度上昇時に孔が閉塞してイオンの流れを遮断し電流を流れなくする(フューズ効果)といった優れた安全性、等が要求される。上記「フューズ効果」についてより詳しく述べる。電池内にセパレータとして組み込まれているポリエチレン製微多孔膜は、その融点近傍になるまで熱がかかると、孔が閉塞してイオンの流れを遮断し電流を流れなくすることにより、その後の電池の発熱を抑えることができ、安全性を保つことができる。しかしながら、電池に極めて急激に熱がかかった場合は、孔の閉塞に遅れが生じてイオンの流れを遮断することができない可能性がある。このような場合でも確実に孔が閉塞してイオンの流れを遮断し電流を流れなくする機能を持つセパレータが求められていた。   As separators for batteries such as this lithium ion battery, high ion permeability that can exhibit excellent battery characteristics, excellent mechanical characteristics that can be withstood during battery assembly and handling, temperature rise during overcharge, etc. Occasionally, excellent safety such as blocking the flow of ions and blocking current flow (fuse effect) is required. The above “fuse effect” will be described in more detail. When heat is applied to the polyethylene microporous membrane incorporated as a separator in the battery until it reaches its melting point, the pores are blocked to block the flow of ions and prevent the current from flowing. Heat generation can be suppressed and safety can be maintained. However, if the battery is heated very rapidly, there is a possibility that the flow of ions cannot be blocked due to a delay in the closing of the holes. Even in such a case, there has been a demand for a separator having a function of reliably blocking the flow of ions and blocking the flow of ions so that no current flows.

上記問題を解決するための一つの手段として、低融点(95〜125℃)のポリエチレンを添加するという方法が提案されている(例えば、特開平11−269289公報)。しかしながら、融点が低過ぎるものが添加されていると、孔が閉塞してしまうために微多孔膜製造時の熱固定(ヒートセット)温度を上げることができず、その結果熱収縮の大きなセパレータとなってしまう、という問題がある。   As one means for solving the above problem, a method of adding polyethylene having a low melting point (95 to 125 ° C.) has been proposed (for example, JP-A-11-269289). However, if a material having a melting point that is too low is added, the pores are blocked, so that the heat setting temperature during the production of the microporous membrane cannot be increased, and as a result, a separator having a large heat shrinkage There is a problem of becoming.

本発明の課題は、生産性,特性に優れ、且つ完全なヒューズ効果により実現される優れた安全性を持つ電池に用いられるポリエチレン製微多孔膜、及びそれを用いた電池を提供することである。   An object of the present invention is to provide a polyethylene microporous membrane used for a battery having excellent productivity and characteristics, and excellent safety realized by a complete fuse effect, and a battery using the polyethylene microporous film. .

上記目的を達成するために、本発明は、(1)少なくとも、粘度平均分子量が10万〜400万の高密度ポリエチレン10〜95重量%と、融点が125℃を越えて132℃以下のポリエチレン5〜90重量%を含有していることを特徴とするポリエチレン製微多孔膜、(2)融点が125℃を越えて132℃以下のポリエチレンが、エチレンと炭素数が4以上のα−オレフィンとの共重合体であることを特徴とする上記(1)記載のポリエチレン製微多孔膜、(3)融点が125℃を越えて132℃以下のポリエチレンの密度が0.86〜0.95g/cm3であり、且つ、数平均分子量に対する重量平均分子量の比(Mw/Mn)が3.5〜8.0の範囲であることを特徴とする上記(1)または(2)記載のポリエチレン製微多孔膜、(4)融点が125℃を越えて132℃以下のポリエチレンが、ポリエチレン中の1000個の炭素原子当たり0.3個以上の末端ビニル基が存在することを特徴とする上記(1)または(2)記載のポリエチレン製微多孔膜、(5)上記(1)〜(4)のいずれかに記載のポリエチレン製微多孔膜からなる電池用セパレータ、(6)上記(1)〜(4)のいずれかに記載のポリエチレン製微多孔膜をセパレータとして使用した電池、を提供する。 In order to achieve the above object, the present invention provides (1) at least 10 to 95% by weight of high-density polyethylene having a viscosity average molecular weight of 100,000 to 4,000,000 and a melting point of more than 125 ° C and 132 ° C or less. A polyethylene microporous membrane characterized by containing ˜90% by weight, (2) polyethylene having a melting point of more than 125 ° C. and not more than 132 ° C. is composed of ethylene and an α-olefin having 4 or more carbon atoms. The polyethylene microporous membrane according to (1) above, which is a copolymer, (3) The density of polyethylene having a melting point of more than 125 ° C. and 132 ° C. or less is 0.86 to 0.95 g / cm 3. And the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) is in the range of 3.5 to 8.0, and the polyethylene microporous structure according to the above (1) or (2) film,( 4) The above (1) or (2), wherein the polyethylene having a melting point of more than 125 ° C. and not more than 132 ° C. has 0.3 or more terminal vinyl groups per 1000 carbon atoms in the polyethylene. The polyethylene microporous membrane according to any one of the above, (5) a battery separator comprising the polyethylene microporous membrane according to any one of (1) to (4), and (6) any one of (1) to (4) above. A battery using the polyethylene microporous membrane as described in 1 above as a separator.

本発明のポリエチレン製微多孔膜は優れたフューズ効果を持っているため、安全性に優れた電池を作製することができる。   Since the polyethylene microporous membrane of the present invention has an excellent fuse effect, a battery with excellent safety can be produced.

以下に本発明を詳細に説明する。本発明のポリエチレン製微多孔膜は、少なくとも粘度平均分子量が10万〜400万の高密度ポリエチレン10〜95重量%と、融点が125を越えて132℃以下のポリエチレン5〜90重量%を含有している組成物からなることを特徴とするものである。   The present invention is described in detail below. The polyethylene microporous membrane of the present invention contains at least 10 to 95% by weight of high-density polyethylene having a viscosity average molecular weight of 100,000 to 4,000,000 and 5 to 90% by weight of polyethylene having a melting point of more than 125 and 132 ° C. or less. It consists of the composition which is characterized by the above-mentioned.

本発明に用いられる高密度ポリエチレンとは、密度が0.941g/cm3以上であり、粘度平均分子量が10万〜400万、好ましくは15万〜200万、より好ましくは17万〜100万、さらに好ましくは20万以上70万未満である。ここで、粘度平均分子量が10万未満であると、微多孔膜としたときの強度が不十分となる。また400万を超えると微多孔膜製造時の混練及び成形が困難になる。尚、粘度平均分子量Mvは、デカリン溶液中で極限粘度[η]を測定し、以下の式により求める;
ポリエチレン:[η]=6.77×10-4Mv0.67
ポリプロピレン:[η]=1.10×10-4Mv0.80
本発明に用いられる融点が125℃を越え132℃以下のポリエチレンの一つとして、エチレンとα−オレフィンとの共重合体が挙げられる。α−オレフィンは炭素数が4以上のものが好ましい。このような共重合体は、チーグラー型触媒を用いて、常圧から100kg/cm2の圧力下でイオン重合により作り出すことができる。
The high density polyethylene used in the present invention has a density of 0.941 g / cm 3 or more and a viscosity average molecular weight of 100,000 to 4,000,000, preferably 150,000 to 2,000,000, more preferably 170,000 to 1,000,000, More preferably, it is 200,000 or more and less than 700,000. Here, when the viscosity average molecular weight is less than 100,000, the strength of the microporous membrane is insufficient. On the other hand, if it exceeds 4 million, kneading and molding at the time of producing the microporous membrane become difficult. The viscosity average molecular weight Mv is determined by measuring the intrinsic viscosity [η] in a decalin solution and using the following formula:
Polyethylene: [η] = 6.77 × 10 −4 Mv 0.67
Polypropylene: [η] = 1.10 × 10 −4 Mv 0.80
One polyethylene having a melting point of more than 125 ° C. and 132 ° C. or less used in the present invention is a copolymer of ethylene and an α-olefin. The α-olefin preferably has 4 or more carbon atoms. Such a copolymer can be produced by ionic polymerization using a Ziegler-type catalyst under a pressure of normal pressure to 100 kg / cm 2 .

上記共重合体としては、構造不均一性の小さいポリエチレンを用いることができる。このときの共重合体の密度は0.86〜0.95g/cm3であることが好ましい。且つ、数平均分子量に対する重量平均分子量の比(Mw/Mn)は3.5〜8.0の範囲であることが好ましい。このような共重合体は、活性点が1種類の均一系触媒であるシングルサイト触媒によっても重合することができる。シングルサイト触媒としては、ビス(シクロペンタジエニル)ジルコニウムクロライドのようなメタロセン触媒が挙げられる。尚、Mw及びMnは以下の方法により測定する;
[測定装置]ゲルパーミエーションクロマトグラフィ(GPC)(Waters製:ALC/GPC 150型)
[測定条件]カラム:昭和電工製AT−807S(1本)と東ソー製GMH−HT6(2本)を直列に接続移動相:トリクロロベンゼン(TCB)
カラム温度:140℃流量:1.0ml/min.
試料調整:20〜30mgのサンプルを、0.1重量%の2,6−ジ−t−ブチル−4−メチルフェノールを溶解させたTCB溶液20mlへ140℃に加熱して溶解させる
[算出方法]クロマトグラムにベースラインを引き、さらにクロマトグラムをいくつかに等分割して、ベースラインからの各分割点の高さHiを求める。次に、各分割点における分子量Miを分子量既知の標準ポリスチレンによる較正曲線から求める。そして下式よりMw及びMnを求める;
Mw={Σ(Hi・ Mi )}/(ΣHi)
Mn=(ΣHi)/{Σ(Hi/Mi)}
As the copolymer, polyethylene having a small structural nonuniformity can be used. The density of the copolymer at this time is preferably 0.86 to 0.95 g / cm 3 . The ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) is preferably in the range of 3.5 to 8.0. Such a copolymer can also be polymerized by a single site catalyst which is a homogeneous catalyst having one kind of active site. Examples of the single site catalyst include metallocene catalysts such as bis (cyclopentadienyl) zirconium chloride. Mw and Mn are measured by the following method;
[Measurement apparatus] Gel permeation chromatography (GPC) (manufactured by Waters: ALC / GPC 150 type)
[Measurement conditions] Column: Showa Denko AT-807S (1) and Tosoh GMH-HT6 (2) connected in series Mobile phase: Trichlorobenzene (TCB)
Column temperature: 140 ° C. Flow rate: 1.0 ml / min.
Sample preparation: A 20-30 mg sample is dissolved by heating at 140 ° C. in 20 ml of a TCB solution in which 0.1% by weight of 2,6-di-tert-butyl-4-methylphenol is dissolved [calculation method] A base line is drawn on the chromatogram, and the chromatogram is further divided into several equal parts to obtain the height Hi of each dividing point from the base line. Next, the molecular weight Mi at each dividing point is determined from a calibration curve using standard polystyrene with a known molecular weight. And obtain Mw and Mn from the following equations;
Mw = {Σ (Hi · Mi)} / (ΣHi)
Mn = (ΣHi) / {Σ (Hi / Mi)}

また、本発明に用いられる融点が125℃を越えて132℃以下のポリエチレン、及びエチレンと炭素数が4以上のα−オレフィンとの共重合体で融点が125℃を越えて132℃以下のポリエチレンとしてはポリエチレン中の1000個の炭素原子当たり0.3個以上の末端ビニル基を有するものでもよい。このようなポリエチレンは、クロム化合物担持系触媒によって重合することができる。ここでクロム化合物担持系触媒とは、例えば、特公平1−12777号公報に示されているようなものである。   Further, polyethylene having a melting point of more than 125 ° C. and not more than 132 ° C. and a copolymer of ethylene and an α-olefin having 4 or more carbon atoms and having a melting point of more than 125 ° C. and not more than 132 ° C. May have 0.3 or more terminal vinyl groups per 1000 carbon atoms in polyethylene. Such polyethylene can be polymerized by a chromium compound supported catalyst. Here, the chromium compound-supported catalyst is, for example, as shown in Japanese Patent Publication No. 1-17777.

このような触媒を用いて重合した場合、チーグラー型触媒を用いて重合した場合とは異なり、重合体中の1000個の炭素原子当たり0.3個以上の末端ビニル基が見られる。理由は明らかではないが、末端ビニル基の存在が多いほど、微多孔膜の孔の閉塞温度が低くなり好ましい。尚、重合体中の1000個の炭素原子当たりの末端ビニル基数は以下の方法により導出する;ポリマーを加熱プレスし、シート状に無孔化したサンプルのIRスペクトルを測定し、910cm-1付近の末端ビニル基を示すピークのベースラインからの高さ(吸光度:A)を求める。これを次式に代入し、ポリマー中の1000個の炭素原子当たりの末端ビニル基数nを求める;
n=1.14×A/(ρ×t)
上式中、ρ:サンプルの真密度(g/cm3),
t:サンプルの厚み(mm)
尚、本発明における融点とは、示差走査熱量計(DSC)によって得られる吸熱ピークトップの温度のことを指している。
When polymerized using such a catalyst, 0.3 or more terminal vinyl groups are observed per 1000 carbon atoms in the polymer, unlike when polymerized using a Ziegler type catalyst. The reason is not clear, but the more the terminal vinyl group is present, the lower the closing temperature of the pores of the microporous membrane, which is preferable. In addition, the number of terminal vinyl groups per 1000 carbon atoms in the polymer is derived by the following method; the IR spectrum of a sample obtained by heat-pressing the polymer and making it non-porous into a sheet is measured, and the vicinity of 910 cm −1 is measured. The height (absorbance: A) from the baseline of the peak indicating the terminal vinyl group is determined. Substituting this into the following equation to determine the number of terminal vinyl groups n per 1000 carbon atoms in the polymer:
n = 1.14 × A / (ρ × t)
Where ρ is the true density of the sample (g / cm 3 ),
t: sample thickness (mm)
The melting point in the present invention refers to the temperature at the endothermic peak top obtained by a differential scanning calorimeter (DSC).

さらに、セパレータの耐熱性を上げたりすること等の目的でポリエチレン以外のポリオレフィン、例えばポリプロピレンを含有させても良い。このときの含有量は1〜30重量%であり、より好ましくは1〜20重量%、さらに好ましくは3〜10重量%である。また、無機物を充填することも可能であるが、本願においては充填しない方が好ましい。   Furthermore, for the purpose of increasing the heat resistance of the separator, a polyolefin other than polyethylene, such as polypropylene, may be included. The content at this time is 1 to 30% by weight, more preferably 1 to 20% by weight, and further preferably 3 to 10% by weight. Moreover, although it is also possible to fill with an inorganic substance, it is preferable not to fill in this application.

次に、本発明のポリエチレン製微多孔膜の製法について説明する。まず、原料となるポリエチレンを混合し、これをダイが装着された押出し機内で、その融点以上、分解温度未満の温度で可塑剤中で溶解させ溶融混練させる。これをダイリップより押出して冷却ロール上にキャストすることにより数十μmから数mm厚のシート状にし、ゲル状組成物とする。ここでいう可塑剤とは、沸点以下の温度でポリエチレンと均一な溶液を形成し得る有機化合物のことをいう。具体的には、流動パラフィン,デカリン,キシレン,ジオクチルフタレート,ジブチルフタレート,ステアリルアルコール,オレイルアルコール,デシルアルコール,ノニルアルコール,ジフェニルエーテル,n−デカン,n−ドデカン等が挙げられ、特に流動パラフィン,デカリンが好ましい。   Next, a method for producing the polyethylene microporous membrane of the present invention will be described. First, polyethylene as a raw material is mixed, and this is melted and kneaded in a plasticizer at a temperature higher than its melting point and lower than its decomposition temperature in an extruder equipped with a die. This is extruded from a die lip and cast on a cooling roll to form a sheet having a thickness of several tens of μm to several mm to obtain a gel composition. The plasticizer here refers to an organic compound that can form a uniform solution with polyethylene at a temperature below the boiling point. Specific examples include liquid paraffin, decalin, xylene, dioctyl phthalate, dibutyl phthalate, stearyl alcohol, oleyl alcohol, decyl alcohol, nonyl alcohol, diphenyl ether, n-decane, and n-dodecane. preferable.

可塑剤中のポリエチレン濃度は10〜70重量%、好ましくは25〜50重量%の範囲である。70重量%を超えると適当な気孔率を得ることができず、10重量%未満では粘度が低下して連続シート成形が困難となる。尚、加熱溶解時にはポリエチレンの酸化を防止するために、酸化防止剤を添加しておくことが好ましい。このゲル状組成物を加熱して延伸を行い、延伸膜とする。延伸温度は常温から高分子ゲルの融点の範囲、好ましくは80〜130℃,より好ましくは100〜125℃の範囲である。   The polyethylene concentration in the plasticizer is in the range of 10 to 70% by weight, preferably 25 to 50% by weight. If it exceeds 70% by weight, an appropriate porosity cannot be obtained, and if it is less than 10% by weight, the viscosity is lowered and continuous sheet molding becomes difficult. In addition, in order to prevent the oxidation of polyethylene at the time of heat-dissolution, it is preferable to add an antioxidant. The gel composition is heated and stretched to obtain a stretched film. The stretching temperature ranges from room temperature to the melting point of the polymer gel, preferably from 80 to 130 ° C, more preferably from 100 to 125 ° C.

延伸方法はテンター法,ロール法,インフレーション法,圧延法もしくはこれらの方法の組み合わせ等により所定の倍率で行う。一軸延伸,二軸延伸でも構わないが、二軸延伸が好ましく、二軸延伸の場合は縦横同時延伸でも逐次延伸でも構わない。延伸倍率は面積倍率で4〜400倍、好ましくは8〜200倍、より好ましくは16〜100倍の範囲である。延伸倍率が4倍未満であると、セパレータとしての強度が不十分であり、400倍を超えると、延伸が困難となる。   The stretching method is performed at a predetermined magnification by a tenter method, a roll method, an inflation method, a rolling method, or a combination of these methods. Although uniaxial stretching and biaxial stretching may be used, biaxial stretching is preferable, and in the case of biaxial stretching, longitudinal and transverse simultaneous stretching or sequential stretching may be performed. The draw ratio is 4 to 400 times, preferably 8 to 200 times, and more preferably 16 to 100 times in terms of area magnification. When the stretching ratio is less than 4 times, the strength as a separator is insufficient, and when it exceeds 400 times, stretching becomes difficult.

次に、延伸膜から可塑剤を抽出することにより微多孔膜とする。抽出方法として有機溶剤による抽出があるが、このときの溶剤としては、メチルエチルケトン,塩化メチレン,ヘキサン,ジエチルエーテル等が使用され、その後、加熱,風乾により乾燥する。可塑剤としてデカリン等の低沸点化合物を使用する場合は加熱乾燥によりこれを除去することも可能である。何れの場合においても、膜の収縮による物性低下を防ぐため、膜を拘束した状態で行うことが望ましい。   Next, a microporous film is obtained by extracting a plasticizer from the stretched film. As an extraction method, there is extraction with an organic solvent. As the solvent at this time, methyl ethyl ketone, methylene chloride, hexane, diethyl ether or the like is used, and then dried by heating and air drying. When a low boiling point compound such as decalin is used as the plasticizer, it can be removed by heating and drying. In any case, it is desirable to carry out the process in a state where the film is constrained in order to prevent deterioration of physical properties due to film shrinkage.

以上の後に、寸法安定性を高めたり、熱収縮率を低減させたりする目的で、熱固定(ヒートセット)を行うことが望ましい。このときの温度としては、結晶分散温度から融点の範囲で行うことが好ましい。また、熱固定時には幅方向の延伸を同時に行うが、このときの延伸倍率としては1.01〜2.00倍の範囲で行われ、1.10〜1.80倍の範囲であることが好ましい。以上のようにして製造されたセパレータの諸物性について以下に述べる。膜厚は1〜100μmの範囲であり、好ましくは5〜50μmである。膜厚が1μm未満であると機械的強度が不十分であり、100μmを越えると硬くなって電池として捲回し難くなる上に、電池容量としても不利となる。尚、膜厚はダイヤルゲージ(尾崎製作所製:PEACOCK No.25)にて測定する。   After the above, it is desirable to perform heat setting (heat setting) for the purpose of increasing the dimensional stability or reducing the thermal shrinkage rate. The temperature at this time is preferably in the range from the crystal dispersion temperature to the melting point. In the heat setting, stretching in the width direction is performed at the same time, and the stretching ratio at this time is 1.01 to 2.00 times, preferably 1.10 to 1.80 times. . Various properties of the separator manufactured as described above will be described below. The film thickness is in the range of 1-100 μm, preferably 5-50 μm. If the film thickness is less than 1 μm, the mechanical strength is insufficient, and if it exceeds 100 μm, the film becomes hard and difficult to wind as a battery, and it is disadvantageous in terms of battery capacity. The film thickness is measured with a dial gauge (manufactured by Ozaki Seisakusho: PEACOCK No. 25).

気孔率は20〜80%、好ましくは30〜55%である。気孔率が20%未満であるとイオン透過性が不十分であり、80%より大きいと機械強度が不十分である。尚、気孔率は以下の方法により算出する;
気孔率={1−(10000×M/ρ)/(X×Y×T)}×100
上式中、X,Y:サンプルの縦,横長(cm)
T:サンプル厚み(μm)、M:サンプル重量(g)
ρ:樹脂の真密度(g/cm3
透気度は10〜2000sec./100cc、好ましくは30〜1500sec./100cc、より好ましくは50〜1000sec./100ccである。2000sec./100ccを超えるとイオン透過性の観点から好ましくない。尚、透気度は以下の方法により測定する;
[測定装置]JIS P−8117準拠のガーレー式透気度計このとき、圧力:0.01276atm,膜面積:6.424cm2,透過空気量:100cc
The porosity is 20 to 80%, preferably 30 to 55%. If the porosity is less than 20%, the ion permeability is insufficient, and if it is more than 80%, the mechanical strength is insufficient. The porosity is calculated by the following method;
Porosity = {1- (10000 × M / ρ) / (X × Y × T)} × 100
In the above formula, X, Y: vertical and horizontal (cm) of the sample
T: Sample thickness (μm), M: Sample weight (g)
ρ: True density of resin (g / cm 3 )
The air permeability is 10 to 2000 sec. / 100cc, preferably 30 to 1500 sec. / 100cc, more preferably 50 to 1000 sec. / 100cc. 2000 sec. If it exceeds / 100 cc, it is not preferable from the viewpoint of ion permeability. The air permeability is measured by the following method;
[Measuring apparatus] Gurley type air permeability meter according to JIS P-8117 At this time, pressure: 0.01276 atm, membrane area: 6.424 cm 2 , permeated air amount: 100 cc

突刺強度は50g以上、好ましくは100g以上、より好ましくは150g以上である。50g未満であると、電池生産時の収率が下がり好ましくない。尚、突刺強度は以下の方法により測定する;
[測定装置]ハンディ圧縮試験機(カトーテック製:KES−G5)
このとき、針先端曲率半径:0.5mm,突刺速度:2mm/sec.
孔径は0.01〜1μm、好ましくは0.03〜0.7μm、さらに好ましくは0.05〜0.5μmである。孔径が0.01μmより小さいとイオン透過性が十分ではなく、1μmより大きいと、析出したデンドライトや、活物質粒子による内部短絡の可能性があり、フューズ効果によるイオンの遮断が遅れることも考えられる。尚、孔径は以下の方法により測定する;
[測定装置]水銀ポロシメータ(島津製作所製:オートポア9220)
[測定条件]約25mm幅に切断したサンプル0.1〜0.2gを折りたたんでセルに入れ、初期圧20kPaから測定する。
[孔径導出]微分細孔体積曲線(横軸:孔径,縦軸:圧入水銀体積変化量を孔径変化量で割った値)を描き、その曲線のピークトップにおける孔径(モード径)をセパレータの孔径として代表させる。
The puncture strength is 50 g or more, preferably 100 g or more, more preferably 150 g or more. If it is less than 50 g, the yield during battery production decreases, which is not preferable. The puncture strength is measured by the following method;
[Measurement device] Handy compression tester (Kato Tech: KES-G5)
At this time, the radius of curvature of the needle tip: 0.5 mm, the piercing speed: 2 mm / sec.
The pore diameter is 0.01 to 1 μm, preferably 0.03 to 0.7 μm, and more preferably 0.05 to 0.5 μm. If the pore size is smaller than 0.01 μm, the ion permeability is not sufficient, and if it is larger than 1 μm, there is a possibility of internal short circuit due to the deposited dendrites and active material particles, and it is also considered that ion blocking due to the fuse effect is delayed. . The pore diameter is measured by the following method;
[Measurement device] Mercury porosimeter (manufactured by Shimadzu Corporation: Autopore 9220)
[Measurement conditions] 0.1 to 0.2 g of a sample cut to a width of about 25 mm is folded and placed in a cell, and measurement is performed from an initial pressure of 20 kPa.
[Derivation of pore diameter] Draw a differential pore volume curve (horizontal axis: pore diameter, vertical axis: value obtained by dividing the volume change of injected mercury by the pore diameter change amount), and the pore diameter (mode diameter) at the peak top of the curve is the pore diameter of the separator As representative.

以下、本発明の実施形態について、実施例を挙げてさらに説明するが、本発明はこれらによって何ら限定されるものではない。   Hereinafter, although an example is given and an embodiment of the present invention is further explained, the present invention is not limited at all by these.

(1)セパレータの作製原料ポリエチレンとして、粘度平均分子量が28万である高密度ポリエチレン80重量%と、メタロセン触媒を用いて重合されたポリエチレン(粘度平均分子量:7万,融点:127℃,共重合しているα−オレフィンの炭素数:6,密度0.94g/cm3,Mw/Mn:4.2)20重量%を用いる。これらポリエチレン45重量部に対して、55重量部の流動パラフィン,0.3重量部の酸化防止剤と共に240℃で溶融混練し、Tダイより押し出して、冷却ロール上にキャストすることにより、シート状にする。これを同時二軸延伸機により、115〜125℃の範囲で巻取り方向7倍×幅方向7倍に延伸する。この後、メチルエチルケトンにて流動パラフィンを抽出して、乾燥する。さらに110〜130℃の範囲でヒートセットを行うと共に、幅方向に1.3倍延伸する。このようにして作製できるポリエチレン製微多孔膜は、厚み25μm,気孔率40%である。 (1) Separation material As raw material polyethylene, 80% by weight of high-density polyethylene having a viscosity average molecular weight of 280,000 and polyethylene polymerized using a metallocene catalyst (viscosity average molecular weight: 70,000, melting point: 127 ° C., copolymerization) The α-olefin used has a carbon number: 6, density of 0.94 g / cm 3 , Mw / Mn: 4.2) 20% by weight. 45 parts by weight of these polyethylenes are melt-kneaded at 240 ° C. together with 55 parts by weight of liquid paraffin and 0.3 parts by weight of an antioxidant, extruded from a T-die, and cast on a cooling roll to form a sheet. To. This is stretched 7 times in the winding direction and 7 times in the width direction in the range of 115 to 125 ° C. by a simultaneous biaxial stretching machine. Thereafter, liquid paraffin is extracted with methyl ethyl ketone and dried. Further, heat setting is performed in the range of 110 to 130 ° C. and the film is stretched 1.3 times in the width direction. The polyethylene microporous membrane thus prepared has a thickness of 25 μm and a porosity of 40%.

(2)正極の作製
活物質としてリチウムコバルト複合酸化物LiCoO2を100重量部、導電剤としてリン片状グラファイトとアセチレンブラックをそれぞれ2.5重量部、バインダーとしてポリフッ化ビニリデン(PVDF)3.5重量部をN−メチルピロリドン(NMP)中に分散させてスラリーを調製する。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の両面にダイコーターで塗付し、130℃で3分間乾燥後、ロールプレス機で圧縮成形する。このとき、正極の活物質塗付量は250g/m2、活物質かさ密度は3.00g/cm3になるようにする。これを幅約40mmに切断して帯状にする。
(2) Preparation of positive electrode 100 parts by weight of lithium cobalt composite oxide LiCoO 2 as an active material, 2.5 parts by weight of flake graphite and acetylene black as a conductive agent, and 3.5% of polyvinylidene fluoride (PVDF) as a binder A slurry is prepared by dispersing parts by weight in N-methylpyrrolidone (NMP). This slurry is applied to both surfaces of a 20 μm thick aluminum foil serving as a positive electrode current collector with a die coater, dried at 130 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material coating amount of the positive electrode is 250 g / m 2 , and the bulk density of the active material is 3.00 g / cm 3 . This is cut to a width of about 40 mm to form a strip.

(3)負極の作製
活物質としてグラファイト化したメソフェーズピッチカーボンファーバー(MCF)90重量部とリン片状グラファイト10重量部、バインダーとしてカルボキシメチルセルロースのアンモニウム塩1.4重量部とスチレン−ブタジエン共重合体ラテックス1.8重量部を精製水中に分散させてスラリーを調製する。このスラリーを負極集電体となる厚さ12μmの銅箔の両面にダイコーターで塗付し、120℃で3分間乾燥後、ロールプレス機で圧縮成形する。このとき、負極の活物質塗付量は106g/m2、活物質かさ密度は1.35g/cm3になるようにする。これを幅約40mmに切断して帯状にする。
(4)非水電解液の調整
エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPF6を濃度1.0mol/リットルとなるように溶解させて調整する。
(3) Production of negative electrode 90 parts by weight of graphitized mesophase pitch carbon fiber (MCF) as active material and 10 parts by weight of flake graphite, 1.4 parts by weight of ammonium salt of carboxymethyl cellulose as binder and styrene-butadiene copolymer A slurry is prepared by dispersing 1.8 parts by weight of latex in purified water. This slurry is applied to both sides of a 12 μm thick copper foil serving as a negative electrode current collector with a die coater, dried at 120 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material coating amount of the negative electrode is set to 106 g / m 2 and the bulk density of the active material is set to 1.35 g / cm 3 . This is cut to a width of about 40 mm to form a strip.
(4) Adjustment of Nonaqueous Electrolyte Solution It is adjusted by dissolving LiPF 6 as a solute in a mixed solvent of ethylene carbonate: ethyl methyl carbonate = 1: 2 (volume ratio) to a concentration of 1.0 mol / liter.

(5)電池組立
上記の微多孔膜セパレータ,帯状正極及び帯状負極を、帯状負極、セパレータ、帯状正極、セパレータの順に重ねて渦巻状に複数回捲回することで電極板積層体を作製する。この電極板積層体を平板状にプレス後、アルミニウム製容器に収納し、アルミニウム製リードを正極集電体から導出して電池蓋に、ニッケル製リードを負極集電体から導出して容器底に溶接する。さらにこの容器内に前記した非水電解液を注入し封口する。こうして作製されるリチウムイオン電池は、縦(厚み)6.3mm,横30mm,高さ48mmの大きさで、公称放電容量は620mAhである。
(5) Battery assembly The above-mentioned microporous membrane separator, strip-shaped positive electrode, and strip-shaped negative electrode are stacked in the order of the strip-shaped negative electrode, the separator, the strip-shaped positive electrode, and the separator and wound in a spiral manner to produce an electrode plate laminate. This electrode plate laminate is pressed into a flat plate shape, and then stored in an aluminum container. The aluminum lead is led out from the positive electrode current collector to the battery lid, and the nickel lead is led out from the negative electrode current collector to the bottom of the container. Weld. Further, the non-aqueous electrolyte described above is injected into the container and sealed. The lithium ion battery thus manufactured has a size of 6.3 mm in length (thickness), 30 mm in width, 48 mm in height, and a nominal discharge capacity of 620 mAh.

(6)電池評価
上記のようにして組み立てたリチウムイオン電池25℃雰囲気下、310mA(0.5C)の電流値で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を310mAから絞り始めるという方法で、合計6時間電池作製後の最初の充電を行った。充電終了直前の電流値はほぼ0の値となっていた。そして、25℃雰囲気下で1週間放置した。その後、25℃雰囲気下、620mAの電流値で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を620mAから絞り始めるという方法で、合計3時間充電を行い、そして620mAの電流値で電池電圧3.0Vまで放電するというサイクルを10回繰り返した。さらに、上記と同様な方法で4.2V充電状態にした後、過充電試験を行った。電流値は620mA(1.0C)で、電流が絞られる電圧値(充電最大電圧値)を10Vとした。
(6) Battery evaluation The lithium-ion battery assembled as described above was charged to a battery voltage of 4.2 V at a current value of 310 mA (0.5 C) in an atmosphere at 25 ° C., and further maintained at 4.2 V. The first charge after battery preparation was performed for a total of 6 hours by a method of starting to reduce the value from 310 mA. The current value immediately before the end of charging was almost zero. And it was left to stand in 25 degreeC atmosphere for 1 week. Thereafter, the battery is charged to a battery voltage of 4.2 V at a current value of 620 mA in an atmosphere of 25 ° C., and further charged for a total of 3 hours by starting to reduce the current value from 620 mA so as to hold 4.2 V. The cycle of discharging to a battery voltage of 3.0 V at a current value of 620 mA was repeated 10 times. Furthermore, after making 4.2V charge state by the same method as described above, an overcharge test was performed. The current value was 620 mA (1.0 C), and the voltage value (maximum charging voltage value) at which the current was reduced was 10 V.

原料ポリエチレンとして、粘度平均分子量が200万である高密度ポリエチレン20重量%と、クロム化合物担持系触媒を用いて重合されたポリエチレン(粘度平均分子量:40万,融点:132℃,ポリマー中の1000個の炭素原子当たりの末端ビニル基数:0.5)80重量%を用いる、という事以外は実施例1と同様にする。   As raw material polyethylene, 20% by weight of high-density polyethylene having a viscosity average molecular weight of 2 million and polyethylene polymerized using a chromium compound-supported catalyst (viscosity average molecular weight: 400,000, melting point: 132 ° C., 1000 in the polymer) The number of terminal vinyl groups per carbon atom: 0.5) 80% by weight is used in the same manner as in Example 1.

比較例1Comparative Example 1

原料ポリエチレンとして、粘度平均分子量が28万である高密度ポリエチレンを単独で用いる、という事以外は実施例1,2と同様にする。
[過充電試験結果]実施例1,2ではフューズ効果により発熱が抑えられたのに対し、比較例1ではフューズ効果が十分でなく、発熱が見られた。
Examples 1 and 2 are the same as the raw material polyethylene except that high-density polyethylene having a viscosity average molecular weight of 280,000 is used alone.
[Results of Overcharge Test] In Examples 1 and 2, heat generation was suppressed by the fuse effect, whereas in Comparative Example 1, the fuse effect was not sufficient and heat generation was observed.

Claims (6)

少なくとも、粘度平均分子量が10万〜400万の高密度ポリエチレン10〜95重量%と、融点が125℃を越えて132℃以下のポリエチレン5〜90重量%を含有している組成物からなることを特徴とするポリエチレン製微多孔膜。   And comprising at least 10 to 95% by weight of high-density polyethylene having a viscosity average molecular weight of 100,000 to 4,000,000 and 5 to 90% by weight of polyethylene having a melting point exceeding 125 ° C and not more than 132 ° C. Polyethylene microporous membrane characterized. 融点が125℃を越えて132℃以下のポリエチレンが、エチレンと炭素数が4以上のα−オレフィンとの共重合体であることを特徴とする請求項1記載のポリエチレン製微多孔膜。   The polyethylene microporous membrane according to claim 1, wherein the polyethylene having a melting point of more than 125 ° C and not more than 132 ° C is a copolymer of ethylene and an α-olefin having 4 or more carbon atoms. 融点が125℃を越えて132℃以下のポリエチレンの密度が0.86〜0.95g/cm3であり、且つ、数平均分子量に対する重量平均分子量の比(Mw/Mn)が3.5〜8.0の範囲であることを特徴とする請求項1または2記載のポリエチレン製微多孔膜。 The density of polyethylene having a melting point of more than 125 ° C. and not more than 132 ° C. is 0.86 to 0.95 g / cm 3 , and the ratio of weight average molecular weight to number average molecular weight (Mw / Mn) is 3.5 to 8 The polyethylene microporous membrane according to claim 1 or 2, which is in a range of 0.0. 融点が125℃を越えて132℃以下のポリエチレンが、ポリエチレン中の1000個の炭素原子当たり0.3個以上の末端ビニル基が存在することを特徴とする請求項1または2記載のポリエチレン製微多孔膜。   3. The polyethylene microfiber according to claim 1, wherein the polyethylene having a melting point of more than 125 ° C. and not more than 132 ° C. has 0.3 or more terminal vinyl groups per 1000 carbon atoms in the polyethylene. Porous membrane. 請求項1〜4のいずれかに記載のポリエチレン製微多孔膜からなる電池用セパレータ。   A battery separator comprising the polyethylene microporous membrane according to claim 1. 請求項1〜4のいずれかに記載のポリエチレン製微多孔膜をセパレータとして使用した電池。   A battery using the polyethylene microporous membrane according to claim 1 as a separator.
JP2012029848A 2012-02-14 2012-02-14 Microporous membrane made of polyethylene and battery using the same Withdrawn JP2012136704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012029848A JP2012136704A (en) 2012-02-14 2012-02-14 Microporous membrane made of polyethylene and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012029848A JP2012136704A (en) 2012-02-14 2012-02-14 Microporous membrane made of polyethylene and battery using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001149462A Division JP4986199B2 (en) 2001-05-18 2001-05-18 Polyethylene microporous membrane and battery using the same

Publications (1)

Publication Number Publication Date
JP2012136704A true JP2012136704A (en) 2012-07-19

Family

ID=46674363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012029848A Withdrawn JP2012136704A (en) 2012-02-14 2012-02-14 Microporous membrane made of polyethylene and battery using the same

Country Status (1)

Country Link
JP (1) JP2012136704A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015203039A (en) * 2014-04-11 2015-11-16 株式会社タイキ Cosmetic-use porous elastic body, cosmetic-use porous elastic body resin pellet, and production method of said cosmetic-use porous elastic body
WO2020179294A1 (en) * 2019-03-07 2020-09-10 東レ株式会社 Polyolefin microporous membrane and battery
WO2021033736A1 (en) * 2019-08-22 2021-02-25 東レ株式会社 Polyolefin microporous membrane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015203039A (en) * 2014-04-11 2015-11-16 株式会社タイキ Cosmetic-use porous elastic body, cosmetic-use porous elastic body resin pellet, and production method of said cosmetic-use porous elastic body
WO2020179294A1 (en) * 2019-03-07 2020-09-10 東レ株式会社 Polyolefin microporous membrane and battery
WO2021033736A1 (en) * 2019-08-22 2021-02-25 東レ株式会社 Polyolefin microporous membrane

Similar Documents

Publication Publication Date Title
JP4986199B2 (en) Polyethylene microporous membrane and battery using the same
US10680224B2 (en) Polyolefin multilayer microporous film, method for producing same, and cell separator
US7618743B2 (en) Microporous polyolefin film
US9843030B2 (en) Polyolefin multilayer microporous membrane and battery separator
JP5586152B2 (en) Polyolefin microporous membrane
TWI700851B (en) Polyolefin microporous membrane, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5572334B2 (en) Polyolefin microporous membrane
JP6652059B2 (en) Polyolefin microporous membrane, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR20160093096A (en) Non-aqueous electrolyte battery separator and non-aqueous electrolyte battery
JP6823718B2 (en) Polyolefin microporous membranes, separators for power storage devices, and power storage devices
JP4884008B2 (en) Polyethylene microporous membrane
JP6723052B2 (en) Storage device separator
JP4573284B2 (en) Polyethylene microporous membrane
JP5235484B2 (en) Polyolefin microporous membrane
JP4220329B2 (en) Polyolefin microporous membrane and method for producing the same
WO2020137336A1 (en) Microporous polyolefin membrane and method for producing microporous polyolefin membrane
JP3681720B2 (en) Polyolefin microporous membrane
JP2020084084A (en) Polyolefin microporous film
JP2012136704A (en) Microporous membrane made of polyethylene and battery using the same
WO2021065283A1 (en) Polyolefin microporous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7152435B2 (en) Polyolefin microporous membrane
JP6877611B1 (en) Lithium ion secondary battery
JP4408016B2 (en) Microporous membrane
JP2002358944A (en) Separator for battery
CN108539101B (en) Separator for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120614