JP2004189918A - Porous film - Google Patents

Porous film Download PDF

Info

Publication number
JP2004189918A
JP2004189918A JP2002360466A JP2002360466A JP2004189918A JP 2004189918 A JP2004189918 A JP 2004189918A JP 2002360466 A JP2002360466 A JP 2002360466A JP 2002360466 A JP2002360466 A JP 2002360466A JP 2004189918 A JP2004189918 A JP 2004189918A
Authority
JP
Japan
Prior art keywords
porous film
weight
temperature
molecular weight
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002360466A
Other languages
Japanese (ja)
Other versions
JP3983656B2 (en
Inventor
Hideyuki Emori
秀之 江守
Kazunari Yamamoto
一成 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2002360466A priority Critical patent/JP3983656B2/en
Publication of JP2004189918A publication Critical patent/JP2004189918A/en
Application granted granted Critical
Publication of JP3983656B2 publication Critical patent/JP3983656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To prepare a porous film which is excellent in permeability and mechanical properties and also excellent in a shut down function at a low temperature and in a resistance to a membrane rupture at a high temperature, and to provide a separator for a nonaqueous electrolyte battery comprising the porous film, and a nonaqueous electrolyte battery made by using the the separator. <P>SOLUTION: The porous film contains at least a crosslinked material which is obtained by crosslinking a polyolefin resin with styrene-butadiene copolymer whose at least 1% bouble bond is substituted with an epoxy group. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ポリオレフィン樹脂の架橋物を含有する多孔質フィルム、該多孔質フィルムからなる非水電解液電池用セパレータ、および該セパレータを用いてなる非水電解液電池に関する。
【0002】
【従来の技術】
近年、リチウムなどの軽金属を電極とする非水電解液電池は、エネルギー密度が高く自己放電も少ないため、電子機器の高性能化、小型化などを背景として利用範囲を大きく広げてきている。このような非水電解液電池の電極としては帯状の正極、負極、およびセパレータを積層し巻回して構成することにより、広い有効電極面積を確保した渦巻状巻回体が用いられている。
【0003】
セパレータは、基本的には両極の短絡を防止するとともに、その微多孔構造によりイオンを透過させて電池反応を可能とするものであるが、誤接続などにより異常電流が発生した場合に電池内部温度の上昇に伴い樹脂が熱変形して微多孔を塞ぎ電池反応を停止させる、いわゆるシャットダウン機能(SD機能)を有するものが安全性向上の観点から採用されている。このようなSD機能を有するセパレータは、例えば、ポリエチレン製多孔質膜やポリエチレンとポリプロピレンとの多層構造の多孔質膜などが知られている。
【0004】
しかしながら、昨今のリチウムイオン二次電池などの進歩により、上記シャットダウン機能のみならず、耐熱的な要素、すなわち、シャットダウン後にさらに温度が上昇した時に、セパレータ自身が溶融破膜(メルトダウン)、または可塑化され被断する状態がおこり得ることを考慮するとより高い温度で対応できることが望まれている。特に、高容量化された電池や電池内部抵抗の低減がすすむと、発熱が大きくなる要素が増すため、ますます重要である。
【0005】
上記問題に対してはシャットダウン温度と破膜温度の差が大きく、また、破膜温度が高いほど、高温特性が良好で安全性の高い電池用セパレータになりうると考えられる。例えば、低融点ポリエチレンと高融点のポリプロピレンからなる単膜を積層化することにより、高強度かつ優れた高温特性を有する微孔性多孔膜を得る方法が開示されている(例えば、特許文献1参照)。しかし、積層のためセパレータの内部抵抗が高くなり、高出力用途など高性能電池に対するセパレータとしては不向きである。また、低分子量ポリエチレンとポリプロピレンを含有した高分子量ポリエチレン組成物からなる多孔質膜を得る方法が開示されている(例えば、特許文献2参照)。しかし、急激に温度が上昇する場合には大部分を占めるポリエチレン素材が容易に溶融するため破断しやすくなり危険性が大きくなる。
【0006】
そこで、高出力用途など高性能電池に対応すべく、従来のポリプロピレン含有セパレータを越える耐熱性が有する多孔質フィルムとして、架橋構造を有するポリオレフィン系の多孔質フィルムが提案されている。例えば、ポリオレフィンとポリイソプレンとが架橋してなる架橋物を含有する多孔質フィルムが知られており、これによって高い耐熱性を有する点が開示されている(例えば、特許文献3参照)。
【0007】
【特許文献1】
特開昭63−308866号公報(第1頁)
【特許文献2】
特開平10−298325号公報(第1頁)
【特許文献3】
特開2002−164033号公報(第1頁)
【0008】
【発明が解決しようとする課題】
しかしながら、ポリイソプレン等のジエン系ポリマーを用いて多孔質フィルムを製膜する場合、樹脂の溶解・混練時において他の樹脂成分等との分散性が良好とは言えず、得られた多孔質フィルムの透過性能や機械的強度などの諸特性の制御が行いにくかった。また、架橋後の多孔質フィルムの空気中(酸素存在下)での高温処理条件下での耐酸化分解性などについても改善の余地があった。
【0009】
そこで、本発明の目的は、透過性能および機械的強度に優れると共に、低温でのシャットダウン機能と高温での耐破膜性に優れる多孔質フィルム、該多孔質フィルムからなる非水電解液電池用セパレータ、および該セパレータを用いてなる非水電解液電池を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく、ポリオレフィン樹脂と架橋させる成分について鋭意研究したところ、二重結合部分がエポキシ基で置換されたスチレンブタジエン共重合体を用いることによって、上記目的が達成できることを見出し、本発明を完成するに至った。
【0011】
即ち、本発明の多孔質フィルムは、少なくともポリオレフィン樹脂と、二重結合部分が1%以上エポキシ基に置換されたスチレンブタジエン共重合体とが架橋してなる架橋物を含有することを特徴とする。本発明によると、架橋成分であるジエン系ポリマーとしてエポキシ化されたスチレンブタジエン共重合体を用いるため、実施例の結果が示すように、架橋による耐熱性の向上とシャットダウン機能の発現を両立させることができる。また、スチレンブタジエン共重合体の二重結合部分が1%以上エポキシ基に置換されているため、他の樹脂成分等との分散性が良好となるので、透過性能および機械的強度が優れ、しかも、酸素存在下での高温処理条件下での耐酸化分解性も良好になる。
【0012】
上記において、更に、重量平均分子量50万以下のポリオレフィン類、前記スチレンブタジエン共重合体以外の熱可塑性エラストマー、及びポリオレフィン鎖を有するグラフトコポリマーからなる群より選ばれる1種以上を1〜50重量%含有することが好ましい。その場合、これらの成分によってより低温でシャットダウン機能を発現させることができるようになる。
【0013】
また、架橋される前記ポリオレフィン樹脂が、重量平均分子量50万を越える超高分子量ポリオレフィン樹脂であることが好ましい。超高分子量ポリオレフィン樹脂を使用することで、分子配向や分子鎖の絡み合いが良好になって膜強度が上昇し、架橋反応もより好適に行うことができる。
【0014】
一方、本発明の電池用セパレータは、上記の如き多孔質フィルムからなるため、透過性能および機械的強度に優れると共に、低温でのシャットダウン機能と高温での耐破膜性に優れ、特に高性能電池に好適に使用することができる。
【0015】
従って、このような電池用セパレータを用いた本発明の非水電解液電池は、特に安全性に優れた高性能電池とすることができ、様々な大きさや用途の非水電解液電池を提供することができる。
【0016】
【発明の実施の形態】
本発明の多孔質フィルムは、少なくともポリオレフィン樹脂と、エポキシ化スチレンブタジエン共重合体とが架橋してなる架橋物を含有する。この架橋物は延伸配向された状態で架橋してなるものが好ましい。延伸配向により高強度、高弾性率になると共に、架橋構造により耐熱性が良好になる。当該架橋物は、例えばポリオレフィンと前記共重合体とを含有する樹脂組成物よりなる延伸配向多孔質体を、酸素、オゾン、酸素化合物等の存在下で加熱架橋すること等で得ることができる。このため、本発明における多孔質フィルムには、部分的に残存するポリオレフィンや前記共重合体などを同時に含有してもよい。
【0017】
また、架橋物の構成成分は上記の成分に限らず、他の成分が更に含まれていてもよい。例えば、前記共重合体のジエン系ポリマーとして、ポリブタジエン、ポリノルボルネン、ポリイソプレンなどを含んでいてもよい。
【0018】
上記のポリオレフィン樹脂としては、好ましくは重量平均分子量が50万以上の高分子量ポリオレフィンであり、例えば、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン等を重合した単独重合体、共重合体、及びこれらのブレンド物等が挙げられる。中でも機械的強度に優れ、高い結晶性が得られる高分子量ポリエチレンが素材として望ましい。該高分子量ポリオレフィンの重量平均分子量としては、さらに100万以上の超高分子量のものが好ましく、150万以上がより好ましい。
【0019】
ポリオレフィン樹脂の含有量は、製膜した膜の強度や他の成分とのバランスを考慮すると、多孔質フィルム中に5〜98重量%が好ましく、より好ましくは10〜90重量%である。
【0020】
前記のスチレンブタジエン共重合体は、二重結合部分が1%以上エポキシ基に置換されたものであり、二重結合部分が1〜50%エポキシ基に置換されたものが好ましく、二重結合部分が5〜20%エポキシ基に置換されたものがより好ましい。エポキシ基への置換量が小さすぎると、エポキシ基を含有することによる弾性率の向上効果が小さくなる傾向があり、エポキシ基への置換量が大きすぎると、架橋の程度が減少し耐熱性の向上効果が小さくなる傾向がある。
【0021】
かかるスチレンブタジエン共重合体のスチレン含量は、二重結合の量などを考慮して、20〜80重量%が好ましく、20〜60重量%がより好ましい。また、スチレンブタジエン共重合体の重量平均分子量は、例えば1万〜50万が使用できる。スチレンブタジエン共重合体は、ランダム共重合体、ブロック共重合体、グラフト共重合体など何れのタイプの共重合体でもよいが、架橋による耐熱性の向上とシャットダウン機能の発現を両立させ、混練時における分散性を向上させる観点より、ブロック共重合体、特にSBS型のブロック共重合体が好ましい。また、ブタジエンによる繰り返し単位もシス型、トランス型、或いは1,4−結合、1,2−結合など、何れの構造でもよい。
【0022】
エポキシ基に置換されたスチレンブタジエン共重合体は、各種市販品が使用でき、また、スチレンブタジエン共重合体の二重結合を常法によってエポキシ基に置換して得られたもの等をいずれも使用することができる。
【0023】
前記のスチレンブタジエン共重合体の含有量は、得られる多孔質フィルムの耐熱性や電池用セパレータとしての多孔質フィルムの特性を維持する観点から、多孔質フィルム中に1〜50重量%が好ましく、より好ましくは1〜40重量%であり、更に好ましくは1〜35重量%である。
【0024】
また、本発明の多孔質フィルムには、更に、重量平均分子量50万以下のポリオレフィン類、前記スチレンブタジエン共重合体以外の熱可塑性エラストマー、及びポリオレフィン鎖を有するグラフトコポリマーからなる群より選ばれる1種以上を含有してもよく、その場合、その含有量が多孔質フィルム中に1〜50重量%であることが好ましい。
【0025】
重量平均分子量50万以下のポリオレフィン類としては、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、エチレン−アクリルモノマー共重合体、エチレン−酢酸ビニル共重合体などの変性ポリオレフィン樹脂等があげられる。
【0026】
熱可塑性エラストマーとしてはポリスチレン系やポリオレフィン系、ポリジエン系、塩ビ系、ポリエステル系などの熱可塑性エラストマーがあげられる。これら熱可塑性エラストマーのうち、二重結合を有するものを使用して、前記架橋物を構成する成分としてもよい。
【0027】
グラフトコポリマーとしては、ポリオレフィン鎖を有するものであればよく、例えば主鎖にポリオレフィン、側鎖にこれとは非相溶性のビニル系ポリマー等を有するグラフトコポリマー等があげられる。グラフト成分としては、ポリアクリル類、ポリメタクリル類、ポリスチレン、ポリアクリロニトリル、ポリオキシアルキレン類が好ましい。
【0028】
これらの中でも重量平均分子量50万以下のポリオレフィン樹脂、特に低融点性のあるポリエチレンや、結晶性を有するポリオレフィン系エラストマー、溶融温度の低いポリメタクリル類を側鎖に有するグラフトコポリマーなどが、低いシャットダウン温度をもたらす点で好ましい。
【0029】
上記の樹脂成分の配合量は、多孔質フィルム中に1〜60重量%の範囲が好ましく、5〜45重量%がより好ましく、5〜40重量%が更に好ましい。該配合量の下限は、十分なSD温度を得る観点から、1重量%以上であり、また、その上限は、十分な空孔率を有し、電池用セパレータとしての多孔質フィルムの特性を維持する観点から、60重量%以下である。
【0030】
次に、本発明による多孔質フィルムの製造方法について説明する。本発明による多孔質フィルムの製造には、乾式製膜法、湿式製膜法など公知の方法を利用することができる。例えば、前記成分を含む樹脂組成物を溶媒と混合し、混練、加熱溶融した後、冷却してゲル化(固化)させシート状に成形した後、圧延し、一軸方向以上に延伸し、溶媒を加熱除去することにより製造することができる。
【0031】
該溶媒としては、例えば、ノナン、デカン、ウンデカン、ドデカン、デカリン、流動パラフィンなどの脂肪族または環式の炭化水素、沸点がこれらに対応する鉱油留分などがあげられ、流動パラフィンなどの脂環式炭化水素を多く含む不揮発性溶媒が好ましい。
【0032】
また、混合物中の樹脂成分の配合量は混合物中の5〜30重量%が好ましく、10〜30重量%がより好ましく、10〜25重量%がさらに好ましい。樹脂成分の配合量は、得られる多孔質フィルムの強度を向上させる観点から、5重量%以上が好ましく、また、ポリオレフィンを十分に溶媒に溶解させて、伸び切り状態近くまで混練することができ、ポリマー鎖の十分な絡み合いを得られる観点から、30重量%以下が好ましい。なお、前記混合物には、必要に応じて、酸化防止剤、紫外線吸収剤、染料、造核剤、顔料、帯電防止剤の添加剤を、本発明の目的を損なわない範囲で添加することが出来る。
【0033】
樹脂組成物と溶媒の混合物を混練りし、シート状に成形する工程は、公知の方法により行うことができ、バンバリーミキサー、ニーダーなどを用いてバッチ式で混練りし、ついで、冷却された金属板に挟み込み冷却して急冷結晶化によりシート状成形物にしてもよく、Tダイなどを取り付けた押出機などを用いてシート状成形物を得てもよい。なお、混練りは、適当な温度条件下であればよく、特に限定されないが、好ましくは100℃〜200℃である。
【0034】
このようにして得られるシート状成形物の厚みとしては、特に限定されないが、3〜20mmが好ましく、ヒートプレスなどの圧延処理により0.5〜3mmの厚みにしてもよい。また、冷却を行う場合、得られたシート状押出し物を0℃以下、より好ましくは−10℃以下に冷却することが好ましい。
【0035】
また、圧延処理の温度は100℃〜140℃が好ましい。前記シート状成形物の延伸処理の方式としては、特に限定されるものではなく、通常のテンター法、ロール法、インフレーション法またはこれらの方法の組み合わせであってもよく、また、一軸延伸、二軸延伸などのいずれの方式をも適用することができる。また、二軸延伸の場合は、縦横同時延伸または逐次延伸のいずれかでもよい。延伸処理の温度は、100℃〜140℃あることが好ましい。
【0036】
脱溶媒処理は、シート状成形物から溶媒を除去して微多孔構造を形成させる工程であり、例えば、シート状成形物を溶媒で洗浄して残留する溶媒を除去することにより行うことができる。溶媒としては、ペンタン、ヘキサン、ヘプタン、デカンなどの炭化水素、塩化メチレン、四塩化炭素などの塩素炭化水素、三フッ化エタンなどのフッ化炭化水素、ジエチルエーテル、ジオキサンなどのエーテル類、メタノール、エタノールなどのアルコール類、アセトン、メチルエチルケトンなどのケトン類などの易揮発性溶剤があげられ、これらは単独または2種以上を混合して用いることができる。かかる溶剤を用いた洗浄方法は特に限定されず、例えば、シート状成形物を溶剤中に浸漬して溶媒を抽出する方法、溶剤をシート状成形物にシャワーする方法などがあげられる。
【0037】
これらの公知の方法によって前記樹脂組成物を製膜して多孔質フィルムを得た後、収縮率抑制のため熱処理を行うのが好ましい。その際、一回で熱処理する一段式熱処理法でも、最初に低温でまず熱処理し、その後さらに高温での熱処理を行う多段式の熱処理法でもよく、あるいは昇温しながら熱処理する昇温式熱処理法でもよい。但し、通気度等の多孔質フィルムの元の諸特性を損なうことなく処理することが望ましい。一段式熱処理の場合には、多孔質フィルムの組成にもよるが、40℃〜140℃が好ましい。また、低温から熱処理を開始し、その後、処理温度を上げていくと、多孔質フィルムの硬化とともに耐熱性がしだいに向上していくので、加熱によって通気度等の元の諸特性を損なうことなく高温に暴露することができるようになる。そのため、諸特性を損なわずに、短時間で熱処理を完了するためには、多段式あるいは昇温式熱処理法が好ましい。
【0038】
多段式の熱処理法の最初の熱処理温度としては、多孔質フィルムの組成にもよるが、好ましくは40〜90℃、2段目の熱処理温度としては、多孔質フィルムの組成にもよるが、好ましくは90〜140℃である。
【0039】
より好ましくは、この熱処理工程ないしはその前後において、耐熱性向上のために、ポリスチレンブタジエンの二重結合部分あるいはエポキシ基部分の架橋を行う。その際には、熱、紫外線、電子線、酸あるいは塩基などよりなる群より選ばれる1種以上を用いる架橋処理を施し、ポリスチレンブタジエンの二重結合を全部または一部消失させる。これらの架橋処理を施すことによって、上記多孔質フィルムの高温での耐熱性(耐破膜性)がより大きく向上する。
【0040】
多孔質フィルムの厚みとしては1〜60μm、好ましくは5〜50μmが望ましい。その通気度としては100〜1000秒/100cc、好ましくは100〜900秒/100ccが望ましい。そのシャットダウン温度としては150℃以下、好ましくは145℃以下が望ましい。
【0041】
このような本発明による多孔質フィルムは低温シャットダウン効果と耐熱性に優れる非水電解液電池用セパレータとして、電池の様々な大きさや用途に対してより安全性を向上させることが期待できる。
【0042】
本発明の非水電解液電池としては、前記多孔質フィルムをセパレータとして用いてなるものであればよく、その構造、構成物質、および製造方法などについては通常の非水電解液電池およびその製造方法に用いられているものであれば特に限定はない。該非水電解液電池は、本発明の多孔質フィルムを用いるので安全性に優れたものである。
【0043】
【実施例】
以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、実施例等における評価項目は下記のようにして測定を行った。
【0044】
(フィルム厚・空孔率)
1/10000シックネスゲージおよび多孔質フィルムの断面の走査型電子顕微鏡により測定した。空孔率についてはフィルムの単位面積Sあたりの重さW、平均厚みt、密度dから下式により算出した値を使用した。
【0045】
[空孔率(%)]=(1−(104 ×W/S/t/d))×100
(通気度)
JIS P8117に準拠して測定した。
【0046】
(面積収縮率)
60mmφに切り取った膜を、イメージスキャナにて144dpiで読みとり、面積を画素数に変換してブランク値とした。次に同膜を120℃×1時間垣温乾燥機中に保持し、取りだし後イメージスキャナにて144dpiで読みとり、面積を画素数に変換して熱処理後の値とした。ブランクおよび熱処理後の面積画素数から、次式によって面積収縮率R(%)を求めた。
【0047】
R(%)=100×(P0−P1)/P0 (P0:収縮前画素数,P1:収縮後画素数)
(シャットダウン温度及びメルトダウン温度)
25mmφの筒状の試験室を有し、試験室が密閉可能なSUS製のセルを用い、下部電極はφ20mm、上部電極は10mmφの白金板(厚さ1.0mm)を使用した。24mmφに打ち抜いた測定試料を電解液に浸漬して電解液を含浸し、電極間に挟み、セルにセットした。電極はセルに設けられたばねにて一定の面圧がかかるようにした。電解液はプロピレンカーボネートとジメトキシエタンを容量比で1:1の割合で混合した溶媒に、ホウフッ化リチウムを1.0mol/lの濃度になるように溶解したものを用いた。このセルに熱伝対温度計と、抵抗計を接続して温度と抵抗を測定できるようにし、180℃恒温器中へ投入し、温度と抵抗を測定した。100〜150℃の平均昇温速度は10℃/分であった。この測定により、抵抗が100Ω・cm2 に達した時の温度をシャットダウン温度とした。
【0048】
また、抵抗上昇後、恒温機設定温度を変えて最高220℃まで昇温し、温度と抵抗の測定を行った。150−220℃での平均昇温速度は5℃/分であった。この測定により、抵抗値が再び100Ω・cm2 以下に低下したときの温度をメルトダウン温度とした。また、220℃まで抵抗値の低下が見られないときは、「破膜せず」とした。
【0049】
(TMA熱破膜温度)
TMAの針侵入モードにおいて、同モード用のモジュール(0.5mmφ)を用いて、サンプルは5mm角に切り抜き、セイコー電子製の熱応力歪分析装置TMA/SS300にセットして、昇温速度毎分2℃で昇温した。この昇温時の状態より評価し、モジュールの変位がサンプル厚み方向に変化し、サンプル厚みの数値を超える時を破膜したと判断した。また、その際の温度をTMA熱破膜温度とした。
【0050】
(架橋構造の確認)
IRスペクトル中のC=C二重結合に由来する吸収ピーク(967cm-1)の消失の程度を確認した。また、10mm角の試料を金属メッシュに挟んで熱キシレン(139〜145℃)中で溶解させ、残存する成分の比率をゲル分率として測定し、熱処理前の多孔質フィルムのゲル分率(通常は0%)と比較した。
【0051】
実施例1−1
エポキシ化ポリスチレンブタジエン(ダイセル化学工業製、エポフレンドA−1005、スチレン含量40重量%、オキシラン酸素濃度0.8重量%、二重結合が5%エポキシ化)を5重量%、オレフィン系熱可塑性エラストマー(軟化温度102℃,住友化学製TPE821)15重量%、重量平均分子量200万の超高分子量ポリエチレン80重量%からなる重合体組成物15重量部と流動パラフィン85重量部とをスラリー状に均一に混合し、160℃の温度で小型ニーダーを用い約60分溶解混練りした。その後これらの混練物を0℃に冷却された金属板に挟み込みシート状に急冷した。これらの急冷シート状樹脂を、115℃の温度でシート厚が0.4〜0.5mmになるまでヒートプレスし、さらに同シート厚みを維持したまま20℃でプレス成型を行った。次に120℃の温度、10mm/secの速度で同時に縦横4.0×4.0倍に二軸延伸し、ヘプタンを使用して脱溶媒処理を行った。その後、得られた多孔質フィルムを空気中で85℃×12時間熱処理し、ついで116℃で12時間熱処理して、本発明による多孔質フィルムを得た。この多孔質フィルムはIRとゲル分率との測定から架橋構造が確認された。
【0052】
実施例1−2
エポキシ化ポリスチレンブタジエンとしてエポフレンドA−1020(ダイセル化学工業製、スチレン含量40重量%、オキシラン酸素濃度3.2重量%、二重結合が約20%エポキシ化)を5重量%用いた以外は実施例1−1と同様に、オレフィン系熱可塑性エラストマー(軟化温度102℃)(住友化学製TPE821)15重量%、重量平均分子量200万の超高分子量ポリエチレン80重量%からなる重合体組成物15重量部と流動パラフィン85重量部から製膜を行い、本発明による多孔質フィルムを得た。この多孔質フィルムはIRとゲル分率との測定から架橋構造が確認された。
【0053】
実施例2
エポキシ化ポリスチレンブタジエン(エポフレンドA−1005)を9重量%、重量平均分子量30万のポリエチレン39重量%、重量平均分子量200万の超高分子量ポリエチレン重量52%からなる重合体組成物15重量部と流動パラフィン85重量部から、実施例1−1同様に製膜を行い、本発明による多孔質フィルムを得た。この多孔質フィルムはIRとゲル分率との測定から架橋構造が確認された。
【0054】
実施例3
エポキシ化ポリスチレンブタジエン(エポフレンドA−1005)を17重量%、重量平均分子量200万の超高分子量ポリエチレン83重量%からなる重合体組成物15重量部と流動パラフィン85重量部から、実施例1−1同様に製膜を行い、本発明による多孔質フィルムを得た。この多孔質フィルムはIRとゲル分率との測定から架橋構造が確認された。
【0055】
比較例1
オレフィン系熱可塑性エラストマー(軟化温度102℃,住友化学製TPE821)17重量%、重量平均分子量200万の超高分子量ポリエチレン83重量%からなる重合体組成物15重量部(エポキシ化ポリスチレンブタジエンを除けば実施例1−1、1−2と同様の組成比)と流動パラフィン85重量部を用いた以外は実施例1−1と同様に製膜し、多孔質フィルムを得た。
【0056】
比較例2
重量平均分子量30万のポリエチレン40重量%と重量平均分子量200万の超高分子量ポリエチレン60重量%からなる重合体組成物15重量部(エポキシ化ポリスチレンブタジエンを除けば実施例2と同様の組成比)と流動パラフィン85重量部を用いた以外は実施例1−1と同様に製膜し、得られた多孔質フィルムを空気中で116℃で12時間熱処理して、多孔質フィルムを得た。
【0057】
比較例3
重量平均分子量200万の超高分子量ポリエチレン15重量部(エポキシ化ポリスチレンブタジエンを除けば実施例3と同様の組成比)と流動パラフィン85重量部を用いた以外は実施例1−1と同様に製膜し、得られた多孔質フィルムを空気中で130℃で2時間熱処理して、多孔質フィルムを得た。
【0058】
比較例4
実施例1−1において、エポキシ化ポリスチレンブタジエンの代わりにポリイソプレンを同重量使用すること以外は、実施例3と同様に製膜し、得られた多孔質フィルムを空気中で116℃で12時間熱処理して、多孔質フィルムを得た。この多孔質フィルムはIRとゲル分率との測定から架橋構造が確認された。
【0059】
実施例、比較例で得られたセパレータの特性を表1及び表2に示す。
【0060】
【表1】

Figure 2004189918
【表2】
Figure 2004189918
表1及び表2の結果が示すように、実施例1−1〜3の多孔質フィルムは、気体透過性能に優れるとともに、低温でのシャットダウン機能と高温での耐熱破膜性(メルトダウン温度、TMA熱破膜温度)に優れたものである。比較例4で得られた多孔質フィルムは、架橋構造を有するため耐熱性が改善されているものの、酸化劣化による影響のためTMA熱破膜温度が実施例より低い値であった。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a porous film containing a crosslinked product of a polyolefin resin, a separator for a non-aqueous electrolyte battery comprising the porous film, and a non-aqueous electrolyte battery using the separator.
[0002]
[Prior art]
In recent years, non-aqueous electrolyte batteries using a light metal such as lithium as an electrode have a high energy density and low self-discharge, and thus have been widely used in the background of high performance and miniaturization of electronic devices. As an electrode of such a non-aqueous electrolyte battery, a spiral wound body having a wide effective electrode area secured by laminating and winding a strip-shaped positive electrode, a negative electrode, and a separator is used.
[0003]
The separator basically prevents both electrodes from short-circuiting and allows the battery to react by allowing its ions to permeate through its microporous structure. A resin having a so-called shut-down function (SD function) for thermally deforming the resin and closing the micropores to stop the battery reaction with the rise of the temperature is adopted from the viewpoint of improving safety. As the separator having such an SD function, for example, a porous film made of polyethylene or a multilayered film of polyethylene and polypropylene is known.
[0004]
However, due to recent advances in lithium ion secondary batteries and the like, not only the above-mentioned shutdown function, but also a heat-resistant element, that is, when the temperature further rises after the shutdown, the separator itself melts and ruptures (melt down) or plasticizes. In view of the possibility of a state of being cut and cut, it is desired to be able to cope with a higher temperature. In particular, when the capacity of the battery is increased or the internal resistance of the battery is reduced, the amount of heat generation increases, which is more important.
[0005]
In view of the above problems, it is considered that the difference between the shutdown temperature and the film-breaking temperature is large, and that the higher the film-breaking temperature, the better the high-temperature characteristics and the higher the safety of the battery separator. For example, there is disclosed a method of obtaining a microporous porous film having high strength and excellent high-temperature characteristics by laminating a single film made of low-melting polyethylene and high-melting polypropylene (for example, see Patent Document 1). ). However, due to the lamination, the internal resistance of the separator is increased, and it is not suitable as a separator for a high-performance battery such as a high-output battery. In addition, a method for obtaining a porous film made of a high-molecular-weight polyethylene composition containing low-molecular-weight polyethylene and polypropylene is disclosed (for example, see Patent Document 2). However, when the temperature rises abruptly, most of the polyethylene material is easily melted, so that the polyethylene material is easily broken and the danger increases.
[0006]
In order to cope with high-performance batteries such as high-power applications, a polyolefin-based porous film having a crosslinked structure has been proposed as a porous film having heat resistance exceeding that of a conventional polypropylene-containing separator. For example, a porous film containing a crosslinked product obtained by crosslinking a polyolefin and polyisoprene is known, and it is disclosed that the film has high heat resistance (for example, see Patent Document 3).
[0007]
[Patent Document 1]
JP-A-63-308866 (page 1)
[Patent Document 2]
JP-A-10-298325 (page 1)
[Patent Document 3]
JP-A-2002-164033 (page 1)
[0008]
[Problems to be solved by the invention]
However, when a porous film is formed using a diene-based polymer such as polyisoprene, the dispersibility with other resin components and the like during dissolution and kneading of the resin cannot be said to be good, and the obtained porous film is It was difficult to control various properties such as permeation performance and mechanical strength. There is also room for improvement in the oxidation resistance of the crosslinked porous film under high temperature treatment conditions in air (in the presence of oxygen).
[0009]
Therefore, an object of the present invention is to provide a porous film having excellent permeation performance and mechanical strength, a shutdown function at a low temperature, and excellent resistance to film rupture at a high temperature, and a separator for a non-aqueous electrolyte battery comprising the porous film. And a non-aqueous electrolyte battery using the separator.
[0010]
[Means for Solving the Problems]
Means for Solving the ProblemsThe present inventors have intensively studied a component to be crosslinked with a polyolefin resin in order to achieve the above object, and have achieved the above object by using a styrene butadiene copolymer in which a double bond portion is substituted with an epoxy group. They have found that they can do this and have completed the present invention.
[0011]
That is, the porous film of the present invention contains a crosslinked product obtained by crosslinking at least a polyolefin resin and a styrene-butadiene copolymer in which a double bond portion is substituted by 1% or more of an epoxy group. . According to the present invention, since an epoxidized styrene-butadiene copolymer is used as a diene-based polymer as a cross-linking component, as shown in the results of the examples, it is necessary to achieve both improvement in heat resistance due to cross-linking and expression of a shutdown function. Can be. Further, since the styrene-butadiene copolymer has a double bond portion substituted by 1% or more of an epoxy group, the dispersibility with other resin components and the like becomes good, so that the permeability and the mechanical strength are excellent, and Also, the oxidation resistance under high-temperature treatment conditions in the presence of oxygen is improved.
[0012]
In the above, it further contains 1 to 50% by weight of at least one selected from the group consisting of polyolefins having a weight average molecular weight of 500,000 or less, thermoplastic elastomers other than the styrene-butadiene copolymer, and graft copolymers having polyolefin chains. Is preferred. In this case, the shutdown function can be developed at a lower temperature by these components.
[0013]
Further, it is preferable that the polyolefin resin to be crosslinked is an ultrahigh molecular weight polyolefin resin having a weight average molecular weight exceeding 500,000. By using the ultrahigh molecular weight polyolefin resin, the molecular orientation and the entanglement of the molecular chains are improved, the film strength is increased, and the crosslinking reaction can be more suitably performed.
[0014]
On the other hand, the battery separator of the present invention is made of the porous film as described above, so that it has excellent permeability and mechanical strength, and also has an excellent low-temperature shutdown function and high-temperature film rupture resistance. Can be suitably used.
[0015]
Therefore, the non-aqueous electrolyte battery of the present invention using such a battery separator can be a high-performance battery particularly excellent in safety, and provides non-aqueous electrolyte batteries of various sizes and uses. be able to.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The porous film of the present invention contains at least a crosslinked product obtained by crosslinking a polyolefin resin and an epoxidized styrene-butadiene copolymer. The crosslinked product is preferably one obtained by crosslinking in a stretched state. The stretch orientation results in high strength and high elastic modulus, and the crosslinked structure improves heat resistance. The crosslinked product can be obtained, for example, by heat-crosslinking a stretch-oriented porous body made of a resin composition containing a polyolefin and the copolymer in the presence of oxygen, ozone, an oxygen compound, or the like. For this reason, the porous film in the present invention may simultaneously contain partially remaining polyolefin, the copolymer, and the like.
[0017]
Further, the constituent components of the crosslinked product are not limited to the above components, and other components may be further included. For example, polybutadiene, polynorbornene, polyisoprene, and the like may be included as the diene-based polymer of the copolymer.
[0018]
The polyolefin resin is preferably a high-molecular-weight polyolefin having a weight average molecular weight of 500,000 or more. For example, a single polymer obtained by polymerizing ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, or the like. Examples include coalesced copolymers and blends thereof. Among them, high molecular weight polyethylene which is excellent in mechanical strength and can obtain high crystallinity is preferable as the material. The weight average molecular weight of the high molecular weight polyolefin is preferably an ultrahigh molecular weight of 1,000,000 or more, more preferably 1.5 million or more.
[0019]
The content of the polyolefin resin is preferably 5 to 98% by weight, more preferably 10 to 90% by weight in the porous film in consideration of the strength of the formed film and the balance with other components.
[0020]
The styrene-butadiene copolymer has a double bond portion substituted with an epoxy group of 1% or more, and preferably has a double bond portion substituted with 1 to 50% epoxy group. Are more preferably substituted with 5 to 20% epoxy groups. If the substitution amount to the epoxy group is too small, the effect of improving the elastic modulus by containing the epoxy group tends to be small, and if the substitution amount to the epoxy group is too large, the degree of crosslinking is reduced and the heat resistance is reduced. The improvement effect tends to be small.
[0021]
The styrene content of such a styrene-butadiene copolymer is preferably from 20 to 80% by weight, more preferably from 20 to 60% by weight, in consideration of the amount of double bonds and the like. The weight average molecular weight of the styrene-butadiene copolymer can be, for example, 10,000 to 500,000. The styrene-butadiene copolymer may be any type of copolymer such as a random copolymer, a block copolymer, and a graft copolymer. From the viewpoint of improving the dispersibility in the above, a block copolymer, particularly an SBS type block copolymer is preferred. The repeating unit of butadiene may have any structure such as a cis type, a trans type, a 1,4-bond, and a 1,2-bond.
[0022]
Various commercially available styrene-butadiene copolymers substituted with an epoxy group can be used, and those obtained by substituting a double bond of a styrene-butadiene copolymer with an epoxy group by an ordinary method can be used. can do.
[0023]
The content of the styrene-butadiene copolymer is preferably 1 to 50% by weight in the porous film from the viewpoint of maintaining the heat resistance of the obtained porous film and the properties of the porous film as a battery separator. It is more preferably 1 to 40% by weight, and still more preferably 1 to 35% by weight.
[0024]
Further, the porous film of the present invention further comprises a polyolefin having a weight average molecular weight of 500,000 or less, a thermoplastic elastomer other than the styrene-butadiene copolymer, and a graft copolymer having a polyolefin chain. The above may be contained, and in that case, the content is preferably 1 to 50% by weight in the porous film.
[0025]
Examples of the polyolefin having a weight average molecular weight of 500,000 or less include polyolefin resins such as polyethylene and polypropylene, and modified polyolefin resins such as ethylene-acryl monomer copolymer and ethylene-vinyl acetate copolymer.
[0026]
Examples of the thermoplastic elastomer include polystyrene-based, polyolefin-based, polydiene-based, PVC-based, and polyester-based thermoplastic elastomers. Of these thermoplastic elastomers, those having a double bond may be used as a component constituting the crosslinked product.
[0027]
The graft copolymer may be any one having a polyolefin chain, such as a graft copolymer having a polyolefin in the main chain and a vinyl polymer incompatible with the side chain. As the graft component, polyacryls, polymethacryls, polystyrene, polyacrylonitrile, and polyoxyalkylenes are preferable.
[0028]
Among these, polyolefin resins having a weight-average molecular weight of 500,000 or less, particularly polyethylene having a low melting point, polyolefin-based elastomers having crystallinity, graft copolymers having a low melting temperature of polymethacryls in the side chain, and the like, have a low shutdown temperature. Is preferred in that
[0029]
The amount of the resin component is preferably in the range of 1 to 60% by weight, more preferably 5 to 45% by weight, and still more preferably 5 to 40% by weight in the porous film. The lower limit of the amount is 1% by weight or more from the viewpoint of obtaining a sufficient SD temperature, and the upper limit thereof has a sufficient porosity and maintains the characteristics of the porous film as a battery separator. From the viewpoint of performing, it is 60% by weight or less.
[0030]
Next, a method for producing a porous film according to the present invention will be described. Known methods such as a dry film forming method and a wet film forming method can be used for the production of the porous film according to the present invention. For example, a resin composition containing the above components is mixed with a solvent, kneaded, heated and melted, cooled, gelled (solidified), formed into a sheet, rolled, stretched in one or more axial directions, and the solvent is removed. It can be manufactured by removing by heating.
[0031]
Examples of the solvent include aliphatic or cyclic hydrocarbons such as nonane, decane, undecane, dodecane, decalin, and liquid paraffin, and mineral oil fractions whose boiling points correspond to these, and alicycles such as liquid paraffin. Non-volatile solvents rich in formula hydrocarbons are preferred.
[0032]
The amount of the resin component in the mixture is preferably 5 to 30% by weight, more preferably 10 to 30% by weight, and even more preferably 10 to 25% by weight in the mixture. From the viewpoint of improving the strength of the obtained porous film, the compounding amount of the resin component is preferably 5% by weight or more, and the polyolefin can be sufficiently dissolved in a solvent and kneaded to near the stretched state, From the viewpoint of obtaining sufficient entanglement of the polymer chains, the content is preferably 30% by weight or less. In addition, if necessary, an antioxidant, an ultraviolet absorber, a dye, a nucleating agent, a pigment, and an additive of an antistatic agent can be added to the mixture as long as the object of the present invention is not impaired. .
[0033]
The step of kneading the mixture of the resin composition and the solvent and shaping the mixture into a sheet shape can be performed by a known method, and kneading is performed in a batch manner using a Banbury mixer, a kneader, or the like, and then, the cooled metal It may be sandwiched between plates and cooled to form a sheet-like molded product by rapid crystallization, or a sheet-like molded product may be obtained using an extruder equipped with a T-die or the like. The kneading may be performed under appropriate temperature conditions, and is not particularly limited, but is preferably performed at 100 ° C to 200 ° C.
[0034]
The thickness of the sheet-like molded product thus obtained is not particularly limited, but is preferably 3 to 20 mm, and may be 0.5 to 3 mm by a rolling process such as a heat press. In the case of cooling, it is preferable to cool the obtained sheet-like extruded product to 0 ° C or lower, more preferably to -10 ° C or lower.
[0035]
Further, the temperature of the rolling treatment is preferably 100 ° C to 140 ° C. The method of stretching the sheet-like molded product is not particularly limited, and may be a normal tenter method, a roll method, an inflation method or a combination of these methods, and may be uniaxial stretching, biaxial stretching, or biaxial stretching. Any method such as stretching can be applied. In the case of biaxial stretching, either vertical or horizontal simultaneous stretching or sequential stretching may be used. The temperature of the stretching treatment is preferably from 100C to 140C.
[0036]
The desolvation treatment is a step of forming a microporous structure by removing the solvent from the sheet-like molded product, and can be performed, for example, by washing the sheet-like molded product with a solvent to remove the residual solvent. As the solvent, pentane, hexane, heptane, hydrocarbons such as decane, methylene chloride, chlorine hydrocarbons such as carbon tetrachloride, fluorinated hydrocarbons such as ethane trifluoride, ethers such as diethyl ether, dioxane, methanol, Examples include volatile solvents such as alcohols such as ethanol, ketones such as acetone and methyl ethyl ketone, and these can be used alone or in combination of two or more. The washing method using such a solvent is not particularly limited, and examples thereof include a method of immersing a sheet-like molded product in a solvent to extract the solvent, and a method of showering the solvent on the sheet-like molded product.
[0037]
After forming the resin composition into a film by a known method to obtain a porous film, it is preferable to perform a heat treatment to suppress the shrinkage. At this time, a one-stage heat treatment method in which heat treatment is performed once, a multi-step heat treatment method in which heat treatment is first performed at a low temperature and then a heat treatment at a higher temperature may be performed, or a temperature-rise heat treatment method in which heat treatment is performed while increasing the temperature May be. However, it is desirable to carry out the treatment without impairing the original properties of the porous film such as the air permeability. In the case of the single-stage heat treatment, the temperature is preferably from 40 ° C to 140 ° C, although it depends on the composition of the porous film. In addition, starting the heat treatment from a low temperature, and then increasing the processing temperature, the heat resistance gradually increases with the curing of the porous film, so that heating does not impair the original properties such as air permeability. Exposure to high temperatures becomes possible. Therefore, in order to complete the heat treatment in a short time without deteriorating various characteristics, a multi-stage or elevated temperature heat treatment is preferable.
[0038]
The first heat treatment temperature in the multi-stage heat treatment method depends on the composition of the porous film, but is preferably 40 to 90 ° C., and the second heat treatment temperature preferably depends on the composition of the porous film. Is 90 to 140 ° C.
[0039]
More preferably, before or after this heat treatment step, a double bond portion or an epoxy group portion of polystyrene butadiene is crosslinked to improve heat resistance. At that time, a cross-linking treatment using at least one selected from the group consisting of heat, ultraviolet rays, electron beams, acids and bases is performed to completely or partially eliminate the double bonds of polystyrene butadiene. By performing these crosslinking treatments, the heat resistance at high temperatures (film rupture resistance) of the porous film is further improved.
[0040]
The thickness of the porous film is desirably 1 to 60 μm, preferably 5 to 50 μm. The air permeability is desirably 100 to 1000 seconds / 100 cc, preferably 100 to 900 seconds / 100 cc. The shutdown temperature is desirably 150 ° C. or lower, preferably 145 ° C. or lower.
[0041]
Such a porous film according to the present invention can be expected as a separator for a non-aqueous electrolyte battery having excellent low-temperature shutdown effect and heat resistance, to further improve safety for various sizes and applications of the battery.
[0042]
The non-aqueous electrolyte battery of the present invention may be any one which uses the porous film as a separator, and its structure, constituent materials, manufacturing method and the like are ordinary non-aqueous electrolyte battery and its manufacturing method. There is no particular limitation as long as it is used in the above. Since the nonaqueous electrolyte battery uses the porous film of the present invention, it is excellent in safety.
[0043]
【Example】
Hereinafter, examples and the like that specifically show the configuration and effects of the present invention will be described. The evaluation items in Examples and the like were measured as follows.
[0044]
(Film thickness / porosity)
The cross section of the porous film was measured by a scanning electron microscope with a 1/10000 thickness gauge. As the porosity, a value calculated from the weight W per unit area S of the film, the average thickness t, and the density d by the following equation was used.
[0045]
[Porosity (%)] = (1− (10 4 × W / S / t / d)) × 100
(Air permeability)
It was measured according to JIS P8117.
[0046]
(Area shrinkage)
The film cut to 60 mmφ was read at 144 dpi with an image scanner, and the area was converted to the number of pixels to obtain a blank value. Next, the same film was held in a fence temperature dryer at 120 ° C. × 1 hour, taken out, read with an image scanner at 144 dpi, and the area was converted into the number of pixels to obtain a value after heat treatment. The area shrinkage R (%) was determined from the blank and the number of area pixels after the heat treatment by the following equation.
[0047]
R (%) = 100 × (P0−P1) / P0 (P0: number of pixels before contraction, P1: number of pixels after contraction)
(Shutdown temperature and meltdown temperature)
A SUS cell having a cylindrical test chamber of 25 mmφ and capable of sealing the test chamber was used, and a lower electrode was a φ20 mm, and an upper electrode was a 10 mmφ platinum plate (1.0 mm thick). A measurement sample punched to 24 mmφ was immersed in an electrolyte to impregnate the electrolyte, sandwiched between electrodes, and set in a cell. The electrode was made to apply a constant surface pressure by a spring provided in the cell. As the electrolytic solution, a solution obtained by dissolving lithium borofluoride in a solvent obtained by mixing propylene carbonate and dimethoxyethane at a volume ratio of 1: 1 so as to have a concentration of 1.0 mol / l was used. A thermocouple thermometer and a resistance meter were connected to this cell so that temperature and resistance could be measured, and the cell was placed in a thermostat at 180 ° C. to measure temperature and resistance. The average rate of temperature rise from 100 to 150 ° C was 10 ° C / min. Based on this measurement, the temperature when the resistance reached 100 Ω · cm 2 was taken as the shutdown temperature.
[0048]
After the resistance was increased, the temperature was set to a maximum of 220 ° C. by changing the set temperature of the thermostat, and the temperature and the resistance were measured. The average rate of temperature rise at 150-220 ° C was 5 ° C / min. By this measurement, the temperature at which the resistance value dropped to 100 Ω · cm 2 or less again was defined as the meltdown temperature. When no decrease in the resistance value was observed up to 220 ° C., “No film breakage” was determined.
[0049]
(TMA thermal rupture temperature)
In the needle penetration mode of TMA, a sample is cut into 5 mm square using a module (0.5 mmφ) for the same mode, and is set in a thermal stress / strain analyzer TMA / SS300 manufactured by Seiko Denshi. The temperature was raised at 2 ° C. Evaluation was made based on the state at the time of the temperature rise. When the displacement of the module changed in the sample thickness direction and exceeded the value of the sample thickness, it was determined that the membrane was broken. The temperature at that time was taken as the TMA thermal rupture temperature.
[0050]
(Confirmation of crosslinked structure)
The extent of disappearance of the absorption peak (967 cm -1 ) derived from the C = C double bond in the IR spectrum was confirmed. In addition, a 10 mm square sample was dissolved in hot xylene (139 to 145 ° C.) sandwiched between metal meshes, and the ratio of the remaining components was measured as a gel fraction. Is 0%).
[0051]
Example 1-1
5% by weight of epoxidized polystyrene butadiene (Epofriend A-1005, manufactured by Daicel Chemical Industries, styrene content 40% by weight, oxirane oxygen concentration 0.8% by weight, epoxidation of double bond 5%), olefin-based thermoplastic elastomer (Softening temperature: 102 ° C., TPE821 manufactured by Sumitomo Chemical) 15 parts by weight of a polymer composition composed of 15% by weight, 80% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 2,000,000 and 85 parts by weight of liquid paraffin are uniformly formed into a slurry. The mixture was mixed and dissolved and kneaded at a temperature of 160 ° C. using a small kneader for about 60 minutes. Thereafter, these kneaded materials were sandwiched between metal plates cooled to 0 ° C. and rapidly cooled in a sheet shape. These quenched sheet resins were heat-pressed at a temperature of 115 ° C. until the sheet thickness became 0.4 to 0.5 mm, and press-molded at 20 ° C. while maintaining the sheet thickness. Next, the film was simultaneously biaxially stretched at a temperature of 120 ° C. and at a speed of 10 mm / sec to a length and width of 4.0 × 4.0, and subjected to a solvent removal treatment using heptane. Thereafter, the obtained porous film was heat-treated in air at 85 ° C. × 12 hours and then at 116 ° C. for 12 hours to obtain a porous film according to the present invention. The crosslinked structure of this porous film was confirmed by measurement of IR and gel fraction.
[0052]
Example 1-2
Performed except for using 5% by weight of Epofriend A-1020 (manufactured by Daicel Chemical Industries, styrene content 40% by weight, oxirane oxygen concentration 3.2% by weight, double bond about 20% epoxidation) as epoxidized polystyrene butadiene. As in Example 1-1, 15% by weight of a polymer composition comprising 15% by weight of an olefin-based thermoplastic elastomer (softening temperature: 102 ° C) (TPE821 manufactured by Sumitomo Chemical) and 80% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 2,000,000 Of the liquid paraffin and 85 parts by weight of liquid paraffin to obtain a porous film according to the present invention. The crosslinked structure of this porous film was confirmed by measurement of IR and gel fraction.
[0053]
Example 2
15% by weight of a polymer composition comprising 9% by weight of epoxidized polystyrene butadiene (Epofriend A-1005), 39% by weight of polyethylene having a weight average molecular weight of 300,000, and 52% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 2,000,000. A membrane was formed from 85 parts by weight of liquid paraffin in the same manner as in Example 1-1, to obtain a porous film according to the present invention. The crosslinked structure of this porous film was confirmed by measurement of IR and gel fraction.
[0054]
Example 3
Example 1 was prepared from 15 parts by weight of a polymer composition comprising 17% by weight of epoxidized polystyrene butadiene (Epofriend A-1005), 83% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 2,000,000 and 85 parts by weight of liquid paraffin. 1. A film was formed in the same manner as in Example 1 to obtain a porous film according to the present invention. The crosslinked structure of this porous film was confirmed by measurement of IR and gel fraction.
[0055]
Comparative Example 1
15 parts by weight of a polymer composition comprising 17% by weight of an olefin-based thermoplastic elastomer (softening temperature: 102 ° C., TPE821 manufactured by Sumitomo Chemical) and 83% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 2,000,000 (excluding epoxidized polystyrene butadiene) A porous film was obtained in the same manner as in Example 1-1, except that the same composition ratio as in Examples 1-1 and 1-2) and 85 parts by weight of liquid paraffin were used.
[0056]
Comparative Example 2
15 parts by weight of a polymer composition comprising 40% by weight of polyethylene having a weight average molecular weight of 300,000 and 60% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 2,000,000 (the same composition ratio as in Example 2 except for epoxidized polystyrene butadiene) Except for using 85 parts by weight of liquid paraffin and liquid paraffin, a film was formed in the same manner as in Example 1-1, and the obtained porous film was heat-treated in air at 116 ° C. for 12 hours to obtain a porous film.
[0057]
Comparative Example 3
Except for using 15 parts by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 2,000,000 (the same composition ratio as in Example 3 except for epoxidized polystyrene butadiene) and 85 parts by weight of liquid paraffin, the same procedure as in Example 1-1 was carried out. The resulting porous film was heat-treated at 130 ° C. for 2 hours in air to obtain a porous film.
[0058]
Comparative Example 4
A film was formed in the same manner as in Example 3 except that polyisoprene was used in place of epoxidized polystyrene butadiene in Example 1-1, and the obtained porous film was heated at 116 ° C. for 12 hours in air. Heat treatment was performed to obtain a porous film. The crosslinked structure of this porous film was confirmed by measurement of IR and gel fraction.
[0059]
Tables 1 and 2 show the characteristics of the separators obtained in Examples and Comparative Examples.
[0060]
[Table 1]
Figure 2004189918
[Table 2]
Figure 2004189918
As shown in the results of Tables 1 and 2, the porous films of Examples 1-1 to 1-3 have excellent gas permeation performance, a shutdown function at low temperature, and a heat-resistant film rupture property at high temperature (melt down temperature, TMA thermal rupture temperature). Although the porous film obtained in Comparative Example 4 had a crosslinked structure and improved heat resistance, the TMA thermal rupture temperature was lower than that of the Example due to the influence of oxidative deterioration.

Claims (5)

少なくともポリオレフィン樹脂と、二重結合部分が1%以上エポキシ基に置換されたスチレンブタジエン共重合体とが架橋してなる架橋物を含有する多孔質フィルム。A porous film containing a crosslinked product obtained by crosslinking at least a polyolefin resin and a styrene-butadiene copolymer having a double bond portion substituted by 1% or more of an epoxy group. 更に、重量平均分子量50万以下のポリオレフィン類、前記スチレンブタジエン共重合体以外の熱可塑性エラストマー、及びポリオレフィン鎖を有するグラフトコポリマーからなる群より選ばれる1種以上を1〜50重量%含有する請求項1記載の多孔質フィルム。The composition further comprises 1 to 50% by weight of at least one selected from the group consisting of polyolefins having a weight average molecular weight of 500,000 or less, a thermoplastic elastomer other than the styrene-butadiene copolymer, and a graft copolymer having a polyolefin chain. 2. The porous film according to 1. 架橋される前記ポリオレフィン樹脂が、重量平均分子量50万を越える超高分子量ポリオレフィン樹脂である請求項1又は2に記載の多孔質フィルム。The porous film according to claim 1 or 2, wherein the polyolefin resin to be crosslinked is an ultrahigh molecular weight polyolefin resin having a weight average molecular weight exceeding 500,000. 請求項1〜3いずれかに記載の多孔質フィルムからなる非水電解液電池用セパレータ。A non-aqueous electrolyte battery separator comprising the porous film according to claim 1. 請求項4記載のセパレータを用いてなる非水電解液電池。A non-aqueous electrolyte battery using the separator according to claim 4.
JP2002360466A 2002-12-12 2002-12-12 Non-aqueous electrolyte battery separator Expired - Fee Related JP3983656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002360466A JP3983656B2 (en) 2002-12-12 2002-12-12 Non-aqueous electrolyte battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002360466A JP3983656B2 (en) 2002-12-12 2002-12-12 Non-aqueous electrolyte battery separator

Publications (2)

Publication Number Publication Date
JP2004189918A true JP2004189918A (en) 2004-07-08
JP3983656B2 JP3983656B2 (en) 2007-09-26

Family

ID=32759532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002360466A Expired - Fee Related JP3983656B2 (en) 2002-12-12 2002-12-12 Non-aqueous electrolyte battery separator

Country Status (1)

Country Link
JP (1) JP3983656B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303475A (en) * 2003-03-28 2004-10-28 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
KR100758482B1 (en) 2004-12-07 2007-09-12 주식회사 엘지화학 Surface-treated microporous membrane and electrochemical device prepared thereby
JP2009193742A (en) * 2008-02-13 2009-08-27 Nitto Denko Corp Separator for battery and electrode/separator assembly obtained therefrom
JP2009193759A (en) * 2008-02-13 2009-08-27 Nitto Denko Corp Reactive polymer supporting porous film for separator for battery and electrode/separator assembly obtained therefrom
JP2009193755A (en) * 2008-02-13 2009-08-27 Nitto Denko Corp Reactive polymer supporting porous film for separator for battery and electrode/separator assembly obtained therefrom
JPWO2020138318A1 (en) * 2018-12-28 2021-11-18 株式会社村田製作所 Batteries, battery packs, electronics, electric vehicles and power systems

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303475A (en) * 2003-03-28 2004-10-28 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
KR100758482B1 (en) 2004-12-07 2007-09-12 주식회사 엘지화학 Surface-treated microporous membrane and electrochemical device prepared thereby
US8841031B2 (en) 2004-12-07 2014-09-23 Lg Chem, Ltd. Surface-treated microporous membrane and electrochemical device prepared thereby
JP2009193742A (en) * 2008-02-13 2009-08-27 Nitto Denko Corp Separator for battery and electrode/separator assembly obtained therefrom
JP2009193759A (en) * 2008-02-13 2009-08-27 Nitto Denko Corp Reactive polymer supporting porous film for separator for battery and electrode/separator assembly obtained therefrom
JP2009193755A (en) * 2008-02-13 2009-08-27 Nitto Denko Corp Reactive polymer supporting porous film for separator for battery and electrode/separator assembly obtained therefrom
JPWO2020138318A1 (en) * 2018-12-28 2021-11-18 株式会社村田製作所 Batteries, battery packs, electronics, electric vehicles and power systems
JP7251554B2 (en) 2018-12-28 2023-04-04 株式会社村田製作所 Batteries, battery packs, electronics, electric vehicles and power systems

Also Published As

Publication number Publication date
JP3983656B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
US8003261B2 (en) Polyolefin microporous membrane
US9340653B2 (en) Method for production of porous film, porous film, separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the separator
WO1996027633A1 (en) Microporous polyethylene film and process for producing the film
JP3917721B2 (en) Method for producing microporous membrane
JP4703076B2 (en) Microporous film
JP6895570B2 (en) Polyolefin microporous membrane and method for producing polyolefin microporous membrane
JP4206182B2 (en) Microporous film
WO2020137336A1 (en) Microporous polyolefin membrane and method for producing microporous polyolefin membrane
JP3983660B2 (en) Battery separator
JPH11297297A (en) Manufacture of porous film and porous film
JP3983656B2 (en) Non-aqueous electrolyte battery separator
JP4713441B2 (en) Method for producing polyolefin microporous membrane
JP4248093B2 (en) Porous film
JPH08138643A (en) Separator for battery and manufacture thereof
JP2004263012A (en) Porous film and separator for electric battery
JP2002121313A (en) Porous film
JP4916236B2 (en) Method for producing porous film
JPH06163023A (en) Battery separator
JP5411550B2 (en) Polyolefin microporous membrane
JP2021036515A (en) Crosslink type resin-dispersed separator
JP2002036459A (en) Porous film and its manufacturing method
JP2000256499A (en) Porous film and its production
JP2008222913A (en) Porous film
JP2002155160A (en) Porous film and its production process
JP2004204166A (en) Porous film and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3983656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160713

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees