JP5511329B2 - Polyolefin microporous membrane - Google Patents

Polyolefin microporous membrane Download PDF

Info

Publication number
JP5511329B2
JP5511329B2 JP2009267201A JP2009267201A JP5511329B2 JP 5511329 B2 JP5511329 B2 JP 5511329B2 JP 2009267201 A JP2009267201 A JP 2009267201A JP 2009267201 A JP2009267201 A JP 2009267201A JP 5511329 B2 JP5511329 B2 JP 5511329B2
Authority
JP
Japan
Prior art keywords
mass
polyethylene
polypropylene
component
microporous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009267201A
Other languages
Japanese (ja)
Other versions
JP2011111484A (en
Inventor
博 宮澤
健 鬼澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei E Materials Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2009267201A priority Critical patent/JP5511329B2/en
Publication of JP2011111484A publication Critical patent/JP2011111484A/en
Application granted granted Critical
Publication of JP5511329B2 publication Critical patent/JP5511329B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cell Separators (AREA)

Description

本発明はポリオレフィン製微多孔膜に関する。   The present invention relates to a polyolefin microporous membrane.

ポリオレフィン製微多孔膜は優れた電気絶縁性、イオン透過性を示すことから電池やコンデンサー等におけるセパレータとして広く利用されている。特に近年では携帯機器の多機能化、軽量化に伴いその電源として高出力密度、高容量密度のリチウムイオン二次電池が使用されている。このような電池用セパレータにも主としてポリオレフィン微多孔膜が用いられている。
リチウムイオン二次電池のセパレータの基本的な役割は、正極と負極の間に配置されて両極の短絡を防ぐと共に、その微多孔構造によってイオンを透過させるものである。近年の電池の高エネルギー化に伴い電池部材への負荷は大きくなっており、セパレータに対してもより高度な安全性能が求められている。
ポリオレフィン微多孔膜は主成分をポリエチレンとするものが主流であるが、電池としての高温安全性の向上を目的としてポリプロピレンをブレンドする種々の検討も実施されている。
Polyolefin microporous membranes are widely used as separators in batteries, capacitors and the like because they exhibit excellent electrical insulation and ion permeability. In particular, in recent years, with the increase in functionality and weight of portable devices, lithium ion secondary batteries with high output density and high capacity density have been used as power sources. Polyolefin microporous membranes are mainly used for such battery separators.
The basic role of the separator of the lithium ion secondary battery is to be disposed between the positive electrode and the negative electrode to prevent short-circuit between both electrodes and to allow ions to permeate through the microporous structure. With the recent increase in energy of batteries, the load on battery members is increasing, and higher safety performance is also required for separators.
Polyolefin microporous membranes are mainly composed of polyethylene as a main component, but various studies of blending polypropylene for the purpose of improving high-temperature safety as a battery have been conducted.

例えば、特許文献1では、ポリエチレンとポリプロピレンの分子量を重量平均分子量(Mw)と粘度平均分子量(Mv)との比Mw/Mvで規定し、分子量1万以下の量比を規定した膜が提案されている。
特許文献2では、α−オレフィンとの共重合体で粘度平均分子量(Mv)が50万〜100万であるポリエチレン共重合体と、メルトインデックスが1g/10min以下且つエチレン成分を含むポリプロピレン共重合を特定の割合で混合した膜が提案されている。
特許文献3では、高温時の孔径維持及び熱破膜特性の向上のためにポリプロピレンを添加し、特定範囲の突刺強度、シャットダウン温度、120℃放置後のバブルポイントを有するセパレータが提案されている。
For example, Patent Document 1 proposes a membrane in which the molecular weight of polyethylene and polypropylene is defined by the ratio Mw / Mv of the weight average molecular weight (Mw) and the viscosity average molecular weight (Mv), and the molecular weight is defined as 10,000 or less. ing.
In Patent Document 2, a polyethylene copolymer having a viscosity average molecular weight (Mv) of 500,000 to 1,000,000 and a polypropylene copolymer having a melt index of 1 g / 10 min or less and containing an ethylene component is copolymerized with an α-olefin. Membranes mixed at a specific ratio have been proposed.
In Patent Document 3, a separator is proposed in which polypropylene is added in order to maintain the hole diameter at high temperature and improve the thermal film breaking property, and has a specific range of puncture strength, a shutdown temperature, and a bubble point after being left at 120 ° C.

国際公開第2005/113657号パンフレットInternational Publication No. 2005/113657 Pamphlet 特許第4136008号公報Japanese Patent No. 4136008 特開2008−266457号公報JP 2008-266457 A

しかしながら、特許文献1〜3に記載された微多孔膜を電池用セパレータとして用いた場合、耐酸化性と、サイクル特性を両立する観点から、なお改良の余地を有するものであった。
本発明は、耐酸化性とサイクル特性を両立し得るセパレータとして好適な、ポリオレフィン製微多孔膜を提供することを課題とする。
However, when the microporous membrane described in Patent Documents 1 to 3 is used as a battery separator, there is still room for improvement from the viewpoint of achieving both oxidation resistance and cycle characteristics.
An object of the present invention is to provide a polyolefin microporous membrane suitable as a separator capable of achieving both oxidation resistance and cycle characteristics.

本発明者らは上記課題を解決するために鋭意検討を行った。その結果、特定のポリオレフィン製微多孔膜(以下、単に「微多孔膜」と略記することがある)が上記課題を達成し得ることを見出し、本発明をなすに至った。   The present inventors have intensively studied to solve the above problems. As a result, the inventors have found that a specific polyolefin microporous membrane (hereinafter, sometimes simply abbreviated as “microporous membrane”) can achieve the above-described problems, and have made the present invention.

すなわち、本発明は以下の通りである。
[1]
ポリプロピレン成分5〜50質量%と、ポリエチレン成分50〜95質量%とを含み、前記ポリエチレン成分が粘度平均分子量(Mv)が100万以上の超高分子量ポリエチレンを10質量%以上含むと共に、
前記ポリエチレン成分の融点Tmeと、前記ポリプロピレン成分の融点Tmpとの温度差が−20℃<Tmp−Tme≦20℃であり、かつ
バブルポイントが400〜600kPaであるポリオレフィン製微多孔膜。
[2]
GPC曲線で分子量が100万以上の分率が5%以上かつ、ポリプロピレンとポリエチレン赤外吸収スペクトルの強度比が0.01〜0.45である[1]に記載のポリオレフィン製微多孔膜。(ポリプロピレンの吸収波長:998cm-1、ポリエチレンの吸収波長:719cm-1
[3]
前記ポリプロピレン成分が、エチレンとプロピレンとのランダム共重合体である[1]又は[2]に記載のポリオレフィン製微多孔膜。
[4]
透気度/気孔率の比が2.2〜4.0である[1]〜[3]のいずれかに記載のポリオレフィン製微多孔膜。
[5]
[1]〜[4]のいずれかに記載のポリオレフィン製微多孔膜を用いた電池用セパレータ。
[6]
[5]に記載のセパレータと、正極と、負極と、電解液とを含むリチウムイオン二次電池。
That is, the present invention is as follows.
[1]
Including 5 to 50% by mass of a polypropylene component and 50 to 95% by mass of a polyethylene component, and the polyethylene component includes 10% by mass or more of ultrahigh molecular weight polyethylene having a viscosity average molecular weight (Mv) of 1 million or more,
A polyolefin microporous membrane having a temperature difference between the melting point Tme of the polyethylene component and the melting point Tmp of the polypropylene component of −20 ° C. <Tmp−Tme ≦ 20 ° C. and a bubble point of 400 to 600 kPa.
[2]
The polyolefin microporous film according to [1], wherein a fraction having a molecular weight of 1 million or more on a GPC curve is 5% or more, and an intensity ratio of polypropylene to polyethylene infrared absorption spectrum is 0.01 to 0.45. (Absorption wavelength of polypropylene: 998 cm −1 , absorption wavelength of polyethylene: 719 cm −1 )
[3]
The polyolefin microporous membrane according to [1] or [2], wherein the polypropylene component is a random copolymer of ethylene and propylene.
[4]
The polyolefin microporous membrane according to any one of [1] to [3], wherein the air permeability / porosity ratio is 2.2 to 4.0.
[5]
A battery separator using the polyolefin microporous membrane according to any one of [1] to [4].
[6]
A lithium ion secondary battery comprising the separator according to [5], a positive electrode, a negative electrode, and an electrolytic solution.

[7]
[1]に記載のポリオレフィン製微多孔膜の製造方法であって、下記(1)〜(5)の各工程、
(1)ポリオレフィン樹脂と、可塑剤と、無機粉体とを混合する混合工程、
(2)混合工程により得られた混合物を溶融混練する混練工程、
(3)混練工程で得られた混練物を、スリットから押出し、冷却してシート状に成形するシート成形工程、
(4)シート成形工程で得られたシート状の成形物から可塑剤と無機紛体とを抽出する抽出工程、
(5)抽出工程で得られたシート状の多孔体を延伸する延伸工程、を含み、
前記(1)工程が、ポリオレフィン樹脂25〜50質量部、可塑剤30〜60質量部、及び無機粉体10〜40質量部を、合計が100質量部となるように混合する工程であり、前記ポリオレフィン樹脂が、ポリプロピレン成分5〜50質量%と、ポリエチレン成分50〜95質量%とを含み、前記ポリエチレン成分が粘度平均分子量(Mv)が100万以上の超高分子量ポリエチレンを10質量%以上含むと共に、前記ポリエチレン成分の融点Tmeと、前記ポリプロピレン成分の融点Tmpとの温度差が−20℃<Tmp−Tme≦20℃である、製造方法。
[7]
[1] A method for producing a polyolefin microporous membrane according to [1], wherein the following steps (1) to (5):
(1) a mixing step of mixing a polyolefin resin, a plasticizer, and an inorganic powder;
(2) a kneading step of melt kneading the mixture obtained by the mixing step,
(3) A sheet forming step in which the kneaded product obtained in the kneading step is extruded from a slit, cooled and formed into a sheet shape,
(4) An extraction process for extracting the plasticizer and the inorganic powder from the sheet-like molded product obtained in the sheet molding process,
(5) a stretching step of stretching the sheet-like porous body obtained in the extraction step,
The step (1) is a step of mixing 25 to 50 parts by mass of a polyolefin resin, 30 to 60 parts by mass of a plasticizer, and 10 to 40 parts by mass of an inorganic powder so that the total becomes 100 parts by mass, The polyolefin resin contains 5 to 50% by mass of a polypropylene component and 50 to 95% by mass of a polyethylene component, and the polyethylene component contains 10% by mass or more of ultrahigh molecular weight polyethylene having a viscosity average molecular weight (Mv) of 1 million or more. The manufacturing method whose temperature difference of melting | fusing point Tme of the said polyethylene component and melting | fusing point Tmp of the said polypropylene component is -20 degreeC <Tmp-Tme <= 20 degreeC.

本発明によれば、耐酸化性とサイクル特性を両立し得るセパレータとして好適な、ポリオレフィン製微多孔膜が提供される。   According to the present invention, there is provided a polyolefin microporous membrane suitable as a separator capable of achieving both oxidation resistance and cycle characteristics.

以下、本発明を実施するための最良の形態(以下、「実施の形態」と略記する。)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   The best mode for carrying out the present invention (hereinafter abbreviated as “embodiment”) will be described in detail below. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.

本実施の形態のポリオレフィン製微多孔膜は、膜厚方向に連通孔を有し、例えば、三次元網状骨格構造を有するものである。また、ポリプロピレン成分5〜50質量%と、ポリエチレン成分50〜95質量%とを含み、前記ポリエチレン成分が超高分子量ポリエチレンを含むと共に、前記ポリエチレン成分の融点Tmeと、前記ポリプロピレン成分の融点Tmpとの温度差が−20℃<Tmp−Tme<23℃であり、かつバブルポイントが400〜600kPaである。
そして、このような微多孔膜は電池用セパレータとして使用したときに、耐酸化性とサイクル特性を両立した高性能な二次電池を提供できる。
The polyolefin microporous membrane of the present embodiment has communication holes in the film thickness direction, and has, for example, a three-dimensional network skeleton structure. Moreover, while containing 5-50 mass% of polypropylene components and 50-95 mass% of polyethylene components, while the said polyethylene component contains ultra high molecular weight polyethylene, melting | fusing point Tme of the said polyethylene component, and melting | fusing point Tmp of the said polypropylene component The temperature difference is −20 ° C. <Tmp−Tme <23 ° C., and the bubble point is 400 to 600 kPa.
And when such a microporous film is used as a battery separator, it is possible to provide a high-performance secondary battery having both oxidation resistance and cycle characteristics.

耐酸化性は、セパレータの黒色化の程度で判断できる。黒色化は、正極でのコバルトの還元と同時にポリマーのラジカル連鎖的な酸化反応が起こることによるポリエン化が原因とされている。そして、黒色化が生じると、その結果膜の強度劣化が引き起こされる。ポリエチレンはその分子構造から連鎖的に酸化反応が進行してしまうのに対し、ポリプロピレンは連鎖反応を止める性質を持ち、黒色化を防ぐ効果が期待できる。
そして、本実施の形態においては、ポリプロピレン成分とポリエチレン成分とが一定の割合で配合された微多孔膜において、前記Tmp−Tmeとバブルポイントとを規定している。このように規定することで良好な耐酸化性と良好なサイクル特性とが両立されるメカニズムの詳細は詳らかでないが、一定の溶融挙動を示す素材で一定の孔径を有する微多孔膜を形成することにより、サイクル試験時の電解液の分解物による目詰まりが抑制されてサイクル特性が良好となりつつ、膜表面の耐酸化性を発現し得るものと考えられる。
The oxidation resistance can be judged by the degree of blackening of the separator. Blackening is attributed to polyeneization due to the radical chain oxidation reaction of the polymer simultaneously with the reduction of cobalt at the positive electrode. When blackening occurs, the film strength is deteriorated as a result. Polyethylene undergoes an oxidation reaction in a chain from its molecular structure, whereas polypropylene has the property of stopping the chain reaction and can be expected to prevent blackening.
And in this Embodiment, the said Tmp-Tme and bubble point are prescribed | regulated in the microporous film | membrane with which the polypropylene component and the polyethylene component were mix | blended in a fixed ratio. Although the details of the mechanism that achieves both good oxidation resistance and good cycle characteristics by specifying in this way are not detailed, a microporous film having a constant pore size is formed of a material exhibiting a constant melting behavior. Thus, it is considered that clogging due to the decomposition product of the electrolytic solution during the cycle test is suppressed and the cycle characteristics are improved, and the oxidation resistance of the film surface can be expressed.

また、従来、ポリエチレンとポリプロピレンの混合系ではポリプロピレンの特性を効率よく引き出すため、エチレンやα-オレフィンといったコモノマーとの共重合コポリマーではなくホモポリプロピレンを選択しているケースが多く、耐熱破膜性の面からもより融点の高いホモポリマーが好ましいとされてきた。本発明者らはこれら従来の試みとは逆行する形で、ポリエチレンとの融点差が一定の範囲内にあり、かつエチレンをコモノマー成分として有する共重合ポリプロピレンを用いることで、サイクル性を維持しつつ、ホモと比較してプロピレン含有量が低いにもかかわらず高い耐酸化性を実現し、その上、より低いシャットダウン温度を実現し得ることを見出した。   Conventionally, in order to efficiently draw out the characteristics of polypropylene in a mixed system of polyethylene and polypropylene, homopolypropylene is often selected instead of a copolymer copolymer with a comonomer such as ethylene or α-olefin. From the standpoint, a homopolymer having a higher melting point has been considered preferable. The inventors of the present invention, in a manner contrary to these conventional attempts, use a copolymerized polypropylene having a difference in melting point from polyethylene within a certain range and having ethylene as a comonomer component, while maintaining cycleability. It has been found that high oxidation resistance can be achieved despite the low propylene content compared to homo, and in addition, a lower shutdown temperature can be achieved.

この理由は、エチレン成分をポリマー主鎖中に有し、且つ融点の差が適度な範囲に存在することがポリエチレンとの相溶性を向上させているためと考えられる。そもそもポリエチレンとポリプロピレンは互いの性質上相溶性が悪く均一に分散させることが難しいとされてきた。本実施形態においては、好ましい形態として共重合ポリプロピレン(中でも好ましくは、エチレンとプロピレンとのランダム共重合体)を用いてポリエチレンマトリクス中でのポリプロピレンの均一な微分散を可能にし、耐酸化性を発現したと考えられる。   The reason for this is considered to be that compatibility with polyethylene is improved by having an ethylene component in the polymer main chain and having a difference in melting point within an appropriate range. In the first place, it has been considered that polyethylene and polypropylene are incompatible with each other due to their properties and difficult to disperse uniformly. In this embodiment, copolymer polypropylene (especially, a random copolymer of ethylene and propylene) is preferably used as a preferred form, enabling uniform fine dispersion of polypropylene in a polyethylene matrix, and exhibiting oxidation resistance. It is thought that.

本実施形態において、ポリエチレン成分の融点Tmeと、ポリプロピレン成分の融点Tmpとの温度差としては、−20℃<Tmp−Tme<23℃の範囲であることが好ましく、さらには−15℃<Tmp−Tme<22℃であることが好ましい。この範囲内とすることは、ポリエチレン成分とポリプロピレン成分との相溶性を良好に維持し、均一性を向上させる観点から好適である。
なお、複数種の原料が用いられる場合、「ポリエチレン成分の融点」,「ポリプロピレン成分の融点」は、それぞれ「ポリエチレン成分の混合物の融点」、「ポリプロピレン成分の混合物の融点」を意味する。Tmp−Tmeを調整する方法としては、例えば、異なる融点を有する原料の混合比を変化させる方法、等が挙げられる。
In the present embodiment, the temperature difference between the melting point Tme of the polyethylene component and the melting point Tmp of the polypropylene component is preferably in the range of −20 ° C. <Tmp−Tme <23 ° C., and further −15 ° C. <Tmp−. Tme <22 ° C. is preferred. Within this range, it is preferable from the viewpoint of maintaining good compatibility between the polyethylene component and the polypropylene component and improving uniformity.
When a plurality of types of raw materials are used, “melting point of polyethylene component” and “melting point of polypropylene component” mean “melting point of mixture of polyethylene component” and “melting point of mixture of polypropylene component”, respectively. Examples of the method for adjusting Tmp-Tme include a method of changing the mixing ratio of raw materials having different melting points.

また、前記微多孔膜のバブルポイントとしては、自己放電の抑制、及び良好な耐電圧特性等の観点から400kPa以上が好ましく、電解液分解物による目詰まりを防ぎ良好なサイクル特性やレート特性を実現する観点から600kPa以下が好ましい。より好ましくは440〜530kPaである。
前記微多孔膜の膜厚は強度の面から5μm以上が好ましく、電池高容量化の面から50μm以下が好ましい。より好ましい膜厚は10〜30μmである。
前記微多孔膜の気孔率は透過性の面から35%以上が好ましく、強度や捲回性の面から60%以下が好ましい。より好ましい気孔率は40〜55%である。
前記微多孔膜の透気度は安全性の面から10sec/100cc以上、イオン透過性の面から500sec/100cc以下が好ましく、より好ましくは50〜150sec/100ccである。
The bubble point of the microporous membrane is preferably 400 kPa or more from the viewpoints of suppression of self-discharge and good withstand voltage characteristics, etc., and prevents clogging due to electrolyte decomposition products and realizes good cycle characteristics and rate characteristics. From the viewpoint of achieving this, 600 kPa or less is preferable. More preferably, it is 440-530 kPa.
The thickness of the microporous membrane is preferably 5 μm or more from the viewpoint of strength, and is preferably 50 μm or less from the viewpoint of increasing the battery capacity. A more preferable film thickness is 10 to 30 μm.
The porosity of the microporous membrane is preferably 35% or more from the viewpoint of permeability, and preferably 60% or less from the viewpoint of strength and winding properties. A more preferable porosity is 40 to 55%.
The air permeability of the microporous membrane is preferably 10 sec / 100 cc or more from the viewpoint of safety and 500 sec / 100 cc or less from the viewpoint of ion permeability, and more preferably 50 to 150 sec / 100 cc.

前記微多孔膜の透気度/気孔率の比はトリクル性や耐電圧特性の面から2.2以上が好ましく、上限として好ましくは6.0以下、より好ましくはサイクル特性の面から4.0以下である。
前記微多孔膜の突刺強度は電池内への異物混入やリチウムデンドライトによる突き破れを抑制する観点から3N以上がこのましく、電池製造工程における捲回のしやすさから8N以下が好ましい。
前記微多孔膜のシャットダウン温度は安全性の面から140℃以下が好ましく、サイクル特性の観点から130℃以上が好ましい。シャットダウン温度が低いほど異常発熱時における熱暴走の早期抑制に効果的であり、シャットダウン温度が高いほど高温下における孔の閉塞を抑制できるため高温状態のサイクル特性に優れる。より好ましいシャットダウン温度は135〜140℃である。
また、前記微多孔膜の熱破膜温度は安全性の面から150℃以上が好ましく、170℃以上がより好ましく、200℃を超えることが更に好ましい。
The air permeability / porosity ratio of the microporous membrane is preferably 2.2 or more from the viewpoint of trickleability and withstand voltage characteristics, and the upper limit is preferably 6.0 or less, more preferably 4.0 from the viewpoint of cycle characteristics. It is as follows.
The puncture strength of the microporous membrane is preferably 3N or more from the viewpoint of suppressing foreign matter contamination in the battery and breakage by lithium dendrite, and preferably 8N or less from the viewpoint of ease of winding in the battery manufacturing process.
The shutdown temperature of the microporous membrane is preferably 140 ° C. or lower from the viewpoint of safety, and preferably 130 ° C. or higher from the viewpoint of cycle characteristics. The lower the shutdown temperature, the more effective for early suppression of thermal runaway during abnormal heat generation, and the higher the shutdown temperature, the better the high-temperature cycle characteristics because the blockage of holes at high temperatures can be suppressed. A more preferable shutdown temperature is 135 to 140 ° C.
Further, the thermal membrane breaking temperature of the microporous membrane is preferably 150 ° C. or higher, more preferably 170 ° C. or higher, and even more preferably 200 ° C. from the viewpoint of safety.

なお、微多孔膜に関する上記各パラメータの調整方法としては、下記ポリオレフィン樹脂の分子量、ポリオレフィン樹脂の割合や、下記製造工程における延伸温度、延伸倍率等を調整する方法、熱処理条件を調整する方法等が挙げられる。   In addition, as the adjustment method of each parameter regarding the microporous membrane, there are a method for adjusting the molecular weight of the following polyolefin resin, a ratio of the polyolefin resin, a stretching temperature in the following production process, a stretching ratio, a method for adjusting the heat treatment conditions, and the like. Can be mentioned.

前記微多孔膜は、例えば、下記(1)〜(5)の各工程、
(1)ポリオレフィン樹脂と、可塑剤と、必要に応じて無機粉体とを、例えばヘンシェルミキサー等で混合する混合工程、
(2)混合工程により得られた混合物を押出機中等で溶融混練する混練工程、
(3)混練工程で得られた混練物を、例えばTダイス等のスリットから押出し、冷却してシート状に成形するシート成形工程、
(4)シート成形工程で得られたシート状の成形物から可塑剤と、必要に応じて無機紛体とを抽出する抽出工程、
(5)抽出工程で得られたシート状の多孔体を延伸する延伸工程、
を含む製造方法により製造することができる。
The microporous membrane is, for example, the following steps (1) to (5):
(1) A mixing step of mixing a polyolefin resin, a plasticizer, and, if necessary, an inorganic powder with, for example, a Henschel mixer,
(2) a kneading step of melt kneading the mixture obtained in the mixing step in an extruder or the like;
(3) A sheet forming step in which the kneaded product obtained in the kneading step is extruded from a slit such as a T die, and cooled to be formed into a sheet shape,
(4) An extraction step of extracting a plasticizer and, if necessary, an inorganic powder from a sheet-like molded product obtained in the sheet molding step,
(5) Stretching step for stretching the sheet-like porous body obtained in the extraction step,
It can manufacture with the manufacturing method containing.

なお、抽出工程の後に乾燥する工程や、延伸工程の後に熱処理する工程を含んでも良い。
また、前記微多孔膜の製造においては、シートを延伸した後に可塑剤を抽出しても良い(抽出前延伸)が、特定の伸度、及び均一で適度に大きな孔径の微多孔膜を得やすいという点から、可塑剤や無機粉体を抽出した後に延伸すること(抽出後延伸)が好ましい。
In addition, you may include the process of drying after an extraction process, and the process of heat-processing after an extending process.
In the production of the microporous membrane, the plasticizer may be extracted after stretching the sheet (stretching before extraction), but it is easy to obtain a microporous membrane having a specific elongation and a uniform and moderately large pore size. In view of the above, it is preferable that the plasticizer or inorganic powder is extracted and then stretched (stretching after extraction).

前記ポリオレフィン樹脂は、例えば各種のポリエチレン成分、およびポリプロピレン成分をブレンドして得ることができる。
前記ポリエチレン成分としては、例えば、超高分子量ポリエチレン、高密度ポリエチレン、低密度ポリエチレン、線状低密度ポリエチレンが挙げられる。これらは1種を単独で、又は2種以上を併用しても良い。
前記ポリエチレン成分の粘度平均分子量(Mv)としては、好ましくは10万以上250万以下である。前記ポリエチレン成分としては、粘度平均分子量(Mv)が100万以上250万以下の超高分子量ポリエチレン(中でも、ホモポリエチレン)を含み、Mvが10万以上30万以下かつ融点が130℃以下の線状低密度ポリエチレンを含むことが好ましい。
The polyolefin resin can be obtained, for example, by blending various polyethylene components and polypropylene components.
Examples of the polyethylene component include ultra high molecular weight polyethylene, high density polyethylene, low density polyethylene, and linear low density polyethylene. These may be used alone or in combination of two or more.
The viscosity average molecular weight (Mv) of the polyethylene component is preferably 100,000 or more and 2.5 million or less. Examples of the polyethylene component include ultra high molecular weight polyethylene (particularly homopolyethylene) having a viscosity average molecular weight (Mv) of 1,000,000 to 2,500,000, linear having an Mv of 100,000 to 300,000 and a melting point of 130 ° C. or less. Preferably it contains low density polyethylene.

超高分子量ポリエチレンは溶融粘度が高いために製膜時におけるポリプロピレンとの混錬性を向上させる効果があり、且つ強度の維持にも効果がある。Mvが100万未満の低分子量ポリエチレンは融点が低いためシャットダウン特性の向上に効果がある。
超高分子量ポリエチレンが前記ポリオレフィン樹脂中に占める割合としては、5質量%以上が好ましく、さらには10質量%以上が好ましく、成型加工性の面で30質量%以下が好ましい。一方、線状低密度ポリエチレンを用いる場合、線状低密度ポリエチレンが前記ポリオレフィン樹脂中に占める割合としては、20質量%以上が好ましく、強度の面で40質量%以下が好ましい。
Since ultra high molecular weight polyethylene has a high melt viscosity, it has the effect of improving kneadability with polypropylene during film formation, and is also effective in maintaining strength. A low molecular weight polyethylene having an Mv of less than 1 million has an effect of improving shutdown characteristics because of its low melting point.
The proportion of ultrahigh molecular weight polyethylene in the polyolefin resin is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 30% by mass or less in terms of moldability. On the other hand, when the linear low density polyethylene is used, the proportion of the linear low density polyethylene in the polyolefin resin is preferably 20% by mass or more, and preferably 40% by mass or less in terms of strength.

前記ポリプロピレン成分としては、例えば、ホモポリマー、エチレン成分と共重合させたコポリマーが挙げられる。これらは1種を単独で、又は2種以上を併用しても良い。ポリエチレン成分との相溶性を考慮すると、ホモポリマーよりもエチレン成分と共重合させたコポリマーの方が好ましく用いられる。   Examples of the polypropylene component include homopolymers and copolymers copolymerized with an ethylene component. These may be used alone or in combination of two or more. In consideration of compatibility with the polyethylene component, a copolymer copolymerized with the ethylene component is preferably used rather than a homopolymer.

前記コポリマーとしては、エチレンプロピレンランダムコポリマーやブロックコポリマーが挙げられる。コポリマー中のエチレン成分の含量としては、ポリエチレン成分との相溶性の観点から2質量%以上であることが好ましく、ポリプロピレンの特性を維持する観点から、30質量%以下であることが好ましい。
膜のポリプロピレンの含有量は赤外吸収(IR)測定を用いて算出することができる。ポリプロピレン特有の吸収波長(988cm−1)のピーク強度(APP)とポリエチレン特有の吸収波長(719cm−1)のピーク強度(APE)の比を縦軸にとり、ポリプロピレンの混合割合を横軸とにすることで、二次曲線が描かれる。その曲線から近似式を求めることで、IRのピーク強度からポリプロピレンの含有量を算出することができる。
使用するポリプロピレン成分の重合触媒には特に制限はなく、そのような触媒としてはチーグラー・ナッタ系の触媒やメタロセン系の触媒などが挙げられる。
Examples of the copolymer include an ethylene propylene random copolymer and a block copolymer. The content of the ethylene component in the copolymer is preferably 2% by mass or more from the viewpoint of compatibility with the polyethylene component, and preferably 30% by mass or less from the viewpoint of maintaining the properties of polypropylene.
The polypropylene content of the film can be calculated using infrared absorption (IR) measurements. The ratio of the peak intensity (A PP ) at the absorption wavelength (988 cm −1 ) peculiar to polypropylene and the peak intensity (A PE ) at the absorption wavelength (719 cm −1 ) peculiar to polyethylene is taken as the vertical axis, and the mixing ratio of polypropylene is taken as the horizontal axis. By doing so, a quadratic curve is drawn. By obtaining an approximate expression from the curve, the polypropylene content can be calculated from the peak intensity of IR.
The polymerization catalyst for the polypropylene component used is not particularly limited, and examples of such a catalyst include Ziegler-Natta catalysts and metallocene catalysts.

前記ポリプロピレン成分の粘度平均分子量(Mv)としては、高温特性の観点から15万以上であることが好ましく、膜品位の観点から70万以下であることが好ましい。
ポリプロピレンが前記ポリオレフィン樹脂中に占める割合としては、耐酸化性、高温時の孔径維持、並びに熱破膜温度向上の観点から5質量%以上が好ましく、また、製膜性の観点から50質量%以下が好ましく、突刺強度と透気度との物性バランス及び膜品位の観点から40質量%以下がより好ましい。
The viscosity average molecular weight (Mv) of the polypropylene component is preferably 150,000 or more from the viewpoint of high temperature characteristics, and preferably 700,000 or less from the viewpoint of film quality.
The proportion of polypropylene in the polyolefin resin is preferably 5% by mass or more from the viewpoint of oxidation resistance, maintaining the pore diameter at high temperature, and improving the thermal film breaking temperature, and from the viewpoint of film forming property, 50% by mass or less. Is preferable, and 40% by mass or less is more preferable from the viewpoint of physical property balance between puncture strength and air permeability and film quality.

前記可塑剤としては、例えば、フタル酸ジオクチル(以下DOPと記述)、フタル酸ジヘプチル、フタル酸ジブチルのようなフタル酸エステル;アジピン酸エステルやグリセリン酸エステル等の有機酸エステル類;リン酸トリオクチル等のリン酸エステル類;流動パラフィン;固形ワックス;ミネラルオイル等が挙げられる。ポリエチレンとの相溶性を考慮するとフタル酸エステルが特に好ましい。これらは単独で使用しても混合物として使用してもよい。   Examples of the plasticizer include phthalic acid esters such as dioctyl phthalate (hereinafter referred to as DOP), diheptyl phthalate, and dibutyl phthalate; organic acid esters such as adipic acid ester and glyceric acid ester; trioctyl phosphate, etc. Phosphoric acid esters; liquid paraffin; solid wax; mineral oil and the like. In view of compatibility with polyethylene, a phthalate ester is particularly preferable. These may be used alone or as a mixture.

前記無機粉体としては、シリカ、ケイ酸カルシウム、ケイ酸アルミニウム、アルミナ、炭酸カルシウム、炭酸マグネシウム、カオリンクレー、タルク、酸化チタン、カーボンブラック、珪藻土類などが挙げられる。これらは単独で使用しても混合物として使用してもよい。分散性や抽出の容易さから特にシリカを使用することが好ましい。   Examples of the inorganic powder include silica, calcium silicate, aluminum silicate, alumina, calcium carbonate, magnesium carbonate, kaolin clay, talc, titanium oxide, carbon black, and diatomaceous earth. These may be used alone or as a mixture. From the viewpoint of dispersibility and ease of extraction, it is particularly preferable to use silica.

(1)工程におけるポリオレフィン樹脂と可塑剤と無機粉体のブレンド比は特に限定されるものではないが、ブレンド原料100質量%中のポリオレフィン樹脂濃度は強度と製膜性の面から25〜50質量%が好ましい。
また、前記ブレンド原料100質量%中の可塑剤濃度は押出しに適した粘度が得られるため30〜60質量%が好ましい。
更に、前記ブレンド原料100質量%中の無機粉体の濃度は均一な孔径を得るために1質量%以上が好ましく、製膜性の面から10〜40質量%であることが好ましい。
このような配合例としては、例えば、ポリオレフィン樹脂25〜50質量部、可塑剤30〜60質量部、及び無機粉体10〜40質量部を、合計が100質量部となるように配合する例が挙げられる。
なお、前記ポリオレフィン樹脂、無機粉体、可塑剤に加え、必要に応じて酸化防止剤、耐電防止剤、紫外線吸収剤、滑剤、アンチブロッキング剤等の各種添加剤を添加することができる。
(1) The blend ratio of the polyolefin resin, the plasticizer and the inorganic powder in the step is not particularly limited, but the polyolefin resin concentration in 100% by mass of the blend raw material is 25 to 50 mass from the viewpoint of strength and film formability. % Is preferred.
Further, the plasticizer concentration in 100% by mass of the blend raw material is preferably 30 to 60% by mass because a viscosity suitable for extrusion can be obtained.
Further, the concentration of the inorganic powder in 100% by mass of the blend raw material is preferably 1% by mass or more in order to obtain a uniform pore diameter, and preferably 10 to 40% by mass from the viewpoint of film forming properties.
As such a blending example, for example, 25 to 50 parts by mass of a polyolefin resin, 30 to 60 parts by mass of a plasticizer, and 10 to 40 parts by mass of an inorganic powder are blended so that the total is 100 parts by mass. Can be mentioned.
In addition to the polyolefin resin, inorganic powder, and plasticizer, various additives such as an antioxidant, an antistatic agent, an ultraviolet absorber, a lubricant, and an antiblocking agent can be added as necessary.

(1)工程における混合は、ヘンシェルミキサー、V−ブレンダー、プロシェアミキサー、リボンブレンダー等の一般的な混合機を用いて行うことができる。
(2)工程では、混合物は押出機、ニーダー等の溶融混練装置により混練される。
(3)工程では、得られた混練物が、例えば、Tダイスやリングダイスを用いた溶融成形によりシート状に成形される。この場合、ギアーポンプを介して成形するのが、寸法安定性の面で好ましく、特にギアーポンプ前圧力を一定に制御して成形するのが、寸法安定性の面で好ましい。
(1) The mixing in a process can be performed using common mixers, such as a Henschel mixer, a V-blender, a pro shear mixer, and a ribbon blender.
In the step (2), the mixture is kneaded by a melt kneader such as an extruder or a kneader.
In the step (3), the obtained kneaded product is formed into a sheet by melt molding using, for example, a T die or a ring die. In this case, it is preferable from the viewpoint of dimensional stability to form through a gear pump, and it is particularly preferable from the viewpoint of dimensional stability that the pressure before the gear pump is controlled to be constant.

(3)工程において、溶融押出しされた混合物の冷却方法としては、例えば、エアーにて冷却する方法、ダイス吐出樹脂温度より20〜120℃低く温調したロールにて接触させて冷却する方法、ダイス吐出樹脂温度より20〜120℃低いカレンダーロールにて圧延成形してシート状に成形しながら冷却する方法をとることができる。ダイス吐出樹脂温度より20〜120℃低いカレンダーロールにて圧延成形してシート状に成形しながら冷却する方法をとるのが膜厚み均一性の面で好ましい。より好ましいダイス吐出樹脂温度とカレンダーロール温度の差は40〜80℃である。この場合において、ロールを使用する際、ダイスとロールのシートとの接点の距離は5〜500mmの範囲にて成形するのが好ましい。ダイス吐出温度は通常の熱電対温度計にて端子をダイスに触れないようにし、吐出樹脂に接触させることにより測定することができる。   (3) In the process, as a cooling method of the melt-extruded mixture, for example, a method of cooling with air, a method of cooling by contacting with a roll adjusted to 20 to 120 ° C. lower than the die discharge resin temperature, a die It is possible to adopt a method of cooling while forming a sheet by rolling with a calender roll 20 to 120 ° C. lower than the discharged resin temperature. It is preferable in terms of film thickness uniformity to adopt a method in which it is cooled while being formed into a sheet by rolling with a calender roll 20 to 120 ° C. lower than the die discharge resin temperature. A more preferable difference between the die discharge resin temperature and the calender roll temperature is 40 to 80 ° C. In this case, when the roll is used, it is preferable that the distance between the contact points of the die and the roll sheet is 5 to 500 mm. The die discharge temperature can be measured by making the terminal not touch the die with a normal thermocouple thermometer and bringing it into contact with the discharge resin.

(4)工程では、膜中の可塑剤、及び必要に応じて無機粉体の抽出を行う。可塑剤の抽出に用いられる溶剤としては、例えば、メタノール、エタノール、メチルエチルケトン、アセトン等の有機溶剤;アセトン、メチルエチルケトン等のケトン類;テトラヒドロフラン等のエーテル類;塩化メチレン、1,1,1−トリクロロエタン等のハロゲン化炭化水素類等、を使用することができる。これらは単独あるいは混合して用いることも出来る。一方、無機粉体の抽出に用いられる溶剤としては、水酸化ナトリウム、水酸化カリウムのようなアルカリ水溶液が好適に用いられる。   In the step (4), the plasticizer in the film and, if necessary, the inorganic powder are extracted. Examples of the solvent used for extraction of the plasticizer include organic solvents such as methanol, ethanol, methyl ethyl ketone, and acetone; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; methylene chloride, 1,1,1-trichloroethane, and the like. Of halogenated hydrocarbons can be used. These can be used alone or in combination. On the other hand, an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide is preferably used as the solvent used for extraction of the inorganic powder.

(5)工程では、シート状成形物は少なくとも一軸方向に延伸される。一軸方向に延伸する方法は、ロール延伸でもテンターを用いた延伸でもよいが、高強度、薄膜化を考えると二軸延伸が好ましい。二軸延伸する場合は、逐次二軸延伸でも同時二軸延伸でもどちらでも構わないが、中〜大孔径の膜を得るためには逐次二軸延伸が好ましい。延伸は一枚でも複数枚重ねても構わないが、強度向上の面から、二枚以上重ねて延伸することが好ましい。延伸後、耐熱収縮性の向上のため熱固定あるいは熱緩和等の熱処理を行うことが好ましい。   In the step (5), the sheet-like molded product is stretched in at least a uniaxial direction. The method of stretching in the uniaxial direction may be roll stretching or stretching using a tenter, but biaxial stretching is preferred in view of high strength and thin film formation. In the case of biaxial stretching, either sequential biaxial stretching or simultaneous biaxial stretching may be used, but sequential biaxial stretching is preferred in order to obtain a medium to large pore film. The stretching may be performed by one sheet or a plurality of sheets, but it is preferable to stretch two or more sheets in order to improve the strength. After stretching, it is preferable to perform heat treatment such as heat fixation or heat relaxation in order to improve heat shrinkage resistance.

本実施形態のポリオレフィン製微多孔膜は、電池やコンデンサー等における隔離材や物質の分離に用いることができる。特に、安全性と実用性に優れた非水電解液電池用セパレータとして好適に用いることができる。
このような微多孔膜を用いて形成される電池(例えば、リチウムイオン二次電池)としては、捲回式の電池であれば円筒型、角型を問わないが、特に円筒型の電池に用いた場合に高い充放電特性、サイクル特性、および高安全性が得られやすい。
なお、本実施の形態中に記載された各種パラメータについては、特に記載の無い限りにおいて、下記実施例における測定法に準じて測定されるものである。
The polyolefin microporous membrane of this embodiment can be used for separation of separators and substances in batteries, capacitors and the like. In particular, it can be suitably used as a separator for a non-aqueous electrolyte battery excellent in safety and practicality.
A battery (for example, a lithium ion secondary battery) formed using such a microporous membrane may be a cylindrical type or a rectangular type as long as it is a wound type battery, but is particularly suitable for a cylindrical type battery. High charge / discharge characteristics, cycle characteristics, and high safety are easily obtained.
The various parameters described in the present embodiment are measured according to the measurement methods in the following examples unless otherwise specified.

次に、実施例及び比較例を挙げて本実施の形態をより具体的に説明するが、本実施の形態はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例中の物性は以下の方法により測定した。   Next, the present embodiment will be described more specifically with reference to examples and comparative examples. However, the present embodiment is not limited to the following examples unless it exceeds the gist. In addition, the physical property in an Example was measured with the following method.

(1)膜厚(μm)
東洋精機製の微小測厚器、KBM(商標)を用いて室温23℃で測定した。試料を100mm×100mmのサイズに切り出し、格子状に9分割した各格子の中心部の厚さを測定し、9点の平均値を膜厚とした。
(2)透気度(sec/100cc)
JIS P−8117準拠のガーレー式透気度計を用いて測定した。
(1) Film thickness (μm)
The measurement was performed at a room temperature of 23 ° C. using a micro thickness measuring instrument manufactured by Toyo Seiki, KBM (trademark). A sample was cut into a size of 100 mm × 100 mm, the thickness of the center part of each grid divided into 9 grids was measured, and the average value of 9 points was taken as the film thickness.
(2) Air permeability (sec / 100cc)
It measured using the Gurley type air permeability meter based on JIS P-8117.

(3)気孔率(%)
試料を100mm×100mmのサイズに切り出して体積(cm)、質量(g)を求め、それらと樹脂密度(g/cm)より次式を用いて計算した。
気孔率(%)=(1−(質量/体積)/(樹脂密度))×100
なお、「実施例・比較例」の膜密度は0.95(g/cm3)として算出した。
(3) Porosity (%)
The sample was cut into a size of 100 mm × 100 mm to determine the volume (cm 3 ) and mass (g), and calculated from these and the resin density (g / cm 3 ) using the following formula.
Porosity (%) = (1− (mass / volume) / (resin density)) × 100
The film density of “Example / Comparative Example” was calculated as 0.95 (g / cm 3).

(4)突刺強度(N)
ハンディー圧縮試験機「KES−G5」(カトーテック製、商標)を用いて測定した。針先端の曲率半径0.5mm、突刺速度2mm/秒で突刺試験を行い、最大突刺荷重を突刺強度とした。
(4) Puncture strength (N)
The measurement was performed using a handy compression tester “KES-G5” (trade name, manufactured by Kato Tech). The puncture test was performed with a radius of curvature of the needle tip of 0.5 mm and a puncture speed of 2 mm / second, and the maximum puncture load was defined as the puncture strength.

(5)バブルポイント(kPa)
ASTM E−128−61に準拠し、エタノールを用いて算出した。
(6)シャットダウン温度(℃)、熱破膜温度(℃)
規定の電解液を十分に含浸させた多層多孔膜を、ガラス板に固定した厚さ10μmのニッケル箔で挟み込み、ガラス板を市販のクリップで固定する。ガラス板には熱電対を耐熱テープで固定しセルを作製した。
さらに、詳細に説明すると、一方のニッケル箔には耐熱テープを貼り合わせて箔中央部に15mm×10mmの窓の部分を残しマスキングする。窓部を多層多孔膜で覆うように重ね、もう一方のニッケル箔で多層多孔膜を挟み込む。なお規定の電解液とは1mol/lのホウフッ化リチウム溶液であり溶媒はプロピレンカーボネート/エチレンカーボネート/γ-ブチルラクトン=1/1/2(体積比)である。
このセルをオーブン中に静置し、温度とニッケル箔間の電気抵抗を測定した。オーブンは30℃から200℃まで2℃/minの昇温速度で昇温させ、電気抵抗値は1kHzの交流にて測定した。
電気抵抗値が1000Ωに達するときの温度をシャットダウン温度とした。また、シャットダウンの後、電気抵抗値が再び1000Ωを下回るときの温度を熱破膜温度と定義した。
(5) Bubble point (kPa)
Calculation was performed using ethanol in accordance with ASTM E-128-61.
(6) Shutdown temperature (° C), thermal film breaking temperature (° C)
A multilayer porous membrane sufficiently impregnated with a specified electrolyte is sandwiched between 10 μm thick nickel foils fixed to a glass plate, and the glass plate is fixed with a commercially available clip. A cell was fabricated by fixing a thermocouple to the glass plate with heat-resistant tape.
More specifically, heat-resistant tape is bonded to one nickel foil, and a 15 mm × 10 mm window portion is left in the central portion of the foil for masking. The windows are overlapped so as to be covered with the multilayer porous film, and the multilayer porous film is sandwiched between the other nickel foils. The prescribed electrolyte is a 1 mol / l lithium borofluoride solution, and the solvent is propylene carbonate / ethylene carbonate / γ-butyllactone = 1/1/2 (volume ratio).
The cell was placed in an oven and the temperature and the electrical resistance between the nickel foils were measured. The oven was heated from 30 ° C. to 200 ° C. at a rate of 2 ° C./min, and the electrical resistance value was measured at an alternating current of 1 kHz.
The temperature at which the electric resistance value reached 1000Ω was taken as the shutdown temperature. Further, the temperature at which the electric resistance value again fell below 1000Ω after the shutdown was defined as the thermal film breaking temperature.

(7)粘度平均分子量
ポリエチレンおよびポリプロピレンの粘度平均分子量は、溶剤としてデカリンを用い、測定温度135℃で測定し、粘度[η]からChaiang式により算出した。
ポリエチレンの場合
[η]=6.77×10−4×Mv0.67
ポリプロピレンの場合
[η]=1.10×10−4×Mv0.80
(7) Viscosity average molecular weight The viscosity average molecular weight of polyethylene and polypropylene was measured at a measurement temperature of 135 ° C. using decalin as a solvent, and was calculated from the viscosity [η] by the Chain equation.
In the case of polyethylene [η] = 6.77 × 10 −4 × Mv 0.67
In the case of polypropylene [η] = 1.10 × 10 −4 × Mv 0.80

(8)融点(℃)
島津製作所社製DSC60を使用し測定した。ポリマー3mgを測定サンプルとした。これを直径5mmのアルミ製オープンサンプルパンに載せ、クランピングカバーを乗せサンプルシーラーでアルミパン内に固定した。窒素雰囲気下、昇温速度10℃/minで30℃から200℃まで昇温後、200℃で5分間保持し、次に10℃/minで30℃まで温度を下げ、30℃で5分間保持、最後に再度昇温速度10℃/minで200℃まで昇温し融解吸熱曲線を測定した。1stヒートで得られる発熱を正方向としたDSC曲線においてJIS−K7121に記載の方法で得られる融解ピークを融点とした。
(8) Melting point (° C)
Measurement was performed using DSC60 manufactured by Shimadzu Corporation. 3 mg of polymer was used as a measurement sample. This was placed on an aluminum open sample pan having a diameter of 5 mm, and a clamping cover was placed thereon and fixed in the aluminum pan with a sample sealer. In a nitrogen atmosphere, the temperature was raised from 30 ° C. to 200 ° C. at a rate of 10 ° C./min, held at 200 ° C. for 5 minutes, then lowered to 30 ° C. at 10 ° C./min and held at 30 ° C. for 5 minutes. Finally, the temperature was increased again to 200 ° C. at a rate of temperature increase of 10 ° C./min, and a melting endothermic curve was measured. The melting peak obtained by the method described in JIS-K7121 in the DSC curve with the exotherm obtained by 1st heat as the positive direction was taken as the melting point.

(9)エチレン含有量(質量%)
13C−NMRスペクトルから、Macromolecules 1982,15,1150-1152に記載の方法に基づいて求めた。10mmΦの試験管中で約200mgのPP樹脂を3mlのオルソジクロロベンゼンに均一に溶解させて試料を調整し、その試料の13C−NMRスペクトルを下記の条件下で測定した。
測定温度:135℃
パルス繰り返し時間:10秒
パルス幅:45°
積算回数:2500回
(9) Ethylene content (% by mass)
It calculated | required based on the method as described in Macromolecules 1982,15,1150-1152 from the 13 C-NMR spectrum. A sample was prepared by uniformly dissolving about 200 mg of PP resin in 3 ml of orthodichlorobenzene in a 10 mmφ test tube, and the 13 C-NMR spectrum of the sample was measured under the following conditions.
Measurement temperature: 135 ° C
Pulse repetition time: 10 seconds Pulse width: 45 °
Integration count: 2500 times

(10)GPC測定
〈前処理〉
試料を秤量した後、溶離液を加え、0.5mg/mlとなるように濃度を調製した。次に、高温溶解器にて、静置(160℃×1hr)+揺動(160℃×3hr)で溶解した。その後、加熱状態(160℃)のまま、0.45ミクロンフィルターでろ過し、ろ液をGPC測定試料とした。
(10) GPC measurement <Pretreatment>
After weighing the sample, an eluent was added to adjust the concentration to 0.5 mg / ml. Next, it melt | dissolved by standing (160 degreeC * 1hr) + rocking | fluctuation (160 degreeC * 3hr) with a high temperature dissolver. Then, it filtered with a 0.45 micron filter with the heating state (160 degreeC), and used the filtrate as the GPC measurement sample.

〈測定条件〉
東ソー製 HLC−8121GPC/HTを用い、以下の条件で測定し、標準ポリスチレンを用いて較正曲線を作成した。これの各分子量成分に0.43(ポリエチレンのQファクター/ポリスチレンのQファクター=17.7/41.3)を乗じることによりポリエチレン換算の分子量分布曲線を得た。
カラム:東ソー製 TSKgel GMHHR-H(20) HT(7.8mmID×30cm) 2本
移動相:o−ジクロロベンゼン(0.05%BHT含有)
検出器:示差屈折計
流速 :1.0ml/min
カラム温度:全経路155℃
試料量:500μl(0.5mg/ml)
<Measurement condition>
Using Tosoh HLC-8121GPC / HT, measurement was performed under the following conditions, and a calibration curve was prepared using standard polystyrene. A molecular weight distribution curve in terms of polyethylene was obtained by multiplying each molecular weight component by 0.43 (Q factor of polyethylene / Q factor of polystyrene = 17.7 / 41.3).
Column: Tosoh TSKgel GMH HR -H (20) HT (7.8 mm ID × 30 cm) 2 mobile phase: o-dichlorobenzene (containing 0.05% BHT)
Detector: differential refractometer Flow rate: 1.0 ml / min
Column temperature: All paths 155 ° C
Sample volume: 500 μl (0.5 mg / ml)

(11)IR測定
BIO RAD製 FTS−60A/896 UMA300を用い以下の条件で測定した。膜サンプルは厚み20μmとし、測定前にバックグラウンドの測定を行った。
測定モード:顕微透過法
検出器:MCT
ビームスプリッター:臭化カリウム
スキャンスピード:20kHz
積算回数:64回
分解能:4cm−1
測定波長:4000〜700cm−1
(11) IR measurement It measured on condition of the following using FTS-60A / 896 UMA300 by BIO RAD. The film sample had a thickness of 20 μm, and the background was measured before the measurement.
Measurement mode: Microscopic transmission method Detector: MCT
Beam splitter: Potassium bromide Scan speed: 20 kHz
Integration count: 64 times Resolution: 4 cm -1
Measurement wavelength: 4000 to 700 cm −1

(12)電池としての評価
下記の手順に従って円筒電池を作成した。
<正極の作製>
活物質としてリチウムコバルト複合酸化物LiCoOを92.2質量%、導電剤としてリン片状グラファイトとアセチレンブラックをそれぞれ2.3質量%、バインダーとしてポリフッ化ビニリデン(PVDF)3.2質量%をN−メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターで塗布し、130℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、正極の活物質塗付量は250g/m、活物質嵩密度は3.00g/cmになるようにする。これを幅約57mmに切断して帯状にした。
(12) Evaluation as a battery A cylindrical battery was prepared according to the following procedure.
<Preparation of positive electrode>
92.2% by mass of lithium cobalt composite oxide LiCoO 2 as the active material, 2.3% by mass of flake graphite and acetylene black as the conductive agent, and 3.2% by mass of polyvinylidene fluoride (PVDF) as the binder are N -A slurry was prepared by dispersing in methylpyrrolidone (NMP). This slurry was applied to one side of a 20 μm thick aluminum foil serving as a positive electrode current collector with a die coater, dried at 130 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material coating amount of the positive electrode is 250 g / m 2 and the active material bulk density is 3.00 g / cm 3 . This was cut into a width of about 57 mm to form a strip.

<負極の作製>
活物質として人造グラファイト96.9質量%、バインダーとしてカルボキシメチルセルロースのアンモニウム塩1.4質量%とスチレン−ブタジエン共重合体ラテックス1.7質量%を精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗付し、120℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、負極の活物質塗付量は106g/m、活物質嵩密度は1.55g/cmと高充填密度とした。これを幅約58mmに切断して帯状にした。
<Production of negative electrode>
A slurry was prepared by dispersing 96.9% by mass of artificial graphite as an active material, 1.4% by mass of ammonium salt of carboxymethyl cellulose and 1.7% by mass of styrene-butadiene copolymer latex as binders in purified water. This slurry was applied to one side of a 12 μm thick copper foil serving as a negative electrode current collector with a die coater, dried at 120 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material application amount of the negative electrode was 106 g / m 2 , and the active material bulk density was 1.55 g / cm 3, which was a high packing density. This was cut into a width of about 58 mm to form a strip.

<非水電解液の調製>エチレンカーボネート/エチルメチルカーボネート=1/2(体積比)の混合溶媒に、溶質としてLiPFを濃度1.0mol/lとなるように溶解させて調製した。
<セパレータ>
実施例、比較例に記載の微多孔膜を60mmにスリットして帯状にした。
<Preparation of Nonaqueous Electrolyte> LiPF 6 was dissolved in a mixed solvent of ethylene carbonate / ethyl methyl carbonate = 1/2 (volume ratio) so as to have a concentration of 1.0 mol / l.
<Separator>
The microporous membranes described in the examples and comparative examples were slit into 60 mm to form strips.

<電池組立て>
帯状負極、セパレータ、帯状正極、セパレータの順に重ね、250gfの巻取張力で渦巻状に複数回捲回することで電極板積層体を作製した。この電極板積層体を外径が18mmで高さが65mmのステンレス製容器に収納し、正極集電体から導出したアルミニウム製タブを容器蓋端子部に、負極集電体から導出したニッケル製タブを容器壁に溶接した。その後、真空下80℃で12時間の乾燥を行い、次に、アルゴンボックス内にて容器内に前記した非水電解液を注入し、封口した。
<Battery assembly>
A strip-shaped negative electrode, a separator, a strip-shaped positive electrode, and a separator were stacked in this order, and the electrode plate laminate was fabricated by winding a plurality of times in a spiral shape with a winding tension of 250 gf. The electrode plate laminate is housed in a stainless steel container having an outer diameter of 18 mm and a height of 65 mm, and an aluminum tab derived from the positive electrode current collector is used as a container lid terminal portion, and a nickel tab derived from the negative electrode current collector Was welded to the container wall. Thereafter, drying was performed at 80 ° C. for 12 hours under vacuum, and then the above-described nonaqueous electrolytic solution was injected into the container in an argon box and sealed.

<前処理>
組立てた電池を1/3Cの電流値で電圧4.2Vまで定電流充電した後4.2Vの定電圧充電を8時間行い、その後1/3Cの電流で3.0Vの終止電圧まで放電を行った。次に、1Cの電流値で電圧4.2Vまで定電流充電した後4.2Vの定電圧充電を3時間行い、その後1Cの電流で3.0Vの終止電圧まで放電を行った。最後に1Cの電流値で4.2Vまで定電流充電をした後に4.2Vの定電圧充電を3時間行い前処理とした。
<Pretreatment>
The assembled battery was charged at a constant current of 1 / 3C to a voltage of 4.2V, then charged at a constant voltage of 4.2V for 8 hours, and then discharged at a current of 1 / 3C to a final voltage of 3.0V. It was. Next, after constant current charging to a voltage of 4.2 V with a current value of 1 C, a constant voltage charge of 4.2 V was performed for 3 hours, and then discharging was performed to a final voltage of 3.0 V with a current of 1 C. Finally, after constant current charging to 4.2 V with a current value of 1 C, 4.2 V constant voltage charging was performed for 3 hours as a pretreatment.

(12−1)サイクル特性(%)
前処理を行った電池を温度25℃の条件下で、放電電流1Aで放電終止電圧3Vまで放電を行った後、充電電流1Aで充電終止電圧4.2Vまで充電を行った。これを1サイクルとして充放電を繰り返し、初期容量に対する500サイクル後の容量保持率をサイクル特性として評価した。
容量保持率95%以上100%以下:○
容量保持率90%以上95%未満:△
容量保持率90%未満:×
(12-1) Cycle characteristics (%)
The pretreated battery was discharged at a discharge current of 1 A to a discharge end voltage of 3 V under a temperature of 25 ° C., and then charged to a charge end voltage of 4.2 V with a charge current of 1 A. Charging / discharging was repeated with this as one cycle, and the capacity retention after 500 cycles with respect to the initial capacity was evaluated as cycle characteristics.
Capacity retention: 95% or more and 100% or less: ○
Capacity retention 90% or more and less than 95%:
Capacity retention less than 90%: ×

(12−2)黒色化
前処理を行った電池を、1Cの電流で電圧4.2Vまで定電流充電した後4.2Vの定電圧充電を温度70℃下で100h行った。この電池よりセパレータを取り出し、付着物を取り除くために、ジメトキシエタン、エタノール、及び1規定の塩酸中で各15分間、超音波洗浄を行う。その後、空気中にて乾燥し、セパレータの正極接触面側の黒色変色具合を目視にて観察し、耐酸化性評価を行った。判定は面積あたりにおける黒色変色した割合で評価した。
5%未満:◎
5%以上10%未満:○
10%以上20%未満:△
20%以上:×
(12-2) Blackening The pretreated battery was charged at a constant current up to a voltage of 4.2 V with a current of 1 C, and then charged at a constant voltage of 4.2 V at a temperature of 70 ° C. for 100 hours. The separator is removed from the battery, and ultrasonic cleaning is performed in dimethoxyethane, ethanol, and 1N hydrochloric acid for 15 minutes each to remove the deposits. Then, it dried in the air, the black discoloration condition of the positive electrode contact surface side of a separator was observed visually, and oxidation resistance evaluation was performed. The determination was made based on the ratio of black discoloration per area.
Less than 5%: ◎
5% or more and less than 10%: ○
10% or more and less than 20%: △
20% or more: ×

以下の実施例及び比較例で使用される原料については、以下の通りである。
PE(Mv12万):Mv12万で融点が132℃、密度が0.954g/cmかつプロピレン単位含有量1mol%の共重合ポリエチレン
PE(Mv=15万):Mv15万で融点が127℃かつ密度が0.926g/cmの線状低密度ポリエチレン
PE(Mv=25万):Mv25万で融点が136℃、密度が0.957g/cmの高密度ポリエチレン
PE(Mv=100万):Mv100万で融点が135℃、密度が0.955g/cmの超高分子量ポリエチレン
PE(Mv=200万):Mv200万で融点が134℃、密度が0.936g/cmの超高分子量ポリエチレン
PPa:Mv40万で融点が148℃、密度が0.91g/cmかつエチレン含有量が3質量%のランダム共重合ポリプロピレン
PPb:融点が125℃でコモノマーとしてエチレン成分を含むランダムポリプロピレン
PPc:Mv35万で融点160℃かつエチレン含有量が6質量%のブロック共重合ポリプロピレン
PPd:Mv40万で融点が163℃のホモポリプロピレン
シリカ:微粉シリカ。東ソーシリカ社製、商品名Nipsil LP
The raw materials used in the following examples and comparative examples are as follows.
PE (Mv 120,000): Mv 120,000, melting point 132 ° C., density 0.954 g / cm 3 and propylene unit content 1 mol% PE (Mv = 150,000): Mv 150,000, melting point 127 ° C. and density Is a low-density polyethylene PE having a viscosity of 0.926 g / cm 3 (Mv = 250,000): a high-density polyethylene PE having an Mv of 250,000, a melting point of 136 ° C., and a density of 0.957 g / cm 3 (Mv = 1 million): Mv100 Ultra high molecular weight polyethylene PE having a melting point of 135 ° C. and a density of 0.955 g / cm 3 (Mv = 2 million): Ultra high molecular weight polyethylene PPa having an Mv of 2 million, a melting point of 134 ° C. and a density of 0.936 g / cm 3 : Mv40 ten thousand melting point 148 ° C. at a density of 0.91 g / cm 3 and an ethylene content of 3% by weight of the random copolymer polypropylene PPb: Random polypropylene containing ethylene component as comonomer at 125 ° C PPc: block copolymerized polypropylene with Mv 350,000, melting point 160 ° C and ethylene content 6 mass% PPd: homopolypropylene with Mv 400,000 and melting point 163 ° C Silica: finely divided silica . Product name Nippon Sil LP, manufactured by Tosoh Silica

[実施例1]
表1に示す原料配合により得られたポリオレフィン樹脂34質量部に対し、DOP45質量部、微粉シリカ(東ソーシリカ社製、商品名Nipsil LP)21質量部、酸化防止剤としてBHT(ジブチルヒドロキシトルエン)0.3質量部、及びDLTP(ジラウリルチオジプロピオネート)0.3質量部を、ヘンシェルミキサーで混合して造粒した。その後、Tダイスを装着した二軸押出機にて200℃で混練・押出し、150℃に冷却されたカレンダーロールにて厚さ100μmのシート状に成形した。該成形物から塩化メチレンにてDOPを、水酸化ナトリウムにて微粉シリカを抽出した。該抽出後の膜を2枚重ねて120℃に加熱された延伸ロールでMDに5.8倍延伸した後(抽出後の延伸)、最大温度132.0℃のテンター内でTD方向に2倍に延伸した。得られたポリオレフィン製微多孔膜について各種特性を評価した。評価結果を下表に示す。
[Example 1]
45 parts by mass of DOP, 21 parts by mass of finely divided silica (trade name Nipsil LP, manufactured by Tosoh Silica Co., Ltd.), and BHT (dibutylhydroxytoluene) 0 as an antioxidant with respect to 34 parts by mass of the polyolefin resin obtained by blending the raw materials shown in Table 1 3 parts by mass and 0.3 part by mass of DLTP (dilauryl thiodipropionate) were mixed with a Henschel mixer and granulated. Then, it knead | mixed and extruded at 200 degreeC with the twin-screw extruder equipped with T dice | dies, and it shape | molded in the sheet form of thickness 100 micrometers with the calender roll cooled at 150 degreeC. From the molded product, DOP was extracted with methylene chloride, and fine silica was extracted with sodium hydroxide. Two films after the extraction were stacked and stretched 5.8 times in MD with a stretching roll heated to 120 ° C. (stretching after extraction), and then doubled in the TD direction in a tenter having a maximum temperature of 132.0 ° C. Stretched. Various characteristics were evaluated about the obtained polyolefin microporous film. The evaluation results are shown in the table below.

[実施例2]
下表に示す原料配合により得られた抽出後の膜を2枚重ねて126℃に加熱された延伸ロールでMDに5.3倍に延伸し(抽出後の延伸)、最大温度142℃のテンター内でTD方向に2倍に延伸した以外は、実施例1と同様にしてポリオレフィン製微多孔膜を得た。評価結果を下表に示す。
[Example 2]
Two membranes after extraction obtained by blending the raw materials shown in the following table are stacked and stretched 5.3 times to MD with a stretching roll heated to 126 ° C (stretching after extraction), and a tenter with a maximum temperature of 142 ° C. A polyolefin microporous membrane was obtained in the same manner as in Example 1 except that the film was stretched twice in the TD direction. The evaluation results are shown in the table below.

[実施例3〜5、比較例1〜4]
下表に示す条件以外は実施例1と同様にして微多孔膜を得た。得られた微多孔膜について各種特性を評価した。評価結果を下表に示す。
[Examples 3-5, Comparative Examples 1-4]
A microporous membrane was obtained in the same manner as in Example 1 except for the conditions shown in the table below. Various characteristics of the obtained microporous membrane were evaluated. The evaluation results are shown in the table below.

[実施例6]
下表に示す原料配合により得られた抽出後の膜を2枚重ねて126℃に加熱された延伸ロールでMDに5.3倍に延伸し(抽出後の延伸)、最大温度140℃のテンター内でTD方向に2倍に延伸した以外は、実施例1と同様にしてポリオレフィン製微多孔膜を得た。評価結果を下表に示す。
[Example 6]
Two membranes after extraction obtained by blending the raw materials shown in the table below are stacked and stretched 5.3 times to MD (stretching after extraction) with a stretching roll heated to 126 ° C, and a tenter having a maximum temperature of 140 ° C. A polyolefin microporous membrane was obtained in the same manner as in Example 1 except that the film was stretched twice in the TD direction. The evaluation results are shown in the table below.

[比較例5]
下表に示す原料配合により得られたポリオレフィン樹脂35質量部と、流動パラフィン65質量部を、Tダイスを装着した二軸押出機にて200℃で混練・押出し、厚さ1000μmのシート状に成形した。該シートを同時二軸テンターに導き最大加熱温度120℃でMD方向に7.0倍、TD方向に6.5倍延伸を行った。最後に塩化メチレンにて流動パラフィンを抽出し、微多孔膜を得た。得られた微多孔膜について各種特性を評価した。評価結果を下表に示す。
[Comparative Example 5]
35 parts by mass of polyolefin resin obtained by blending the raw materials shown in the table below and 65 parts by mass of liquid paraffin were kneaded and extruded at 200 ° C. in a twin screw extruder equipped with a T die, and formed into a sheet having a thickness of 1000 μm. did. The sheet was guided to a simultaneous biaxial tenter and stretched 7.0 times in the MD direction and 6.5 times in the TD direction at a maximum heating temperature of 120 ° C. Finally, liquid paraffin was extracted with methylene chloride to obtain a microporous membrane. Various characteristics of the obtained microporous membrane were evaluated. The evaluation results are shown in the table below.

[比較例6]
下表に示す原料配合により得られた抽出後の膜を2枚重ねて126℃に加熱された延伸ロールでMDに4.6倍に延伸し(抽出後の延伸)、最大温度140℃のテンター内でTD方向に2.5倍に延伸した以外は、実施例1と同様にしてポリオレフィン製微多孔膜を得た。評価結果を下表に示す。
[Comparative Example 6]
Two membranes after extraction obtained by blending the raw materials shown in the following table were stacked and stretched 4.6 times to MD (stretching after extraction) with a stretching roll heated to 126 ° C, and a tenter having a maximum temperature of 140 ° C. A polyolefin microporous membrane was obtained in the same manner as in Example 1 except that the film was stretched 2.5 times in the TD direction. The evaluation results are shown in the table below.

[比較例7]
Mv80万で密度0.93g/cm、かつプロピレン単位含有量1.4mol%の共重合ポリエチレン32質量部、エチレン成分と共重合させ密度が0.9g/cmのポリプロピレン8質量部、DOP42.4質量部、微粉シリカ17.6質量部をスーパーミキサー中で混合造粒した後、Tダイを装着した二軸押出機にて混練・押出し、厚さ100μmのシート状に成形した。該成形物を塩化メチレン中に浸漬しDOPを抽出除去した後、水酸化ナトリウム水溶液中に浸漬しシリカを抽出除去し微多孔膜とした。該微多孔膜を1枚のまま120℃に加熱のもと、縦方向に4倍延伸した後、横方向に1.5倍延伸した。得られた微多孔膜について各種特性を評価したところ、実施例1〜6に比して、耐酸化性とサイクル特性とに劣るものであった。
[Comparative Example 7]
32 parts by mass of copolymerized polyethylene having an Mv of 800,000 density of 0.93 g / cm 3 and a propylene unit content of 1.4 mol%, 8 parts by mass of polypropylene copolymerized with an ethylene component and having a density of 0.9 g / cm 3 , DOP42. After 4 parts by mass and 17.6 parts by mass of finely divided silica were mixed and granulated in a super mixer, they were kneaded and extruded by a twin-screw extruder equipped with a T-die to form a sheet having a thickness of 100 μm. The molded product was immersed in methylene chloride to extract and remove DOP, and then immersed in an aqueous sodium hydroxide solution to extract and remove silica to form a microporous membrane. The microporous membrane was stretched 4 times in the longitudinal direction under heating to 120 ° C., and then stretched 1.5 times in the transverse direction. When various characteristics were evaluated about the obtained microporous film, compared with Examples 1-6, it was inferior to oxidation resistance and cycling characteristics.

Figure 0005511329
Figure 0005511329

Figure 0005511329
Figure 0005511329

以上、実施例に示したように本実施の形態の微多孔膜は電池用セパレータとして用いた際に、耐酸化性とサイクル特性とに優れる。   As described above, as shown in the examples, the microporous membrane of the present embodiment is excellent in oxidation resistance and cycle characteristics when used as a battery separator.

本発明によれば、良好な耐酸化性と良好なサイクル特性を両立し得るセパレータとして好適なポリオレフィン製微多孔膜が提供される。   According to the present invention, there is provided a polyolefin microporous membrane suitable as a separator capable of achieving both good oxidation resistance and good cycle characteristics.

Claims (7)

ポリプロピレン成分5〜50質量%と、ポリエチレン成分50〜95質量%とを含み、前記ポリエチレン成分が粘度平均分子量(Mv)が100万以上の超高分子量ポリエチレンを10質量%以上含むと共に、
前記ポリエチレン成分の融点Tmeと、前記ポリプロピレン成分の融点Tmpとの温度差が−20℃<Tmp−Tme≦20℃であり、かつ
バブルポイントが400〜600kPaであるポリオレフィン製微多孔膜。
Including 5 to 50% by mass of a polypropylene component and 50 to 95% by mass of a polyethylene component, and the polyethylene component includes 10% by mass or more of ultrahigh molecular weight polyethylene having a viscosity average molecular weight (Mv) of 1 million or more,
A polyolefin microporous membrane having a temperature difference between the melting point Tme of the polyethylene component and the melting point Tmp of the polypropylene component of −20 ° C. <Tmp−Tme ≦ 20 ° C. and a bubble point of 400 to 600 kPa.
GPC曲線で分子量が100万以上の分率が5%以上かつ、ポリプロピレンとポリエチレン赤外吸収スペクトルの強度比が0.01〜0.45である請求項1に記載のポリオレフィン製微多孔膜。(ポリプロピレンの吸収波長:998cm-1、ポリエチレンの吸収波長:719cm-12. The polyolefin microporous membrane according to claim 1, wherein a fraction having a molecular weight of 1 million or more on a GPC curve is 5% or more, and an intensity ratio of polypropylene to polyethylene infrared absorption spectrum is 0.01 to 0.45. (Absorption wavelength of polypropylene: 998 cm −1 , absorption wavelength of polyethylene: 719 cm −1 ) 前記ポリプロピレン成分が、エチレンとプロピレンとのランダム共重合体である請求項1又は2に記載のポリオレフィン製微多孔膜。   The polyolefin microporous membrane according to claim 1 or 2, wherein the polypropylene component is a random copolymer of ethylene and propylene. 透気度/気孔率の比が2.2〜4.0である請求項1〜3のいずれかに記載のポリオレフィン製微多孔膜。   The polyolefin microporous membrane according to any one of claims 1 to 3, wherein the air permeability / porosity ratio is 2.2 to 4.0. 請求項1〜4のいずれかに記載のポリオレフィン製微多孔膜を用いた電池用セパレータ。   The battery separator using the polyolefin microporous film in any one of Claims 1-4. 請求項5に記載のセパレータと、正極と、負極と、電解液とを含むリチウムイオン二次電池。   The lithium ion secondary battery containing the separator of Claim 5, a positive electrode, a negative electrode, and electrolyte solution. 請求項1に記載のポリオレフィン製微多孔膜の製造方法であって、下記(1)〜(5)の各工程、
(1)ポリオレフィン樹脂と、可塑剤と、無機粉体とを混合する混合工程、
(2)混合工程により得られた混合物を溶融混練する混練工程、
(3)混練工程で得られた混練物を、スリットから押出し、冷却してシート状に成形するシート成形工程、
(4)シート成形工程で得られたシート状の成形物から可塑剤と無機紛体とを抽出する抽
出工程、
(5)抽出工程で得られたシート状の多孔体を延伸する延伸工程、を含み、
前記(1)工程が、ポリオレフィン樹脂25〜50質量部、可塑剤30〜60質量部、及び無機粉体10〜40質量部を、合計が100質量部となるように混合する工程であり、前記ポリオレフィン樹脂が、ポリプロピレン成分5〜50質量%と、ポリエチレン成分50〜95質量%とを含み、前記ポリエチレン成分が粘度平均分子量(Mv)が100万以上の超高分子量ポリエチレンを10質量%以上含むと共に、前記ポリエチレン成分の融点Tmeと、前記ポリプロピレン成分の融点Tmpとの温度差が−20℃<Tmp−Tme≦20℃である、製造方法。
It is a manufacturing method of the polyolefin microporous film of Claim 1, Comprising: Each process of following (1)-(5),
(1) a mixing step of mixing a polyolefin resin, a plasticizer, and an inorganic powder;
(2) a kneading step of melt kneading the mixture obtained by the mixing step,
(3) A sheet forming step in which the kneaded product obtained in the kneading step is extruded from a slit, cooled and formed into a sheet shape,
(4) An extraction process for extracting the plasticizer and the inorganic powder from the sheet-like molded product obtained in the sheet molding process,
(5) a stretching step of stretching the sheet-like porous body obtained in the extraction step,
The step (1) is a step of mixing 25 to 50 parts by mass of a polyolefin resin, 30 to 60 parts by mass of a plasticizer, and 10 to 40 parts by mass of an inorganic powder so that the total becomes 100 parts by mass, The polyolefin resin contains 5 to 50% by mass of a polypropylene component and 50 to 95% by mass of a polyethylene component, and the polyethylene component contains 10% by mass or more of ultrahigh molecular weight polyethylene having a viscosity average molecular weight (Mv) of 1 million or more. The manufacturing method whose temperature difference of melting | fusing point Tme of the said polyethylene component and melting | fusing point Tmp of the said polypropylene component is -20 degreeC <Tmp-Tme <= 20 degreeC.
JP2009267201A 2009-11-25 2009-11-25 Polyolefin microporous membrane Active JP5511329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009267201A JP5511329B2 (en) 2009-11-25 2009-11-25 Polyolefin microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009267201A JP5511329B2 (en) 2009-11-25 2009-11-25 Polyolefin microporous membrane

Publications (2)

Publication Number Publication Date
JP2011111484A JP2011111484A (en) 2011-06-09
JP5511329B2 true JP5511329B2 (en) 2014-06-04

Family

ID=44234072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009267201A Active JP5511329B2 (en) 2009-11-25 2009-11-25 Polyolefin microporous membrane

Country Status (1)

Country Link
JP (1) JP5511329B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY161697A (en) 2011-12-28 2017-05-15 Toray Battery Separator Film Polyolefin microporous film and method for producing same
CN102530843B (en) * 2012-01-20 2014-08-13 中国科学院上海技术物理研究所 Method for preparing loosened polyimide infrared absorption film
KR102266028B1 (en) 2013-05-31 2021-06-16 도레이 카부시키가이샤 Multilayer, microporous polyolefin membrane, and production method thereof
KR102229797B1 (en) 2013-05-31 2021-03-22 도레이 카부시키가이샤 Multilayer, microporous polyolefin membrane, and production method thereof
US10411237B2 (en) 2013-05-31 2019-09-10 Toray Industries, Inc. Multilayer, microporous polyolefin membrane, and production method thereof
KR102064867B1 (en) 2017-11-23 2020-01-10 더블유스코프코리아 주식회사 A porous separator and a method for manufacturing the same
JP7546379B2 (en) * 2019-08-26 2024-09-06 旭化成株式会社 Cross-linked resin dispersion separator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163023A (en) * 1992-09-03 1994-06-10 Asahi Chem Ind Co Ltd Battery separator
KR100943236B1 (en) * 2006-02-14 2010-02-18 에스케이에너지 주식회사 Microporous polyolefin film with improved meltdown property and preparing method thereof
JP2009138159A (en) * 2007-12-10 2009-06-25 Asahi Kasei Chemicals Corp Microporous membrane
JP5274081B2 (en) * 2008-04-04 2013-08-28 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
JP5235484B2 (en) * 2008-04-30 2013-07-10 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane

Also Published As

Publication number Publication date
JP2011111484A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP5213443B2 (en) Polyolefin microporous membrane
JP4753446B2 (en) Polyolefin microporous membrane
US7618743B2 (en) Microporous polyolefin film
JP5546144B2 (en) Polyolefin microporous membrane
JP5572334B2 (en) Polyolefin microporous membrane
JP5586152B2 (en) Polyolefin microporous membrane
WO2014192862A1 (en) Multilayer, microporous polyolefin membrane, and production method thereof
JP5511329B2 (en) Polyolefin microporous membrane
JP5325405B2 (en) Polyolefin microporous membrane
JP5942145B2 (en) Polyolefin microporous membrane and method for producing the same
WO2018216819A1 (en) Polyolefin microporous membrane, separator for electricity storage devices, and electricity storage device
JP4884008B2 (en) Polyethylene microporous membrane
JP5235484B2 (en) Polyolefin microporous membrane
JP7409301B2 (en) Microporous polyolefin membrane and method for producing microporous polyolefin membrane
JP4220329B2 (en) Polyolefin microporous membrane and method for producing the same
JP5876221B2 (en) Polyolefin microporous membrane
JP5235324B2 (en) Polyolefin microporous membrane
JP5295857B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP5649210B2 (en) Polyolefin microporous membrane
JP5676286B2 (en) Polyolefin microporous membrane
WO2021065283A1 (en) Polyolefin microporous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5676285B2 (en) Polyolefin microporous membrane
JP2011081995A (en) Separator for oven resistant property storage device
JP5443114B2 (en) Polyolefin microporous membrane
JP2014074143A (en) Polyolefin microporous film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20131125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140325

R150 Certificate of patent or registration of utility model

Ref document number: 5511329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350