JP2004204166A - Porous film and manufacturing method therefor - Google Patents

Porous film and manufacturing method therefor Download PDF

Info

Publication number
JP2004204166A
JP2004204166A JP2002377581A JP2002377581A JP2004204166A JP 2004204166 A JP2004204166 A JP 2004204166A JP 2002377581 A JP2002377581 A JP 2002377581A JP 2002377581 A JP2002377581 A JP 2002377581A JP 2004204166 A JP2004204166 A JP 2004204166A
Authority
JP
Japan
Prior art keywords
porous film
weight
polybutadiene
temperature
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002377581A
Other languages
Japanese (ja)
Inventor
Toshisuke Nomi
俊祐 能見
Kazunari Yamamoto
一成 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2002377581A priority Critical patent/JP2004204166A/en
Publication of JP2004204166A publication Critical patent/JP2004204166A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a porous film which is excellent in permeability, mechanical strengths, and film breakage resistance at a high temperature, and preferably has good shut down function at a low temperature, to prepare a porous film obtained by this manufacturing method, and to provide a battery and a capacitor made by using the porous film. <P>SOLUTION: The method for manufacturing the porous film involves the steps of immersing a porous film containing a polyolefin resin having a weight-average molecular weight of 500,000 or higher into a solution obtained by dissolving a polybutadiene in an easily volatile solvent to give a concentration of the polybutadiene of 1-100 g/L, removing the solvent by drying, and subjecting the dried material to crosslinking treatment. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱性に優れた多孔質フィルムの製造方法、及びその製造方法によって得られる多孔質フィルム、その多孔質フィルムを用いてなる電池、並びにキャパシターに関する。
【0002】
【従来の技術】
リチウムなどの軽金属を電極とする非水電解液電池は、エネルギー密度が高く自己放電も少ないため、電子機器の高性能化、小型化などを背景として利用範囲を大きく広げてきている。このような非水電解液電池の電極としては帯状の正極、負極、およびセパレータを積層し捲回して構成することにより、広い有効電極面積を確保した渦巻状捲回体が用いられている。
【0003】
セパレータは、基本的には両極の短絡を防止するとともに、その微多孔構造によりイオンを透過させて電池反応を可能とするものである。更に、誤接続などにより異常電流が発生した場合に、電池内部温度の上昇に伴い樹脂が熱変形して微多孔を塞ぎ電池反応を停止させる、いわゆるシャットダウン機能(SD機能)を有するものが安全性向上の観点から採用されている。このようなSD機能を有するセパレータは、例えば、ポリエチレン製微多孔膜やポリエチレンとポリプロピレンとの多層構造の微多孔膜などが知られている。
【0004】
しかしながら、昨今のリチウムイオン二次電池などの進歩により、上記シャットダウン機能のみならず、耐熱的な要素、すなわち、シャットダウン後にさらに温度が上昇した時に、セパレータ自身が溶融破膜(メルトダウン)、または可塑化され破断する状態がおこり得ることを考慮すると、より高い温度で対応できることが望まれている。特に、高容量化された電池や電池内部抵抗の低減がすすむと、発熱が大きくなる要素が増すため、ますます重要である。
【0005】
上記問題に対してはシャットダウン温度と破膜温度の差が大きく、また、破膜温度が高いほど、高温特性が良好で安全性の高い電池用セパレータになりうると考えられる。例えば、特開昭63−308866号公報では、低融点ポリエチレンと高融点のポリプロピレンからなる単膜を積層化することにより、高強度かつ優れた高温特性を有する微孔性多孔膜を得る方法が開示されている。しかし、積層のためセパレータの内部抵抗が高くなり、高出力用途など高性能電池に対するセパレータとしては不向きである。
【0006】
また、特開平10−298325号公報では、低分子量ポリエチレンとポリプロピレンを含有した高分子量ポリエチレン組成物からなる微多孔膜を得る方法が開示されている。しかし、急激に温度が上昇する場合には大部分を占めるポリエチレン素材が容易に溶融するため破断しやすくなり危険性が大きくなる。また、今後の高出力用途など高性能電池には、従来高耐熱型とされてきたポリプロピレン含有セパレータを越える耐熱性が待望されている。
【0007】
更に、特開2002−121313号公報には、ポリブタジエンとポリオレフィン樹脂とを含む混練物を製膜した多孔質フィルムを架橋処理することで、低温でのシャットダウン機能と高温での耐破膜性とを改善した多孔質フィルムが提案されている。
【0008】
【発明が解決しようとする課題】
しかしながら、この公報に記載の製造方法では、多孔質フィルムを構成する樹脂組織の内部にポリブタジエンが存在するため、フィルム強度が幾分低下する傾向があるなど、改善の余地があった。
【0009】
そこで、本発明の目的は、透過性能および機械的強度に優れると共に、高温での耐破膜性に優れ、好ましくは低温でのシャットダウン機能も良好な多孔質フィルムの製造方法、及びその製造方法によって得られる多孔質フィルムを提供することにある。また、当該多孔質フィルムを用いてなる電池、およびキャパシターを提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく、多孔質フィルムを構成する樹脂組織の内部の架橋成分を少なくし得る製造方法について鋭意研究したところ、ポリオレフィン樹脂を含む多孔質フィルムをポリブタジエン溶液に接触後、溶媒を乾燥除去し、架橋処理を施すことで、上記目的を達成できることを見出し、本発明を完成するに至った。
【0011】
即ち、本発明の多孔質フィルムの製造方法は、重量平均分子量50万以上のポリオレフィン樹脂を含む多孔質フィルムを、易揮発性溶媒にポリブタジエンを1〜100g/Lで溶解させた溶液に接触後、易揮発性溶媒を乾燥除去し、架橋処理を施す工程を含むことを特徴とする。このように、ポリブタジエンを樹脂組織の表面に適量担持してから架橋処理するため、フィルム強度が低下しにくくなり、しかも透過性能が十分で高温での耐破膜性に優れる多孔質フィルムを製造することができる。
【0012】
上記において、前記ポリブタジエンはシス1,4含量が30%以上のポリブタジエンであり、更に前記接触前の多孔質フィルムはシス1,4含量が30%以上のポリブタジエンを含有することが好ましい。この場合、シス型1,4−ポリブタジエンは、屈曲性構造をとりやすく、二重結合の反応が進行しやすいため、架橋反応をより好適に進めることができる。
【0013】
また、前記接触前の多孔質フィルムは、重量平均分子量50万未満のポリオレフィン樹脂、熱可塑性エラストマー、及びグラフトコポリマーからなる群より選ばれる1種以上の樹脂成分を1〜50重量%含有することが好ましい。これらの樹脂成分を含有することにより、低温でのシャットダウン機能も良好になる。
【0014】
更に、重量平均分子量50万以上のポリオレフィン樹脂がポリエチレンであることが好ましい。このような高い分子量のポリエチレン、特に超高分子量ポリエチレンを用いると、多孔質フィルムの製膜後の分子鎖の状態などに起因して、ポリブタジエンの架橋反応が生じ易くなり、また強度も向上する傾向がある。
【0015】
一方、本発明の多孔質フィルムは、上記いずれかに記載の多孔質フィルムの製造方法によって製造される多孔質フィルムである。従って、上記のように透過性能および機械的強度に優れると共に、高温での耐破膜性に優れ、好ましくは低温でのシャットダウン機能も良好な多孔質フィルムとすることができる。
【0016】
また、本発明の電池は、上記多孔質フィルムを用いてなるため、高出力用途など高性能電池として高い安全性を確保することができる。また、本発明のキャパシターも、この多孔質フィルムを用いてなるため、同様に高い安全性を確保することができる。
【0017】
【発明の実施の形態】
本発明では、まず、重量平均分子量50万以上のポリオレフィン樹脂を含む多孔質フィルムを準備する。当該ポリオレフィン樹脂は、多孔質フィルムの強度を高くする上でも有効である。ポリオレフィン樹脂としては、ポリエチレン、ポリプロピレン、その変性物などが挙げられるが、重量平均分子量50万以上の超高分子量ポリエチレンが特に好ましい。重量平均分子量50万以上のポリオレフィン樹脂の含有量は、樹脂組成物中5〜98重量%が好ましく、10〜90重量%がより好ましい。
【0018】
この多孔質フィルムには、ポリブタジエンを予め含有していてもよい。予め含有させるポリブタジエンの含有量は、50重量%以下が好ましく、40重量%以下がより好ましく、35重量%以下が最も好ましい。
【0019】
本発明におけるポリブタジエンとしては、シス型1,4−ポリブタジエン、トランス型1,4−ポリブタジエン、1,2−ポリブタジエンがあげられるが、屈曲性構造をとりやすく、二重結合の反応が進行しやすいシス型1,4−ポリブタジエン骨格を多く有するポリブタジエンが好ましい。前記シス型1,4−骨格の割合は30%以上が、良好な架橋反応をすすめる上で好ましく用いられる。
【0020】
また、本発明の多孔質フィルムには、重量平均分子量50万未満のポリオレフィン類、熱可塑性エラストマー、及びグラフトコポリマーからなる群より選ばれる1種以上の樹脂成分を用いるのが好ましい。
【0021】
重量平均分子量50万未満のポリオレフィン樹脂としては、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、エチレン−アクリルモノマー共重合体、エチレン−酢酸ビニル共重合体などのポリオレフィン共重合体、変性ポリオレフィン樹脂などがあげられる。
【0022】
熱可塑性エラストマーとしてはポリスチレン系やポリオレフィン系、ポリジエン系、塩ビ系、ポリエステル系などの熱可塑性エラストマーがあげられる。
【0023】
グラフトコポリマーとしては主鎖にポリオレフィン、側鎖に非相溶性基を有するビニル系ポリマーを側鎖としたグラフトコポリマーがあげられるが、ポリアクリル類、ポリメタクリル類、ポリスチレン、ポリアクリロニトリル、ポリオキシアルキレン類が好ましい。なお、ここで非相溶性基とは、ポリオレフィンに対して非相溶性の基を意味し、例えば、ビニル系ポリマーに由来する基などがあげられる。
【0024】
これらの樹脂は単独で用いてもよいし、2種類以上を併用してもよい。これらの中でも重量平均分子量50万未満のポリオレフィン樹脂、特に低融点性のあるポリエチレンや、結晶性を有するポリオレフィン系エラストマー、溶融温度の低いポリメタクリル類を側鎖に有するグラフトコポリマーなどが、低いシャットダウン温度をもたらす点で好ましい。
【0025】
これらの樹脂成分の配合量は、樹脂組成物中1〜50重量%の範囲であり、5〜45重量%が好ましく、5〜40重量%がより好ましい。該配合量の下限は、十分なSD温度を得る観点から、1重量%以上であり、また、その上限は、十分な空孔率を有し、電池用セパレータとしての多孔質フィルムの特性を維持する観点から、50重量%以下である。
【0026】
接触前の多孔質フィルムは、乾式製膜法、湿式製膜法など公知の方法を利用して製造することができる。例えば、前記樹脂からなる組成物を溶媒と混合し、混練、加熱溶融しながらシート状に成形した後、圧延し、一軸方向以上に延伸し、溶媒を加熱除去することにより製造することができる。
【0027】
溶媒としては、例えば、ノナン、デカン、ウンデカン、ドデカン、デカリン、流動パラフィンなどの脂肪族または環式の炭化水素、沸点がこれらに対応する鉱油留分などがあげられ、流動パラフィンなどの脂環式炭化水素を多く含む不揮発性溶媒が好ましい。また、溶媒の使用量としては、樹脂組成物と溶媒の混合物を混練りし、シート状に成形する工程は、公知の方法により行うことができ.バンバリーミキサー、ニーダーなどを用いてバッチ式で混練りし、ついで、冷却された金属板に挟み込み冷却して急冷結晶化によりシート状成形物にしてもよく、Tダイなどを取り付けた押出機などを用いてシート状成形物を得てもよい。なお、混練りは、適当な温度条件下であればよく、特に限定されないが、好ましくは100℃〜200℃である。
【0028】
このようにして得られるシート状成形物の厚みとしては、特に限定されないが、3〜20mmが好ましく、ヒートプレスなどの圧延処理により0.5〜3mmの厚みにしてもよい。また、圧延処理の温度は100〜140℃が好ましい。
【0029】
前記シート状成形物の延伸処理の方式としては、特に限定されるものではなく、通常のテンター法、ロール法、インフレーション法またはこれらの方法の組み合わせであってもよく、また、一軸延伸、二軸延伸などのいずれの方式をも適用することができる。また、二軸延伸の場合は、縦横同時延伸または逐次延伸のいずれでもよい。延伸処理の温度は、100℃〜140℃であることが好ましい。
【0030】
脱溶媒処理は、シート状成形物から溶媒を除去して微多孔構造を形成させる工程であり、例えば、シート状成形物を溶媒で洗浄して残留する溶媒を除去することにより行うことができる。溶媒としては、ペンタン、ヘキサン、ヘプタン、デカンなどの炭化水素、塩化メチレン、四塩化炭素などの塩素炭化水素、三フッ化エタンなどのフッ化炭化水素、ジエチルエーテル、ジオキサンなどのエーテル類、メタノール、エタノールなどのアルコール類、アセトン、メチルエチルケトンなどのケトン類などの易揮発性溶媒があげられ、これらは単独または2種以上を混合して用いることができる。かかる溶媒を用いた洗浄方法は特に限定されず、例えば、シート状成形物を溶媒中に浸漬して溶媒を抽出する方法、溶媒をシート状成形物にシャワーする方法などがあげられる。
【0031】
本発明では、これら公知の方法によって多孔質フィルムを製膜した後、前記のポリブタジエンを易揮発性溶媒に溶解させた溶液に接触させる。溶液に接触させる方法としては、溶液への浸漬、溶液のシャワー、塗布、含浸など何れでもよい。用いる易揮発性溶媒の沸点は100℃未満が好ましい。沸点が100℃以上の溶媒では乾燥が遅く、ポリブタジエンの偏析が起こりやすく、均一な多孔質フィルムが得られにくくなる傾向がある。
【0032】
湿式製膜法で得られたシート状成形物の場合、易揮発性溶媒を乾燥、多孔質フィルム化した後にポリブタジエン溶液に浸漬等してもよく、また前記脱溶媒処理時に使用する易揮発性溶媒と同一の溶媒にポリブタジエンを溶解させた溶液を用いる場合には、微多孔化せずに脱溶媒処理と連続して浸漬等してもよい。このような接触を行った後に、易揮発性溶媒を乾燥除去することにより、ポリブタジエンが担持された多孔質フィルムを得ることができる。
【0033】
この浸漬溶液は、易揮発性溶媒1Lに対し、前記ポリブタジエンを1〜100g溶解させた濃度、すなわち記すならば、1〜100g/Lが好ましい。なお好ましくは1〜50g/L、さらに好ましくは5〜50g/Lである。1g/L未満の濃度では、ポリブタジエンの担持量が少なく、最終的に多孔質フィルムの耐熱性が向上せず、100g/Lより高濃度では溶媒乾燥除去後にポリブタジエンの担持量が多いため偏析し、均一な微多孔化が出来ない。
【0034】
本発明では、担持後のポリブタジエンの配合量(担持前含有量を含む)は、多孔質フィルム中1〜50重量%の範囲が好ましく、1〜40重量%がより好ましく、1〜35重量%が更に好ましい。該配合量の下限は、十分な耐熱性を有する多孔質フィルムを得る観点から、1重量%以上であり、また、その上限は、電池用セパレータとしての多孔質フィルムの特性を維持する観点から、50重量%以下である。
【0035】
本発明では、これらの方法によってポリブタジエンが担持された多孔質フィルムを得た後、該多孔質フィルムを熱、紫外線、電子線および可視光線からなる群より選ばれる1種以上を用いる架橋処理を施すことによりポリブタジエンの二重結合を全部または一部消失させる。これらの中では、熱、紫外線を用いる架橋処理が、多孔質フィルムの構造安定性の点で望ましい。これらの架橋処理を施すことによって上記多孔質フィルムの耐熱性は高温での耐熱性(耐破膜性)は大きく向上する。
【0036】
この耐熱性向上の理由は、必ずしも明白ではないが、各処理で生じたポリマーラジカルが二重結合に付加し、その際にポリブタジエンどうし、あるいはポリブタジエンとその他の樹脂成分との間で架橋反応が起こることなどが考えられる。二重結合を消失させる割合は所望の耐熱性を考慮して適宜選択されるが、80〜100%(IRのピークの大きさに基づき算出)の消失率が好ましい。そして、これらにより耐熱性が大きく向上するものと考えられる。
【0037】
前記架橋処理の方法として熱を用いる場合、一回で熱処理する一段式熱処理法でも、最初に低温でまず熱処理し、その後さらに高温での熱処理を行う多段式の熱処理法でもよく、あるいは昇温しながら熱処理する昇温式熱処理法でもよいが、通気度等の多孔質フィルムの元の諸特性を損なうことなく処理することが望ましい。一段式熱処理の場合には、多孔質フィルムの組成にもよるが、40℃〜140℃が好ましい。また、低温から熱処理を開始し、その後、処理温度を上げていくと、多孔質フィルムの硬化とともに耐熱性がしだいに向上していくので、加熱によって通気度等の元の諸特性を損なうことなく高温に暴露することができるようになる。そのため、諸特性を損なわずに、短時間で熱処理を完了するためには、多段式あるいは昇温式熱処理法が好ましい。
【0038】
多段式の熱処理法の最初の熱処理温度としては、多孔質フィルムの組成にもよるが、好ましくは40〜90℃、2段目の熱処理温度としては、多孔質フィルムの組成にもよるが、好ましくは90〜140℃である。
【0039】
紫外線を用いる場合、例えば、製膜後の多孔質フィルムをそのまま空気中で、あるいは重合開始剤を含むメタノール溶液等に含浸させ溶媒乾燥後に、この多孔質フィルムを水銀ランプにて照射することにより、架橋処理を施すことができる。また、照射時の熱コントロールのため、水中で紫外線照射を行ってもよい。
【0040】
電子線を用いる場合、例えば、製膜後の多孔質フィルムを放射線量0.1〜10Mrad照射することにより行う。照射時の雰囲気は、熱処理法同様、空気中でもかまわないし、架橋状態をコントロールする意味で窒素ガスまたはアルゴンガスのような不活性ガスの雰囲気でも良い。
【0041】
多孔質フィルムの厚みとしては1〜60μm、好ましくは5〜50μmが望ましい。その通気度としては100〜1000秒/100cc、好ましくは100〜900秒/100ccが望ましい。そのシャットダウン温度としては150℃以下、好ましくは145℃以下が望ましい。
【0042】
このような本発明による多孔質フィルムは低温シャットダウン効果と耐熱性に優れる非水電解液電池用セパレータとして、電池の様々な大きさや用途に対してより安全性を向上させることが期待できる。
【0043】
本発明の多孔質フィルムは従来のセパレータと同様に、正極と負極の間に介在せしめた状態で用いて電池を組み立てることが出来る。この際の正極、負極、電池ケース、電解液等の材質やこれら構成要素の配置構造も何ら格別なことは要求されず、従来と同様で良く、例えば特開昭63−205048号公報に示される通りであってよい。
【0044】
また、本発明の多孔質フィルムは従来のセパレータと同様に、一対の電極の間に介在せしめた状態で用いてキャパシターを組み立てることが出来る。この際の電極、電解液、ケース等の材質やこれらの構成要素の配置構造も何ら格別なことは要求されず、従来と同様で良い。例えば、電気二重層キャパシターでは、電極にはPTFEをバインダーとして形成した活性炭電極、電解液には炭酸プロピレンに0.5MEt4 PBF4 を添加した溶液を用いることが出来る。
【0045】
【実施例】
以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、実施例等における評価項目は下記のようにして測定を行った。
【0046】
(重量平均分子量)
ウォーターズ社製のゲル浸透クロマトグラフ[GPC−150C]を用い、溶媒にo−ジクロロベンゼンを、また、カラムとして昭和電工(株)製の[Shodex−80M]を用いて135℃で測定する。データ処理は、TRC社製データ収集システムを用いて行なう。分子量はポリスチレンを基準として算出する。
【0047】
(フィルム厚)
1/10000シックネスゲージにより測定する。
【0048】
(通気度(ガーレ値))
JIS P 8117に準拠して測定した。
【0049】
(シャットダウン温度)
25mmφの筒状の試験室を有し、試験室が密閉可能なSUS製のセルを用い、下部電極はφ20mm、上部電極は10mmφの白金板(厚さ1.0mm)を使用した。24mmφに打ち抜いた測定試料を電解液に浸漬して電解液を含浸し、電極間に挟み、セルにセットした。電極はセルに設けられたばねにて一定の面圧がかかるようにした。電解液はプロピレンカーボネートとジメトキシエタンを容量比で1:1の割合で混合した溶媒に、ホウフッ化リチウムを1.0mol/Lの濃度になるように溶解したものを用いた。
【0050】
このセルに熱伝対温度計と、抵抗計を接続して温度と抵抗を測定できるようにし、180℃恒温器中へ投入し、温度と抵抗を測定した。100〜150℃の平均昇温速度は10℃/分であった。この測定により、抵抗が100Ω・cm2 に達した時の温度をシャットダウン温度とした。
【0051】
(熱破断温度)
幅3mmの短冊状サンプルをチャック間を10mmとしてとりつけ、セイコー電子製熱応力歪分析装置TMA/SS100にセットして、昇温速度毎分2℃で昇温した。この昇温時の状態より評価し、短冊状サンプルが破断した時の温度を熱破断温度とした。
【0052】
実施例1
シス型1,4−ポリブタジエン(日本ゼオン製、NipolBR−1220、シス1,4含量98%以上、ムーニー粘度43)13重量%、重量平均分子量30万のポリエチレン52重量%、重量平均分子量300万の超高分子量ポリエチレン35重量%からなる重合体組成物20重量部と流動パラフィン80重量部とをスラリー状に均一に混合し、160℃の温度で小型ニーダーを用い約60分溶解混練りした。その後これらの混練物を0℃に冷却された金属板に挟み込みシート状に急冷した。これらの急冷シート状樹脂を、115℃の温度でシート厚が0.4〜0.6mmになるまでヒートプレスし、115℃の温度で同時に縦横3.5×3.5倍に二軸延伸し、形状維持のため枠固定した後、ヘプタンを使用して脱溶媒処理を行った。次いで、乾燥前にへプタン1Lに対し、シス型1,4−ポリブタジエン(前記NipolBR−1220)を20g溶解した溶液中に10秒浸漬した後、乾燥して多孔質フィルムを得た。その後、得られた多孔質フィルムを空気中で85℃・6時間熱処理し、ついで115℃で2時間熱処理して、本発明による多孔質フィルムを得た。なお、架橋反応は、架橋処理前後のIR測定によって、二重結合の消失とカルボニル基の生成の有無で確認した(実施例2〜3、比較例1〜3も同様)。
【0053】
実施例2
シス型1,4−ポリブタジエン(日本ゼオン製、NipolBR−1242、シス1,4含量36.5%、ムーニー粘度38)13重量%、重量平均分子量30万のポリエチレン52重量%、重量平均分子量300万の超高分子量ポリエチレン35重量%からなる重合体組成物20重量部と流動パラフィン80重量部とをスラリー状に均一に混合し、160℃の温度で小型ニーダーを用い約60分溶解混練りした。その後これらの混練物を0℃に冷却された金属板に挟み込みシート状に急冷した。これらの急冷シート状樹脂を、115℃の温度でシート厚が0.4〜0.6mmになるまでヒートプレスし、115℃の温度で同時に縦横3.5×3.5倍に二軸延伸し、形状維持のため枠固定した後にアセトンを使用して脱溶媒処理を行った。次いで、乾燥後にヘプタン1Lに対し、シス型1,4−ポリブタジエン(前記NipolBR−1220)を2g溶解した溶液中に2秒浸漬した後、乾燥して多孔質フィルムを得た。その後、得られた多孔質フィルムを空気中で85℃・6時間熱処理し、ついで115℃で2時間熱処理して、本発明による多孔質フィルムを得た。
【0054】
実施例3
オレフィン系熱可塑性エラストマー(軟化温度102℃)(住友化学製TPE821)20重量%、重量平均分子量300万の超高分子量ポリエチレン80重量%からなる重合体組成物20重量部と流動パラフィン80重量部とをスラリー状に均一に混合し、160℃の温度で小型ニーダーを用い約60分溶解混練りした。その後これらの混練物を0℃に冷却された金属板に挟み込みシート状に急冷した。これらの急冷シート状樹脂を、118℃の温度でシート厚が0.4〜0.6mmになるまでヒートプレスし、118℃の温度で同時に縦横3.5×3.5倍に二軸延伸し形状維持のため枠固定した後、ヘプタンを使用して脱溶媒処理を行った。次いで、乾燥前にヘプタン1Lに対し、シス型1,4−ポリブタジエン(前記NipolBR−1220)を10g溶解した溶液中に10秒浸漬した後、乾燥して多孔質フィルムを得た。その後、得られた多孔質フィルムを空気中で85℃・6時間熱処理し、ついで115℃で2時間熱処理して、本発明による多孔質フィルムを得た。
【0055】
比較例1
オレフィン系熱可塑性エラストマー(軟化温度102℃)(住友化学製TPE821)20重量%、重量平均分子量300万の超高分子量ポリエチレン80重量%からなる重合体組成物20重量部と流動パラフィン80重量部とをスラリー状に均一に混合し、160℃の温度で小型ニーダーを用い約60分溶解混練りした。その後これらの混練物を0℃に冷却された金属板に挟み込みシート状に急冷した。これらの急冷シート状樹脂を、118℃の温度でシート厚が0.4〜0.6mmになるまでヒートプレスし、118℃の温度で同時に縦横3.5×3.5倍に二軸延伸し形状維持のため枠固定した後、ヘプタンを使用して脱溶媒処理を行った。次いで、乾燥前にへプタン1Lに対し、シス型1,4−ポリブタジエン(前記NipolBR−1220)を0.5g溶解した溶液中に10秒浸漬した後、乾燥して多孔質フィルムを得た。その後、得られた多孔質フィルムを空気中で85℃・6時間熱処理し、ついで115℃で2時間熱処理して、本発明による多孔質フィルムを得た。
【0056】
比較例2
オレフィン系熱可塑性エラストマー(軟化温度102℃)(住友化学製TPE821)20重量%、重量平均分子量300万の超高分子量ポリエチレン80重量%からなる重合体組成物20重量部と流動パラフィン80重量部とをスラリー状に均一に混合し、160℃の温度で小型ニーダーを用い約60分溶解混練りした。その後これらの混練物を0℃に冷却された金属板に挟み込みシート状に急冷した。これらの急冷シート状樹脂を、118℃の温度でシート厚が0.4〜0.6mmになるまでヒートプレスし、118℃の温度で同時に縦横3.5×3.5倍に二軸延伸し形状維持のため枠固定した後、ヘプタンを使用して脱溶媒処理を行った。乾燥後、得られた多孔質フィルムを空気中で85℃・6時間熱処理し、ついで115℃で2時間熱処理して、本発明による多孔質フィルムを得た。
【0057】
比較例3
オレフィン系熱可塑性エラストマー(軟化温度102℃)(住友化学製TPE821)20重量%、重量平均分子量300万の超高分子量ポリエチレン80重量%からなる重合体組成物20重量部と流動パラフィン80重量部とをスラリー状に均一に混合し、160℃の温度で小型ニーダーを用い約60分溶解混練りした。その後これらの混練物を0℃に冷却された金属板に挟み込みシート状に急冷した。これらの急冷シート状樹脂を、118℃の温度でシート厚が0.4〜0.6mmになるまでヒートプレスし、118℃の温度で同時に縦横3.5×3.5倍に二軸延伸し形状維持のため枠固定した後、ヘプタンを使用して脱溶媒処理及び乾燥を行った。次いで、塩化メチレン1Lに対し、シス型1,4−ポリブタジエン(前記NipolBR−1220)を150g溶解した溶液中に10秒浸漬した後、乾燥して多孔質フィルムを得た。その後、得られた多孔質フィルムを空気中で85℃・6時間熱処理し、ついで115℃で2時間熱処理して、本発明による多孔質フィルムを得た。しかし、孔が閉塞しており、通気しなかった。
【0058】
実施例、比較例で得られたセパレータの特性を表1に示す。
【0059】
【表1】

Figure 2004204166
表1の結果が示すように、実施例で得られた多孔質フィルムは、透過性能に優れるとともに、低温でのシャットダウン機能と高温での耐熱破膜性に優れたものであり、該多孔質フィルムを非水電解液電池用セパレータとして用いることで、安全性に優れた、様々な大きさや用途の非水電解液電池を提供することができる。これに対して、ポリブタジエンの担持量が少な過ぎるか又は担持無しの比較例1〜2では、耐熱破膜性が不十分となり、また、ポリブタジエンの担持量が多すぎる比較例3では、透過性能が劣るものになる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a porous film having excellent heat resistance, a porous film obtained by the method, a battery using the porous film, and a capacitor.
[0002]
[Prior art]
Non-aqueous electrolyte batteries using a light metal such as lithium as an electrode have a high energy density and low self-discharge. Therefore, the range of use has been greatly expanded with the background of high performance and miniaturization of electronic devices. As an electrode of such a non-aqueous electrolyte battery, a spiral wound body having a wide effective electrode area secured by laminating and winding a strip-shaped positive electrode, a negative electrode, and a separator is used.
[0003]
The separator basically prevents both electrodes from being short-circuited, and allows a battery reaction by allowing ions to permeate due to its microporous structure. In addition, if an abnormal current is generated due to incorrect connection or the like, the resin has a so-called shutdown function (SD function) that stops the battery reaction by thermally deforming the resin as the battery internal temperature rises to close the micropores. It is adopted from the viewpoint of improvement. As the separator having such an SD function, for example, a microporous film made of polyethylene or a multilayered structure of polyethylene and polypropylene is known.
[0004]
However, due to recent advances in lithium ion secondary batteries and the like, not only the above-mentioned shutdown function, but also a heat-resistant element, that is, when the temperature further rises after the shutdown, the separator itself melts and ruptures (melt down) or plasticizes. In view of the fact that a state of breaking and breaking may occur, it is desired to be able to cope with a higher temperature. In particular, when the capacity of the battery is increased or the internal resistance of the battery is reduced, the amount of heat generation increases, which is more important.
[0005]
In view of the above problems, it is considered that the difference between the shutdown temperature and the film-breaking temperature is large, and that the higher the film-breaking temperature, the better the high-temperature characteristics and the higher the safety of the battery separator. For example, JP-A-63-308866 discloses a method of obtaining a microporous porous membrane having high strength and excellent high-temperature properties by laminating a single membrane composed of low-melting polyethylene and high-melting polypropylene. Have been. However, due to the lamination, the internal resistance of the separator is increased, and it is not suitable as a separator for a high-performance battery such as a high-output battery.
[0006]
Also, Japanese Patent Application Laid-Open No. 10-298325 discloses a method for obtaining a microporous membrane comprising a high molecular weight polyethylene composition containing low molecular weight polyethylene and polypropylene. However, when the temperature rises abruptly, most of the polyethylene material is easily melted, so that the polyethylene material is easily broken and the danger increases. In addition, high-performance batteries for high-output applications in the future are expected to have higher heat resistance than polypropylene-containing separators which have been conventionally regarded as high heat-resistant.
[0007]
Further, JP-A-2002-121313 discloses that a porous film formed from a kneaded product containing polybutadiene and a polyolefin resin is subjected to a cross-linking treatment so as to have a shutdown function at a low temperature and a film rupture resistance at a high temperature. Improved porous films have been proposed.
[0008]
[Problems to be solved by the invention]
However, in the production method described in this publication, there is room for improvement, for example, since the polybutadiene is present inside the resin structure constituting the porous film, the film strength tends to be somewhat reduced.
[0009]
Therefore, an object of the present invention is to provide a porous film having excellent permeability and mechanical strength, having excellent rupture resistance at high temperatures, and preferably having a good shutdown function at low temperatures, and a method for manufacturing the same. An object of the present invention is to provide an obtained porous film. Another object is to provide a battery and a capacitor using the porous film.
[0010]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on a production method capable of reducing the number of cross-linking components inside the resin structure constituting the porous film in order to achieve the above object, and contacted the porous film containing the polyolefin resin with the polybutadiene solution. Thereafter, the present inventors have found that the above object can be achieved by removing the solvent by drying and performing a crosslinking treatment, thereby completing the present invention.
[0011]
That is, the method for producing a porous film of the present invention comprises, after contacting a porous film containing a polyolefin resin having a weight average molecular weight of 500,000 or more with a solution in which polybutadiene is dissolved in an easily volatile solvent at 1 to 100 g / L, The method includes a step of drying and removing the easily volatile solvent and performing a crosslinking treatment. As described above, since a suitable amount of polybutadiene is supported on the surface of the resin structure and then subjected to the crosslinking treatment, the film strength is hardly reduced, and a porous film having sufficient permeability and excellent resistance to rupture at high temperatures is produced. be able to.
[0012]
In the above, it is preferable that the polybutadiene is a polybutadiene having a cis 1,4 content of 30% or more, and the porous film before the contact contains a polybutadiene having a cis 1,4 content of 30% or more. In this case, cis-type 1,4-polybutadiene can easily take a flexible structure and the double bond reaction easily proceeds, so that the cross-linking reaction can proceed more suitably.
[0013]
The porous film before the contact may contain 1 to 50% by weight of one or more resin components selected from the group consisting of a polyolefin resin having a weight average molecular weight of less than 500,000, a thermoplastic elastomer, and a graft copolymer. preferable. By containing these resin components, the shutdown function at low temperatures is also improved.
[0014]
Further, it is preferable that the polyolefin resin having a weight average molecular weight of 500,000 or more is polyethylene. When such high molecular weight polyethylene, particularly ultra-high molecular weight polyethylene, is used, the crosslinking reaction of polybutadiene is likely to occur due to the state of the molecular chains after the formation of the porous film, and the strength tends to be improved. There is.
[0015]
On the other hand, the porous film of the present invention is a porous film manufactured by any of the above-described methods for manufacturing a porous film. Therefore, as described above, a porous film having excellent permeability and mechanical strength, excellent film rupture resistance at high temperatures, and preferably a good shutdown function at low temperatures can be obtained.
[0016]
Further, since the battery of the present invention uses the above-described porous film, high safety can be secured as a high-performance battery for high-output applications. In addition, since the capacitor of the present invention also uses the porous film, high safety can be similarly secured.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, first, a porous film containing a polyolefin resin having a weight average molecular weight of 500,000 or more is prepared. The polyolefin resin is also effective in increasing the strength of the porous film. Examples of the polyolefin resin include polyethylene, polypropylene, and modified products thereof, and ultrahigh molecular weight polyethylene having a weight average molecular weight of 500,000 or more is particularly preferable. The content of the polyolefin resin having a weight average molecular weight of 500,000 or more is preferably 5 to 98% by weight, more preferably 10 to 90% by weight in the resin composition.
[0018]
This porous film may contain polybutadiene in advance. The content of the polybutadiene previously contained is preferably 50% by weight or less, more preferably 40% by weight or less, and most preferably 35% by weight or less.
[0019]
Examples of the polybutadiene in the present invention include cis-type 1,4-polybutadiene, trans-type 1,4-polybutadiene, and 1,2-polybutadiene. Polybutadiene having a large amount of type 1,4-polybutadiene skeleton is preferable. The proportion of the cis-type 1,4-skeleton of 30% or more is preferably used for promoting a favorable crosslinking reaction.
[0020]
Further, it is preferable to use one or more resin components selected from the group consisting of a polyolefin having a weight average molecular weight of less than 500,000, a thermoplastic elastomer, and a graft copolymer for the porous film of the present invention.
[0021]
Examples of the polyolefin resin having a weight-average molecular weight of less than 500,000 include polyolefin resins such as polyethylene and polypropylene, polyolefin copolymers such as ethylene-acryl monomer copolymer and ethylene-vinyl acetate copolymer, and modified polyolefin resins.
[0022]
Examples of the thermoplastic elastomer include polystyrene-based, polyolefin-based, polydiene-based, PVC-based, and polyester-based thermoplastic elastomers.
[0023]
Examples of the graft copolymer include a graft copolymer having a side chain of a polyolefin having a main chain and a vinyl-based polymer having an incompatible group in a side chain, and include polyacryls, polymethacryls, polystyrene, polyacrylonitrile, and polyoxyalkylenes. Is preferred. Here, the incompatible group means a group that is incompatible with the polyolefin, and examples thereof include a group derived from a vinyl polymer.
[0024]
These resins may be used alone or in combination of two or more. Among these, polyolefin resins having a weight-average molecular weight of less than 500,000, particularly polyethylene having a low melting point, polyolefin-based elastomers having crystallinity, graft copolymers having polymethacrylics having a low melting temperature in the side chain, and the like, have a low shutdown temperature. Is preferred in that
[0025]
The compounding amount of these resin components is in the range of 1 to 50% by weight in the resin composition, preferably 5 to 45% by weight, and more preferably 5 to 40% by weight. The lower limit of the amount is 1% by weight or more from the viewpoint of obtaining a sufficient SD temperature, and the upper limit thereof has a sufficient porosity and maintains the characteristics of the porous film as a battery separator. From the viewpoint of performing, it is 50% by weight or less.
[0026]
The porous film before contact can be manufactured by using a known method such as a dry film forming method and a wet film forming method. For example, the composition can be produced by mixing the resin composition with a solvent, kneading, heating and melting to form a sheet, rolling, stretching in one or more axial directions, and removing the solvent by heating.
[0027]
Examples of the solvent include, for example, aliphatic or cyclic hydrocarbons such as nonane, decane, undecane, dodecane, decalin, and liquid paraffin, and mineral oil fractions whose boiling points correspond to these, and alicyclic such as liquid paraffin. Non-volatile solvents rich in hydrocarbons are preferred. The amount of the solvent used is such that the step of kneading the mixture of the resin composition and the solvent and forming the mixture into a sheet can be performed by a known method. The mixture may be kneaded in batches using a Banbury mixer, kneader, or the like, and then sandwiched between cooled metal plates and cooled to form a sheet-like molded product by rapid crystallization, and an extruder equipped with a T-die or the like may be used. It may be used to obtain a sheet-like molded product. The kneading may be performed under appropriate temperature conditions, and is not particularly limited, but is preferably performed at 100 ° C to 200 ° C.
[0028]
The thickness of the sheet-like molded product thus obtained is not particularly limited, but is preferably 3 to 20 mm, and may be 0.5 to 3 mm by a rolling process such as a heat press. Moreover, the temperature of the rolling treatment is preferably 100 to 140C.
[0029]
The method of stretching the sheet-like molded product is not particularly limited, and may be a normal tenter method, a roll method, an inflation method or a combination of these methods, and may be uniaxial stretching, biaxial stretching, or biaxial stretching. Any method such as stretching can be applied. In the case of biaxial stretching, either vertical or horizontal simultaneous stretching or sequential stretching may be used. The temperature of the stretching treatment is preferably from 100C to 140C.
[0030]
The desolvation treatment is a step of forming a microporous structure by removing the solvent from the sheet-like molded product, and can be performed, for example, by washing the sheet-like molded product with a solvent to remove the residual solvent. As the solvent, pentane, hexane, heptane, hydrocarbons such as decane, methylene chloride, chlorine hydrocarbons such as carbon tetrachloride, fluorinated hydrocarbons such as ethane trifluoride, ethers such as diethyl ether, dioxane, methanol, Examples include volatile solvents such as alcohols such as ethanol and ketones such as acetone and methyl ethyl ketone, and these can be used alone or in combination of two or more. The washing method using such a solvent is not particularly limited, and examples thereof include a method of immersing a sheet-like molded product in a solvent to extract the solvent, and a method of showering the solvent on the sheet-like molded product.
[0031]
In the present invention, after a porous film is formed by these known methods, the porous film is brought into contact with a solution in which the above-mentioned polybutadiene is dissolved in a volatile solvent. As a method for bringing the solution into contact with the solution, any of immersion in the solution, showering, application, and impregnation of the solution may be used. The boiling point of the volatile solvent used is preferably less than 100 ° C. If the solvent has a boiling point of 100 ° C. or higher, drying is slow, polybutadiene tends to segregate, and a uniform porous film tends to be difficult to obtain.
[0032]
In the case of a sheet-like molded product obtained by a wet film forming method, the volatile solvent may be dried and then immersed in a polybutadiene solution after forming a porous film, or the volatile solvent used in the desolvation treatment. In the case of using a solution in which polybutadiene is dissolved in the same solvent as described above, immersion or the like may be performed continuously with the desolvation treatment without making microporous. After such contact, the porous film carrying polybutadiene can be obtained by drying and removing the volatile solvent.
[0033]
The immersion solution preferably has a concentration of 1 to 100 g of the polybutadiene dissolved in 1 L of the volatile solvent, that is, 1 to 100 g / L. It is preferably 1 to 50 g / L, more preferably 5 to 50 g / L. At a concentration of less than 1 g / L, the amount of the supported polybutadiene is small, and finally the heat resistance of the porous film is not improved. At a concentration higher than 100 g / L, the amount of the supported polybutadiene is large after the solvent is removed by drying. Uniform microporosity cannot be achieved.
[0034]
In the present invention, the blending amount of polybutadiene after loading (including the content before loading) is preferably in the range of 1 to 50% by weight, more preferably 1 to 40% by weight, and more preferably 1 to 35% by weight in the porous film. More preferred. The lower limit of the amount is 1% by weight or more from the viewpoint of obtaining a porous film having sufficient heat resistance, and the upper limit is from the viewpoint of maintaining the characteristics of the porous film as a battery separator. It is 50% by weight or less.
[0035]
In the present invention, after a polybutadiene-supported porous film is obtained by these methods, the porous film is subjected to a crosslinking treatment using at least one selected from the group consisting of heat, ultraviolet rays, electron beams, and visible rays. As a result, all or some of the double bonds of the polybutadiene are eliminated. Among these, a cross-linking treatment using heat and ultraviolet rays is desirable in view of the structural stability of the porous film. By performing these crosslinking treatments, the heat resistance of the porous film at high temperatures (film rupture resistance) is greatly improved.
[0036]
Although the reason for the improvement in heat resistance is not necessarily clear, the polymer radical generated in each treatment is added to a double bond, and at that time, a cross-linking reaction occurs between polybutadienes or between polybutadienes and other resin components. And so on. The rate at which the double bond is eliminated is appropriately selected in consideration of the desired heat resistance, but an elimination rate of 80 to 100% (calculated based on the IR peak size) is preferable. It is considered that these greatly improve heat resistance.
[0037]
When using heat as a method of the cross-linking treatment, a single-stage heat treatment method in which heat treatment is performed once, or a multi-stage heat treatment method in which heat treatment is first performed at a low temperature and then heat treatment is performed at a higher temperature may be performed, or the temperature may be increased. Although a temperature-raising heat treatment method in which heat treatment is performed while heating may be used, it is desirable to carry out treatment without impairing the original characteristics of the porous film such as air permeability. In the case of the single-stage heat treatment, the temperature is preferably from 40 ° C to 140 ° C, although it depends on the composition of the porous film. In addition, starting the heat treatment from a low temperature, and then increasing the processing temperature, the heat resistance gradually increases with the curing of the porous film, so that heating does not impair the original properties such as air permeability. Exposure to high temperatures becomes possible. Therefore, in order to complete the heat treatment in a short time without deteriorating various characteristics, a multi-stage or elevated temperature heat treatment is preferable.
[0038]
The first heat treatment temperature in the multi-stage heat treatment method depends on the composition of the porous film, but is preferably 40 to 90 ° C., and the second heat treatment temperature preferably depends on the composition of the porous film. Is 90 to 140 ° C.
[0039]
When using ultraviolet light, for example, by irradiating the porous film with a mercury lamp after drying the solvent after drying the porous film as it is in the air or a methanol solution containing a polymerization initiator or the like, Crosslinking treatment can be performed. In addition, ultraviolet irradiation may be performed in water for heat control at the time of irradiation.
[0040]
When an electron beam is used, the irradiation is performed, for example, by irradiating the porous film after film formation with a radiation dose of 0.1 to 10 Mrad. The atmosphere at the time of irradiation may be air as in the case of the heat treatment method, or may be an atmosphere of an inert gas such as nitrogen gas or argon gas in order to control the cross-linking state.
[0041]
The thickness of the porous film is desirably 1 to 60 μm, preferably 5 to 50 μm. The air permeability is desirably 100 to 1000 seconds / 100 cc, preferably 100 to 900 seconds / 100 cc. The shutdown temperature is desirably 150 ° C. or lower, preferably 145 ° C. or lower.
[0042]
Such a porous film according to the present invention can be expected as a separator for a non-aqueous electrolyte battery having excellent low-temperature shutdown effect and heat resistance, to further improve safety for various sizes and applications of the battery.
[0043]
The battery can be assembled by using the porous film of the present invention in a state of being interposed between the positive electrode and the negative electrode, similarly to the conventional separator. At this time, the materials of the positive electrode, the negative electrode, the battery case, the electrolytic solution and the like and the arrangement structure of these components are not required to be exceptional, and may be the same as conventional ones, for example, as shown in JP-A-63-205048. May be street.
[0044]
Further, the capacitor can be assembled by using the porous film of the present invention in a state of being interposed between a pair of electrodes, similarly to a conventional separator. At this time, the materials of the electrodes, the electrolyte, the case, and the like and the arrangement structure of these components are not required to be exceptional, and may be the same as the conventional one. For example, in an electric double layer capacitor, an activated carbon electrode formed of PTFE as a binder can be used as an electrode, and a solution obtained by adding 0.5 MEt 4 PBF 4 to propylene carbonate can be used as an electrolyte.
[0045]
【Example】
Hereinafter, examples and the like that specifically show the configuration and effects of the present invention will be described. The evaluation items in Examples and the like were measured as follows.
[0046]
(Weight average molecular weight)
It is measured at 135 ° C. using a gel permeation chromatograph [GPC-150C] manufactured by Waters, using o-dichlorobenzene as a solvent and [Shodex-80M] manufactured by Showa Denko KK as a column. Data processing is performed using a data collection system manufactured by TRC. The molecular weight is calculated based on polystyrene.
[0047]
(Film thickness)
It is measured with a 1/10000 thickness gauge.
[0048]
(Air permeability (Gurley value))
It was measured in accordance with JIS P 8117.
[0049]
(Shutdown temperature)
A SUS cell having a cylindrical test chamber of 25 mmφ and capable of sealing the test chamber was used, and a lower electrode was a φ20 mm, and an upper electrode was a 10 mmφ platinum plate (1.0 mm thick). A measurement sample punched to 24 mmφ was immersed in an electrolyte to impregnate the electrolyte, sandwiched between electrodes, and set in a cell. The electrode was made to apply a constant surface pressure by a spring provided in the cell. As the electrolytic solution, a solution obtained by dissolving lithium borofluoride in a solvent obtained by mixing propylene carbonate and dimethoxyethane at a volume ratio of 1: 1 so as to have a concentration of 1.0 mol / L was used.
[0050]
A thermocouple thermometer and a resistance meter were connected to this cell so that temperature and resistance could be measured, and the cell was placed in a thermostat at 180 ° C. to measure temperature and resistance. The average rate of temperature rise from 100 to 150 ° C was 10 ° C / min. Based on this measurement, the temperature when the resistance reached 100 Ω · cm 2 was taken as the shutdown temperature.
[0051]
(Thermal rupture temperature)
A strip-shaped sample having a width of 3 mm was attached with a chuck interval of 10 mm, and the sample was set in a thermal stress / strain analyzer TMA / SS100 manufactured by Seiko Denshi and heated at a rate of 2 ° C. per minute. Evaluation was made from the state at the time of the temperature rise, and the temperature at which the strip-shaped sample was broken was defined as the thermal breaking temperature.
[0052]
Example 1
13% by weight of cis type 1,4-polybutadiene (Nipol BR-1220, manufactured by Nippon Zeon Co., Ltd., content of 98% or more of cis 1,4, Mooney viscosity 43), 52% by weight of polyethylene having a weight average molecular weight of 300,000, 52% by weight of weight average molecular weight of 3,000,000 20 parts by weight of a polymer composition composed of 35% by weight of ultra-high molecular weight polyethylene and 80 parts by weight of liquid paraffin were uniformly mixed in a slurry form, and were melted and kneaded at a temperature of 160 ° C. for about 60 minutes using a small kneader. Thereafter, these kneaded materials were sandwiched between metal plates cooled to 0 ° C. and rapidly cooled in a sheet shape. These quenched sheet resins are heat-pressed at a temperature of 115 ° C. until the sheet thickness becomes 0.4 to 0.6 mm, and are simultaneously biaxially stretched at a temperature of 115 ° C. 3.5 × 3.5 times in width and length. After the frame was fixed to maintain the shape, the solvent was removed using heptane. Next, before drying, the polymer was immersed in a solution of 20 g of cis-type 1,4-polybutadiene (Nipol BR-1220) in 1 L of heptane for 10 seconds, and then dried to obtain a porous film. Thereafter, the obtained porous film was heat-treated in air at 85 ° C. for 6 hours, and then heat-treated at 115 ° C. for 2 hours to obtain a porous film according to the present invention. The cross-linking reaction was confirmed by IR measurement before and after the cross-linking treatment by the disappearance of the double bond and the presence or absence of the formation of a carbonyl group (Examples 2 to 3 and Comparative Examples 1 to 3 were also the same).
[0053]
Example 2
13% by weight of cis-type 1,4-polybutadiene (Nipol BR-1242, manufactured by Nippon Zeon Co., Ltd., content of 36.5% of cis 1,4, Mooney viscosity: 38), 52% by weight of polyethylene having a weight average molecular weight of 300,000, 52% by weight of weight average molecular weight of 3,000,000 20 parts by weight of a polymer composition composed of 35% by weight of ultra-high molecular weight polyethylene and 80 parts by weight of liquid paraffin were uniformly mixed in a slurry state, and were melted and kneaded at a temperature of 160 ° C. using a small kneader for about 60 minutes. Thereafter, these kneaded materials were sandwiched between metal plates cooled to 0 ° C. and rapidly cooled in a sheet shape. These quenched sheet resins are heat-pressed at a temperature of 115 ° C. until the sheet thickness becomes 0.4 to 0.6 mm, and are simultaneously biaxially stretched at a temperature of 115 ° C. 3.5 × 3.5 times in width and length. After the frame was fixed to maintain the shape, the solvent was removed using acetone. Next, after drying, 1 L of heptane was immersed in a solution in which 2 g of cis-type 1,4-polybutadiene (Nipol BR-1220) was dissolved for 2 seconds, and then dried to obtain a porous film. Thereafter, the obtained porous film was heat-treated in air at 85 ° C. for 6 hours, and then heat-treated at 115 ° C. for 2 hours to obtain a porous film according to the present invention.
[0054]
Example 3
20 parts by weight of a polymer composition composed of 20% by weight of an olefin-based thermoplastic elastomer (softening temperature: 102 ° C.) (TPE821 manufactured by Sumitomo Chemical), 80% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 3,000,000, and 80 parts by weight of liquid paraffin Was uniformly mixed into a slurry, and the mixture was dissolved and kneaded at a temperature of 160 ° C. using a small kneader for about 60 minutes. Thereafter, these kneaded materials were sandwiched between metal plates cooled to 0 ° C. and rapidly cooled in a sheet shape. These quenched sheet-like resins are heat-pressed at a temperature of 118 ° C. until the sheet thickness becomes 0.4 to 0.6 mm, and are simultaneously biaxially stretched at a temperature of 118 ° C. 3.5 × 3.5 times in length and width. After fixing the frame to maintain the shape, the solvent was removed using heptane. Next, before drying, the film was immersed in a solution in which 10 g of cis 1,4-polybutadiene (Nipol BR-1220) was dissolved in 1 L of heptane for 10 seconds, and then dried to obtain a porous film. Thereafter, the obtained porous film was heat-treated in air at 85 ° C. for 6 hours, and then heat-treated at 115 ° C. for 2 hours to obtain a porous film according to the present invention.
[0055]
Comparative Example 1
20 parts by weight of a polymer composition composed of 20% by weight of an olefin-based thermoplastic elastomer (softening temperature: 102 ° C.) (TPE821 manufactured by Sumitomo Chemical), 80% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 3,000,000, and 80 parts by weight of liquid paraffin Was uniformly mixed into a slurry, and the mixture was dissolved and kneaded at a temperature of 160 ° C. using a small kneader for about 60 minutes. Thereafter, these kneaded materials were sandwiched between metal plates cooled to 0 ° C. and rapidly cooled in a sheet shape. These quenched sheet-like resins are heat-pressed at a temperature of 118 ° C. until the sheet thickness becomes 0.4 to 0.6 mm, and are simultaneously biaxially stretched at a temperature of 118 ° C. 3.5 × 3.5 times in length and width. After fixing the frame to maintain the shape, the solvent was removed using heptane. Next, before drying, the film was immersed for 10 seconds in a solution in which 0.5 g of cis 1,4-polybutadiene (the above-mentioned Nipol BR-1220) was dissolved in 1 L of heptane, and dried to obtain a porous film. Thereafter, the obtained porous film was heat-treated in air at 85 ° C. for 6 hours, and then heat-treated at 115 ° C. for 2 hours to obtain a porous film according to the present invention.
[0056]
Comparative Example 2
20 parts by weight of a polymer composition composed of 20% by weight of an olefin-based thermoplastic elastomer (softening temperature: 102 ° C.) (TPE821 manufactured by Sumitomo Chemical), 80% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 3,000,000, and 80 parts by weight of liquid paraffin Was uniformly mixed into a slurry, and the mixture was dissolved and kneaded at a temperature of 160 ° C. using a small kneader for about 60 minutes. Thereafter, these kneaded materials were sandwiched between metal plates cooled to 0 ° C. and rapidly cooled in a sheet shape. These quenched sheet-like resins are heat-pressed at a temperature of 118 ° C. until the sheet thickness becomes 0.4 to 0.6 mm, and are simultaneously biaxially stretched at a temperature of 118 ° C. 3.5 × 3.5 times in length and width. After fixing the frame to maintain the shape, the solvent was removed using heptane. After drying, the obtained porous film was heat-treated in air at 85 ° C. for 6 hours, and then heat-treated at 115 ° C. for 2 hours to obtain a porous film according to the present invention.
[0057]
Comparative Example 3
20 parts by weight of a polymer composition composed of 20% by weight of an olefin-based thermoplastic elastomer (softening temperature: 102 ° C.) (TPE821 manufactured by Sumitomo Chemical), 80% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 3,000,000, and 80 parts by weight of liquid paraffin Was uniformly mixed into a slurry, and the mixture was dissolved and kneaded at a temperature of 160 ° C. using a small kneader for about 60 minutes. Thereafter, these kneaded materials were sandwiched between metal plates cooled to 0 ° C. and rapidly cooled in a sheet shape. These quenched sheet-like resins are heat-pressed at a temperature of 118 ° C. until the sheet thickness becomes 0.4 to 0.6 mm, and are simultaneously biaxially stretched at a temperature of 118 ° C. 3.5 × 3.5 times in length and width. After the frame was fixed to maintain the shape, a solvent removal treatment and drying were performed using heptane. Next, the film was immersed in a solution in which 150 g of cis-type 1,4-polybutadiene (Nipol BR-1220) was dissolved in 1 L of methylene chloride for 10 seconds, and dried to obtain a porous film. Thereafter, the obtained porous film was heat-treated in air at 85 ° C. for 6 hours, and then heat-treated at 115 ° C. for 2 hours to obtain a porous film according to the present invention. However, the holes were closed and did not vent.
[0058]
Table 1 shows the characteristics of the separators obtained in Examples and Comparative Examples.
[0059]
[Table 1]
Figure 2004204166
As shown in the results of Table 1, the porous films obtained in the examples have excellent permeation performance, a shutdown function at a low temperature, and a heat-resistant film-breaking property at a high temperature. By using as a separator for a non-aqueous electrolyte battery, it is possible to provide non-aqueous electrolyte batteries with excellent safety and various sizes and uses. On the other hand, in Comparative Examples 1 and 2 in which the amount of polybutadiene supported is too small or no polybutadiene is supported, the heat-resistant film-breaking property is insufficient. Will be inferior.

Claims (7)

重量平均分子量50万以上のポリオレフィン樹脂を含む多孔質フィルムを、易揮発性溶媒にポリブタジエンを1〜100g/Lで溶解させた溶液に接触後、易揮発性溶媒を乾燥除去し、架橋処理を施す工程を含む多孔質フィルムの製造方法。After contacting a porous film containing a polyolefin resin having a weight-average molecular weight of 500,000 or more with a solution in which polybutadiene is dissolved at 1 to 100 g / L in a volatile solvent, the volatile solvent is dried and removed, and a crosslinking treatment is performed. A method for producing a porous film including a step. 前記ポリブタジエンはシス1,4含量が30%以上のポリブタジエンであり、更に前記接触前の多孔質フィルムはシス1,4含量が30%以上のポリブタジエンを含有する請求項1記載の多孔質フィルムの製造方法。The method for producing a porous film according to claim 1, wherein the polybutadiene is a polybutadiene having a cis 1,4 content of 30% or more, and the porous film before the contact contains a polybutadiene having a cis 1,4 content of 30% or more. Method. 前記接触前の多孔質フィルムは、重量平均分子量50万未満のポリオレフィン樹脂、熱可塑性エラストマー、及びグラフトコポリマーからなる群より選ばれる1種以上の樹脂成分を1〜50重量%含有する請求項1又は2に記載の多孔質フィルムの製造方法。The porous film before the contact contains 1 to 50% by weight of at least one resin component selected from the group consisting of a polyolefin resin having a weight average molecular weight of less than 500,000, a thermoplastic elastomer, and a graft copolymer. 3. The method for producing a porous film according to item 2. 重量平均分子量50万以上のポリオレフィン樹脂がポリエチレンである請求項1〜3いずれかに記載の多孔質フィルムの製造方法。The method for producing a porous film according to any one of claims 1 to 3, wherein the polyolefin resin having a weight average molecular weight of 500,000 or more is polyethylene. 請求項1〜4いずれかに記載の多孔質フィルムの製造方法によって製造される多孔質フィルム。A porous film produced by the method for producing a porous film according to claim 1. 請求項5に記載の多孔質フィルムを用いてなる電池。A battery comprising the porous film according to claim 5. 請求項5に記載の多孔質フィルムを用いてなるキャパシター。A capacitor using the porous film according to claim 5.
JP2002377581A 2002-12-26 2002-12-26 Porous film and manufacturing method therefor Pending JP2004204166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002377581A JP2004204166A (en) 2002-12-26 2002-12-26 Porous film and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002377581A JP2004204166A (en) 2002-12-26 2002-12-26 Porous film and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2004204166A true JP2004204166A (en) 2004-07-22

Family

ID=32814715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002377581A Pending JP2004204166A (en) 2002-12-26 2002-12-26 Porous film and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2004204166A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010093A1 (en) * 2015-07-14 2017-01-19 日本ゼオン株式会社 Binder composition for secondary battery electrodes, conductive material paste composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary batteries, and secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010093A1 (en) * 2015-07-14 2017-01-19 日本ゼオン株式会社 Binder composition for secondary battery electrodes, conductive material paste composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary batteries, and secondary battery
JPWO2017010093A1 (en) * 2015-07-14 2018-04-26 日本ゼオン株式会社 Secondary battery electrode binder composition, secondary battery electrode conductive material paste composition, secondary battery electrode slurry composition, secondary battery electrode and secondary battery

Similar Documents

Publication Publication Date Title
JP5220477B2 (en) Porous film manufacturing method, porous film, nonaqueous electrolyte battery separator, and nonaqueous electrolyte battery using the same
WO1996027633A1 (en) Microporous polyethylene film and process for producing the film
JP4206182B2 (en) Microporous film
JP4703076B2 (en) Microporous film
JP3983660B2 (en) Battery separator
JP2008066193A (en) Crosslinked fine porous membrane
JP4248093B2 (en) Porous film
JP3983656B2 (en) Non-aqueous electrolyte battery separator
JPH06336535A (en) Production of microporous polyolefin film
JPH08138643A (en) Separator for battery and manufacture thereof
JP2004263012A (en) Porous film and separator for electric battery
JP2002121313A (en) Porous film
JP4338164B2 (en) Porous film and method for producing the same
JP4189961B2 (en) Porous film
JP2004204166A (en) Porous film and manufacturing method therefor
JP4916236B2 (en) Method for producing porous film
JPH06163023A (en) Battery separator
JP2000256499A (en) Porous film and its production
JP2001131328A (en) Production process for porous film
JP2002155160A (en) Porous film and its production process
JP2008222913A (en) Porous film
JPH1067871A (en) Production of microporous polyethylene film
JP2001106822A (en) Microporous film and battery separator
JP2008115264A (en) Porous film
JP2002164033A (en) Porous film