JP4573284B2 - Polyethylene microporous membrane - Google Patents

Polyethylene microporous membrane Download PDF

Info

Publication number
JP4573284B2
JP4573284B2 JP2000281111A JP2000281111A JP4573284B2 JP 4573284 B2 JP4573284 B2 JP 4573284B2 JP 2000281111 A JP2000281111 A JP 2000281111A JP 2000281111 A JP2000281111 A JP 2000281111A JP 4573284 B2 JP4573284 B2 JP 4573284B2
Authority
JP
Japan
Prior art keywords
polyethylene
microporous membrane
battery
polyethylene microporous
pore size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000281111A
Other languages
Japanese (ja)
Other versions
JP2002088188A (en
JP2002088188A5 (en
Inventor
孝彦 近藤
理行 安達
貴志 池本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei E Materials Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2000281111A priority Critical patent/JP4573284B2/en
Publication of JP2002088188A publication Critical patent/JP2002088188A/en
Publication of JP2002088188A5 publication Critical patent/JP2002088188A5/ja
Application granted granted Critical
Publication of JP4573284B2 publication Critical patent/JP4573284B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明はポリエチレン微多孔膜、およびその電池セパレータへの適用に関する。
【0002】
【従来の技術】
ポリエチレン微多孔膜は精密濾過膜、電池用セパレータ、コンデンサー用セパレータ等に使用されている。特に近年では厚さ25μm程度のポリエチレン微多孔膜がリチウムイオン二次電池用セパレータに使用されている。
リチウムイオン二次電池用セパレータには電池の高性能化に伴いその要求特性も高レベル化しており、特に最近では透過性の高い微多孔膜が要求されている。
セパレータの透過性は、サイクル性、高温保存特性といった電池の寿命に関する特性と関係深い。寿命に関する特性では電池構造要因が大きいが、長期使用による電解液の分解物の発生とそれに伴うセパレータの目詰まりが性能低下を引き起こすことが知られており、リチウムイオン電池ではこの特性の改善が大きな課題となっている。従って、電池を長寿命化させるために、セパレータには平均孔径と孔径分布が大きく、透過性が優れているものが強く要求されている。
【0003】
この他にもリチウムイオン二次電池用セパレータには、高強度、高安全性、低電気抵抗であることが望まれている。
強度は、電極とセパレータを高速で巻き上げる捲回工程を有する電池の組立時に電極間の短絡不良などを起こしにくくするために必要な性能であり、突き刺し強度等で表せる性能である。特に近年では電池の高容量化に伴い、電極の活物質の詰め込み密度が上昇した堅い電極でも短絡しない高強度セパレータへの要求が強い。
【0004】
また、近年のリチウムイオン二次電池の高出力、大容量化にともない、安全性も強く求められるようになった。安全性とは、電池内部が過熱した際にセパレータが溶融して電極を覆う被膜となり、電流を遮断し、それによって電池の安全性を確保する性能である。その際に、十分な被膜量を確保するためのセパレータの目付量を一定の値以上にする必要があり、これには微多孔膜の空孔量(気孔率)を適正な範囲にする必要がある。
【0005】
さらに、上記物性バランスを保ちつつ、電池の大電流での放電性能や低温での放電性能を向上させるために、セパレータが電解液を保液した状態で流れるイオンの抵抗をできるだけ小さくする必要があり、電解液を含ませた状態での電気抵抗値が低いセパレータが望まれている。
従来、上記の個々の特性については改善する提案がされているが、全ての特性を満たすような電池セパレータ用微多孔膜はなかった。
【0006】
例えば、透過性能の改善されたポリエチレン微多孔膜は特開平8−12799号公報、特開平5−310989号公報や特開平6−240036号公報等に開示されていたり、また特開平5−222236号公報、特開平5−222237号公報等に開示されている製造方法で生産しうることが知られている。
特開平8−12799号公報の微多孔膜、特開平5−222236号公報、特開平5−222237号公報の製法による微多孔膜は透過性能に優れるものの、いずれも造核剤が含まれており、電池内部での副反応による電池性能低下が懸念される。また、この製法による微多孔膜はいずれも気孔率が高く、機械強度の低下をさけられないばかりか、ポリマーの目付量が少ないために、過熱溶融時の電流遮断が不十分である。
【0007】
特開平5−310989号公報や特開平6−240036号公報では、機械強度と透過性能を改善した微多孔膜が開示されているが、大きな平均孔径と、広い孔径分布、高強度を同時に達成するには至っていない。
【0008】
【発明が解決しようとする課題】
本発明は、透過性、機械強度等に優れ、電池用セパレータとして電池の生産性、出力特性、安全性を損ねることなく寿命特性を向上させることができるポリエチレン微多孔膜を提供するものである。
【0009】
【課題を解決するための手段】
本発明者らは前記課題に対して鋭意研究を重ねた結果、特定の平均孔径、孔径分布、気孔率、機械的強度、電気抵抗を有するポリエチレン微多孔膜が、電池の生産性、安全性、出力特性を損ねることなく寿命特性を向上しうることを見出し、本発明をなすに至った。
すなわち本発明は、
(1)気孔率40〜60%、突き刺し強度300〜1500g(厚さ25μm換算)、平均孔径0.1〜0.3μm、孔径分布指数が1.40〜2.2、電気抵抗が0.4〜1.0Ωcm2であることを特徴とするポリエチレン微多孔膜。
(2)電気抵抗が0.4〜0.9Ωcm2であることを特徴とする(1)に記載のポリエチレン微多孔膜。
(3)バブルポイントが4.5kg/cm2以下であることを特徴とする(1)又は(2)に記載のポリエチレン微多孔膜。
(4)重量平均分子量100万以上の超高分子量ポリエチレンと重量平均分子量50万以下の高密度ポリエチレンのブレンドであることを特徴とする(1)〜(3)のいずれかに記載のポリエチレン微多孔膜。
(5)膜厚が10〜30μmであることを特徴とする(1)〜(4)のいずれかに記載のポリエチレン微多孔膜。
)(1)〜()のいずれかに記載のポリエチレン微多孔膜からなる電池用セパレータ。
(7)リチウムイオン電池用である(6)に記載の電池用セパレータ。
(8)(1)〜(5)のいずれかに記載のポリエチレン微多孔膜の製造方法であって、縦延伸速度を100%/秒以上、横延伸速度を10%/秒以下で2軸延伸する工程を有する製造方法。
【0010】
以下、本発明を詳細に説明する。
本発明の微多孔膜はポリエチレンからなる。ここでいうポリエチレンとは、重量平均分子量が好ましくは10万〜400万の高密度ポリエチレンである。また、このポリエチレンはエチレン単位に対してプロピレン、ブテン、ペンテン、ヘキセン、オクテン等のα−オレフィンの単位を4モル%以下の割合で含む共重合体(線状共重合ポリエチレン)であってもよい。また、ブレンドや多段重合などの手段によって重量平均分子量を好ましい範囲に調節したものでもかまわなく、好ましくは重量平均分子量100万以上の超高分子量ポリエチレンと重量平均分子量50万以下の高密度ポリエチレンのブレンド物である。
【0011】
さらに、これらに中密度ポリエチレン、線状低密度ポリエチレン、低密度ポリエチレン、EPR等のポリオレフィンをブレンドしたものでもかまわない。
本発明の微多孔膜の平均孔径および孔径分布指数は、ハーフドライ法によって測定される値であって、平均孔径は0.1〜0.3μmであり、好ましくは0.12〜0.2μmである。0.1μmより小さいと電池の長期使用による電解液の分解物の発生と、それに伴うセパレータの目詰まりが性能低下を早く引き起こし、0.3μmより大きいと短絡不良などを起こす可能性がある。また、孔径分布指数は最大孔径と平均孔径の比であり、1.40〜2.2であって、好ましくは1.45〜2.2、さらに好ましくは1.48〜2.0である。1.40より小さいと、この場合もセパレータの目詰まりによる性能低下を起こす可能性がある。
【0012】
このように、微多孔膜の孔径と孔径分布を適度な範囲にすることにより、電池の長期使用による電極や電解液の分解物の発生とそれに伴うセパレータの目詰まりが抑えられ、電池の性能低下が起こりにくくなった。
なお、最大孔径の表し方としてバブルポイント法もよく知られている。本発明のポリエチレン微多孔膜のバブルポイントは4.5kg/cm2 以下が好ましく、さらに好ましくは4.2kg/cm2以下である。
【0013】
本発明の微多孔膜の厚さは10〜30μmが好ましく、電極量を多くした高容量電池には10〜25μmがさらに好ましく、特に10〜23μmがさらに好ましい。
気孔率は40%〜60%、好ましくは40%〜55%の範囲にある。気孔率が40%未満では電解液の保液量が十分ではなく、一方60%を超えると十分な機械強度が得られず、また、目付量も減るため電池セパレータとしての安全性も低下する可能性がある。
【0014】
目付量は微多孔膜1m2当たりの重量で表される数値であって、10g/m2以上が好ましく、さらに好ましくは11g/m2以上である。厚さ、気孔率が上記範囲内で目付量が11g/m2以上あれば、電池内部が過熱した際にセパレータが溶融して電極を覆う被膜量が十分あり、過充電時などの安全性が向上する。
また、本発明の微多孔膜の突き刺し強度は厚さ25μm換算で300〜1500gであり、好ましくは350〜1500gである。300g未満では、電池用セパレータとして使用した場合に、脱落した活物質等によってセパレータが破れ、短絡を起こす可能性がある。
【0015】
電気抵抗は1.0Ωcm2以下であり、さらに好ましくは0.4〜1.0Ωcm2である。1.0以下であることによって、電池の高出力放電特性や低温での放電特性が大きく改善される。
次に本発明のポリエチレン微多孔膜の製造例について説明する。
この発明の膜は、例えば下記の(a)〜(d)の工程によって作られる。
(a)前記載の任意のポリエチレンまたは二種類以上のポリエチレンのブレンド物を有機液状物、無機フィラー及び添加剤とともに造粒する工程。
(b)(a)工程で得た混合物を、先端にT−ダイを装着した押出機中で溶融混練し、T−ダイから押出しシート状に成形する工程。
(c)(b)で得たシート状成型物より、有機液状物と無機フィラーを抽出除去する工程。
(d)(c)の成型物を、1枚のまま、或いは数枚重ねて、二軸に延伸処理する工程。2枚重ねることが好ましい。
【0016】
本発明の製造工程をさらに詳しく説明する。
工程(a)において混合ポリエチレン、有機液状体、無機フィラーの合計重量に対する混合ポリエチレンの割合は10〜60重量%、有機液状体と無機フィラーの割合の合計は40〜90重量%である。混合ポリエチレンの割合が10重量%未満では強度が低く、60重量%を越えると押出成形時の流動性が悪くなり成形加工が困難となる。有機液状体としてはフタル酸エステルやセバシン酸エステル等のエステル類や流動パラフィン等が挙げられ、それらを単独で用いても或いは混合物で用いてもよい。無機フィラーとしては、シリカ、マイカ、タルク等が挙げられ、それらを単独で用いても或いは混合物で用いてもよい。
【0017】
工程(d)において二軸延伸する場合、延伸温度110〜140℃の範囲で縦方向に3倍〜10倍、好ましくは4倍〜8倍延伸し、それに続いて横方向に1.5倍〜5倍、好ましくは1.8倍〜3倍延伸する。このとき、縦延伸倍率/横延伸倍率=2.0以上となるようにし、かつ、縦延伸速度を100%/秒以上、横延伸速度を10%/秒以下とすることが好ましい。
本発明において、膜の強度、気孔率、平均孔径、孔径分布、電気抵抗を特定の範囲にコントロールするための方法としては、上記したような特定の延伸法を用いる方法が最も優れている。
【0018】
これについて理由は定かではないが、まず、縦方向に高速、高倍率で延伸することにより高強度を実現し、続いて横方向の低速延伸で孔径、孔径分布等を適切な範囲に調節することができるためと考えられる。
さらに、延伸に続いて、または後に、熱固定あるいは熱緩和等の熱処理を行ってもかまわない。
【0019】
【発明の実施の形態】
次に実施例によって本発明をさらに詳細に説明する。
実施例において示される試験方法は次の通りである。
(1)膜厚
ダイヤルゲージ(尾崎製作所:PEACOCK No.25)にて測定した。
(2)気孔率
20cm角のサンプルをとり、その体積と重量から次式を用いて計算した。
気孔率(%)=(体積(cm3 )−重量(g)/ポリエチレンの密度)/体積(cm3 )×100
(3)突き刺し強度
カトーテック製KES−G5ハンディー圧縮試験器を用いて、針先端の曲率半径0.5mm、突き刺し速度2mm/secの条件で突き刺し試験を行い、最大突き刺し荷重(g)を測定した。測定値に25(μm)/膜厚(μm)を乗じることによって25μm換算突き刺し強度(g)とした。
(4)透気度
JIS P−8117準拠のガーレー式透気度計にて測定した。
(5)平均孔径、最大孔径(ハーフドライ法)
ASTM F−316−86に準拠し、エタノールを使用して測定した。
【0020】
(6)孔径分布指数
ハーフドライ法で得られた最大孔径と平均孔径から算出した。
孔径分布指数=最大孔径(μm)/平均孔径(μm)
(7)電気抵抗
安藤電気製LCRメーターAG−43と図1に示したセルを用いて1kHzの交流にて測定し、次式で算出した。
電気抵抗(Ωcm2)=(膜が存在するときの抵抗値−膜が存在しないときの抵抗値)×0.785
なお、電解液:プロピレンカーボネートとジエトキシエタンの混合溶液(50/50容量%)中に過塩素酸リチウム1mol/リットルを溶解した、電極:白金黒電極、極板面積:0.785cm2、極間距離:3mmの条件で測定した。
【0021】
(8)サイクル試験
LiCoO2 を正極活物質とし、グラファイトおよびアセチレンブラックを導電剤とし、フッ素ゴムを結着剤とし各々LiCoO2 :グラファイト:アセチレンブラック:フッ素ゴム=88:7.5:2.5:2の重量比で混合したものをジメチルホルムアミドペーストとしてAl箔に塗布乾燥したシートを正電極として用い、ニードルコークス:フッ素ゴム=95:5の重量比で混合したものをジメチルホルムアミドペーストとしてCu箔に塗布乾燥したシートを負電極として用い、電解液としてプロピレンカーボネートとブチロラクトンの混合溶媒(体積比=1:1)にホウフッ化リチウムを1.0Mの濃度で調整した液を用いてリチウムイオン電池を製造した。この電池を温度25℃の条件の下で、充電電流1Aで充電終止電圧4.2Vまで充電を行い、放電電流1Aで放電終止電圧3Vまで放電を行い、これを1サイクルとして充放電を繰り返し、初期容量に対する500サイクル後の容量の割合を容量保持率として表した。
(9)安全性試験(過充電試験)
前記サイクル試験と同様の電池を作成し、この電池を4.2Vで5時間充電したあと、さらに定電流で過充電を行った。過充電によって電池の内部温度は上昇し、130℃付近に達するとセパレータが溶融して孔が閉塞するために電流が遮断されるが、その時に、電流漏れが無い場合を○、電流漏れがある場合を×とした。
【0022】
【実施例1】
平均分子量200万の超高分子量ポリエチレン12重量%、平均分子量28万の高密度ポリエチレン12重量%、平均分子量15万の直鎖状低密度ポリエチレン16重量%、フタル酸ジオクチル(DOP)42.4重量%、微粉シリカ17.6重量%を混合造粒した後、T−ダイを装着した二軸押出機にて混練・押出し厚さ90μmのシート状に成形した。該成形物からDOPと微粉シリカを抽出除去し微多孔膜とした。該微多孔膜を2枚重ねて118℃に加熱のもと、縦方向に5.3倍(延伸速度1000%/秒)延伸した後、横方向に1.8倍(延伸速度2%/秒)延伸した。得られた膜の物性、またこれをセパレータとして用いた電池の特性を表1に記載した。
【0023】
【実施例2】
平均分子量200万の超高分子量ポリエチレン9重量%、平均分子量28万の高密度ポリエチレン9重量%、平均分子量15万の直鎖状低密度ポリエチレン12重量%、フタル酸ジオクチル(DOP)49.5重量%、微粉シリカ20.5重量%を混合造粒した後、T−ダイを装着した二軸押出機にて混練・押出し厚さ90μmのシート状に成形した。該成形物からDOPと微粉シリカを抽出除去し微多孔膜とした。該微多孔膜を2枚重ねて118℃に加熱のもと、縦方向に4.5倍(延伸速度1000%/秒)延伸した後、横方向に1.8倍(延伸速度2%/秒)延伸した。
得られた膜の物性、またこれをセパレータとして用いた電池の特性を表1に記載した。
【0024】
【実施例3】
実施例1と同様に微多孔シートを作製し、該微多孔膜を2枚重ねて115℃に加熱のもと、縦方向に4.5倍(延伸速度1000%/秒)延伸した後、横方向に2.2倍(延伸速度2%/秒)延伸した。
得られた膜の物性、またこれをセパレータとして用いた電池の特性を表1に記載した。
【0025】
【実施例4】
実施例2と同様に微多孔膜を作製し、該微多孔膜を2枚重ねて128℃に加熱のもと、縦方向に4.5倍(延伸速度1000%/秒)延伸した後、横方向に1.8倍(延伸速度2%/秒)延伸した。
得られた膜の物性、またこれをセパレータとして用いた電池の特性を表1に記載した。
【0026】
【比較例1】
実施例1と同様に微多孔膜を作製し、該微多孔膜を2枚重ねて118℃に加熱のもと、縦方向に5.3倍(延伸速度1000%/秒)延伸した後、横方向に1.8倍(延伸速度20%/秒)延伸した。
得られた膜の物性、またこれをセパレータとして用いた電池の特性を表1に記載した。
【0027】
【比較例2】
実施例1と同様に微多孔膜を作製し、該微多孔膜を2枚重ねて118℃に加熱のもと、縦方向に4倍(延伸速度1000%/秒)延伸した後、横方向に4倍(延伸速度20%/秒)延伸した。
得られた膜の物性、またこれをセパレータとして用いた電池の特性を表1に記載した。
【0028】
【表1】

Figure 0004573284
【0029】
【発明の効果】
本発明のポリエチレン微多孔膜は、良好な透過性能と高い強度を併せ持ち、特にリチウムイオン二次電池用セパレータに好適である。
【図面の簡単な説明】
【図1】電気抵抗測定における組立の概略図
【符号の説明】
1 電極
2 外径2cm、内径1cm、厚み1mmのテフロンパッキン
3 膜[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyethylene microporous membrane and its application to a battery separator.
[0002]
[Prior art]
Polyethylene microporous membranes are used in microfiltration membranes, battery separators, capacitor separators, and the like. Particularly in recent years, a polyethylene microporous film having a thickness of about 25 μm has been used for a separator for a lithium ion secondary battery.
The required characteristics of lithium ion secondary battery separators have increased with the performance of batteries, and recently, a microporous membrane with high permeability has been required.
The permeability of the separator is closely related to battery life characteristics such as cycle characteristics and high temperature storage characteristics. Battery characteristics are significant in terms of life characteristics, but it is known that the degradation of electrolytes due to long-term use and the resulting clogging of the separator cause performance degradation. It has become a challenge. Therefore, in order to extend the life of the battery, a separator having a large average pore size and a large pore size distribution and excellent permeability is strongly required.
[0003]
In addition, a lithium ion secondary battery separator is desired to have high strength, high safety, and low electrical resistance.
The strength is a performance required to make it difficult for a short circuit failure between the electrodes to occur at the time of assembling a battery having a winding process for winding the electrode and the separator at a high speed, and can be expressed by a puncture strength or the like. Particularly in recent years, with the increase in capacity of batteries, there is a strong demand for a high-strength separator that does not short-circuit even a stiff electrode whose packing density of the active material of the electrode has increased.
[0004]
In addition, with the recent increase in output and capacity of lithium ion secondary batteries, safety has been strongly demanded. The safety is a performance in which when the inside of the battery is overheated, the separator melts to become a film covering the electrode, interrupting the current, thereby ensuring the safety of the battery. At that time, it is necessary to make the basis weight of the separator to ensure a sufficient coating amount above a certain value, and for this, it is necessary to set the pore volume (porosity) of the microporous membrane within an appropriate range. is there.
[0005]
Furthermore, in order to improve the discharge performance at high currents and low temperature discharge performance of the battery while maintaining the above physical property balance, it is necessary to reduce the resistance of ions flowing while the separator holds the electrolyte solution as much as possible. In addition, a separator having a low electric resistance value in a state where an electrolytic solution is contained is desired.
Conventionally, proposals have been made to improve the above individual characteristics, but there has been no microporous membrane for battery separators that satisfies all the characteristics.
[0006]
For example, polyethylene microporous membranes having improved permeation performance are disclosed in JP-A-8-12799, JP-A-5-310989, JP-A-6-240036, and the like, and JP-A-5-222236. It is known that it can be produced by the production method disclosed in Japanese Patent Laid-Open No. 5-222237.
The microporous membrane disclosed in JP-A-8-12799 and the microporous membrane produced by the methods described in JP-A-5-222236 and JP-A-5-222237 are excellent in permeation performance, but all contain a nucleating agent. There is a concern about battery performance degradation due to side reactions inside the battery. In addition, all of the microporous membranes produced by this production method have a high porosity and cannot avoid a decrease in mechanical strength. In addition, since the amount of polymer is small, current interruption during overheating melting is insufficient.
[0007]
JP-A-5-310989 and JP-A-6-240036 disclose microporous membranes with improved mechanical strength and permeation performance, but simultaneously achieve a large average pore size, a wide pore size distribution, and high strength. It has not reached.
[0008]
[Problems to be solved by the invention]
The present invention provides a polyethylene microporous membrane that is excellent in permeability, mechanical strength, etc., and that can improve life characteristics without impairing battery productivity, output characteristics, and safety as a battery separator.
[0009]
[Means for Solving the Problems]
As a result of intensive research on the above problems, the present inventors have obtained a polyethylene microporous membrane having a specific average pore size, pore size distribution, porosity, mechanical strength, and electrical resistance, resulting in battery productivity, safety, It has been found that the life characteristics can be improved without impairing the output characteristics, and the present invention has been made.
That is, the present invention
(1) Porosity 40 to 60%, puncture strength 300 to 1500 g (thickness 25 μm conversion), average pore diameter 0.1 to 0.3 μm, pore diameter distribution index 1.40 to 2.2, electric resistance 0.4 A polyethylene microporous membrane characterized by having a viscosity of ˜1.0 Ωcm 2 .
(2) The polyethylene microporous membrane according to (1), wherein the electrical resistance is 0.4 to 0.9 Ωcm 2 .
(3) The polyethylene microporous membrane according to (1) or (2), wherein the bubble point is 4.5 kg / cm 2 or less.
(4) The polyethylene microporous material according to any one of (1) to (3), which is a blend of ultrahigh molecular weight polyethylene having a weight average molecular weight of 1,000,000 or more and high density polyethylene having a weight average molecular weight of 500,000 or less. film.
(5) The polyethylene microporous film according to any one of (1) to (4), wherein the film thickness is 10 to 30 μm.
( 6 ) A battery separator comprising the polyethylene microporous membrane according to any one of (1) to ( 5 ).
(7) The battery separator according to (6), which is for a lithium ion battery.
(8) The method for producing a polyethylene microporous membrane according to any one of (1) to (5), wherein biaxial stretching is performed at a longitudinal stretching speed of 100% / second or more and a transverse stretching speed of 10% / second or less. The manufacturing method which has a process to do.
[0010]
Hereinafter, the present invention will be described in detail.
The microporous membrane of the present invention is made of polyethylene. The polyethylene here is a high density polyethylene having a weight average molecular weight of preferably 100,000 to 4,000,000. Further, this polyethylene may be a copolymer (linear copolymer polyethylene) containing an α-olefin unit such as propylene, butene, pentene, hexene, octene or the like in an amount of 4 mol% or less with respect to the ethylene unit. . Also, the weight average molecular weight may be adjusted to a preferred range by means of blending or multistage polymerization, preferably a blend of ultra high molecular weight polyethylene having a weight average molecular weight of 1 million or more and high density polyethylene having a weight average molecular weight of 500,000 or less. It is a thing.
[0011]
Further, they may be blended with polyolefins such as medium density polyethylene, linear low density polyethylene, low density polyethylene and EPR.
The average pore size and pore size distribution index of the microporous membrane of the present invention are values measured by a half-dry method, and the average pore size is 0.1 to 0.3 μm, preferably 0.12 to 0.2 μm. is there. If it is smaller than 0.1 μm, the decomposition of the electrolytic solution due to the long-term use of the battery and the clogging of the separator accompanying it may cause a decrease in performance quickly, and if it is larger than 0.3 μm, a short circuit failure may occur. The pore size distribution index is a ratio between the maximum pore size and the average pore size, and is 1.40 to 2.2, preferably 1.45 to 2.2, and more preferably 1.48 to 2.0. If it is smaller than 1.40, there is a possibility that the performance is deteriorated due to the clogging of the separator.
[0012]
In this way, by setting the pore size and pore size distribution of the microporous membrane within an appropriate range, the generation of electrodes and electrolyte decomposition products due to long-term use of the battery and the accompanying clogging of the separator can be suppressed, and the performance of the battery is reduced. Is less likely to occur.
The bubble point method is also well known as a method for expressing the maximum pore diameter. The bubble point of the polyethylene microporous membrane of the present invention is preferably 4.5 kg / cm 2 or less, more preferably 4.2 kg / cm 2 or less.
[0013]
The thickness of the microporous membrane of the present invention is preferably 10 to 30 μm, more preferably 10 to 25 μm, and particularly preferably 10 to 23 μm for a high capacity battery with an increased amount of electrodes.
The porosity is in the range of 40% to 60%, preferably 40% to 55%. If the porosity is less than 40%, the amount of electrolyte retained is not sufficient. On the other hand, if the porosity exceeds 60%, sufficient mechanical strength cannot be obtained. There is sex.
[0014]
The basis weight is a numerical value expressed by the weight per 1 m 2 of the microporous membrane, and is preferably 10 g / m 2 or more, more preferably 11 g / m 2 or more. If the thickness and porosity are within the above ranges and the basis weight is 11 g / m 2 or more, the separator melts when the battery is overheated, and there is a sufficient amount of coating to cover the electrode. improves.
Further, the piercing strength of the microporous membrane of the present invention is 300 to 1500 g, preferably 350 to 1500 g, in terms of thickness of 25 μm. If it is less than 300 g, when used as a battery separator, the separator may be broken by a fallen active material or the like, causing a short circuit.
[0015]
The electric resistance is 1.0 Ωcm 2 or less, more preferably 0.4 to 1.0 Ωcm 2 . By being 1.0 or less, the high output discharge characteristics and low temperature discharge characteristics of the battery are greatly improved.
Next, production examples of the polyethylene microporous membrane of the present invention will be described.
The film of the present invention is produced, for example, by the following steps (a) to (d).
(A) A step of granulating an arbitrary polyethylene described above or a blend of two or more kinds of polyethylene together with an organic liquid, an inorganic filler, and an additive.
(B) A step in which the mixture obtained in the step (a) is melt-kneaded in an extruder equipped with a T-die at the tip and formed into an extruded sheet from the T-die.
(C) A step of extracting and removing the organic liquid material and the inorganic filler from the sheet-like molded product obtained in (b).
(D) A step of biaxially stretching the molded product of (c) as it is or several layers. It is preferable to stack two sheets.
[0016]
The production process of the present invention will be described in more detail.
In the step (a), the ratio of the mixed polyethylene to the total weight of the mixed polyethylene, organic liquid, and inorganic filler is 10 to 60% by weight, and the total ratio of the organic liquid and inorganic filler is 40 to 90% by weight. If the proportion of the mixed polyethylene is less than 10% by weight, the strength is low. Examples of the organic liquid include esters such as phthalic acid ester and sebacic acid ester, liquid paraffin, and the like, and these may be used alone or in a mixture. Examples of the inorganic filler include silica, mica, talc and the like, and these may be used alone or in a mixture.
[0017]
In the case of biaxial stretching in the step (d), stretching in the longitudinal direction is 3 to 10 times, preferably 4 to 8 times in the range of 110 to 140 ° C., followed by 1.5 to The film is stretched 5 times, preferably 1.8 times to 3 times. At this time, it is preferable that the longitudinal stretching ratio / lateral stretching ratio = 2.0 or more, the longitudinal stretching speed is 100% / second or more, and the lateral stretching speed is 10% / second or less.
In the present invention, as a method for controlling the strength, porosity, average pore size, pore size distribution, and electrical resistance of the membrane within a specific range, the method using the specific stretching method as described above is most excellent.
[0018]
The reason for this is not clear, but first, high strength is achieved by stretching in the longitudinal direction at a high speed and high magnification, and then the pore diameter, pore size distribution, etc. are adjusted to an appropriate range by stretching in the transverse direction at a low speed. This is thought to be possible.
Further, heat treatment such as heat fixation or heat relaxation may be performed following or after stretching.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail with reference to examples.
The test methods shown in the examples are as follows.
(1) Measured with a film thickness dial gauge (Ozaki Seisakusho: PEACOCK No. 25).
(2) A sample having a porosity of 20 cm square was taken and calculated from the volume and weight using the following equation.
Porosity (%) = (volume (cm 3 ) −weight (g) / density of polyethylene) / volume (cm 3 ) × 100
(3) Puncture strength Using a KES-G5 handy compression tester manufactured by Kato Tech, a puncture test was performed under the conditions of a radius of curvature of the needle tip of 0.5 mm and a puncture speed of 2 mm / sec, and the maximum puncture load (g) was measured. . The measured value was multiplied by 25 (μm) / film thickness (μm) to obtain a puncture strength (g) in terms of 25 μm.
(4) Air permeability Measured with a Gurley air permeability meter in accordance with JIS P-8117.
(5) Average pore size, maximum pore size (half dry method)
Measurement was performed using ethanol in accordance with ASTM F-316-86.
[0020]
(6) Pore size distribution index It was calculated from the maximum pore size and average pore size obtained by the half dry method.
Pore size distribution index = maximum pore size (μm) / average pore size (μm)
(7) Electric resistance Measured with an alternating current of 1 kHz using an Ando Electric LCR meter AG-43 and the cell shown in FIG.
Electrical resistance (Ωcm 2 ) = (resistance value when film is present−resistance value when film is not present) × 0.785
Electrolytic solution: 1 mol / liter of lithium perchlorate dissolved in a mixed solution of propylene carbonate and diethoxyethane (50/50% by volume), electrode: platinum black electrode, electrode plate area: 0.785 cm 2 , electrode Distance was measured under the condition of 3 mm.
[0021]
(8) Cycle test LiCoO 2 was used as the positive electrode active material, graphite and acetylene black were used as the conductive agent, and fluororubber was used as the binder, and LiCoO 2 : graphite: acetylene black: fluororubber = 88: 7.5: 2.5 A mixture of 2 weight ratios as a dimethylformamide paste was applied to an Al foil and dried as a positive electrode, and a mixture of needle coke: fluororubber = 95: 5 weight ratio was used as a dimethylformamide paste Cu foil. A lithium ion battery using a sheet prepared by coating and drying as a negative electrode and a solution prepared by adjusting lithium borofluoride at a concentration of 1.0 M to a mixed solvent of propylene carbonate and butyrolactone (volume ratio = 1: 1) as an electrolytic solution. Manufactured. This battery was charged to a charge end voltage of 4.2 V with a charge current of 1 A under the condition of a temperature of 25 ° C., discharged to a discharge end voltage of 3 V with a discharge current of 1 A, and this was repeated as a cycle, The ratio of the capacity after 500 cycles to the initial capacity was expressed as capacity retention.
(9) Safety test (overcharge test)
A battery similar to that in the cycle test was prepared, and the battery was charged with 4.2 V for 5 hours, and then overcharged with a constant current. The internal temperature of the battery rises due to overcharging, and when the temperature reaches around 130 ° C, the separator melts and the hole is blocked, so that the current is interrupted. At that time, there is no current leakage. The case was marked with x.
[0022]
[Example 1]
12% by weight of ultra high molecular weight polyethylene with an average molecular weight of 2 million, 12% by weight of high density polyethylene with an average molecular weight of 280,000, 16% by weight of linear low density polyethylene with an average molecular weight of 150,000, 42.4% by weight of dioctyl phthalate (DOP) % And 17.6% by weight of fine silica were mixed and granulated, and then kneaded and extruded by a twin-screw extruder equipped with a T-die to form a sheet having a thickness of 90 μm. DOP and fine silica were extracted and removed from the molded product to form a microporous membrane. Two microporous membranes are stacked and heated to 118 ° C., stretched 5.3 times in the machine direction (stretching speed 1000% / second), and then 1.8 times in the transverse direction (stretching speed 2% / second). ) Stretched. Table 1 shows the physical properties of the obtained film and the characteristics of the battery using this as a separator.
[0023]
[Example 2]
9% by weight of ultra high molecular weight polyethylene with an average molecular weight of 2 million, 9% by weight of high density polyethylene with an average molecular weight of 280,000, 12% by weight of linear low density polyethylene with an average molecular weight of 150,000, 49.5% by weight of dioctyl phthalate (DOP) % And 20.5% by weight of fine silica were mixed and granulated, and then kneaded and extruded by a twin screw extruder equipped with a T-die to form a sheet having a thickness of 90 μm. DOP and fine silica were extracted and removed from the molded product to form a microporous membrane. Two microporous membranes are stacked and heated to 118 ° C., stretched 4.5 times in the longitudinal direction (stretching speed 1000% / second), and then 1.8 times in the lateral direction (stretching speed 2% / second). ) Stretched.
Table 1 shows the physical properties of the obtained film and the characteristics of the battery using this as a separator.
[0024]
[Example 3]
A microporous sheet was prepared in the same manner as in Example 1, and two microporous films were stacked and heated to 115 ° C. and stretched 4.5 times in the longitudinal direction (stretching speed 1000% / second), The film was stretched 2.2 times in the direction (stretching speed 2% / second).
Table 1 shows the physical properties of the obtained film and the characteristics of the battery using this as a separator.
[0025]
[Example 4]
A microporous membrane was prepared in the same manner as in Example 2, and two microporous membranes were stacked and heated to 128 ° C. and stretched 4.5 times in the longitudinal direction (stretching speed 1000% / second), The film was stretched 1.8 times in the direction (stretching speed 2% / second).
Table 1 shows the physical properties of the obtained film and the characteristics of the battery using this as a separator.
[0026]
[Comparative Example 1]
A microporous membrane was prepared in the same manner as in Example 1, and two microporous membranes were stacked and heated to 118 ° C. and stretched 5.3 times in the longitudinal direction (stretching speed 1000% / second), The film was stretched 1.8 times in the direction (stretching speed 20% / second).
Table 1 shows the physical properties of the obtained film and the characteristics of the battery using this as a separator.
[0027]
[Comparative Example 2]
A microporous membrane was prepared in the same manner as in Example 1, and the two microporous membranes were stacked and heated to 118 ° C. and stretched 4 times in the longitudinal direction (stretching speed 1000% / second), and then in the lateral direction. The film was stretched 4 times (stretching speed 20% / second).
Table 1 shows the physical properties of the obtained film and the characteristics of the battery using this as a separator.
[0028]
[Table 1]
Figure 0004573284
[0029]
【The invention's effect】
The polyethylene microporous membrane of the present invention has both good permeation performance and high strength, and is particularly suitable for a separator for a lithium ion secondary battery.
[Brief description of the drawings]
Fig. 1 Schematic diagram of assembly in electrical resistance measurement
1 Electrode 2 Teflon packing 3 with outer diameter 2 cm, inner diameter 1 cm, thickness 1 mm

Claims (8)

気孔率40〜60%、突き刺し強度300〜1500g(厚さ25μm換算)、平均孔径0.1〜0.3μm、孔径分布指数が1.40〜2.2、電気抵抗が0.4〜1.0Ωcm2であることを特徴とするポリエチレン微多孔膜。Porosity 40-60%, puncture strength 300-1500 g (thickness 25 μm conversion), average pore size 0.1-0.3 μm, pore size distribution index 1.40-2.2, electrical resistance 0.4-1. A polyethylene microporous membrane characterized by being 0 Ωcm 2 . 電気抵抗が0.4〜0.9Ωcm2であることを特徴とする請求項1記載のポリエチレン微多孔膜。 2. The polyethylene microporous membrane according to claim 1, wherein the electrical resistance is 0.4 to 0.9 [Omega] cm < 2 >. バブルポイントが4.5kg/cm2以下であることを特徴とする請求項1又は2に記載のポリエチレン微多孔膜。The polyethylene microporous membrane according to claim 1 or 2, wherein a bubble point is 4.5 kg / cm 2 or less. 重量平均分子量100万以上の超高分子量ポリエチレンと重量平均分子量50万以下の高密度ポリエチレンのブレンドであることを特徴とする請求項1〜3のいずれか一項に記載のポリエチレン微多孔膜。  The polyethylene microporous membrane according to any one of claims 1 to 3, which is a blend of ultrahigh molecular weight polyethylene having a weight average molecular weight of 1,000,000 or more and high density polyethylene having a weight average molecular weight of 500,000 or less. 膜厚が10〜30μmであることを特徴とする請求項1〜4のいずれか一項に記載のポリエチレン微多孔膜。The polyethylene microporous film according to any one of claims 1 to 4, wherein the film thickness is 10 to 30 µm. 請求項1〜5のいずれか一項に記載のポリエチレン微多孔膜からなる電池用セパレータ。The battery separator which consists of a polyethylene microporous film as described in any one of Claims 1-5 . リチウムイオン電池用である請求項6に記載の電池用セパレータ。The battery separator according to claim 6, which is for a lithium ion battery. 請求項1〜5のいずれか一項に記載のポリエチレン微多孔膜の製造方法であって、縦延伸速度を100%/秒以上、横延伸速度を10%/秒以下で2軸延伸する工程を有する製造方法。It is a manufacturing method of the polyethylene microporous film as described in any one of Claims 1-5, Comprising: The process of carrying out biaxial stretching by 100% / sec or more of longitudinal stretch speeds and 10% / sec or less of horizontal stretch speeds. Manufacturing method having.
JP2000281111A 2000-09-18 2000-09-18 Polyethylene microporous membrane Expired - Fee Related JP4573284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000281111A JP4573284B2 (en) 2000-09-18 2000-09-18 Polyethylene microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000281111A JP4573284B2 (en) 2000-09-18 2000-09-18 Polyethylene microporous membrane

Publications (3)

Publication Number Publication Date
JP2002088188A JP2002088188A (en) 2002-03-27
JP2002088188A5 JP2002088188A5 (en) 2007-10-25
JP4573284B2 true JP4573284B2 (en) 2010-11-04

Family

ID=18765818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000281111A Expired - Fee Related JP4573284B2 (en) 2000-09-18 2000-09-18 Polyethylene microporous membrane

Country Status (1)

Country Link
JP (1) JP4573284B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4563008B2 (en) * 2002-08-14 2010-10-13 三菱化学株式会社 Lithium secondary battery separator and lithium secondary battery using the same
WO2005015660A1 (en) 2003-08-06 2005-02-17 Mitsubishi Chemical Corporation Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same
JP4984372B2 (en) * 2003-08-06 2012-07-25 三菱化学株式会社 Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same
EP2472638A3 (en) * 2003-12-15 2013-09-11 Mitsubishi Chemical Corporation Nonaqueous-Electrolyte Secondary Battery
WO2005061599A1 (en) * 2003-12-24 2005-07-07 Asahi Kasei Chemicals Corporation Microporous membrane made from polyolefin
JP2005293950A (en) * 2004-03-31 2005-10-20 Tdk Corp Lithium ion secondary battery and charging method of lithium ion secondary battery
JP4628764B2 (en) * 2004-07-06 2011-02-09 旭化成株式会社 Storage device separator
JP5417686B2 (en) * 2006-01-24 2014-02-19 ソニー株式会社 Separator and battery
WO2008093572A1 (en) 2007-01-30 2008-08-07 Asahi Kasei E-Materials Corporation Polyolefin microporous membrane
JP4979432B2 (en) * 2007-03-28 2012-07-18 三洋電機株式会社 Cylindrical lithium secondary battery
JP5572334B2 (en) * 2008-05-30 2014-08-13 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
JP5546144B2 (en) * 2009-03-05 2014-07-09 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
KR101336593B1 (en) 2010-04-20 2013-12-05 에스케이이노베이션 주식회사 Method with good productivity for preparing microporous polyolefin film with various properties
JP5577964B2 (en) * 2010-09-01 2014-08-27 日産自動車株式会社 Lithium ion secondary battery
JP2018147688A (en) 2017-03-03 2018-09-20 住友化学株式会社 Separator for nonaqueous electrolyte secondary battery
JP7169149B2 (en) 2017-10-20 2022-11-10 住友化学株式会社 Separator for non-aqueous electrolyte secondary battery
US20240055722A1 (en) 2020-10-30 2024-02-15 Asahi Kasei Kabushiki Kaisha Polyolefin microporous membrane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212006A (en) * 1993-01-19 1994-08-02 Asahi Chem Ind Co Ltd Polyethylene millipore membrane
JPH09169867A (en) * 1995-10-17 1997-06-30 Asahi Chem Ind Co Ltd Microporous film and its production
JPH10258462A (en) * 1996-11-19 1998-09-29 Mitsui Chem Inc High molecular weight polyolefin porous film and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212006A (en) * 1993-01-19 1994-08-02 Asahi Chem Ind Co Ltd Polyethylene millipore membrane
JPH09169867A (en) * 1995-10-17 1997-06-30 Asahi Chem Ind Co Ltd Microporous film and its production
JPH10258462A (en) * 1996-11-19 1998-09-29 Mitsui Chem Inc High molecular weight polyolefin porous film and its manufacture

Also Published As

Publication number Publication date
JP2002088188A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
JP4573284B2 (en) Polyethylene microporous membrane
JP5213443B2 (en) Polyolefin microporous membrane
JP4753446B2 (en) Polyolefin microporous membrane
JP5586152B2 (en) Polyolefin microporous membrane
JP5572334B2 (en) Polyolefin microporous membrane
KR100977345B1 (en) Polyolefin microporous membrane
KR101640777B1 (en) Microporous membranes and methods for producing and using such membranes
JP6231745B2 (en) Polyolefin microporous membrane and method for producing the same
JP4986199B2 (en) Polyethylene microporous membrane and battery using the same
JP5601681B2 (en) Polyolefin microporous membrane containing inorganic particles and separator for non-aqueous electrolyte battery
JP4884008B2 (en) Polyethylene microporous membrane
JP4964565B2 (en) Polyethylene microporous membrane
JP5235484B2 (en) Polyolefin microporous membrane
JP6723052B2 (en) Storage device separator
JP4220329B2 (en) Polyolefin microporous membrane and method for producing the same
WO2020137336A1 (en) Microporous polyolefin membrane and method for producing microporous polyolefin membrane
JP2009242779A (en) Polyolefin fine porous membrane and separator for storage battery
JP5235324B2 (en) Polyolefin microporous membrane
JP5592745B2 (en) Polyolefin microporous membrane
JP4230584B2 (en) Polyethylene microporous membrane
JP5295857B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP4033546B2 (en) Method for producing separator for lithium ion secondary battery
JP5649210B2 (en) Polyolefin microporous membrane
JP5676285B2 (en) Polyolefin microporous membrane
WO2021065283A1 (en) Polyolefin microporous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070910

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4573284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20001006

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees