JPH06163023A - Battery separator - Google Patents

Battery separator

Info

Publication number
JPH06163023A
JPH06163023A JP5219765A JP21976593A JPH06163023A JP H06163023 A JPH06163023 A JP H06163023A JP 5219765 A JP5219765 A JP 5219765A JP 21976593 A JP21976593 A JP 21976593A JP H06163023 A JPH06163023 A JP H06163023A
Authority
JP
Japan
Prior art keywords
molecular weight
polyethylene
weight
battery
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5219765A
Other languages
Japanese (ja)
Inventor
Koichi Yasugata
公一 安形
Akira Takahashi
晃 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5219765A priority Critical patent/JPH06163023A/en
Publication of JPH06163023A publication Critical patent/JPH06163023A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To improve battery productivity and battery performance by forming a battery separator of a microporous film composed of mixture of a specific quantity of polyethylene and a specific quantity of ethylene - propylene rubber. CONSTITUTION:Polyethylene 90-10weight% composed of extra-high molecular weight polyethylene and high molecular weight polyethylene and ethylene - propylene rubber 10-90weight% composed of random copolymer of ethylene and propylene, are mixed together, and polymer is formed. After mixture is formed by adding fine powder silicic acid to this polymer as inorganic fine powder and DOP as plasticizer, the inorganic fine powder and the plasticizer are extracted and removed, and it is also dried, and is drawn, and a battery separator composed of a microporous film is formed. Thereby, a low electric resistance battery separator which has well-balanced mechanical strength and is excellent in battery assembling charactristics and has excellent electrolyte impregnation characteristics and safety, can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ電池・リチウ
ム一次・二次電池、リチウムイオン一次・二次電池など
の電池セパレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery separator such as an alkaline battery / lithium primary / secondary battery or a lithium ion primary / secondary battery.

【0002】[0002]

【従来の技術】電池セパレータには、種々の微多孔膜が
提案されている。特にリチウム電池用セパレータとして
は、特開昭60−23954号公報で開示されているよ
うに安全性の観点からポリエチレン製の微多孔膜が望ま
れている。特開平2−21559は、粘度平均分子量1
00万以上のポリエチレンと粘度平均分子量30万以下
のポリエチレンの混合物からなるポリエチレン製セパレ
ータが開示されている。特開平3−64334号公報に
は、重量平均分子量70万以上の超高分子量ポリオレフ
ィンと重量平均分子量/数平均分子量10〜30のポリ
オレフィン組成物からなる微多孔膜が開示されている。
特開平4−126352号公報には、粘度平均分子量1
00万以上のポリエチレンと粘度平均分子量30万以下
のポリエチレン及びポリプロピレンの混合物からなるセ
パレータが開示されている。
2. Description of the Related Art Various microporous membranes have been proposed for battery separators. In particular, as a separator for a lithium battery, a microporous membrane made of polyethylene is desired from the viewpoint of safety as disclosed in JP-A-60-23954. JP-A-2-21559 discloses a viscosity average molecular weight of 1
A polyethylene separator comprising a mixture of polyethylene having a viscosity average molecular weight of 300,000 or less and polyethylene having a viscosity of, 000,000 or more is disclosed. Japanese Unexamined Patent Publication (Kokai) No. 3-64334 discloses a microporous membrane composed of an ultrahigh molecular weight polyolefin having a weight average molecular weight of 700,000 or more and a polyolefin composition having a weight average molecular weight / number average molecular weight of 10 to 30.
JP-A-4-126352 discloses a viscosity average molecular weight of 1
A separator made of a mixture of polyethylene having a viscosity of, 000,000 or more and polyethylene and polypropylene having a viscosity average molecular weight of 300,000 or less is disclosed.

【0003】[0003]

【発明が解決しようとする課題】本発明は、電池セパレ
ータとして望まれる機械的強度のバランスに優れ、電池
組立性が良く、そして電解液含浸性に優れて、低電気抵
抗でもあり、かつ安全性の高いバランスの取れたセパレ
ータを提供することを目的としている。特開平2−21
559号公報は、特開平4−126352号公報で開示
されているように、機械的ストレスに対する抵抗性が充
分でなく、その為特開平4−126352号公報では、
ポリエチレンの混合物にポリプロピレンを加えたセパレ
ータが開示されている。ポリエチレンの混合物にポリプ
ロピレンを加えることは、機械的強度の向上は認められ
るが、安全性の面では、ポリエチレンのみの混合物から
なるセパレータと少なくとも実質的に同等の安全性(シ
ャットダウン温度)しか期待できない。
DISCLOSURE OF THE INVENTION The present invention has an excellent balance of mechanical strength desired as a battery separator, a good battery assembling property, an excellent electrolyte impregnation property, a low electric resistance and a safety. The purpose is to provide a well-balanced separator. JP-A-2-21
As disclosed in Japanese Patent Laid-Open No. 4-126352, Japanese Patent No. 559 does not have sufficient resistance to mechanical stress.
A separator is disclosed in which polypropylene is added to a mixture of polyethylene. Although the addition of polypropylene to a mixture of polyethylene is recognized to improve the mechanical strength, in terms of safety, at least substantially the same safety (shutdown temperature) as that of a separator made of a mixture of polyethylene can be expected.

【0004】また、特開平3−64334号公報には、
高強度の微多孔膜が開示されているが、孔径が小さすぎ
電解液の含浸性が劣る。上述の如くバランスのとれた電
池セパレータは、従来の方法では得られていない。
Further, Japanese Patent Laid-Open No. 3-64334 discloses that
Although a high-strength microporous membrane is disclosed, the pore size is too small and impregnation with the electrolytic solution is poor. A balanced battery separator as described above has not been obtained by conventional methods.

【0005】[0005]

【課題を解決するための手段】本発明者は、ポリエチレ
ン、ポリエチレンの混合物、あるいはポリエチレンの混
合物とポリプロピレンからなるセパレータより本質的に
安全であり、かつ機械的強度のバランスに優れ、電池組
立性が良く、そして電解液含浸性に優れて、低電気抵抗
でもあり、さらに加工性に優れた工業生産上好ましい、
電池セパレータを見い出し、本発明を完成した。
Means for Solving the Problems The present inventor has found that it is essentially safer than polyethylene, a mixture of polyethylene, or a separator composed of a mixture of polyethylene and polypropylene, and has a good balance of mechanical strength and battery assemblability. Good and excellent in electrolyte impregnation, low electrical resistance, and also excellent in processability, which is preferable for industrial production.
A battery separator was found and the present invention was completed.

【0006】すなわち、ポリエチレン90〜10重量%
とエチレン−プロピレンラバー10〜90重量%の混合
物からなる微多孔膜を用いた電池セパレータである。ポ
リエチレンとしては、超高分子量ポリエチレンおよび、
または高分子量ポリエチレンを用いることが好ましい。
超高分子量ポリエチレン、高分子量ポリエチレンとして
は、エチレンを重合した結晶性の単独重合体が望まし
く、エチレンと10モル%以下のプロピレン、1−ブテ
ン、4−メチル−1−ペンテン、1−ヘキセン等との共
重合体でも良い。また、高密度ポリエチレン、中密度ポ
リエチレン、低密度ポリエチレンのいずれであっても良
く、特に高密度ポリエチレンが好ましい。
That is, 90 to 10% by weight of polyethylene
And a separator of ethylene-propylene rubber of 10 to 90% by weight, which is a battery separator using a microporous membrane. As polyethylene, ultra high molecular weight polyethylene and
Alternatively, it is preferable to use high molecular weight polyethylene.
As the ultrahigh molecular weight polyethylene and the high molecular weight polyethylene, a crystalline homopolymer obtained by polymerizing ethylene is preferable, and ethylene and 10 mol% or less of propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and the like are used. May be a copolymer of Further, any of high density polyethylene, medium density polyethylene and low density polyethylene may be used, and high density polyethylene is particularly preferable.

【0007】超高分子量とは、粘度平均分子量100万
以上をいい、高分子量とは、粘度平均分子量100万未
満で、限界分子量以上をいう。超高分子量ポリエチレン
は、機械的強度のバランスを保つために好ましい素材で
あり、機械方向(以下”MD”と記す)の弾性率及びM
D弾性率と機械方向と直角方向(以下”CMD”と記
す)の弾性率の比のバランスに有用である。
The ultra-high molecular weight means a viscosity average molecular weight of 1,000,000 or more, and the high molecular weight means a viscosity average molecular weight of less than 1,000,000 and a critical molecular weight or more. Ultra-high molecular weight polyethylene is a preferable material for maintaining the balance of mechanical strength, and has an elastic modulus in the machine direction (hereinafter referred to as "MD") and M
It is useful for balancing the ratio of the D elastic modulus and the elastic modulus in the direction perpendicular to the machine direction (hereinafter referred to as "CMD").

【0008】MDの弾性率は5000kg/cm2
上、かつMDの弾性率とCMDの弾性率の比は8以上が
望ましく、より好ましくは、MDの弾性率が6000k
g/cm2 以上であり、かつMDの弾性率とCMD弾性
率の比が9以上である。MDの弾性率が5000kg/
cm2 未満では、電池組立性・生産性に劣り、実用性が
低い。MDの弾性率とCMD弾性率の比が、8未満で
は、電池組立時の短絡不良率が高くなる。
The elastic modulus of MD is preferably 5000 kg / cm 2 or more, and the ratio of the elastic modulus of MD to that of CMD is preferably 8 or more. More preferably, the elastic modulus of MD is 6000 k.
g / cm 2 or more, and the ratio of the MD elastic modulus to the CMD elastic modulus is 9 or more. MD elastic modulus of 5000 kg /
When it is less than cm 2 , the battery assembling property and the productivity are poor and the practicability is low. When the ratio between the MD elastic modulus and the CMD elastic modulus is less than 8, the short circuit failure rate during battery assembly increases.

【0009】超高分子量ポリエチレンの粘度平均分子量
が100万未満では、MDの弾性率が5000kg/c
2 で、かつMDの弾性率とCMDの弾性率の比が8以
上の条件を満たすことは困難である。高分子量ポリエチ
レンは、成形加工の観点から好ましい素材であり、粘度
平均分子量が100万を越えると成形加工が困難にな
る。限界分子量以下では、成形加工できない。
When the viscosity average molecular weight of ultra high molecular weight polyethylene is less than 1,000,000, the MD elastic modulus is 5000 kg / c.
It is difficult to satisfy the condition of m 2 and the ratio of the elastic modulus of MD to the elastic modulus of CMD of 8 or more. High molecular weight polyethylene is a preferable material from the viewpoint of molding processing, and if the viscosity average molecular weight exceeds 1,000,000, molding processing becomes difficult. If the molecular weight is below the limit, molding cannot be performed.

【0010】本発明では、上記の超高分子量ポリエチレ
ンと高分子量ポリエチレンの両方を用いることが好まし
い。また、エチレン−プロピレンラバーを用いることに
より、安全性・加工性が向上し、かつ機械的特性の低下
しないバランスの取れたセパレータが得られることを見
い出した。エチレン−プロピレンラバーとは、エチレン
とプロピレンのランダム共重合体で、実質的に無定形
(非晶質)のものをいい、例えば溶媒に可溶なチーグラ
ー触媒と有機アルミニウム化合物を用いて、エチレンと
プロピレンを共重合させる方法等によって得ることがで
きる。単なる結晶性を有するポリエチレン−ポリプロピ
レンのランダム共重合体では、安全性・加工性の向上は
望めない。同様にポリプロピレンにおいても安全性の向
上は望めない。エチレン−プロピレンラバーのプロピレ
ン含量は、5〜80重量%、好ましくは10〜60重量
%、さらに好ましくは15〜30重量%である。また、
予熱時間1分、測定時間4分、温度100℃で測定され
た粘度(ムーニー粘度)は1〜100(ML1+4 100
℃)、好ましくは5〜80(ML1+4 100℃)、更に
好ましくは20〜80(ML1+4 100℃)である。ま
た、重量平均分子量が100万を越えると成形性が劣る
ため、好ましくは、100万以下、より好ましくは、8
0万以下、さらに好ましくは50万以下である。
In the present invention, it is preferable to use both the ultrahigh molecular weight polyethylene and the high molecular weight polyethylene. It was also found that by using ethylene-propylene rubber, a balanced separator with improved safety and processability and without deterioration of mechanical properties can be obtained. Ethylene-propylene rubber refers to a random copolymer of ethylene and propylene, which is substantially amorphous (amorphous). For example, a solvent-soluble Ziegler catalyst and an organoaluminum compound are used to produce ethylene-propylene rubber. It can be obtained by a method of copolymerizing propylene or the like. A polyethylene-polypropylene random copolymer having mere crystallinity cannot be expected to improve safety and processability. Similarly, polypropylene cannot be expected to have improved safety. The propylene content of the ethylene-propylene rubber is 5 to 80% by weight, preferably 10 to 60% by weight, more preferably 15 to 30% by weight. Also,
The viscosity (Moonie viscosity) measured at a preheating time of 1 minute, a measurement time of 4 minutes and a temperature of 100 ° C. is 1 to 100 (ML 1 + 4 100).
C.), preferably 5 to 80 (ML 1 + 4 100 ° C.), more preferably 20 to 80 (ML 1 + 4 100 ° C.). If the weight average molecular weight exceeds 1,000,000, the moldability is deteriorated. Therefore, the weight average molecular weight is preferably 1,000,000 or less, and more preferably 8,000,000.
It is at most 0,000, more preferably at most 500,000.

【0011】上記のエチレン−プロピレンラバーには、
極少量であれば共役ポリエン類のモノマー、例えば5−
エチリデン−2−ノルボルネン、ジシクロペンタジエ
ン、5−メチル−2.5−ノルボナジエンなどが含まれ
ていてもよい。また、本発明で用いられるポリエチレン
とエチレン−プロピレンラバーの混合物には、総ポリマ
ー重量の20重量%未満であれば、プロピレン、1−ブ
テン、4−メチル−1−ペンテン、1−ヘキセン等のポ
リマーが含まれていてもよい以下、本発明の微多孔膜の
好ましい特徴を述べる。
In the above ethylene-propylene rubber,
If the amount is very small, a conjugated polyene monomer such as 5-
It may contain ethylidene-2-norbornene, dicyclopentadiene, 5-methyl-2.5-norbonadiene and the like. Further, in the mixture of polyethylene and ethylene-propylene rubber used in the present invention, a polymer such as propylene, 1-butene, 4-methyl-1-pentene or 1-hexene may be used if it is less than 20% by weight based on the total weight of the polymer. In the following, preferable characteristics of the microporous membrane of the present invention will be described.

【0012】気孔率は、電解液の含浸性・含浸量及び電
池内部の電気抵抗の観点から、40%以上が望ましく、
さらには45%以上が望ましく、85%以上になると機
械的強度が低下し、電池組立上不具合を生じる。透気度
は、450秒/100cc以下、好ましくは300秒/
100cc以下、さらに好ましくは250秒/100c
c以下である。透気度が450秒/100cc以上で
は、電池内部の電気抵抗が高くなりすぎ、電池特性を低
下させる。
The porosity is preferably 40% or more from the viewpoint of the impregnation property / impregnation amount of the electrolytic solution and the electric resistance inside the battery,
Further, it is preferably 45% or more, and when it is 85% or more, the mechanical strength is lowered, which causes a problem in battery assembly. Air permeability is 450 seconds / 100 cc or less, preferably 300 seconds /
100 cc or less, more preferably 250 seconds / 100 c
c or less. When the air permeability is 450 seconds / 100 cc or more, the electric resistance inside the battery becomes too high, which deteriorates the battery characteristics.

【0013】CMDの動摩擦係数は0.6以下、好まし
くは0.5以下である。渦巻型電池などの場合、CMD
の動摩擦係数が0.6を越えると、電池組立工程におい
て、ピンに電極とセパレータが渦巻上に捲かれた後、ピ
ンから該電極とセパレータが抜けないあるいは、抜けに
くく生産性が劣る。エタノール中でのバブルポイント
は、1kg/cm2 〜10kg/cm2 、好ましくは2
kg/cm2 〜9kg/cm2 、さらに好ましくは2k
g/cm2 〜7kg/cm2 である。エタノール中での
バブルポイントが10kg/cm2 を越えると電解液の
含浸性が劣り、電池の生産性が悪い。バブルポイントが
1kg/cm2 未満では電池組立時の短絡不良率等の増
加が心配される。
The dynamic friction coefficient of CMD is 0.6 or less, preferably 0.5 or less. For spiral type batteries, CMD
When the coefficient of kinetic friction exceeds 0.6, the electrode and the separator do not come off from the pin after the electrode and the separator are spirally wound on the pin in the battery assembling process, or the pin is difficult to come off, resulting in poor productivity. Bubble point in ethanol is 1 kg / cm 2 to 10 kg / cm 2 , preferably 2
kg / cm 2 ~9kg / cm 2 , more preferably 2k
g / cm 2 to 7 kg / cm 2 . When the bubble point in ethanol exceeds 10 kg / cm 2 , the impregnation property of the electrolytic solution is poor and the productivity of the battery is poor. If the bubble point is less than 1 kg / cm 2 , there is a concern about an increase in the short circuit failure rate during battery assembly.

【0014】膜厚は、15〜50μm、好ましくは20
〜40μmである。15μm未満では、電池組立時の短
絡不良率が増加し、50μmをこえると電池性能が低下
する。また、安全性の面から、シャットダウン温度は1
45℃以下、好ましくは140℃以下である。
The film thickness is 15 to 50 μm, preferably 20.
Is about 40 μm. If it is less than 15 μm, the short-circuit failure rate during battery assembly increases, and if it exceeds 50 μm, the battery performance deteriorates. In addition, the shutdown temperature is 1 from the viewpoint of safety.
It is 45 ° C or lower, preferably 140 ° C or lower.

【0015】電解液の含浸性は、電解液中にセパレータ
を浸したときの含浸高さによって測定できるが、含浸高
さは2mm以上、更には3mm以上であると、電池組立
工程において、電解液の含浸時間が短くなり電池生産性
に優れるため、好ましい。本発明の電池セパレータは、
例えば、ポリマーと無機微粉体及び可塑剤を混練・加熱
溶融しながらシート状に成形した後、無機微粉体及び可
塑剤をそれぞれ抽出除去及び乾燥し、一軸方向にのみ延
伸または二軸方向に延伸して得られる。
The impregnating property of the electrolytic solution can be measured by the impregnating height when the separator is immersed in the electrolytic solution. When the impregnating height is 2 mm or more, and further 3 mm or more, the electrolytic solution is not used in the battery assembling process. It is preferable because the impregnation time is shortened and the battery productivity is excellent. The battery separator of the present invention is
For example, a polymer, an inorganic fine powder and a plasticizer are kneaded and melted by heating to form a sheet, and then the inorganic fine powder and the plasticizer are extracted and removed, respectively, and dried, and stretched only in a uniaxial direction or in a biaxial direction. Obtained.

【0016】具体的には、ポリエチレン、エチレン−プ
ロピレンラバー、可塑剤、無機微粉体を混合、成形後、
可塑剤、無機微粉体を抽出除去した後乾燥し、さらに延
伸することにより製造する。無機微粉体としては、微粉
珪酸、珪酸カルシウム、炭酸カルシウム、微粉タルク等
が上げられ、特に微粉珪酸が好ましい。
Specifically, polyethylene, ethylene-propylene rubber, plasticizer and inorganic fine powder are mixed and molded,
It is manufactured by extracting and removing the plasticizer and the inorganic fine powder, drying, and further stretching. Examples of the inorganic fine powder include fine silicic acid, calcium silicate, calcium carbonate, fine powder talc, and the like, and fine silicic acid is particularly preferable.

【0017】無機微粉体の抽出溶剤は、無機微粉体を溶
解するもので、ポリマーを溶解しないものであればよ
く、微粉珪酸の場合、苛性ソーダが好ましい。可塑剤と
しては、DBP、DOP、DNP、DBS,TBP、流
動パラフィン等が上げられ、特にDOPが好ましい。可
塑剤の溶剤としては、メタノール、エタノール等のアル
コール類、アセトン、MEK等のケトン類、1.1.1
−トリクロロエタン等の塩素系炭化水素等一般的有機溶
剤が用いられる。
The extraction solvent for the inorganic fine powder may be any solvent which dissolves the inorganic fine powder and does not dissolve the polymer. In the case of finely divided silicic acid, caustic soda is preferable. Examples of the plasticizer include DBP, DOP, DNP, DBS, TBP, liquid paraffin, etc., and DOP is particularly preferable. Solvents for the plasticizer include alcohols such as methanol and ethanol, ketones such as acetone and MEK, 1.1.1.
-General organic solvents such as chlorine-based hydrocarbons such as trichloroethane are used.

【0018】ポリエチレンとして超高分子量ポリエチレ
ンおよび、または高分子量ポリエチレンを用いた場合、
粘度平均分子量100万以上の超高分子量ポリエチレン
の含有量は、総ポリマー重量の40重量%以上、好まし
くは45重量%以上、さらには50重量%以上であるこ
とが望ましい。40重量%以下では、高弾性率等の機械
的強度のバランスの取れたセパレータは得られにくい。
When ultra high molecular weight polyethylene and / or high molecular weight polyethylene is used as polyethylene,
It is desirable that the content of the ultra high molecular weight polyethylene having a viscosity average molecular weight of 1,000,000 or more is 40% by weight or more, preferably 45% by weight or more, and further 50% by weight or more based on the total weight of the polymer. When it is 40% by weight or less, it is difficult to obtain a separator having a well-balanced mechanical strength such as a high elastic modulus.

【0019】粘度平均分子量100万未満の高分子量ポ
リエチレンの含有量は、好ましくは総ポリマー重量の5
0重量%以下、さらに好ましくは40重量%以下であ
る。50重量%を越えると成形性が低下し、また、安全
性の低下を招く。エチレン−プロピレンラバーの含有量
は、総ポリマー重量の10〜90重量%であり、セパレ
ータの弾性率向上の点から10〜50重量%が好まし
い。
The content of high molecular weight polyethylene having a viscosity average molecular weight of less than 1,000,000 is preferably 5 based on the total weight of the polymer.
It is 0% by weight or less, more preferably 40% by weight or less. If it exceeds 50% by weight, the moldability is lowered and the safety is lowered. The content of ethylene-propylene rubber is 10 to 90% by weight of the total polymer weight, and 10 to 50% by weight is preferable from the viewpoint of improving the elastic modulus of the separator.

【0020】可塑剤量は、ポリマー・可塑剤・無機微粉
体混合物重量の50〜100重量%、好ましくは、50
〜80重量%である。50重量%以下では、適度な孔径
(エタノール中のバブルポイントが、1kg/cm2
10kg/cm2 )が得られない。100重量%を越え
ると、成形加工が困難になる。無機微粉体の量は、該混
合物重量の5〜35重量%、好ましくは15〜25重量
%である。5重量%未満、35重量%を越えても適度な
孔径(エタノール中のバブルポイントが、1kg/cm
2 〜10kg/cm2 )が得られない。
The amount of the plasticizer is 50 to 100% by weight, preferably 50, of the weight of the polymer / plasticizer / inorganic fine powder mixture.
~ 80% by weight. When the content is 50% by weight or less, an appropriate pore size (the bubble point in ethanol is 1 kg / cm 2 to
10 kg / cm 2 ) cannot be obtained. If it exceeds 100% by weight, molding processing becomes difficult. The amount of the inorganic fine powder is 5 to 35% by weight, preferably 15 to 25% by weight based on the weight of the mixture. Appropriate pore size below 5 wt% and above 35 wt% (bubble point in ethanol is 1 kg / cm
2 to 10 kg / cm 2 ) cannot be obtained.

【0021】製造方法の一例として、ポリマー、無機微
粉体、可塑剤を所定の混合比率で、ヘンシェルミキサー
等の通常の混合機で混合した後、押出機等の溶融混練装
置によりTダイ等を用いて、80μm〜200μmの厚
さのシート状に成形し、さらに、該成形物から溶剤を用
いて可塑剤を抽出除去し、続いて無機微粉体の抽出溶剤
にて無機微粉体を抽出したのち、一軸方向にのみ加熱延
伸して所定厚みのセパレータを得る方法が挙げられる。
As an example of the production method, a polymer, an inorganic fine powder, and a plasticizer are mixed in a predetermined mixing ratio by an ordinary mixer such as a Henschel mixer, and then a T-die or the like is used by a melt-kneading device such as an extruder. Then, it is molded into a sheet having a thickness of 80 μm to 200 μm, further, the plasticizer is extracted and removed from the molded product by using a solvent, and subsequently the inorganic fine powder is extracted with an extraction solvent for the inorganic fine powder, A method of obtaining a separator having a predetermined thickness by heating and stretching only in the uniaxial direction can be mentioned.

【0022】延伸前あるいは延伸後に公知方法、例え
ば、界面活性剤の塗布・含浸やコロナ処理等の親水化処
理を施すことにより、アルカリ電池用のセパレータとし
ても用いることができる。
It can be used also as a separator for an alkaline battery by a known method before or after stretching, for example, by applying and impregnating a surfactant or hydrophilizing treatment such as corona treatment.

【0023】[0023]

【実施例】以下、実施例により本発明を説明するが、本
発明は下記実施例に限定されるものではない。なお、測
定方法を下記に示す。 (1)膜厚 最小目盛り1μmのダイヤルゲージにて測定した。 (2)気孔率 10cm×10cmのサンプルを切り出し、サンプルの
含水時の重量・絶乾時の重量及び膜厚を測定し、下式か
ら求めた。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the following examples. The measuring method is shown below. (1) Film thickness Measured with a dial gauge having a minimum scale of 1 μm. (2) Porosity A sample with a size of 10 cm × 10 cm was cut out, and the weight of the sample when it was wet, the weight when it was absolutely dried, and the film thickness were measured and determined from the following formula.

【0024】気孔率=(空孔容積/微多孔膜容積)×1
00(%) 空孔容積=(含水重量(g)−絶乾重量(g))/水の
密度(g/cm3 ) 微多孔膜容積=100×膜厚(cm) (3)バブルポイント ASTM E−128−61に準拠し、エタノール中の
バブルポイントを測定した。 (4)透気度 JIS P−8117に準拠し、東洋精機製B型ガーレ
ー式デンソメータを用い、標線目盛り0〜100までに
要する時間をストップウォッチで測定した。 (5)弾性率 島津社製の型式オートグラフAG−A型を用いて、試験
片の大きさが幅10mm×長さ100mmでチャック間
距離50mm、引張速度200mm/minにおいて引
張試験を行い、弾性率を測定した。なお、試験片は、M
DとCMDそれぞれについて該大きさで切り出した。
Porosity = (pore volume / microporous membrane volume) × 1
00 (%) void volume = (wet weight (g) - absolute dry weight (g)) / water density (g / cm 3) microporous membrane volume = 100 × thickness (cm) (3) Bubble Point ASTM The bubble point in ethanol was measured according to E-128-61. (4) Air Permeability According to JIS P-8117, a B-type Gurley type densometer manufactured by Toyo Seiki was used to measure the time required for the marking line scale 0 to 100 with a stopwatch. (5) Modulus of elasticity Using a Shimadzu model Autograph AG-A, a tensile test was conducted at a test piece size of 10 mm width x 100 mm length, a chuck distance of 50 mm, and a pulling speed of 200 mm / min. The rate was measured. The test piece is M
The size was cut out for each of D and CMD.

【0025】断面積は、(1)項で測定した膜厚×膜幅
によって算出した。 (6)MD弾性率とCMD弾性率の比 MD弾性率とCMD弾性率の比=MD弾性率/CMD弾
性率 である。 (7)粘度平均分子量 デカリンを用い、測定温度135℃でウベローゼ型粘度
計により粘度を測定し、Chiangの式により粘度平
均分子量を求めた。 (8)重量平均分子量 GPCにより、Shodex Columnsを用いて
測定した。 (9)摩擦係数 カトーテック株式会社製 KES−FB4型表面試験機
を用い、試料張力400gにおいて、平均摩擦係数を求
めた。 (10)シャットダウン温度 50mm×50mm×厚さ2mmのPTFE板に60m
m×60mmの試験片をクリップで全周挟持固定し、所
定温度のギヤーオーブン中に10分間放置した後、25
℃まで空冷した該試験片の透気度を測定した。該透気度
が800秒/100cc以上になるギヤーオーブン温度
をシャットダウン温度とした。 (11)含浸高さ MD方向5mm、CMD方向50mmの試験片をCMD
方向25mmまで電解液(プロピレンカーボネート50
体積%、ジメトキシエタン50体積%、過塩素酸リチウ
ム1M)中に浸し、3分後の液表面からの含浸電解液の
高さを測定し、含浸高さとした。
The cross-sectional area was calculated by (film thickness × film width measured in item (1)). (6) Ratio of MD Modulus to CMD Modulus Ratio of MD Modulus to CMD Modulus = MD Modulus / CMD Modulus. (7) Viscosity average molecular weight Using decalin, the viscosity was measured at a measurement temperature of 135 ° C. by an Ubbelose type viscometer, and the viscosity average molecular weight was determined by the Chang's formula. (8) Weight average molecular weight It was measured by GPC using Shodex Columns. (9) Friction coefficient Using a KES-FB4 type surface tester manufactured by Kato Tech Co., Ltd., an average friction coefficient was determined at a sample tension of 400 g. (10) Shutdown temperature 60m on a PTFE plate of 50mm x 50mm x 2mm thickness
An mx 60 mm test piece was clamped and fixed all around by clips, and left in a gear oven at a predetermined temperature for 10 minutes, then 25
The air permeability of the test piece that had been air-cooled to ° C was measured. The gear oven temperature at which the air permeability was 800 seconds / 100 cc or more was taken as the shutdown temperature. (11) Impregnation height CMD with a test piece of 5 mm in MD direction and 50 mm in CMD direction
Electrolyte solution (propylene carbonate 50 up to 25 mm in the direction
It was dipped in 50% by volume, 50% by volume of dimethoxyethane, and 1M of lithium perchlorate), and after 3 minutes, the height of the impregnated electrolytic solution from the surface of the solution was measured and defined as the impregnated height.

【0026】[0026]

【実施例1】粘度平均分子量300万の超高分子量ポリ
エチレン(旭化成工業(株)社製のUH−900)11
重量%、粘度平均分子量48万の高分子量ポリエチレン
(三井石油化学工業(株)社製のハイゼックスミリオン
030S)8.8重量%、重量平均分子量20万のエチ
レン−プロピレンラバー(日本合成ゴム(株)社製のE
P01P)2.2重量%、微粉珪酸21重量%、DOP
57重量%をヘンシェルミキサーで混合し、該混合物を
φ30mm二軸押し出し機に450mm幅のTダイを取
り付けたフィルム製造装置で厚さ150μmのフィルム
状に成形した。
Example 1 Ultra high molecular weight polyethylene having a viscosity average molecular weight of 3,000,000 (UH-900 manufactured by Asahi Kasei Corporation) 11
High-molecular-weight polyethylene having a weight-average molecular weight of 480,000 (HIZEX Million 030S manufactured by Mitsui Petrochemical Co., Ltd.) 8.8% by weight, ethylene-propylene rubber having a weight-average molecular weight of 200,000 (Nippon Synthetic Rubber Co., Ltd.) Company-made E
P01P) 2.2% by weight, fine powder silicic acid 21% by weight, DOP
57% by weight was mixed with a Henschel mixer, and the mixture was formed into a film having a thickness of 150 μm by a film manufacturing apparatus equipped with a φ30 mm twin-screw extruder equipped with a 450 mm wide T die.

【0027】成形されたフィルムは、1,1,1−トリ
クロロエタン中に10分間浸漬し、DOPを抽出した後
水洗して乾燥し、さらに60℃の25%苛性ソーダ中に
60分間浸漬して、微粉珪酸を抽出した後乾燥して、微
多孔膜とした。さらに、該微多孔膜を125℃に加熱さ
れた一軸ロール延伸機により膜厚が25μmになるよう
に延伸し、115℃の雰囲気下で5秒間熱処理を行い、
セパレータとした。
The formed film was dipped in 1,1,1-trichloroethane for 10 minutes to extract DOP, washed with water and dried, and further dipped in 25% caustic soda at 60 ° C. for 60 minutes to obtain fine powder. After extracting the silicic acid, it was dried to obtain a microporous membrane. Further, the microporous film was stretched by a uniaxial roll stretching machine heated to 125 ° C. to have a thickness of 25 μm, and heat-treated in an atmosphere of 115 ° C. for 5 seconds,
It was used as a separator.

【0028】得られたセパレータの特性を表1に示す。The characteristics of the obtained separator are shown in Table 1.

【0029】[0029]

【実施例2】重量平均分子量31万のエチレン−プロピ
レンラバー(日本合成ゴム(株)社製のEP07P)を
用いた以外は、実施例1と同様に実施した。得られたセ
パレータの特性を表1に示す。
Example 2 Example 1 was repeated except that ethylene-propylene rubber having a weight average molecular weight of 310,000 (EP07P manufactured by Nippon Synthetic Rubber Co., Ltd.) was used. The characteristics of the obtained separator are shown in Table 1.

【0030】[0030]

【実施例3】粘度平均分子量300万の超高分子量ポリ
エチレン(旭化成工業(株)社製のUH−900)1
3.2重量%、粘度平均分子量15万の高分子量ポリエ
チレン(旭化成工業(株)社製のS−360)4.4重
量%、重量平均分子量20万のエチレン−プロピレンラ
バー(日本合成ゴム(株)社製のEP01P)4.4重
量%、微粉珪酸21重量%、DOP57重量%をヘンシ
ェルミキサーで混合し、該混合物をφ30mm二軸押し
出し機に450mm幅のTダイを取り付けたフィルム製
造装置で厚さ150μmのフィルム状に成形した。
[Example 3] Ultra high molecular weight polyethylene having a viscosity average molecular weight of 3,000,000 (UH-900 manufactured by Asahi Kasei Corporation) 1
3.2 wt%, high molecular weight polyethylene having a viscosity average molecular weight of 150,000 (S-360 manufactured by Asahi Chemical Industry Co., Ltd.) 4.4 wt%, ethylene-propylene rubber having a weight average molecular weight of 200,000 (Nippon Synthetic Rubber Co., Ltd. ) EP01P) 4.4% by weight, fine powder silicic acid 21% by weight, DOP 57% by weight are mixed by a Henschel mixer, and the mixture is thickened by a film manufacturing apparatus equipped with a φ30 mm twin-screw extruder and a 450 mm wide T-die. It was formed into a film having a thickness of 150 μm.

【0031】成形されたフィルムは、1,1,1−トリ
クロロエタン中に10分間浸漬し、DOPを抽出した後
水洗して乾燥し、さらに60℃の25%苛性ソーダ中に
60分間浸漬して、微粉珪酸を抽出した後乾燥して、微
多孔膜とした。さらに、該微多孔膜を125℃に加熱さ
れた一軸ロール延伸機により膜厚が25μmになるよう
に延伸し、115℃の雰囲気下で5秒間熱処理を行い、
セパレータとした。
The formed film was dipped in 1,1,1-trichloroethane for 10 minutes to extract DOP, washed with water, dried and further dipped in 25% caustic soda at 60 ° C. for 60 minutes to obtain fine powder. After extracting the silicic acid, it was dried to obtain a microporous membrane. Further, the microporous film was stretched by a uniaxial roll stretching machine heated to 125 ° C. to have a thickness of 25 μm, and heat-treated in an atmosphere of 115 ° C. for 5 seconds,
It was used as a separator.

【0032】得られたセパレータの特性を表1に示す。The characteristics of the obtained separator are shown in Table 1.

【0033】[0033]

【比較例1】エチレン−プロピレンラバーの代わりに、
ポリプロピレン(旭化成工業(株)社製のE1100)
を用いた以外は、実施例1と同様に実施した。
Comparative Example 1 Instead of ethylene-propylene rubber,
Polypropylene (E1100 manufactured by Asahi Kasei Corporation)
Was carried out in the same manner as in Example 1 except that was used.

【0034】[0034]

【比較例2】エチレン−プロピレンラバーの代わりに、
結晶性のポリエチレン−ポリプロピレンランダム共重合
体(旭化成工業(株)社製のM3500)を用いた以外
は、実施例1と同様に実施した。
Comparative Example 2 Instead of ethylene-propylene rubber,
The procedure of Example 1 was repeated except that a crystalline polyethylene-polypropylene random copolymer (M3500 manufactured by Asahi Kasei Co., Ltd.) was used.

【0035】[0035]

【比較例3】粘度平均分子量300万の超高分子量ポリ
エチレン(旭化成工業(株)社製のUH−900)11
重量%、粘度平均分子量48万の高分子量ポリエチレン
(三井石油化学工業(株)社製のハイゼックスミリオン
030S)11重量%のポリエチレンの混合物みからな
るポリマーで、実施例1同様に実施した。
[Comparative Example 3] Ultra high molecular weight polyethylene having a viscosity average molecular weight of 3,000,000 (UH-900 manufactured by Asahi Kasei Kogyo KK) 11
A high-molecular-weight polyethylene having a viscosity-average molecular weight of 480,000 (HIZEX Million 030S manufactured by Mitsui Petrochemical Co., Ltd.) was used as a polymer consisting of a mixture of polyethylene of 11% by weight, and the same procedure as in Example 1 was carried out.

【0036】得られたセパレータの特性を表1に示す。The characteristics of the obtained separator are shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【発明の効果】本発明のセパレータは、機械的強度のバ
ランスに優れ、電池組立性が良く、そして電解液含浸性
に優れて、低電気抵抗でもあり、かつ安全性の高いバラ
ンスの取れたセパレータである。
EFFECT OF THE INVENTION The separator of the present invention has a well-balanced mechanical strength, a good battery assembling property, an excellent electrolyte impregnation property, a low electric resistance, and a high safety balance. Is.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ポリエチレン90〜10重量%とエチレ
ン−プロピレンラバー10〜90重量%の混合物からな
る微孔性多孔膜を用いた電池セパレータ。
1. A battery separator using a microporous membrane made of a mixture of 90 to 10% by weight of polyethylene and 10 to 90% by weight of ethylene-propylene rubber.
JP5219765A 1992-09-03 1993-09-03 Battery separator Withdrawn JPH06163023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5219765A JPH06163023A (en) 1992-09-03 1993-09-03 Battery separator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-236030 1992-09-03
JP23603092 1992-09-03
JP5219765A JPH06163023A (en) 1992-09-03 1993-09-03 Battery separator

Publications (1)

Publication Number Publication Date
JPH06163023A true JPH06163023A (en) 1994-06-10

Family

ID=26523325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5219765A Withdrawn JPH06163023A (en) 1992-09-03 1993-09-03 Battery separator

Country Status (1)

Country Link
JP (1) JPH06163023A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100362280B1 (en) * 2000-04-11 2002-11-23 삼성에스디아이 주식회사 Separator for lithium secondary battery and the method thereof
US6716553B1 (en) 1999-05-07 2004-04-06 Nitto Denko Corporation Porous films and processes for the production thereof
EP1316356A3 (en) * 2001-12-03 2005-02-23 Celgard Inc. Diffusion membrane
WO2008059806A1 (en) * 2006-11-14 2008-05-22 Asahi Kasei Chemicals Corporation Separator for lithium ion secondary battery and method for manufacturing the separator
JP2011111484A (en) * 2009-11-25 2011-06-09 Asahi Kasei E-Materials Corp Polyolefin-made microporous film
USRE47520E1 (en) 2000-04-10 2019-07-16 Celgard, Llc Separator for a high energy rechargeable lithium battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6716553B1 (en) 1999-05-07 2004-04-06 Nitto Denko Corporation Porous films and processes for the production thereof
EP2259369A1 (en) 1999-05-07 2010-12-08 Nitto Denko Corporation Porous films and processes for the production thereof
USRE47520E1 (en) 2000-04-10 2019-07-16 Celgard, Llc Separator for a high energy rechargeable lithium battery
KR100362280B1 (en) * 2000-04-11 2002-11-23 삼성에스디아이 주식회사 Separator for lithium secondary battery and the method thereof
EP1316356A3 (en) * 2001-12-03 2005-02-23 Celgard Inc. Diffusion membrane
WO2008059806A1 (en) * 2006-11-14 2008-05-22 Asahi Kasei Chemicals Corporation Separator for lithium ion secondary battery and method for manufacturing the separator
JPWO2008059806A1 (en) * 2006-11-14 2010-03-04 旭化成イーマテリアルズ株式会社 Separator for lithium ion secondary battery and method for producing the same
US8628873B2 (en) 2006-11-14 2014-01-14 Asahi Kasei Chemicals Corporation Separator for lithium ion secondary battery and method for manufacturing the same
JP2011111484A (en) * 2009-11-25 2011-06-09 Asahi Kasei E-Materials Corp Polyolefin-made microporous film

Similar Documents

Publication Publication Date Title
JP3449656B2 (en) Battery separator
JP5216327B2 (en) Polyolefin microporous membrane
JP5586152B2 (en) Polyolefin microporous membrane
JP3525390B2 (en) Polyethylene microporous membrane and manufacturing method
JP4804079B2 (en) Polyolefin microporous membrane
JPWO2007052663A1 (en) Polyolefin microporous membrane and battery separator and battery using the same
JP3917721B2 (en) Method for producing microporous membrane
JP6895570B2 (en) Polyolefin microporous membrane and method for producing polyolefin microporous membrane
JP7283080B2 (en) Polyolefin microporous membrane, battery separator and secondary battery
US20210005860A1 (en) Polyolefin microporous film
JP4606532B2 (en) Polyolefin microporous membrane
WO2020137336A1 (en) Microporous polyolefin membrane and method for producing microporous polyolefin membrane
JP2008120930A (en) Microporous polyethylene film
JP3983660B2 (en) Battery separator
JP2019102126A (en) Battery separator and non-aqueous electrolyte secondary battery
JP3486785B2 (en) Battery separator and method of manufacturing the same
JPH06163023A (en) Battery separator
JP4713441B2 (en) Method for producing polyolefin microporous membrane
JP6598911B2 (en) Manufacturing method of polyolefin microporous membrane, battery separator, and non-aqueous electrolyte secondary battery
JP6347801B2 (en) Manufacturing method of polyolefin microporous membrane, battery separator, and non-aqueous electrolyte secondary battery
JP2019157060A (en) Polyolefin microporous film
JP6988880B2 (en) Polyolefin microporous membrane
JPH09259858A (en) Polyethylene micro-porous film for separator, and manufacture thereof
JP2004189918A (en) Porous film
JP2004263012A (en) Porous film and separator for electric battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001107