JP5235324B2 - Polyolefin microporous membrane - Google Patents

Polyolefin microporous membrane Download PDF

Info

Publication number
JP5235324B2
JP5235324B2 JP2007111410A JP2007111410A JP5235324B2 JP 5235324 B2 JP5235324 B2 JP 5235324B2 JP 2007111410 A JP2007111410 A JP 2007111410A JP 2007111410 A JP2007111410 A JP 2007111410A JP 5235324 B2 JP5235324 B2 JP 5235324B2
Authority
JP
Japan
Prior art keywords
molecular weight
microporous membrane
polyethylene
average molecular
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007111410A
Other languages
Japanese (ja)
Other versions
JP2008266457A (en
Inventor
健 鬼澤
貴志 池本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei E Materials Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2007111410A priority Critical patent/JP5235324B2/en
Publication of JP2008266457A publication Critical patent/JP2008266457A/en
Application granted granted Critical
Publication of JP5235324B2 publication Critical patent/JP5235324B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cell Separators (AREA)

Description

本発明はポリオレフィン製微多孔膜に関する。より詳細には、電池やコンデンサー等における隔離材や物質の分離に用いられ、特に高温時における安全性と実用性に優れた非水電解液電池用セパレータとして好適なポリオレフィン製微多孔膜、それを用いた電池用セパレータ及びリチウムイオン二次電池に関する。   The present invention relates to a polyolefin microporous membrane. More specifically, a polyolefin microporous membrane that is used for separation of separators and substances in batteries, capacitors, etc., and particularly suitable as a separator for non-aqueous electrolyte batteries with excellent safety and practicality at high temperatures, The present invention relates to a battery separator and a lithium ion secondary battery used.

ポリオレフィン製微多孔膜は優れた電気絶縁性、イオン透過性を示すことから電池やコンデンサー等におけるセパレータとして広く利用されている。特に近年では携帯機器の多機能化、軽量化に伴いその電源として高出力密度、高容量密度のリチウムイオン二次電池が使用されている。このような電池用セパレータにも主としてポリオレフィン微多孔膜が用いられている。
リチウムイオン二次電池は高い出力密度、容量密度を持つ反面、電解液に有機溶媒を用いているために短絡や過充電などの異常事態に伴う発熱によって電解液が分解し、最悪の場合には発火に至ることがある。このような事態を防ぐためリチウムイオン二次電池にはいくつかの安全素子が組み込まれており、その中の一つにセパレータのシャットダウン機能がある。シャットダウン機能とは電池が異常発熱を起こした際、セパレータの微多孔が熱溶融により閉塞して電解液内のイオン伝導を抑制し電気化学反応の進行をストップさせる機能のことである。
Polyolefin microporous membranes are widely used as separators in batteries, capacitors and the like because they exhibit excellent electrical insulation and ion permeability. In particular, in recent years, with the increase in functionality and weight of portable devices, lithium ion secondary batteries with high output density and high capacity density have been used as power sources. Polyolefin microporous membranes are mainly used for such battery separators.
Lithium ion secondary batteries have high output density and capacity density, but because the electrolyte uses an organic solvent, the electrolyte decomposes due to heat generated by abnormal situations such as short circuit and overcharge. May cause fire. In order to prevent such a situation, some safety elements are incorporated in the lithium ion secondary battery, and one of them is a shutdown function of the separator. The shutdown function is a function that stops the progress of electrochemical reaction by suppressing the ionic conduction in the electrolytic solution by blocking the micropores of the separator due to thermal melting when the battery generates abnormal heat.

ポリオレフィン製微多孔膜のシャットダウン時の挙動は、ある温度を越えた瞬間に一気に孔が閉塞するわけではなく、実際にはシャットダウン温度より低い温度から連続的に孔の閉塞が進行していく。一度閉塞した孔は常温に戻った後も閉塞したままであるため、電池が高温下に曝された場合、それがシャットダウン温度に満たない温度であってもセパレータが小孔径化して抵抗が増大し、それに伴ってサイクル特性やレート特性が低下してしまう。このため従来のセパレータを使用した電池では角型電池製造工程における熱プレスの温度条件や、異常発熱に満たない準高温領域(80〜120℃)での使用に限界があった。   The behavior of the polyolefin microporous membrane at the time of shut-down does not mean that the pores are closed at a time when a certain temperature is exceeded, but actually the pores are continuously closed from a temperature lower than the shutdown temperature. Once the hole has been closed, it remains closed even after returning to room temperature, so if the battery is exposed to high temperatures, the separator becomes smaller and the resistance increases even if it is below the shutdown temperature. As a result, the cycle characteristics and rate characteristics deteriorate. For this reason, batteries using conventional separators have limitations in use in the temperature conditions of hot press in the square battery manufacturing process and in sub-high temperature regions (80 to 120 ° C.) that are less than abnormal heat generation.

一方、セパレータのシャットダウン機能は電池の不具合による熱暴走時の安全性を守る手段として欠かせないものであり、準高温領域(80〜120℃)では大孔径で透過性を維持し、高温領域(130℃以上)になると速やかに無効化するという一見相反する特徴を有するセパレータが求められている。また、異物混入やデンドライト成長時における内部短絡発生を防ぐためセパレータには物理的な強度も要求されるが、これまで「準高温領域における透過性」、「異常発熱時のシャットダウン特性」及び「高強度」の特性をバランス良く併せ持ったセパレータは存在しなかった。
例えば特許文献1では常温での孔径は大きいがポリエチレン単体のため準高温領域で小孔径化して透過性が低下し、またシャットダウン後の熱破膜温度も低い。
On the other hand, the shutdown function of the separator is indispensable as a means of protecting safety during thermal runaway due to battery failure. In the semi-high temperature range (80 to 120 ° C), the permeability is maintained with a large pore diameter, and the high temperature range ( There is a need for a separator having seemingly contradictory characteristics of being quickly invalidated at 130 ° C. or higher. In addition, physical strength is also required for separators to prevent foreign matter contamination and internal short-circuiting during dendrite growth, but until now, "permeability in quasi-high temperature range", "shutdown characteristics during abnormal heat generation" and "high There was no separator that had a well-balanced “strength” characteristic.
For example, in Patent Document 1, although the pore diameter at normal temperature is large, since polyethylene is a simple substance, the pore diameter is reduced in the quasi-high temperature region, the permeability is lowered, and the thermal film breaking temperature after shutdown is also low.

特許文献2では高温で延伸を行っているため耐熱収縮性に優れ準高温でも透過性を維持できるが、低融点のポリエチレン成分が入っていないためシャットダウン温度が高く、またポリエチレンのみからなるため熱破膜温度も低い。
特許文献3では過充電時の安全性を高めるために高温時の透過性の優れたセパレータを使用した非水電解液二次電池を提案しているが、170℃という異常な高温においてもセパレータのシャットダウン機能が発現していないため高温での安全性に問題がある。
低いシャットダウン温度と高い熱破膜温度を両立するために融点の低いポリエチレンと融点の高いポリプロピレンをブレンドした微多孔膜が検討されている。例えば特許文献4の微多孔膜は低分子量のポリエチレン成分とポリプロピレンをブレンドしておりシャットダウン温度が低く熱破膜温度も高い。しかし延伸倍率が2倍と低いために強度が不十分であり、準高温時の透過性に関する記述もない。
In Patent Document 2, since it is stretched at a high temperature, it has excellent heat shrinkage resistance and can maintain permeability even at a quasi-high temperature. However, since it does not contain a low melting point polyethylene component, it has a high shutdown temperature. The film temperature is also low.
Patent Document 3 proposes a non-aqueous electrolyte secondary battery that uses a separator with excellent permeability at high temperatures in order to increase safety during overcharge. There is a problem with safety at high temperatures because the shutdown function is not expressed.
In order to achieve both a low shutdown temperature and a high thermal film breaking temperature, a microporous membrane in which polyethylene having a low melting point and polypropylene having a high melting point are blended has been studied. For example, the microporous membrane of Patent Document 4 blends a low molecular weight polyethylene component and polypropylene, has a low shutdown temperature and a high thermal membrane breakage temperature. However, since the draw ratio is as low as 2 times, the strength is insufficient, and there is no description about permeability at a semi-high temperature.

特許文献5の微多孔膜もポリエチレンとポリプロピレンを含有しているのでシャットダウン温度が低く、熱破膜温度も高いが、この製法では元々の孔径が小さいため準高温時における透過性が低く、また延伸倍率が3倍と低いために強度も不十分である。
特許文献6の微多孔膜はポリエチレンとポリプロピレンを含有し、またポリマーと可塑剤と無機粉体からなる原料を用いた製法で作成しているため、低シャットダウン温度、高熱破膜温度かつ準高温下での孔径を維持することができる。しかし、延伸倍率が3〜6倍と低く、また気孔率が59〜75%と高いために強度が不十分であり安全性に問題がある。
特許文献7の微多孔膜もポリエチレンとポリプロピレンを含有しているのでシャットダウン温度が低く、熱破膜温度も高いが元々の孔径が小さいために準高温時の透過性が低く、また延伸倍率が6〜7.5倍と低いため突刺強度が低い。
Since the microporous membrane of Patent Document 5 also contains polyethylene and polypropylene, the shutdown temperature is low and the thermal membrane breaking temperature is also high. However, in this manufacturing method, the original pore diameter is small, so the permeability at the quasi-high temperature is low, and stretching is also performed. Since the magnification is as low as 3 times, the strength is insufficient.
Since the microporous membrane of Patent Document 6 contains polyethylene and polypropylene, and is made by a manufacturing method using raw materials consisting of a polymer, a plasticizer, and inorganic powder, it has a low shutdown temperature, a high thermal film breaking temperature, and a quasi-high temperature. The hole diameter can be maintained. However, since the draw ratio is as low as 3 to 6 and the porosity is as high as 59 to 75%, the strength is insufficient and there is a problem in safety.
Since the microporous membrane of Patent Document 7 also contains polyethylene and polypropylene, the shutdown temperature is low and the thermal membrane breaking temperature is high, but the original pore size is small, so the permeability at the quasi-high temperature is low, and the draw ratio is 6 The puncture strength is low because it is as low as ˜7.5 times.

特開2002―88188号公報Japanese Patent Laid-Open No. 2002-88188 WO2004−20511号公報WO2004-20511 特開2002−231209号公報JP 2002-231209 A 特許2952017号公報Japanese Patent No. 2952017 特許3507092号公報Japanese Patent No. 3507092 特許3305006号公報Japanese Patent No. 3305006 特開平9−180699号公報JP-A-9-180699

本発明は、準高温時の孔径維持、高温時のシャットダウン特性、強度をバランス良く兼ね備え、特に非水電解液電池用セパレータとして高い安全性と実用性を有するポリオレフィン微多孔膜を提供することを目的とする。   An object of the present invention is to provide a microporous polyolefin membrane having a well-balanced maintenance of pore diameter at sub-high temperature, shutdown characteristics at high temperature, and strength, and having high safety and practicality as a separator for a nonaqueous electrolyte battery. And

本発明者らは、前記課題に対して鋭意研究を重ねた結果、特定範囲の突刺強度、シャットダウン温度、120℃放置後のバブルポイントを有するポリオレフィン製微多孔膜が準高温領域における透過性に優れ、優れたシャットダウン特性及び高強度を有し、特にリチ
ウムイオン二次電池用セパレータとして用いた場合には準高温領域における充放電特性、並びに高温領域における安全性に優れることを見出し本発明を為すに至った。
すなわち、本発明は下記の通りである。
(1)突刺強度が3〜8N/20μm、シャットダウン温度が130〜140℃、かつ120℃放置後のバブルポイントが300〜580kPaであるポリオレフィン製微多孔膜であって、
ポリオレフィン樹脂が粘度平均分子量が10万〜30万のポリエチレン30〜70質量部、粘度平均分子量が70万以上のポリエチレン10〜55質量部、およびポリプロピレン5〜50質量部のみを含むポリオレフィン樹脂組成物からなるポリオレフィン製微多孔膜。
(2)膜厚が5〜50μm、気孔率が30〜70%、熱破膜温度が160℃以上である上記(1)に記載のポリオレフィン製微多孔膜。
)縦延伸倍率と横延伸倍率の積が8以上である上記(1)又は(2)に記載のポリオレフィン製微多孔膜。
)ポリオレフィン25〜50質量部、可塑剤30〜60質量部及び無機粉体10〜40質量部を含む組成物を溶融混練し、可塑剤と無機粉体を抽出した後に延伸して得られる上記(1)〜(3)いずれかに記載のポリオレフィン製微多孔膜。
)上記(1)〜(4)いずれかに記載のポリオレフィン製微多孔膜を用いた電池用セパレータ。
)上記(記載のセパレータを用いたリチウムイオン二次電池。
As a result of intensive research on the above problems, the inventors of the present invention have a specific range of puncture strength, shutdown temperature, and a polyolefin microporous membrane having a bubble point after being left at 120 ° C. has excellent permeability in a quasi-high temperature region. The present invention has been found to have excellent shutdown characteristics and high strength, and in particular, when used as a separator for a lithium ion secondary battery, is excellent in charge / discharge characteristics in a quasi-high temperature region and safety in a high temperature region. It came.
That is, the present invention is as follows.
(1) A polyolefin microporous membrane having a puncture strength of 3 to 8 N / 20 μm, a shutdown temperature of 130 to 140 ° C., and a bubble point after standing at 120 ° C. of 300 to 580 kPa ,
From a polyolefin resin composition in which the polyolefin resin contains only 30 to 70 parts by mass of polyethylene having a viscosity average molecular weight of 100,000 to 300,000, 10 to 55 parts by mass of polyethylene having a viscosity average molecular weight of 700,000 or more, and 5 to 50 parts by mass of polypropylene. A polyolefin microporous membrane.
(2) The polyolefin microporous film according to (1) , wherein the film thickness is 5 to 50 μm, the porosity is 30 to 70%, and the thermal film breaking temperature is 160 ° C. or higher.
( 3 ) The polyolefin microporous membrane according to (1) or (2), wherein the product of the longitudinal draw ratio and the transverse draw ratio is 8 or more.
( 4 ) Obtained by melting and kneading a composition containing 25 to 50 parts by mass of polyolefin, 30 to 60 parts by mass of plasticizer and 10 to 40 parts by mass of inorganic powder, and extracting the plasticizer and inorganic powder. The polyolefin microporous membrane according to any one of (1) to ( 3) above.
( 5 ) A battery separator using the polyolefin microporous membrane according to any one of (1) to ( 4 ) above.
( 6 ) A lithium ion secondary battery using the separator described in ( 5 ) above.

本発明の微多孔膜は、準高温領域における透過性に優れ、優れたシャットダウン特性及び高強度を有する。本発明の微多孔膜を用いた電池用セパレータは、準高温領域における充放電特性、並びに高温領域における安全性に優れる。   The microporous membrane of the present invention has excellent permeability in a quasi-high temperature region, and has excellent shutdown characteristics and high strength. The battery separator using the microporous membrane of the present invention is excellent in charge / discharge characteristics in the semi-high temperature region and safety in the high temperature region.

本発明の微多孔膜について、特にその好ましい形態を中心に、以下詳細に説明する。
本発明の微多孔膜の突刺強度は3〜8N/20μmであり、好ましくは3.5〜7N/20μmである。突刺強度が高いほどリチウムイオン電池用セパレータとして用いた場合、電池製造工程中に異物が混入したり、充電時にリチウムデンドライトが成長したときに微多孔膜の突き破れを抑制することができ安全性に優れる。一方、高すぎるとセパレータが硬く、電池の巻回性が悪くなる恐れがある。
シャットダウン温度は130〜140℃であり、135〜140℃がより好ましい。シャットダウン温度は安全性の面では低い方が好ましいが、低すぎると角型電池製造工程における熱プレス時や異常発熱に満たない準高温下で孔径が小さくなりサイクル特性やレート特性といった電池特性が損なわれることがある。一方、シャットダウン温度が高すぎると電池の異常発熱時に熱暴走が止まらず安全性に劣る。
The microporous membrane of the present invention will be described in detail below, particularly focusing on its preferred form.
The puncture strength of the microporous membrane of the present invention is 3 to 8 N / 20 μm, preferably 3.5 to 7 N / 20 μm. When used as a separator for lithium ion batteries, the higher the puncture strength, the more the foreign matter can be mixed in during the battery manufacturing process and the microporous membrane can be prevented from breaking when lithium dendrite grows during charging. Excellent. On the other hand, if it is too high, the separator is hard and the winding property of the battery may be deteriorated.
The shutdown temperature is 130 to 140 ° C, more preferably 135 to 140 ° C. The shutdown temperature is preferably low in terms of safety, but if it is too low, the hole diameter becomes small at the time of hot pressing in the rectangular battery manufacturing process or under a sub-high temperature that does not cause abnormal heat generation, and the battery characteristics such as cycle characteristics and rate characteristics are impaired. May be. On the other hand, if the shutdown temperature is too high, thermal runaway does not stop when the battery is abnormally heated, resulting in poor safety.

120℃放置後のバブルポイントは300〜580kPaであり、360〜520kPaがより好ましい。120℃放置後のバブルポイントは準高温時における微多孔膜の孔径を示しており、この値が小さすぎると孔径が大きく自己放電等により電池特性が損なわれ、高すぎると準高温時の孔径が小さくサイクル特性やレート特性といった電池特性が不十分になる。120℃で放置する前のバブルポイントは、自己放電を抑制するという面から300kPa以上であることが好ましく、サイクル特性やレート特性の面から550kPa以下であることが好ましい。より好ましくは360〜500kPaである。
膜厚は強度の面から5μm以上が好ましく、電池高容量化の面から50μm以下が好ましい。より好ましい膜厚は10〜30μmである。
気孔率は透過性の面から30%以上が好ましく、強度の面から70%以下が好ましい。より好ましい気孔率は40〜60%である。
熱破膜温度は安全性の面から160℃以上が好ましく、180℃以上がより好ましい。
透気度は安全性の面から10sec以上、イオン透過性の面から500sec以下が好ましく、より好ましくは50〜150secである。
The bubble point after leaving at 120 ° C. is 300 to 580 kPa, more preferably 360 to 520 kPa. The bubble point after standing at 120 ° C. indicates the pore size of the microporous membrane at the quasi-high temperature. If this value is too small, the pore size is large and the battery characteristics are impaired due to self-discharge, etc. Battery characteristics such as cycle characteristics and rate characteristics are insufficient. The bubble point before being left at 120 ° C. is preferably 300 kPa or more from the viewpoint of suppressing self-discharge, and is preferably 550 kPa or less from the viewpoint of cycle characteristics and rate characteristics. More preferably, it is 360-500 kPa.
The film thickness is preferably 5 μm or more from the viewpoint of strength, and is preferably 50 μm or less from the viewpoint of increasing the battery capacity. A more preferable film thickness is 10 to 30 μm.
The porosity is preferably 30% or more from the viewpoint of permeability, and preferably 70% or less from the viewpoint of strength. A more preferable porosity is 40 to 60%.
The thermal film breaking temperature is preferably 160 ° C. or higher, more preferably 180 ° C. or higher from the viewpoint of safety.
The air permeability is preferably 10 sec or more from the viewpoint of safety and 500 sec or less from the viewpoint of ion permeability, and more preferably 50 to 150 sec.

本発明の微多孔膜は下記の(工程1)〜(工程6)を含む製造方法により好適に製造できる。
(工程1)ポリオレフィン樹脂、可塑剤、必要に応じ無機粉体をヘンシェルミキサー等で混合する工程;
(工程2)工程1で作成した混合物を押出機中で溶融混練する工程;
(工程3)工程2で得られた混練物を、Tダイスから押出し、ロールで圧延後、冷却しシート状に成形する工程;
(工程4)工程3で得られたシート状の成形物から可塑剤を抽出除去、並びに乾燥する工程;
(工程5)工程4で得られたシート状の成形物から無機粉体を抽出除去、並びに乾燥する工程;
(工程6)工程5で得られたシート状の成形物を延伸、並びに熱処理をする工程;
上記(工程1)では、得られる微多孔膜の孔径均一性の点、強度の点から、無機粉体を添加することが好ましい。なお、無機粉体を添加しない場合でも(工程4)と(工程6)の順序を逆にし、延伸してから可塑剤を抽出すれば均一な孔径が得られることが知られているが、この製法で得られた微多孔膜は孔径が小さくなる。このため、均一で大きな孔径の微多孔膜を得るため原料に無機粉体を添加し、可塑剤と無機粉体を抽出した後に延伸することが好ましい。本発明の製造方法に用いる無機粉体とは、シリカ、ケイ酸カルシウム、ケイ酸アルミニウム、アルミナ、炭酸カルシウム、炭酸マグネシウム、カオリンクレー、タルク、酸化チタン、カーボンブラック、珪藻土類などが挙げられるが、分散性や抽出の容易さから特にシリカを使用することが好ましい。
The microporous membrane of the present invention can be suitably produced by a production method including the following (Step 1) to (Step 6).
(Step 1) A step of mixing a polyolefin resin, a plasticizer and, if necessary, an inorganic powder with a Henschel mixer or the like;
(Step 2) Step of melt kneading the mixture prepared in Step 1 in an extruder;
(Step 3) Step of extruding the kneaded product obtained in Step 2 from a T-die, rolling with a roll, cooling and forming into a sheet form;
(Step 4) Step of extracting and removing the plasticizer from the sheet-like molded product obtained in Step 3 and drying;
(Step 5) Step of extracting and removing inorganic powder from the sheet-like molded product obtained in Step 4 and drying;
(Step 6) Step of stretching and heat-treating the sheet-like molded product obtained in Step 5;
In the above (Step 1), it is preferable to add an inorganic powder from the viewpoint of uniformity of pore diameter and strength of the resulting microporous membrane. Even when no inorganic powder is added, it is known that a uniform pore diameter can be obtained by reversing the order of (Step 4) and (Step 6) and extracting the plasticizer after stretching. The microporous membrane obtained by the manufacturing method has a small pore size. For this reason, in order to obtain a microporous film having a uniform and large pore diameter, it is preferable to add inorganic powder to the raw material, extract the plasticizer and the inorganic powder, and then stretch the film. Examples of the inorganic powder used in the production method of the present invention include silica, calcium silicate, aluminum silicate, alumina, calcium carbonate, magnesium carbonate, kaolin clay, talc, titanium oxide, carbon black, and diatomaceous earth. From the viewpoint of dispersibility and ease of extraction, it is particularly preferable to use silica.

本発明の微多孔膜に用いられるポリオレフィン樹脂は、例えば粘度平均分子量10万以上30万以下の低分子量ポリエチレン、粘度平均分子量70万以上の高分子量ポリエチレン、およびポリプロピレンを特定の比率でブレンドして得ることができる。低分子量ポリエチレンは融点が低いためシャットダウン特性の向上に、高分子量ポリエチレンは強度の向上に、ポリプロピレンは高温時の孔径維持及び熱破膜特性の向上に対して各々効果がある。粘度平均分子量10万〜30万の低分子量ポリエチレンは130〜140℃のシャットダウン温度を得るために30質量部以上が好ましく、強度低下防止のため70質量部以下が好ましい。より好ましくは50〜64質量部である。粘度平均分子量70万以上の高分子量ポリエチレンは強度向上の面から10質量部以上が好ましく、シャットダウン温度が高くなりすぎないよう55質量部以下が好ましい。より好ましくは20〜40質量部である。ポリプロピレンは高温時の孔径維持、並びに熱破膜温度向上のため5質量部以上が好ましく、含量が増えると強度が低下するため50質量部以下が好ましい。より好ましくは5〜30質量部である。   The polyolefin resin used in the microporous membrane of the present invention is obtained by blending, for example, a low molecular weight polyethylene having a viscosity average molecular weight of 100,000 or more and 300,000 or less, a high molecular weight polyethylene having a viscosity average molecular weight of 700,000 or more, and polypropylene at a specific ratio. be able to. Low molecular weight polyethylene has a low melting point, so it improves the shutdown characteristics, high molecular weight polyethylene improves the strength, and polypropylene has an effect on maintaining the pore size at high temperatures and improving the thermal film breaking properties. The low molecular weight polyethylene having a viscosity average molecular weight of 100,000 to 300,000 is preferably 30 parts by mass or more for obtaining a shutdown temperature of 130 to 140 ° C., and preferably 70 parts by mass or less for preventing a decrease in strength. More preferably, it is 50-64 mass parts. The high molecular weight polyethylene having a viscosity average molecular weight of 700,000 or more is preferably 10 parts by mass or more from the viewpoint of strength improvement, and 55 parts by mass or less is preferable so that the shutdown temperature does not become too high. More preferably, it is 20-40 mass parts. Polypropylene is preferably 5 parts by mass or more for maintaining the pore diameter at high temperatures and improving the thermal film breaking temperature, and is preferably 50 parts by mass or less because the strength decreases as the content increases. More preferably, it is 5-30 mass parts.

本発明で使用されるポリプロピレンの分子量は特に限定されるものではないが、粘度平均分子量5万以下の低分子量ポリプロピレンを用いると孔径が大きくなる傾向があり、粘度平均分子量30万以上の高分子量ポリプロピレンを用いると耐熱破膜性に優れた微多孔膜を得ることができる。これらは単独で用いても混合物として用いてもよい。
本発明に用いられる可塑剤はフタル酸ジオクチル(以下DOPと記述)、フタル酸ジヘプチル、フタル酸ジブチルのようなフタル酸エステル;アジピン酸エステルやグリセリン酸エステル等の有機酸エステル類;リン酸トリオクチル等のリン酸エステル類;流動パラフィン;固形ワックス;ミネラルオイル等が挙げられ、ポリエチレンとの相溶性を考慮するとフタル酸エステルが特に好ましい。これらは単独で使用しても混合物として使用してもよい。
The molecular weight of the polypropylene used in the present invention is not particularly limited, but if a low molecular weight polypropylene having a viscosity average molecular weight of 50,000 or less is used, the pore size tends to increase, and a high molecular weight polypropylene having a viscosity average molecular weight of 300,000 or more. When is used, it is possible to obtain a microporous film excellent in heat-resistant film breaking property. These may be used alone or as a mixture.
Plasticizers used in the present invention are dioctyl phthalate (hereinafter referred to as DOP), phthalic acid esters such as diheptyl phthalate and dibutyl phthalate; organic acid esters such as adipic acid ester and glyceric acid ester; trioctyl phosphate, etc. Examples thereof include liquid paraffins; liquid paraffin; solid wax; mineral oil and the like, and phthalic acid esters are particularly preferable in consideration of compatibility with polyethylene. These may be used alone or as a mixture.

(工程1)におけるポリオレフィン樹脂と可塑剤と無機粉体のブレンド比は特に限定されるものではないが、原料中のポリオレフィン樹脂濃度は強度と製膜性の面から25〜50質量部が好ましい。原料中の可塑剤濃度は押出しに適した粘度が得られるため30〜60質量部が好ましい。無機粉体の濃度は均一な孔径を得るために10質量部以上が好ましく、製膜性の面から40質量部以下が好ましい。
なお、ポリオレフィン、無機微粉体、可塑剤の他に本発明を大きく阻害しない範囲で必要に応じて酸化防止剤、耐電防止剤、紫外線吸収剤、滑剤、アンチブロッキング剤等の各種添加剤を添加することができる。
The blend ratio of the polyolefin resin, the plasticizer, and the inorganic powder in (Step 1) is not particularly limited, but the polyolefin resin concentration in the raw material is preferably 25 to 50 parts by mass from the viewpoint of strength and film formability. Since the viscosity suitable for extrusion is obtained, the plasticizer density | concentration in a raw material is 30-60 mass parts. The concentration of the inorganic powder is preferably 10 parts by mass or more in order to obtain a uniform pore size, and preferably 40 parts by mass or less from the viewpoint of film forming properties.
In addition to polyolefins, inorganic fine powders, and plasticizers, various additives such as antioxidants, antistatic agents, ultraviolet absorbers, lubricants, antiblocking agents and the like are added as necessary within a range that does not significantly impair the present invention. be able to.

(工程1)のポリオレフィン、無機微粉体、可塑剤の三成分の混合は、ヘンシェルミキサー、V−ブレンダー、プロシェアミキサー、リボンブレンダー等の一般的な混合機を用いて行われる。
(工程2)では、混合物は押出機、ニーダー等の溶融混練装置により混練される。得られる混練物は、Tダイスを用いた溶融成形によりシート状に成形される。この場合、ギアーポンプを介して成形するのが、寸法安定性の面で好ましく、特にギアーポンプ前圧力を一定に制御して成形するのが、寸法安定性の面で好ましい。
(工程3)では、冷却方法としては、エアーにて冷却する方法、Tダイス吐出樹脂温度より20〜120℃低く温調したロールにて接触させて冷却する方法、Tダイス吐出樹脂温度より20〜120℃低いカレンダーロールにて圧延成形してシート状に成形しながら冷却する方法をとることができる。Tダイス吐出樹脂温度より20〜120℃低いカレンダーロールにて圧延成形してシート状に成形しながら冷却する方法をとるのが膜厚み均一性の面で好ましい。この場合において、ロールを使用する際、Tダイスとロールのシートとの接点の距離は5〜500mmの範囲にて成形するのが好ましい。ダイス吐出温度は通常の熱電対温度計にて端子をダイスに触れないようにし、吐出樹脂に接触させることにより測定することができる。
The mixing of the three components of polyolefin, inorganic fine powder, and plasticizer in (Step 1) is performed using a general mixer such as a Henschel mixer, a V-blender, a pro shear mixer, or a ribbon blender.
In (Step 2), the mixture is kneaded by a melt kneader such as an extruder or a kneader. The obtained kneaded material is formed into a sheet by melt molding using a T-die. In this case, it is preferable from the viewpoint of dimensional stability to form through a gear pump, and it is particularly preferable from the viewpoint of dimensional stability that the pressure before the gear pump is controlled to be constant.
In (Step 3), as a cooling method, a method of cooling with air, a method of cooling by contact with a roll adjusted to 20 to 120 ° C. lower than the temperature of the T-die discharge resin, and 20 to less than the temperature of the T-die discharge resin. A method of cooling while forming a sheet by rolling with a calender roll having a temperature of 120 ° C. can be employed. It is preferable in terms of film thickness uniformity to adopt a method in which it is cooled while being formed into a sheet by rolling with a calender roll that is 20 to 120 ° C. lower than the T-die discharge resin temperature. In this case, when the roll is used, it is preferable that the distance between the contact points of the T dice and the roll sheet is 5 to 500 mm. The die discharge temperature can be measured by making the terminal not touch the die with a normal thermocouple thermometer and bringing it into contact with the discharge resin.

(工程4)では、膜中の可塑剤の抽出を行う。可塑剤の抽出に用いられる溶剤としては、メタノール、エタノール、メチルエチルケトン、アセトン等の有機溶剤;アセトン、メチルエチルケトン等のケトン類;テトラヒドロフラン等のエーテル類;塩化メチレン、1,1,1−トリクロロエタン等のハロゲン化炭化水素類等を使用することができる。これらは単独あるいは混合して用いることも出来る。
(工程5)では無機粉体の抽出を行う。無機粉体にシリカを使用した場合、溶剤として水酸化ナトリウム、水酸化カリウムのようなアルカリ水溶液が好適に用いられる。
(工程6)では、シート状成形物は少なくとも一軸方向に延伸される。一軸方向に延伸する方法は、ロール延伸でも、テンターを用いた延伸でもよい。延伸倍率は高強度と薄膜化を考えると二軸延伸が好ましい。延伸倍率は強度向上のため面倍率で8倍以上が好ましく、更に好ましくは8.5倍以上が好ましい。二軸延伸する場合は、逐次二軸延伸でも同時二軸延伸でもどちらでも構わないが、大孔径の膜を得るためには逐次二軸延伸が好ましい。延伸は一枚でも複数枚重ねても構わないが、強度向上の面から、二枚以上重ねて延伸することが好ましい。延伸後、耐熱収縮性の向上のため熱固定あるいは熱緩和等の熱処理を行うことが好ましい。
In (Step 4), the plasticizer in the film is extracted. Solvents used for extraction of plasticizers include organic solvents such as methanol, ethanol, methyl ethyl ketone, and acetone; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; halogens such as methylene chloride and 1,1,1-trichloroethane. Hydrocarbons can be used. These can be used alone or in combination.
In (Step 5), inorganic powder is extracted. When silica is used for the inorganic powder, an aqueous alkali solution such as sodium hydroxide or potassium hydroxide is preferably used as the solvent.
In (Step 6), the sheet-like molded product is stretched in at least a uniaxial direction. The method of stretching in the uniaxial direction may be roll stretching or stretching using a tenter. The stretching ratio is preferably biaxial stretching considering high strength and thinning. The draw ratio is preferably 8 times or more, more preferably 8.5 times or more in terms of surface magnification for improving the strength. In the case of biaxial stretching, either sequential biaxial stretching or simultaneous biaxial stretching may be used, but sequential biaxial stretching is preferable in order to obtain a film having a large pore diameter. The stretching may be performed by one sheet or a plurality of sheets, but it is preferable to stretch two or more sheets in order to improve the strength. After stretching, it is preferable to perform heat treatment such as heat fixation or heat relaxation in order to improve heat shrinkage resistance.

本発明の微多孔膜を電池用セパレーターとして用いる場合、例えば下記の方法で電池を作成すればよい。
まず、微多孔膜を幅10mm〜100mm、長さ200mm〜2000mmの縦長の形状にする。このセパレーターを、正極−セパレーター負極−セパレーター、または負極−セパレーター正極−セパレーターの順で重ね、円または扁平な渦巻状に巻回する。さらに、この巻回体を電池缶内に収納し、さらに電解液を注入する。
本発明における電池の種類は特に限定されないが、ポリオレフィン微多孔膜と電解液との親和性の観点から非水電解液電池であることが好ましい。また、本発明の微多孔膜をセパレーターとして使用した場合に優れた安全性を付与できるという観点からリチウムイオン電池であることがより好ましい。
When the microporous membrane of the present invention is used as a battery separator, for example, a battery may be prepared by the following method.
First, the microporous membrane is formed into a vertically long shape having a width of 10 mm to 100 mm and a length of 200 mm to 2000 mm. The separator is stacked in the order of positive electrode-separator negative electrode-separator, or negative electrode-separator positive electrode-separator, and wound into a circular or flat spiral shape. Further, the wound body is housed in a battery can and an electrolyte is injected.
Although the kind of battery in this invention is not specifically limited, From a viewpoint of the affinity of a polyolefin microporous membrane and electrolyte solution, it is preferable that it is a non-aqueous electrolyte battery. Moreover, it is more preferable that it is a lithium ion battery from a viewpoint that the outstanding safety | security can be provided when the microporous film of this invention is used as a separator.

次に、実施例によって本発明をさらに詳細に説明する。実施例における試験方法は次の通りである。
(1)膜厚
ダイヤルゲージ「PEACOCK No.25」(尾崎製作所社製、商標)を用いて測定した。試料を100mm×100mmのサイズに切り出し、格子状に9分割した各格子の中心部の厚さを測定し、9点の平均値を膜厚とした。
(2)透気度
JIS P−8117準拠のガーレー式透気度計を用いて測定した。
(3)気孔率
試料を100mm×100mmのサイズに切り出して体積(cm)、質量(g)を求め、それらと樹脂密度(g/cm)より次式を用いて計算した。
Next, the present invention will be described in more detail with reference to examples. The test methods in the examples are as follows.
(1) Film thickness It measured using dial gauge "PEACOCK No.25" (Ozaki Seisakusho make, trademark). A sample was cut into a size of 100 mm × 100 mm, the thickness of the center part of each grid divided into 9 grids was measured, and the average value of 9 points was taken as the film thickness.
(2) Air permeability It measured using the Gurley type air permeability meter based on JIS P-8117.
(3) Porosity A sample was cut into a size of 100 mm × 100 mm to obtain a volume (cm 3 ) and a mass (g), and calculated from these and the resin density (g / cm 3 ) using the following formula.

気孔率(%)=(1−(質量/体積)/(樹脂密度))×100   Porosity (%) = (1− (mass / volume) / (resin density)) × 100

(4)突刺強度
ハンディー圧縮試験機「KES−G5」(カトーテック製、商標)を用いて測定した。針先端の曲率半径0.5mm、突刺速度2mm/sで突刺試験を行い、最大突刺荷重を20μ当りに換算した値を突刺強度とした。
(5)バブルポイント
ASTM E−128−61に準拠し、エタノール中で算出した。120℃放置後バブルポイントはサンプルを100mm×100mmに切り取り、温風が直接サンプルに当らないよう2枚の紙に挟んでオーブン中に120℃で1時間放置し、取り出して冷却した後に測定した。
(4) Puncture strength The puncture strength was measured using a handy compression tester “KES-G5” (trade name, manufactured by Kato Tech). The puncture test was performed with a radius of curvature of the needle tip of 0.5 mm and a puncture speed of 2 mm / s, and the value obtained by converting the maximum puncture load per 20 μm was defined as the puncture strength.
(5) Calculated in ethanol according to Bubble Point ASTM E-128-61. After standing at 120 ° C., the bubble point was measured by cutting the sample into 100 mm × 100 mm, sandwiching it between two sheets of paper so that the hot air did not directly hit the sample, leaving it in an oven at 120 ° C. for 1 hour, taking it out and cooling it.

(6)シャットダウン温度、熱破膜温度
規定の電解液を十分に含浸させた多層多孔膜を、ガラス板に固定した厚さ10μmのニッケル箔で挟み込み、ガラス板を市販のクリップで固定する。ガラス板には熱電対を耐熱テープで固定しセルを作製した。
さらに、詳細に説明すると、一方のニッケル箔には耐熱テープを貼り合わせて箔中央部に15mm×10mmの窓の部分を残しマスキングする。窓部を多層多孔膜で覆うように重ね、もう一方のニッケル箔で多層多孔膜を挟み込む。なお規定の電解液とは1mol/lのホウフッ化リチウム溶液であり溶媒はプロピレンカーボネート/エチレンカーボネート/γ-ブチルラクトン=1/1/2(体積比)である。
このセルをオーブン中に静置し、温度とニッケル箔間の電気抵抗を測定した。オーブンは30℃から200℃まで2℃/minの昇温速度で昇温させ、電気抵抗値は1kHzの交流にて測定した。電気抵抗値が1000Ωに達するときの温度をシャットダウン温度とした。また、シャットダウン後も昇温を続け、膜が溶融破膜して1000Ωを下回ったときの温度を熱破膜温度とした。
(6) Shutdown temperature, thermal membrane breakage temperature A multilayer porous membrane sufficiently impregnated with a prescribed electrolyte is sandwiched between 10 μm-thick nickel foils fixed to a glass plate, and the glass plate is fixed with a commercially available clip. A cell was fabricated by fixing a thermocouple to the glass plate with heat-resistant tape.
More specifically, heat-resistant tape is bonded to one nickel foil, and a 15 mm × 10 mm window portion is left in the central portion of the foil for masking. The windows are overlapped so as to be covered with the multilayer porous film, and the multilayer porous film is sandwiched between the other nickel foils. The prescribed electrolyte is a 1 mol / l lithium borofluoride solution, and the solvent is propylene carbonate / ethylene carbonate / γ-butyllactone = 1/1/2 (volume ratio).
The cell was placed in an oven and the temperature and the electrical resistance between the nickel foils were measured. The oven was heated from 30 ° C. to 200 ° C. at a rate of 2 ° C./min, and the electrical resistance value was measured at an alternating current of 1 kHz. The temperature at which the electric resistance value reached 1000Ω was taken as the shutdown temperature. Further, the temperature was continuously raised after the shutdown, and the temperature when the film melted and fell below 1000Ω was defined as the thermal film breaking temperature.

(7)粘度平均分子量
ポリエチレンおよびポリプロピレンの粘度平均分子量は、溶剤としてデカリンを用い、測定温度135℃で測定し、粘度[η]からChaiang式により算出した。
ポリエチレンの場合
[η]=6.77×10−4×Mv0.67
ポリプロピレンの場合
[η]=1.10×10−4×Mv0.80
(7) Viscosity average molecular weight The viscosity average molecular weight of polyethylene and polypropylene was measured at a measurement temperature of 135 ° C. using decalin as a solvent, and was calculated from the viscosity [η] by the Chain equation.
In the case of polyethylene [η] = 6.77 × 10 −4 × Mv 0.67
In the case of polypropylene [η] = 1.10 × 10 −4 × Mv 0.80

(8)電池評価
下記の手順に従って円筒電池を作成した。
<正極の作製>活物質としてリチウムコバルト複合酸化物LiCoOを92.2wt%、導電剤としてリン片状グラファイトとアセチレンブラックをそれぞれ2.3wt%、バインダーとしてポリフッ化ビニリデン(PVDF)3.2wt%をN−メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターで塗布し、130℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、正極の活物質塗付量は250g/m、活物質嵩密度は3.00g/cmになるようにする。これを幅約40mmに切断して帯状にした。
(8) Battery evaluation A cylindrical battery was prepared according to the following procedure.
<Preparation of positive electrode> 92.2 wt% of lithium cobalt composite oxide LiCoO 2 as an active material, 2.3 wt% of flake graphite and acetylene black as a conductive agent, and 3.2 wt% of polyvinylidene fluoride (PVDF) as a binder Was dispersed in N-methylpyrrolidone (NMP) to prepare a slurry. This slurry was applied to one side of a 20 μm thick aluminum foil serving as a positive electrode current collector with a die coater, dried at 130 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material coating amount of the positive electrode is 250 g / m 2 and the active material bulk density is 3.00 g / cm 3 . This was cut into a width of about 40 mm to form a strip.

<負極の作製>活物質として人造グラファイト96.9wt%、バインダーとしてカルボキシメチルセルロースのアンモニウム塩1.4wt%とスチレン−ブタジエン共重合体ラテックス1.7wt%を精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗付し、120℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、負極の活物質塗付量は106g/m、活物質嵩密度は1.55g/cmと高充填密度とした。これを幅約40mmに切断して帯状にした。
<非水電解液の調製>エチレンカーボネート/エチルメチルカーボネート=1/2(体積比)の混合溶媒に、溶質としてLiPFを濃度1.0mol/lとなるように溶解させて調製した。
<Preparation of negative electrode> A slurry was prepared by dispersing 96.9 wt% of artificial graphite as an active material, 1.4 wt% of ammonium salt of carboxymethylcellulose and 1.7 wt% of styrene-butadiene copolymer latex as binder. This slurry was applied to one side of a 12 μm thick copper foil serving as a negative electrode current collector with a die coater, dried at 120 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material application amount of the negative electrode was 106 g / m 2 , and the active material bulk density was 1.55 g / cm 3, which was a high packing density. This was cut into a width of about 40 mm to form a strip.
<Preparation of Nonaqueous Electrolyte> LiPF 6 was dissolved in a mixed solvent of ethylene carbonate / ethyl methyl carbonate = 1/2 (volume ratio) so as to have a concentration of 1.0 mol / l.

<電池組立て>帯状負極、セパレーター、帯状正極、セパレーターの順に重ねて渦巻状に複数回捲回することで電極板積層体を作製した。この電極板積層体を外径が18mmで高さが65mmのステンレス製容器に収納し、正極集電体から導出したアルミニウム製タブを容器蓋端子部に、負極集電体から導出したニッケル製タブを容器壁に溶接した。その後、真空下85℃で12時間の乾燥を行い、次に、アルゴンボックス内にて容器内に前記した非水電解液を注入し、封口した。
<前処理>組立てた電池を1/3Cの電流値で電圧4.2Vまで定電流充電した後4.2Vの定電圧充電を5時間行い、その後1/3Cの電流で3.0Vの終止電圧まで放電を行った。次に、1Cの電流値で電圧4.2Vまで定電流充電した後4.2Vの定電圧充電を2時間行い、その後1Cの電流で3.0Vの終止電圧まで放電を行った。最後に1Cの電流値で4.2Vまで定電流充電をした後に4.2Vの定電圧充電を2時間行い前処理とした。
<Battery assembly> An electrode plate laminate was prepared by winding a strip-shaped negative electrode, a separator, a strip-shaped positive electrode, and a separator in this order and winding them in a spiral shape. The electrode plate laminate is housed in a stainless steel container having an outer diameter of 18 mm and a height of 65 mm, and an aluminum tab derived from the positive electrode current collector is used as a container lid terminal portion, and a nickel tab derived from the negative electrode current collector Was welded to the container wall. Thereafter, drying was performed at 85 ° C. for 12 hours under vacuum, and then the above-described non-aqueous electrolyte was poured into a container in an argon box and sealed.
<Pretreatment> The assembled battery was charged at a constant current of 1/3 C to a voltage of 4.2 V, then charged at a constant voltage of 4.2 V for 5 hours, and then a final voltage of 3.0 V at a current of 1/3 C. Discharge was performed. Next, after constant current charging to a voltage of 4.2 V with a current value of 1 C, a constant voltage charge of 4.2 V was performed for 2 hours, and then discharging was performed to a final voltage of 3.0 V with a current of 1 C. Finally, after constant current charging to 4.2 V with a current value of 1 C, 4.2 V constant voltage charging was performed for 2 hours as a pretreatment.

(8−1)高温履歴テスト
(8)で前処理を行った電池をオーブンに投入し、室温から5℃/minで昇温した後120℃で30分間放置した。その後、電池をオーブンから取り出し室温まで放冷してから1Cの電流で3.0Vまで放電を行い、オーブン投入前の充電量に対する容量維持率を算出した。この容量維持率が80%以上の場合を○、80%以下の場合を×とした。
(8−2)オーブンテスト
(8)で前処理を行った電池をオーブンに投入し、室温から5℃/minで昇温した後150℃で30分間放置した。このとき発火したものを×、発火しなかったものを○とした。
(8-1) The battery pretreated in the high temperature history test (8) was put into an oven, heated from room temperature at 5 ° C./min, and then left at 120 ° C. for 30 minutes. Thereafter, the battery was taken out of the oven and allowed to cool to room temperature, and then discharged to 3.0 V at a current of 1 C, and the capacity retention rate with respect to the amount of charge before charging the oven was calculated. The case where the capacity retention rate was 80% or more was rated as ○, and the case where the capacity retention rate was 80% or less was rated as x.
(8-2) Oven Test The battery pretreated in (8) was put into an oven, heated from room temperature at 5 ° C./min, and allowed to stand at 150 ° C. for 30 minutes. Those that ignited at this time were marked with ×, and those that did not ignite were marked with ○.

[実施例1]
粘度平均分子量15万のポリエチレン36wt%、粘度平均分子量30万のポリエチレン27wt%、粘度平均分子量100万のポリエチレン18wt%、粘度平均分子量200万のポリエチレン9wt%、粘度平均分子量40万の高分子量ポリプロピレン10wt%の混合物からなるポリマー34wt%、DOP45wt%、微粉シリカ21wt%をヘンシェルミキサーで混合して造粒した。その後、Tダイスを装着した二軸押出機にて混練・押出し、厚さ100μmのシート状に成形した。該成形物から塩化メチレンにてDOPを、水酸化ナトリウムにて微粉シリカを抽出除去し微多孔膜とした。該微多孔膜を2枚重ねて120℃に加熱のもと、縦方向に5.0倍延伸した後、130℃に加熱のもと、横方向に2.0倍延伸した。得られた膜の物性を表1に示す。
[Example 1]
36 wt% polyethylene with a viscosity average molecular weight of 150,000, 27 wt% polyethylene with a viscosity average molecular weight of 300,000, 18 wt% polyethylene with a viscosity average molecular weight of 1 million, 9 wt% polyethylene with a viscosity average molecular weight of 2 million, 10 wt% high molecular weight polypropylene with a viscosity average molecular weight of 400,000 % Of a polymer consisting of 34% by weight, 45% by weight of DOP and 21% by weight of fine silica were mixed by a Henschel mixer and granulated. Then, it knead | mixed and extruded with the twin-screw extruder equipped with T-die, and shape | molded in the sheet form of thickness 100 micrometers. From the molded product, DOP was extracted with methylene chloride and finely divided silica was extracted with sodium hydroxide to obtain a microporous membrane. Two microporous membranes were stacked and heated to 120 ° C. and stretched 5.0 times in the longitudinal direction, and then heated to 130 ° C. and stretched 2.0 times in the transverse direction. Table 1 shows the physical properties of the obtained film.

[実施例2]
ポリマー組成が粘度平均分子量15万のポリエチレン32wt%、粘度平均分子量30万のポリエチレン24wt%、粘度平均分子量100万のポリエチレン16wt%、粘度平均分子量200万のポリエチレン8wt%、粘度平均分子量40万の高分子量ポリプロピレン20wt%であるポリオレフィン樹脂を用いる以外は実施例1と同様に作成した。得られた膜の物性を表1に示す。
[Example 2]
The polymer composition is 32 wt% polyethylene having a viscosity average molecular weight of 150,000, 24 wt% polyethylene having a viscosity average molecular weight of 300,000, 16 wt% polyethylene having a viscosity average molecular weight of 1 million, 8 wt% polyethylene having a viscosity average molecular weight of 2 million, and a high viscosity average molecular weight of 400,000. It was prepared in the same manner as in Example 1 except that a polyolefin resin having a molecular weight of 20 wt% was used. Table 1 shows the physical properties of the obtained film.

[実施例3]
ポリマー組成が粘度平均分子量15万のポリエチレン24wt%、粘度平均分子量30万のポリエチレン18wt%、粘度平均分子量100万のポリエチレン12wt%、粘度平均分子量200万のポリエチレン6wt%、粘度平均分子量40万の高分子量ポリプロピレン40wt%であるポリオレフィン樹脂を用いる以外は実施例1と同様に作成した。得られた膜の物性を表1に示す。
[Example 3]
The polymer composition is 24 wt% polyethylene with a viscosity average molecular weight of 150,000, 18 wt% polyethylene with a viscosity average molecular weight of 300,000, 12 wt% polyethylene with a viscosity average molecular weight of 1 million, 6 wt% polyethylene with a viscosity average molecular weight of 2 million, and a high viscosity average molecular weight of 400,000. It was prepared in the same manner as in Example 1 except that a polyolefin resin having a molecular weight of polypropylene of 40 wt% was used. Table 1 shows the physical properties of the obtained film.

[実施例4]
粘度平均分子量40万の高分子量ポリプロピレンの代わりに粘度平均分子量0.6万のポリプロピレンを使用した以外は実施例1と同様に作成した。得られた膜の物性を表1に示す。
[Example 4]
It was prepared in the same manner as in Example 1 except that polypropylene having a viscosity average molecular weight of 6,000 was used instead of high molecular weight polypropylene having a viscosity average molecular weight of 400,000. Table 1 shows the physical properties of the obtained film.

[実施例5]
ポリマー組成が粘度平均分子量15万のポリエチレン63wt%、粘度平均分子量200万のポリエチレン27wt%、粘度平均分子量40万の高分子量ポリプロピレン10wt%であるポリオレフィン樹脂を用いる以外は実施例1と同様に作成した。得られた膜の物性を表1に示す。
[Example 5]
It was prepared in the same manner as in Example 1 except that a polyolefin resin having a polymer composition of 63 wt% of polyethylene having a viscosity average molecular weight of 150,000, 27 wt% of polyethylene having a viscosity average molecular weight of 2 million, and 10 wt% of high molecular weight polypropylene having a viscosity average molecular weight of 400,000 was used. . Table 1 shows the physical properties of the obtained film.

[比較例1]
ポリマー組成が粘度平均分子量15万のポリエチレン40wt%、粘度平均分子量30万のポリエチレン30wt%、粘度平均分子量100万のポリエチレン20wt%、粘度平均分子量200万のポリエチレン10wt%であるポリオレフィン樹脂を用いる以外は実施例1と同様に作成した。得られた膜の物性を表1に示す。
[Comparative Example 1]
Except for using a polyolefin resin having a polymer composition of 40 wt% polyethylene having a viscosity average molecular weight of 150,000, 30 wt% polyethylene having a viscosity average molecular weight of 300,000, 20 wt% polyethylene having a viscosity average molecular weight of 1 million, and 10 wt% polyethylene having a viscosity average molecular weight of 2 million. Prepared in the same manner as in Example 1. Table 1 shows the physical properties of the obtained film.

[比較例2]
ポリマー組成が粘度平均分子量15万のポリエチレン16wt%、粘度平均分子量30万のポリエチレン12wt%、粘度平均分子量100万のポリエチレン8wt%、粘度平均分子量200万のポリエチレン4wt%、粘度平均分子量40万の高分子量ポリプロピレン60wt%であるポリオレフィン樹脂を用いる以外は実施例1と同様に作成した。得られた膜の物性を表1に示す。この膜は高分子量ポリエチレンに対してポリプロピレンの含有量が多いことから電池用セパレータとして十分な強度が得られなかったため電池評価は実施しなかった。
[Comparative Example 2]
The polymer composition is 16 wt% polyethylene having a viscosity average molecular weight of 150,000, 12 wt% polyethylene having a viscosity average molecular weight of 300,000, 8 wt% polyethylene having a viscosity average molecular weight of 1 million, 4 wt% polyethylene having a viscosity average molecular weight of 2 million, and a high viscosity average molecular weight of 400,000. It was prepared in the same manner as in Example 1 except that a polyolefin resin having a molecular weight of 60 wt% was used. Table 1 shows the physical properties of the obtained film. Since this membrane had a higher polypropylene content than the high molecular weight polyethylene, a sufficient strength as a battery separator could not be obtained, so the battery was not evaluated.

[比較例3]
ポリマー組成が粘度平均分子量25万のポリエチレン25wt%、粘度平均分子量100万のポリエチレン75wt%であるポリオレフィン樹脂を用いる以外は実施例1と同様に作成した。得られた膜の物性を表1に示す。
[Comparative Example 3]
It was prepared in the same manner as in Example 1 except that a polyolefin resin having a polymer composition of 25 wt% polyethylene having a viscosity average molecular weight of 250,000 and 75 wt% polyethylene having a viscosity average molecular weight of 1 million was used. Table 1 shows the physical properties of the obtained film.

[比較例4]
延伸倍率が縦方向に3.5倍、横方向に2.0倍である以外は実施例1と同様に作成した。得られた膜の物性を表1に示す。この膜は延伸倍率が低く電池用セパレータとして十分な強度が得られなかったため電池評価は実施しなかった。
[Comparative Example 4]
It was prepared in the same manner as in Example 1 except that the draw ratio was 3.5 times in the vertical direction and 2.0 times in the horizontal direction. Table 1 shows the physical properties of the obtained film. Since this film had a low draw ratio and could not provide sufficient strength as a battery separator, battery evaluation was not performed.

[比較例5]
粘度平均分子量25万のポリエチレン45wt%、粘度平均分子量100万のポリエチレン45wt%、粘度平均分子量40万の高分子量ポリプロピレン10wt%の混合物からなるポリマー40wt%、流動パラフィン60wt%を、Tダイを装着した二軸押出機にて混練・押出し、厚み1850μmのゲルシートを得た。 次に、同時二軸テンター延伸機に導き、115℃の加熱のもと倍率7×7倍で同時二軸延伸を行った。次に、塩化メチレン中に充分に浸漬して流動パラフィンを抽出除去し微多孔膜とした。得られた微多孔膜の物性を表1に示す。
[Comparative Example 5]
45 wt% polyethylene with a viscosity average molecular weight of 250,000, 45 wt% polyethylene with a viscosity average molecular weight of 1 million, 40 wt% polymer composed of a mixture of 10 wt% high molecular weight polypropylene with a viscosity average molecular weight of 40 wt%, and 60 wt% liquid paraffin A gel sheet having a thickness of 1850 μm was obtained by kneading and extruding with a twin-screw extruder. Next, it was led to a simultaneous biaxial tenter stretching machine and subjected to simultaneous biaxial stretching at a magnification of 7 × 7 under heating at 115 ° C. Next, it was sufficiently immersed in methylene chloride to extract and remove the liquid paraffin to form a microporous membrane. Table 1 shows the physical properties of the obtained microporous membrane.

Figure 0005235324
Figure 0005235324

以上、実施例に示したように本発明の微多孔膜は非水電解液二次電池用セパレータとして用いた場合、準高温時の充放電特性と高温時の安全性に優れることがわかった。なお、比較例より120℃放置後バブルポイントが580kPaより大きいセパレータは準高温時の充放電特性が不十分であり、シャットダウン温度が140℃より大きいセパレータは高温時の電池安全性が不十分であることがわかった。   As described above, as shown in the Examples, it was found that the microporous membrane of the present invention is excellent in charge / discharge characteristics at a semi-high temperature and safety at a high temperature when used as a separator for a non-aqueous electrolyte secondary battery. From the comparative example, a separator with a bubble point of greater than 580 kPa after standing at 120 ° C. has insufficient charge / discharge characteristics at a semi-high temperature, and a separator with a shutdown temperature greater than 140 ° C. has insufficient battery safety at a high temperature. I understood it.

本発明の微多孔膜は、準高温領域における透過性に優れ、優れたシャットダウン特性及び高強度を有する。本発明の微多孔膜を用いた電池用セパレータは、準高温領域における充放電特性、並びに高温領域における安全性に優れる。そのため、準高温下に曝される可能性があるハイブリッド自動車の非水電解液二次電池用セパレータとして特に好適に利用できる。   The microporous membrane of the present invention has excellent permeability in a quasi-high temperature region, and has excellent shutdown characteristics and high strength. The battery separator using the microporous membrane of the present invention is excellent in charge / discharge characteristics in the semi-high temperature region and safety in the high temperature region. Therefore, it can be particularly suitably used as a separator for a non-aqueous electrolyte secondary battery of a hybrid vehicle that may be exposed to a sub-high temperature.

Claims (6)

突刺強度が3〜8N/20μm、シャットダウン温度が130〜140℃、かつ120℃放置後のバブルポイントが300〜580kPaであるポリオレフィン製微多孔膜であって、
ポリオレフィン樹脂が粘度平均分子量が10万〜30万のポリエチレン30〜70質量部、粘度平均分子量が70万以上のポリエチレン10〜55質量部、およびポリプロピレン5〜50質量部のみを含むポリオレフィン樹脂組成物からなるポリオレフィン製微多孔膜。
A polyolefin microporous membrane having a puncture strength of 3 to 8 N / 20 μm, a shutdown temperature of 130 to 140 ° C., and a bubble point after standing at 120 ° C. of 300 to 580 kPa ,
From a polyolefin resin composition in which the polyolefin resin contains only 30 to 70 parts by mass of polyethylene having a viscosity average molecular weight of 100,000 to 300,000, 10 to 55 parts by mass of polyethylene having a viscosity average molecular weight of 700,000 or more, and 5 to 50 parts by mass of polypropylene. A polyolefin microporous membrane.
膜厚が5〜50μm、気孔率が30〜70%、熱破膜温度が160℃以上である請求項1記載のポリオレフィン製微多孔膜。   The polyolefin microporous membrane according to claim 1, having a thickness of 5 to 50 µm, a porosity of 30 to 70%, and a thermal membrane breaking temperature of 160 ° C or higher. 縦延伸倍率と横延伸倍率の積が8以上である請求項1又は2に記載のポリオレフィン製微多孔膜。 The polyolefin microporous membrane according to claim 1 or 2 , wherein the product of the longitudinal draw ratio and the transverse draw ratio is 8 or more. ポリオレフィン25〜50質量部、可塑剤30〜60質量部及び無機粉体10〜40質量部を含む組成物を溶融混練し、可塑剤と無機粉体を抽出した後に延伸して得られる請求項1〜いずれか一項に記載のポリオレフィン製微多孔膜。 A composition obtained by melting and kneading a composition containing 25 to 50 parts by mass of polyolefin, 30 to 60 parts by mass of a plasticizer and 10 to 40 parts by mass of an inorganic powder, extracting the plasticizer and the inorganic powder, and then stretching the composition. The polyolefin microporous membrane according to any one of 3 to 4 . 請求項1〜いずれか一項に記載のポリオレフィン製微多孔膜を用いた電池用セパレータ。 A battery separator using the microporous polyolefin membrane according to any one of claims 1 to 4 . 請求項記載のセパレータを用いたリチウムイオン二次電池。 A lithium ion secondary battery using the separator according to claim 5 .
JP2007111410A 2007-04-20 2007-04-20 Polyolefin microporous membrane Active JP5235324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007111410A JP5235324B2 (en) 2007-04-20 2007-04-20 Polyolefin microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007111410A JP5235324B2 (en) 2007-04-20 2007-04-20 Polyolefin microporous membrane

Publications (2)

Publication Number Publication Date
JP2008266457A JP2008266457A (en) 2008-11-06
JP5235324B2 true JP5235324B2 (en) 2013-07-10

Family

ID=40046396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007111410A Active JP5235324B2 (en) 2007-04-20 2007-04-20 Polyolefin microporous membrane

Country Status (1)

Country Link
JP (1) JP5235324B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5942145B2 (en) * 2012-05-09 2016-06-29 旭化成株式会社 Polyolefin microporous membrane and method for producing the same
JP2014209462A (en) * 2013-03-29 2014-11-06 新神戸電機株式会社 Lithium ion secondary battery
JP6627753B2 (en) 2014-04-30 2020-01-08 東レ株式会社 Polyolefin microporous membrane
CN111684002B (en) 2018-02-23 2022-10-28 东丽株式会社 Porous polyolefin film
JP7235486B2 (en) * 2018-11-28 2023-03-08 旭化成株式会社 Polyolefin microporous membrane
CN113964448B (en) * 2020-07-01 2023-12-15 华为技术有限公司 Separator, method for manufacturing separator, battery, electronic device, and mobile device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3305006B2 (en) * 1991-07-05 2002-07-22 旭化成株式会社 Battery separator using organic electrolyte and method for producing the same
JP4136008B2 (en) * 1995-12-22 2008-08-20 旭化成ケミカルズ株式会社 Microporous membrane for non-aqueous solvent battery separator

Also Published As

Publication number Publication date
JP2008266457A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
EP2108675B1 (en) Microporous polyolefin membrane
JP5213443B2 (en) Polyolefin microporous membrane
JP5546144B2 (en) Polyolefin microporous membrane
JP5052135B2 (en) Polyolefin microporous membrane and battery separator
KR101103163B1 (en) Polyolefin microporous membrane
JP5325405B2 (en) Polyolefin microporous membrane
JP5942145B2 (en) Polyolefin microporous membrane and method for producing the same
JP6823718B2 (en) Polyolefin microporous membranes, separators for power storage devices, and power storage devices
JPWO2005061599A1 (en) Polyolefin microporous membrane
JP5235484B2 (en) Polyolefin microporous membrane
JP5235324B2 (en) Polyolefin microporous membrane
JP7235486B2 (en) Polyolefin microporous membrane
JP4573284B2 (en) Polyethylene microporous membrane
JP5511329B2 (en) Polyolefin microporous membrane
JPWO2008044761A1 (en) Nonaqueous electrolyte secondary battery separator and multi-layer separator for nonaqueous electrolyte secondary battery
JP5592745B2 (en) Polyolefin microporous membrane
JP5295857B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP4230584B2 (en) Polyethylene microporous membrane
JP5649210B2 (en) Polyolefin microporous membrane
KR101103125B1 (en) Polyolefin microporous membrane

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5235324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350