JP4338164B2 - Porous film and method for producing the same - Google Patents

Porous film and method for producing the same Download PDF

Info

Publication number
JP4338164B2
JP4338164B2 JP2000231738A JP2000231738A JP4338164B2 JP 4338164 B2 JP4338164 B2 JP 4338164B2 JP 2000231738 A JP2000231738 A JP 2000231738A JP 2000231738 A JP2000231738 A JP 2000231738A JP 4338164 B2 JP4338164 B2 JP 4338164B2
Authority
JP
Japan
Prior art keywords
porous film
resin
weight
temperature
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000231738A
Other languages
Japanese (ja)
Other versions
JP2002036459A (en
Inventor
俊祐 能見
一成 山本
睦子 山口
慶裕 植谷
秀之 江守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2000231738A priority Critical patent/JP4338164B2/en
Publication of JP2002036459A publication Critical patent/JP2002036459A/en
Application granted granted Critical
Publication of JP4338164B2 publication Critical patent/JP4338164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は多孔質フィルム及びその製造方法に関する。さらに詳しくは、電池の正極負極間に配置されてこれらを隔離させる電池用セパレータ等として好適に用いられる多孔質フィルム、その製造方法、前記多孔質フィルムを用いてなる電池およびキャパシターに関する。
【0002】
【従来の技術】
近年、電子機器のコードレス化等に対応するため、電池として軽量で、高起電力、高エネルギーが得られ、しかも自己放電が少ないリチウム電池が注目を集めている。このリチウム電池の正極負極間には、正極負極の短絡防止のためにセパレータが設けられているが、このセパレータとしては正極負極間のイオンの透過を確保するために多数の微多孔が形成された多孔質フィルムが使用されている。中でも、電池の誤接続等により、異常電流が発生した場合に電池内部温度の上昇にともない樹脂が熱変形して微多孔を塞ぎ電池反応を停止させる、いわゆるシャットダウン機能(SD機能)を有するものが、安全性向上の観点から採用されている。このようなSD機能を有するセパレータは、例えばポリエチレン製微多孔膜やポリエチレンとポリプロピレンの多層構造の微多孔膜等が知られている。
【0003】
しかしながら、昨今のリチウムイオン二次電池等の進歩により、上記SD機能のみならず、耐熱的な要素、すなわちシャットダウン後にさらに温度が上昇したときにセパレータ自身が溶融破膜(メルトダウン)、または可塑化され破断する状態が起こると、電池の発火、爆発の危険性がある。従って、より高い温度まで破膜、破断されないセパレータが切望されている。特に高容量化された電池や電池内部抵抗の低減が進むと、発熱が大きくなる要素が増すため、ますます重要である。
【0004】
かかる耐熱性とSD特性を両立させる方法として、我々は特許第2768745号明細書で開示したように、少なくとも2枚のポリエチレン多孔質フィルムが積層されており、これら積層された多孔質フィルムのうち少なくとも1枚が架橋されており且つ少なくとも1枚が未架橋であるセパレータが有効であることを見出した。この方法では特定の温度範囲で多孔質フィルムをラミネートすることにより微孔閉塞せず積層が可能であったが、ラミネート温度が低いためフィルム相互の積層強度は十分高いものとはいえず、剥離を防止するため製造後のフィルムの取り扱いに注意する必要があった。また、積層後に、例えば電子線を照射すると、非架橋層が得られず、耐熱性とSD特性が両立できないという問題が生じる。
【0005】
従って、耐熱性とSD特性を両立したセパレータを得るため、積層後に多孔化し、架橋層と非架橋層とを少なくとも一層ずつ有し、かつその層間が剥離しない多孔質フィルム及びその製造方法が望まれていた。
【0006】
【発明が解決しようとする課題】
本発明の目的は、架橋層および非架橋層をそれぞれ少なくとも1層有し、それらの層間の積層強度が高く、且つ高温でも優れた耐破膜破断性を有する多孔質フィルム、その製造方法、前記多孔質フィルムを用いてなる電池およびキャパシターを提供することである。
【0007】
【課題を解決するための手段】
本発明者らは、前記課題を達成するべく鋭意検討した結果、高分子量ポリオレフィンを含むゲル状成形物同士を相分離前に積層することにより製膜後も高い積層強度が得られることを見出した。また、そのうち少なくとも一層に架橋性樹脂を添加することにより、製膜後の熱処理等により架橋が起こり、高耐熱層を形成することを見出し、本発明に至った。
【0008】
即ち、本発明の要旨は、
〔1〕ポリオレフィンを含む層(樹脂層A)と、ポリオレフィンと架橋性樹脂のいずれも含む層(樹脂層B)とが積層されてなる多孔質フィルムであって、前記架橋性樹脂が二重結合を有し、そのα位炭素に水素原子が結合している樹脂である、多孔質フィルム
〔2〕前記〔1〕記載の多孔質フィルムにおいて樹脂層Bが架橋構造を有する多孔質フィルム、
〔3〕ポリオレフィンを含むゲル状成形物と、ポリオレフィンと架橋性樹脂のいずれも含むゲル状成形物とを積層して成膜処理を行うことを特徴とする多孔質フィルムの製造方法であって、前記架橋性樹脂が二重結合を有し、そのα位炭素に水素原子が結合している樹脂である、多孔質フィルムの製造方法
〔4〕前記〔1〕又は〔2〕記載の多孔質フィルムを用いてなる電池
〔5〕前記〔1〕又は〔2〕記載の多孔質フィルムを用いてなるキャパシター、ならびに
〔6〕前記〔1〕又は〔2〕記載の多孔質フィルムからなる電池用セパレータ
に関するものである。
【0009】
【発明の実施の形態】
本発明の多孔質フィルムは、ポリオレフィンを含む層(樹脂層A)と、ポリオレフィンと架橋性樹脂のいずれも含む層(樹脂層B)とが積層されてなるものである。なお、本明細書において、樹脂層Aは非架橋層、樹脂層Bは架橋層ともいう。
【0010】
樹脂層A、Bで用いるポリオレフィンは、好ましくは重量平均分子量が5×105 以上の高分子量ポリオレフィンであり、例えば、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン等を重合した単独重合体、共重合体及びこれらのブレンド物等が挙げられる。中でも機械的強度にすぐれ、高い結晶性が得られる高分子量ポリエチレンが素材として望ましい。該高分子量ポリオレフィンの重量平均分子量としては、さらに1×106 以上の超高分子量のものが好ましく、1.5×106 以上がより好ましい。
【0011】
樹脂層A中の高分子量ポリオレフィンの含有量は、5〜100重量%、好ましくは10〜100重量%、より好ましくは20〜100重量%である。該含有量の下限は、製膜した膜の強度が十分である観点から、5重量%以上が好ましい。
【0012】
また、樹脂層Aには、その他の樹脂として、重量平均分子量が5×105 未満のポリオレフィン、熱可塑性エラストマー、水添ポリブタジエン樹脂、変性オレフィン樹脂、エチレンプロピレンジエンモノマーゴム(EPDM)等が含有されていてもよい。熱可塑性エラストマー樹脂としては、例えば「TPE」(住友化学工業(株)製)、「ハイトレル」(東レ・デュポン(株)製)、「セプトン」((株)クラレ製)等が挙げられる。水添ポリブタジエン樹脂としては、「DYNARON」(日本合成ゴム製)等が挙げられる。変性オレフィン樹脂としては、例えば「エバフレックス」(三井・デュポンポリケミカル(株)製)、「モディパー」(日本油脂(株)製)等が挙げられる。EPDMとしては、例えば「エスプレン」(住友化学工業(株)製)等が挙げられる。
【0013】
樹脂層Aでのその他の樹脂の含有量は、好ましくは0〜95重量%、より好ましくは0〜90重量%、更に好ましくは0〜80重量%である。
【0014】
本発明における樹脂層Bにおいて用いられる架橋性樹脂は、二重結合を有し、そのα位炭素に水素原子が結合している樹脂であり、少なくとも熱処理により架橋構造を形成するものであれば限定されない。例えば、不飽和縮合脂環式化合物誘導体が開環重合したものであって、主鎖にそのモノマー単位に由来する脂肪族環と二重結合とを有する樹脂(例えば、ポリノルボルネン)や、末端に二重結合をもつ低級炭化水素の末端水素原子をエチレン基に置換した構造を有するモノマーを重合したものであって、主鎖にメチレン基が結合している構造を有する樹脂(例えば、ポリブタジエン)等が挙げられる。これらの中では、分散性の観点から、ポリノルボルネンが好ましく、重量平均分子量が2×106 以上のポリノルボルネンが特に好ましい。
【0015】
樹脂層B中での架橋性樹脂の含有量は、1〜50重量%、好ましくは3〜40重量%、より好ましくは5〜35重量%である。該含有量は、架橋性樹脂の添加作用が有効である観点から、1重量%以上が好ましく、また、多孔質フィルムの空孔率が高く、高通気度を得る観点から、50重量%以下が好ましい。従って、樹脂層B中のポリオレフィンの含有量は、50〜99重量%、好ましくは60〜97重量%、より好ましくは65〜95重量%である。
【0016】
本発明において、これらの成分を有する樹脂層A、Bの積層順序としては、特に限定はないが、樹脂層A、Bを交互に積層していることが好ましい。各層の厚みは、1〜50μmが好ましく、5〜50μmがより好ましい。また、これら各層間は、溶融状態で積層するため、互いの層の分子が貫入し合っていると考えられ、全体に強固に融着しているようになっている。
【0017】
本発明の多孔質フィルムは、例えば、ポリオレフィンを含む樹脂成分やポリオレフィンと架橋性樹脂のいずれも含む樹脂成分にそれぞれ溶媒を添加して得られた混合物をそれぞれ溶融混練後、シート状に押し出して得られた2種のゲル状成形物を積層したシート状成形物に対して延伸処理と脱溶媒処理等を含む成膜処理を行うことにより得ることができる。本発明において成膜処理とは、積層したシート状成形物の延伸、脱溶媒、要すれば圧延等の処理により樹脂層Aと樹脂層Bが積層された多孔質フィルムを形成する処理工程をいう。
【0018】
溶媒としては、各樹脂成分の溶解性に優れたものであればよく、例えばノナン、デカン、ウンデカン、ドデカン、デカリン、流動パラフィン等の脂肪族または環状の炭化水素、あるいは沸点がこれらに対応する鉱油留分が挙げられるが、流動パラフィンなどの不揮発性溶媒が好ましい。
【0019】
樹脂成分及び溶媒の配合量は、樹脂の種類、溶解性、混練温度等により異なるため、一概には決定できないが、得られるスラリー状の混合物を溶融混練してシート状に成形できる程度であれば特に限定されない。例えば、樹脂成分の配合量は混合物中の5〜30重量%が好ましく、10〜30重量%がより好ましく、10〜25重量%がさらに好ましい。樹脂成分の配合量は、得られる多孔質フィルムの強度を向上させる観点から、5重量%以上が好ましく、また、ポリオレフィンを十分に溶媒に溶解させて、伸び切り状態近くにまで混練することができ、ポリマー鎖の十分な絡み合いを得られる観点から、30重量%以下が好ましい。
【0020】
混合物中の溶媒の配合量は、70〜95重量%が好ましく、70〜90重量%がより好ましく、75〜90重量%がさらに好ましい。該配合量は、混練りトルク、圧延、延伸応力が適度で、生産性に優れる観点から、70重量%以上が好ましく、また、押し出す際にダイス出口でネックインが発生せず、成形が容易になる観点から、95重量%以下が好ましい。
【0021】
なお、前記混合物には、必要に応じて、酸化防止剤、紫外線吸収剤、染料、造核剤、顔料、帯電防止剤等の添加剤を、本発明の目的を損なわない範囲で添加することができる。
【0022】
混合物の溶融混練は、高分子量ポリオレフィンのポリマー鎖の十分な絡み合いを得るために、混合物に十分な剪断力を作用させて行うことが好ましい。従って、本発明における混合物の溶融混練には、通常、混合物に強い剪断力を与えることができるニーダや二軸混練り機が好ましく用いられる。
【0023】
混合物を溶融混練する際の温度は、溶媒が高分子量ポリオレフィンを溶解開始させる温度(溶解開始温度)〜+60℃の範囲で行うことが好ましい。該温度は、高分子量ポリオレフィンが効率よく分散する観点から、溶解開始温度以上が好ましく、また、樹脂の分解が生じにくい観点から、溶解開始温度+60℃以下が好ましい。また、高分子量ポリオレフィンより融点の高い樹脂を添加する場合、それらの添加樹脂が溶解開始する温度以上で混練するのが好ましい。なお、高分子量ポリオレフィンの分解を抑制するため、溶解後の混練時に、膜特性を低下させない程度に温度を下げても差し支えない。
【0024】
次に、溶融混練物をシート状に押し出して得られた架橋性樹脂を含むゲル状成形物(樹脂層B)と、架橋性樹脂を含まないゲル状成形物(樹脂層A)を少なくとも一種類ずつ積層して、積層物を形成する。
【0025】
本発明において、溶融混練物をシート状に押し出して得られる2種類のゲル状成形物を積層することにより、界面において各層間の分子の絡み合いが形成され、融着が強固になる上に、相分離が融着後に進行するため界面にもバルク同様の多孔構造が形成され、通気性を低下させないという優れた効果が発現される。
【0026】
溶融混練物をシート状に押し出す方法は、特に限定されず、例えば、Tダイ等を取り付けた押出機などを用いる方法が挙げられる。
【0027】
積層方法としては、バッチ式と連続式のいずれの方法でもよい。バッチ式では、例えば少なくとも一種類ずつのゲル状成形物を、二軸ロールを用いて任意の順番で貼り合わせることができる。この時、ゲルの接着表面の温度は相分離し始める温度以下でないことが好ましい。樹脂が析出する温度以下になると、表面に流動パラフィン等の溶媒がゲル状成形物表面に浮き出て、各層の接着を阻害するため、そのまま製膜しても、外観が悪く、容易に界面剥離する。連続式では、例えば2台以上の混練機を用い、ダイス近傍でロールを用いて貼り合わせるか、もしくはダイス出口の直前の所で吐出圧で貼り合わせることができる。特に、ダイス内で貼り合わせる方法が、不純物や空気等の噛み込みがなく好ましい。
【0028】
なお、本発明では、得られた積層物を、好ましくは0℃以下、より好ましくは−10℃以下に冷却した金属板に挟み込み急冷して、シート状に成形することが望ましい。
【0029】
このようにして得られるシート状成形物の厚みは、通常、0.5〜20mmが好ましい。
【0030】
次に、得られたシート状成形物を延伸処理する。延伸処理の方式は特に限定されるものではなく、通常のテンター法、ロール法またはこれらの方法の組み合わせであってもよい。また、一軸延伸、二軸延伸等いずれの方式をも適用することができ、二軸延伸の場合は、縦横同時延伸又は逐次延伸のいずれでもよいが、縦横同時延伸が好ましい。
【0031】
延伸処理時の温度は、延伸の均一性が良好で、十分な膜強度が得られる観点から、高分子量ポリオレフィンの融点+5℃以下の温度が好ましい。
【0032】
次に、延伸処理後のシート状成形物の脱溶媒処理を行う。
脱溶媒処理は、シート状成形物から溶媒を除去して多孔質構造を形成させる工程であり、例えば、シート状成形物を溶剤で洗浄して残留する溶媒を除去することにより行うことができる。溶剤は、樹脂組成物の調製に用いた溶媒に応じて適宜選択することができるが、具体的には、ペンタン、ヘキサン、ヘプタン、デカン等の炭化水素、塩化メチレン、四塩化炭素等の塩素化炭化水素、ジエチルエーテル、ジオキサン等のエーテル類、アルコール類等の易揮発性溶剤が挙げられ、これらは単独で又は二種以上を混合して用いることができる。かかる溶剤を用いた脱溶媒処理の方法は、特に限定されず、例えば、シート状成形物を溶剤中に浸漬して溶媒を抽出する方法、溶剤をシート状成形物にシャワーする方法等が挙げられる。脱溶媒処理は延伸前に行ってもよい。例えば、シート状組成物を脱溶媒処理してから延伸処理に供してもよく、あるいは延伸処理前に脱溶媒処理を行い、延伸処理後に再度脱溶媒処理を行ってもよい。
【0033】
なお、本発明では、延伸及び脱溶媒処理の前後に、さらに圧延処理を行ってもよい。例えば、シート状成形物をそのまま圧延処理してから延伸処理と脱溶媒処理(延伸と脱溶媒の順序はいずれが先でもよい)を行ってもよい。あるいは、延伸処理と脱溶媒処理の間に圧延処理を行ってもよく、例えば、圧延処理前に脱溶媒処理を行い、圧延処理後に再度延伸処理と脱溶媒処理(延伸と脱溶媒の順序はいずれが先でもよい)を行って残存溶媒を除去する態様であってもよい。
【0034】
次いで、架橋性樹脂の熱酸化処理を行うことが好ましい。具体的には、酸素またはオゾン存在下で熱処理を行う。該熱処理を行うことにより、架橋性樹脂由来の二重結合の全部、または一部が消失し、得られる多孔質フィルムの樹脂層B中において架橋性樹脂どうし、または架橋性樹脂とポリオレフィンとの間で架橋が起こり、耐熱性が大きく向上する。
【0035】
なお、前記二重結合を消失させる割合は、所望の耐熱性を考慮して適宜選択されるが、80〜100%(IRのピークの大きさに基づき算出)の消失率が好ましい。
二重結合の全部又は一部が酸素存在下での加熱処理により消失することは、赤外吸収スペクトルを観察することによって確認することができるが、これは樹脂層Bが架橋構造を有することを意味している。
【0036】
熱処理の際の雰囲気は、経済性、安定性の観点から空気雰囲気が特に好ましい。熱処理方法としては、一回で熱処理する一段式熱処理法でも、最初に低温でまず熱処理し、その後さらに高温での熱処理を行う多段式の熱処理法でもよく、あるいは昇温しながら熱処理する昇温式熱処理法でもよいが、通気度等の多孔質フィルムの元の諸特性を損なうことなく処理することが望ましい。一段式熱処理法の場合には、多孔質フィルムの組成にもよるが、40℃〜140℃が好ましい。また、低温から熱処理を開始し、その後、処理温度を上げていくと、多孔質フィルムの樹脂層Bの架橋とともに耐熱性がしだいに向上していくので、加熱によって通気度等の元の諸特性を損なうことなく高温に暴露することができるようになる。そのため、諸特性を損なわずに、短時間で熱処理を完了するためには、多段式あるいは昇温式熱処理法が好ましい。この場合の熱処理時間は、温度により二重結合の消失速度が異なるため一概には決められないが、例えば115℃であれば30分以上であることが好ましい。
【0037】
多段式の熱処理法の最初の熱処理温度としては、多孔質フィルムの組成にもよるが、好ましくは40〜90℃、2段目の熱処理温度としては、多孔質フィルムの組成にもよるが、好ましくは90〜140℃である。また、必要に応じてさらに高温で、さらに短時間の3段目以降の熱処理を行ってもよい。処理時間は、多孔質フィルムの組成にもよるが、最初の熱処理には3〜48時間程度、2段目のより高温での熱処理には0.5〜6時間程度が好ましい。昇温式熱処理法の場合には、前記の多段式熱処理法に準じた条件で行えばよい。
具体的な熱処理方法として、多孔質フィルムの四隅を固定してオーブンに投入する、ロールに捲回してオーブンに投入する、テンターで面積固定して連続的にオーブンに通す等の公知の方法が用いられる。
【0038】
酸素存在下での熱処理による架橋反応の機構は複雑であり、必ずしも明確ではないが、多孔質フィルムの耐熱性の向上の理由は以下のように推定される。
【0039】
第一に、酸素の作用で生じたポリマーラジカルが前記架橋性樹脂の二重結合に付加し、その際に架橋性樹脂どうしあるいは、架橋性樹脂と前記ポリオレフィンとの間で架橋反応が起こり、構造が三次元化するためであると考えられる。
【0040】
第二に、架橋性樹脂のC=C二重結合が消失して、飽和C−C結合に転化することにより、ガラス転移温度が大きく上昇することが考えられる。例えば、架橋性樹脂としてポリノルボルネンを使用した場合、そのガラス転移温度は35℃であるが、C=C二重結合が水素添加されて飽和C−C結合に転化されると百数十℃になるとされている。C=C二重結合が飽和C−C結合に転化されてガラス転移温度が高くなるのは、その主鎖に脂肪族環を有するためであり、本発明における処理後の多孔質フィルムが、通常の架橋性ゴムの場合よりも高い耐熱性を有するのは、このようなガラス転移温度の上昇も大きな要因であると推測される。
【0041】
第三に、酸化作用によって、水酸基、エステル基、カルボキシル基等の極性基が多孔質フィルム中に生成していることから、これらに基づく擬似的な架橋も寄与し、耐熱性が向上する要因になっているものと思われる。
【0042】
本発明の多孔質フィルムは、これらの作用効果が複雑にからみあって耐熱性が大きく向上するものと考えられる。
【0043】
また、前記熱処理をする場合、必要に応じて、紫外線、可視光線等を照射し、架橋を促進してもよい。
【0044】
本発明では、このようにして得られた多孔質フィルムに、架橋処理の前または後に必要に応じてさらにフィルムの熱収縮を防止するためのヒートセット処理等を施して、形状固定してもよい。
【0045】
以上のようにして得られた多孔質フィルムは、高い積層強度を有し、且つ架橋層が存在するために優れた耐熱性を示す。積層強度は、セパレータの取り扱い方法により必要な強度が異なるため、一概には規定できないが、最も好ましくはTピール試験を行なった場合に非架橋層(樹脂層A)または架橋層(樹脂層B)で層内剥離が起こるほどの強度であれば良い。耐熱性の指標として、多孔質フィルムの熱破断温度は180℃以上が好ましく、200℃以上がより好ましい。
【0046】
また、本発明の多孔質フィルムの厚みは2〜60μm、好ましくは5〜45μmであることが望ましく、各層の厚みは1〜50μm、好ましくは2〜40μm、空孔率は20〜80%、好ましくは25〜75%、通気度は100〜1000sec/100cm3 、好ましくは200〜900sec/100cm3 、SD温度は120〜150℃、好ましくは130〜140℃であることが、それぞれ望ましい。積層強度、熱破断温度、厚み、空孔率及び通気度は、後述の実施例に記載の方法を用いて測定することができる。
【0047】
また、SD(シャットダウン)温度は、以下のようにして測定することができる。即ち、25mmφの筒状の試験室を有し、試験室が密閉可能なSUS製のセルを用い、下部電極は20mmφ、上部電極は10mmφの白金板(厚さ1.0mm)を使用する。24mmφに打ち抜いた測定試料を電解液に浸漬して電解液を含浸させ、電極間に挟み、セルにセットする。電極はセルに設けられたばねにて一定の面圧がかかるようにする。電解液はプロピレンカーボネートとジメトキシエタンを容量比で1:1の割合で混合した溶媒に、ホウフッ化リチウムを1.0mol/Lの濃度になるように溶解させたものを用いる。このセルに熱電対温度計と、抵抗計を接続して温度と抵抗を測定できるようにし、180℃恒温器中へ投入し、温度と抵抗を測定する。100〜150℃の平均昇温速度は10℃/分であり、この測定により、抵抗が100Ω・cm2 に達した時の温度をSD温度とする。
【0048】
このような特性を有する本発明の多孔質フィルムは、樹脂層A(非架橋層)と樹脂層B(架橋層)の積層強度が高く、かつ架橋層が充分な耐熱性を有するため熱破断温度が高く、電池用セパレータ等に好適に用いることができる。
【0049】
本発明の多孔質フィルムは、従来のセパレータと同様に、正極と負極の間に介在せしめた状態で用いて電池を組み立てることができる。この際の正極、負極、電池ケース、電解液等の材質やこれら構成要素の配置構造も何ら格別なことは要求されず、従来と同様で良く、例えば特開昭63−205048号公報に示される通りであってよい。
【0050】
また、本発明の多孔質フィルムは、従来のセパレータと同様に、一対の電極の間に介在せしめた状態で用いてキャパシターを組み立てることができる。この際の電極、電解液、ケース等の材質やこれらの構成要素の配置構造も何ら格別なことは要求されず、従来と同様で良い。例えば、電気二重層キャパシターでは、電極としてポリテトラフルオロエチレン(PTFE)をバインダーとして形成した活性炭電極、電解液には炭酸プロピレンに0.5M Et4 BF4 を添加した溶液を用いることができる。
【0051】
【実施例】
本発明を実施例、比較例に基づいてさらに詳細に説明するが、本発明はかかる実施例のみに限定されるものではない。なお、各種特性については、下記要領にて測定を行う。
【0052】
(融点)
セイコー電子工業社製の示差走査熱量計「DSC−200」を使用し、室温から200℃まで10℃/minの割合で昇温させ、この昇温過程での吸熱ピークのオンセット温度を融点とする。
【0053】
(重量平均分子量)
ウォーターズ社製のゲル浸透クロマトグラフ「GPC−150C」を用い、溶媒にo−ジクロロベンゼンを、また、カラムとして昭和電工(株)製の「Shodex−80M」を用いて135℃で測定する。データ処理は、TRC社製データ処理システムを用いて行う。分子量はポリスチレンを基準として算出する。
【0054】
(フィルムの厚み)
1/10000シックネスゲージにより測定した。
【0055】
(空孔率)
測定対象の多孔質フィルムを直径6cmの円状に切り抜き、その体積と重量を求め、得られる結果から次式を用いて計算する。
【0056】
空孔率(体積%)=100×〔体積(cm3 )−重量(g)/樹脂成分の平均密度(g/cm3 )〕/体積(cm3
【0057】
(通気度(ガーレ値))
JIS P8117に準拠して測定した。
【0058】
(熱破断温度(耐熱性))
幅3mmの短冊状サンプルをチャック間を10mmとして取り付け、セイコー電子製熱応力歪み分析装置「TMA/SS100」にセットして、昇温速度2℃/minで昇温した。この昇温時の状態より評価し、短冊状サンプルが破断した場合はこの時の温度を熱破断温度とした。
【0059】
(積層強度)
試験片として多孔質フィルムを幅1cmにカットし、300mm/minの速度でTピール試験を行なった。温度は室温(25℃)であった。ピール強度がほぼ定常になった値を積層強度とした。
【0060】
実施例1
重量平均分子量2×106 の高分子量ポリエチレン(融点:134℃、以下同じ)30重量%と重量平均分子量2×105 の高分子量ポリエチレン(融点:127℃)60重量%、ノルボルネンの開環重合体の粉末(日本ゼオン(株)製、ノーソレックスNB、重量平均分子量2×106 以上、以下同じ)10重量%からなるポリオレフィン組成物20重量部と流動パラフィン(凝固点:−15℃、40℃における動粘度:59cst、以下同じ)80重量部とをスラリー状に均一に混合し、160℃で二軸混練機を用い溶融混練した。さらに、重量平均分子量2×106 の高分子量ポリエチレン33重量%と重量平均分子量2×105 の高分子量ポリエチレン67重量%とからなるポリオレフィン組成物20重量部と流動パラフィン80重量部とをスラリー状に均一に混合し、160℃で二軸混練機を用い溶融混練した。上記2種の溶融混練物をダイスより2層押し出しし、得られた積層物(厚み10mm)を0℃に冷却された金属板に挟み込み、厚み5mmのシート状に急冷した。この時各層の厚みは2.5mmであった。この急冷シートを115℃で厚みが0.7mmになるまでヒートプレスし、ヘプタンを使用して脱溶媒処理を行った後、115℃で3.5×3.5倍に縦横同時二軸延伸を行った。その後、得られた多孔質フィルムを空気中で85℃で1時間、さらに115℃で1時間熱処理し、本発明の多孔質フィルムを得た。なお、得られた多孔質フィルムについて赤外吸収スペクトル観察したところ、ノルボルネンの開環重合体の二重結合は97%消失していた。
【0061】
実施例2
重量平均分子量2×106 の高分子量ポリエチレン90重量%とノルボルネンの開環重合体の粉末10重量%からなるポリオレフィン組成物20重量部と流動パラフィン80重量部とをスラリー状に均一に混合し、160℃で二軸混練機を用い溶融混練した。さらに、重量平均分子量2×106 の高分子量ポリエチレン20重量部と流動パラフィン80重量部とをスラリー状に均一に混合し、160℃で二軸混練機を用い溶融混練した。上記2種の溶融混練物をダイスより2層押し出しし、得られた積層物(厚み10mm)を0℃に冷却された金属板に挟み込み、厚み5mmのシート状に急冷した。この時の各層の厚みは2.5mmであった。この急冷シートを115℃で厚みが0.7mmになるまでヒートプレスし、125℃で3.5×3.5倍に縦横同時二軸延伸し、ヘプタンを使用して脱溶媒処理を行った。その後、得られた多孔質フィルムを空気中85℃で1時間、さらに130℃で1時間熱処理し、本発明の多孔質フィルムを得た。なお、得られた多孔質フィルムについて赤外吸収スペクトル観察したところ、ノルボルネンの開環重合体の二重結合は99%消失していた。
【0062】
比較例1
重量平均分子量2×106 の高分子量ポリエチレン33重量%と重量平均分子量2×105 の高分子量ポリエチレン67重量%からなるポリオレフィン組成物20重量部と流動パラフィン80重量部とをスラリー状に均一に混合し、160℃で二軸混練機を用いて溶融混練し、ダイスより押出し成形した。得られたゲル状成形物を0℃に冷却された金属板に挟み込み、厚み3mmのシート状に急冷した。この急冷シートを115℃で厚みが0.4mmになるまでヒートプレスし、ヘプタンを使用して脱溶媒処理を行なった後、115℃で3.5×3.5倍に縦横同時二軸延伸を行なった。
【0063】
この未架橋フィルムに窒素雰囲気下で30MRadの電子線を照射し、架橋フィルムを得た。架橋フィルムと未架橋フィルムをそれぞれ85℃で1時間、さらに115℃で1時間ヒートセットして熱収縮を防止した後、1枚ずつ重ね合わせ、温度100℃、圧力0.3kg/cm(線圧)の条件でラミネーターにより積層し、多孔質フィルムを得た。なお、得られた多孔質フィルムには架橋性樹脂を用いていないので赤外吸収スペクトル観察しても変化はなかった。
【0064】
実施例1、2及び比較例1で得られた多孔質フィルムの膜厚、空孔率、通気度、熱破断温度及び積層強度を表1に示す。
【0065】
【表1】

Figure 0004338164
【0066】
表1の結果より、実施例1及び2の多孔質フィルムは、ラミネート積層した比較例1の多孔質フィルムに比べ、熱破断温度が高く、また積層強度が高いため、非架橋層内で剥離が発生したことから、架橋性樹脂添加による架橋の方が、電子線照射よりも耐熱性に優れた多孔質フィルムを得られることがわかる。
【0067】
【発明の効果】
本発明により、架橋層および非架橋層をそれぞれ少なくとも1層存在する構造を有し、それらの層間の積層強度が高く、且つ高温で優れた耐熱膜破断性を有する多孔質フィルムを得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a porous film and a method for producing the same. More specifically, the present invention relates to a porous film that is preferably used as a battery separator or the like that is disposed between the positive and negative electrodes of a battery to isolate them, a method for producing the same, a battery using the porous film, and a capacitor.
[0002]
[Prior art]
In recent years, lithium batteries that are lightweight as batteries, have high electromotive force and high energy, and have low self-discharge are attracting attention in order to cope with cordless electronic devices. A separator is provided between the positive electrode and the negative electrode of the lithium battery to prevent a short circuit between the positive electrode and the negative electrode. As the separator, a large number of micropores are formed to ensure the permeation of ions between the positive electrode and the negative electrode. A porous film is used. Among them, what has a so-called shutdown function (SD function) in which when an abnormal current occurs due to an incorrect connection of the battery, the resin is thermally deformed as the internal temperature of the battery rises to block the micropores and stop the battery reaction. It is adopted from the viewpoint of improving safety. As the separator having such an SD function, for example, a polyethylene microporous film or a microporous film having a multilayer structure of polyethylene and polypropylene is known.
[0003]
However, due to recent advances in lithium ion secondary batteries, etc., not only the SD function, but also the heat resistant element, that is, when the temperature further rises after shutdown, the separator itself melts or melts. If it breaks, there is a risk of battery ignition and explosion. Therefore, a separator that does not break or break even at higher temperatures is desired. In particular, as the capacity of the battery and the internal resistance of the battery decrease, it becomes more and more important because elements that increase heat generation increase.
[0004]
As a method for achieving both heat resistance and SD characteristics, as disclosed in the specification of Japanese Patent No. 2768745, at least two polyethylene porous films are laminated, and at least of these laminated porous films. It has been found that a separator in which one sheet is crosslinked and at least one sheet is uncrosslinked is effective. In this method, lamination was possible without laminating micropores by laminating a porous film in a specific temperature range, but the laminating temperature was low, so the lamination strength between the films was not sufficiently high, and peeling was not possible. In order to prevent this, it was necessary to pay attention to the handling of the film after production. Moreover, for example, when an electron beam is irradiated after lamination, a non-crosslinked layer cannot be obtained, and there arises a problem that heat resistance and SD characteristics cannot be compatible.
[0005]
Therefore, in order to obtain a separator having both heat resistance and SD characteristics, a porous film that is porous after lamination, has a crosslinked layer and a non-crosslinked layer at least one layer, and does not peel between the layers, and a method for producing the same are desired. It was.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a porous film having at least one cross-linked layer and a non-cross-linked layer, a high lamination strength between those layers, and an excellent anti-breaking film rupture resistance even at high temperatures, the production method thereof, It is providing the battery and capacitor which use a porous film.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that high lamination strength can be obtained even after film formation by laminating gel-like molded products containing high-molecular-weight polyolefins before phase separation. . Further, the present inventors have found that by adding a crosslinkable resin to at least one layer, crosslinking occurs by heat treatment after film formation and the like and a high heat resistant layer is formed.
[0008]
  That is, the gist of the present invention is as follows.
[1] A porous film formed by laminating a layer containing polyolefin (resin layer A) and a layer containing both polyolefin and a crosslinkable resin (resin layer B)The porous film is a resin in which the crosslinkable resin has a double bond and a hydrogen atom is bonded to the α-position carbon.,
[2] The porous film according to [1], wherein the resin layer B has a crosslinked structure;
[3] A method for producing a porous film, characterized by laminating a gel-like molded product containing polyolefin and a gel-like molded product containing both polyolefin and a crosslinkable resin to form a film.The method for producing a porous film, wherein the crosslinkable resin has a double bond and a hydrogen atom is bonded to the α-position carbon.,
[4] A battery using the porous film according to [1] or [2].,
[5] A capacitor using the porous film according to [1] or [2]And
[6] Battery separator comprising the porous film of [1] or [2]
It is about.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The porous film of the present invention is formed by laminating a layer containing polyolefin (resin layer A) and a layer containing both polyolefin and a crosslinkable resin (resin layer B). In this specification, the resin layer A is also referred to as a non-crosslinked layer, and the resin layer B is also referred to as a crosslinked layer.
[0010]
The polyolefin used in the resin layers A and B preferably has a weight average molecular weight of 5 × 10.FiveExamples of the high molecular weight polyolefin include a homopolymer obtained by polymerizing ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and the like, a blend thereof, and the like. Among them, high molecular weight polyethylene that has excellent mechanical strength and high crystallinity is desirable as a material. The weight average molecular weight of the high molecular weight polyolefin is further 1 × 106The above ultra-high molecular weight is preferable, 1.5 × 106The above is more preferable.
[0011]
The content of the high molecular weight polyolefin in the resin layer A is 5 to 100% by weight, preferably 10 to 100% by weight, and more preferably 20 to 100% by weight. The lower limit of the content is preferably 5% by weight or more from the viewpoint of sufficient strength of the film formed.
[0012]
The resin layer A has a weight average molecular weight of 5 × 10 5 as other resins.FiveLess than polyolefin, thermoplastic elastomer, hydrogenated polybutadiene resin, modified olefin resin, ethylene propylene diene monomer rubber (EPDM) and the like may be contained. Examples of the thermoplastic elastomer resin include “TPE” (manufactured by Sumitomo Chemical Co., Ltd.), “Hytrel” (manufactured by Toray DuPont), “Septon” (manufactured by Kuraray Co., Ltd.), and the like. Examples of the hydrogenated polybutadiene resin include “DYNARON” (manufactured by Nippon Synthetic Rubber). Examples of the modified olefin resin include “Evaflex” (manufactured by Mitsui DuPont Polychemical Co., Ltd.), “Modiper” (manufactured by Nippon Oil & Fats Co., Ltd.), and the like. Examples of EPDM include “Esprene” (manufactured by Sumitomo Chemical Co., Ltd.).
[0013]
The content of other resins in the resin layer A is preferably 0 to 95% by weight, more preferably 0 to 90% by weight, and still more preferably 0 to 80% by weight.
[0014]
The crosslinkable resin used in the resin layer B in the present invention is a resin having a double bond and a hydrogen atom bonded to the α-position carbon, and can form a crosslinked structure by at least heat treatment. Not. For example, an unsaturated condensed alicyclic compound derivative is obtained by ring-opening polymerization, and a resin having an aliphatic ring and a double bond derived from the monomer unit in the main chain (for example, polynorbornene) or a terminal Resin having a structure in which a methylene group is bonded to the main chain (for example, polybutadiene) obtained by polymerizing a monomer having a structure in which a terminal hydrogen atom of a lower hydrocarbon having a double bond is substituted with an ethylene group Is mentioned. Among these, from the viewpoint of dispersibility, polynorbornene is preferable, and the weight average molecular weight is 2 × 10.6The above polynorbornene is particularly preferred.
[0015]
The content of the crosslinkable resin in the resin layer B is 1 to 50% by weight, preferably 3 to 40% by weight, and more preferably 5 to 35% by weight. The content is preferably 1% by weight or more from the viewpoint of effective addition of the crosslinkable resin, and from the viewpoint of obtaining a high air permeability with a high porosity of the porous film, it is 50% by weight or less. preferable. Therefore, the content of polyolefin in the resin layer B is 50 to 99% by weight, preferably 60 to 97% by weight, more preferably 65 to 95% by weight.
[0016]
In the present invention, the order in which the resin layers A and B having these components are laminated is not particularly limited, but the resin layers A and B are preferably laminated alternately. 1-50 micrometers is preferable and, as for the thickness of each layer, 5-50 micrometers is more preferable. In addition, since each of these layers is laminated in a molten state, it is considered that molecules of each other layer penetrate each other and are firmly bonded to the whole.
[0017]
The porous film of the present invention is obtained by, for example, extruding a mixture obtained by adding a solvent to a resin component containing polyolefin or a resin component containing both polyolefin and a crosslinkable resin, and then extruding it into a sheet. It can be obtained by subjecting a sheet-like molded product obtained by laminating the two kinds of gel-like molded products to a film forming process including a stretching process and a solvent removal process. In the present invention, the film formation treatment refers to a treatment step of forming a porous film in which the resin layer A and the resin layer B are laminated by a treatment such as stretching, desolvation, and rolling if necessary. .
[0018]
The solvent is not particularly limited as long as it has excellent solubility in each resin component. For example, nonane, decane, undecane, dodecane, decalin, liquid paraffin and other aliphatic or cyclic hydrocarbons, or mineral oils having boiling points corresponding to these. A non-volatile solvent such as liquid paraffin is preferable.
[0019]
The compounding amount of the resin component and the solvent varies depending on the type of resin, solubility, kneading temperature, etc., and thus cannot be determined unconditionally. However, as long as the resulting slurry mixture can be melt-kneaded and formed into a sheet shape There is no particular limitation. For example, the blending amount of the resin component is preferably 5 to 30% by weight in the mixture, more preferably 10 to 30% by weight, and still more preferably 10 to 25% by weight. The blending amount of the resin component is preferably 5% by weight or more from the viewpoint of improving the strength of the obtained porous film, and the polyolefin can be sufficiently dissolved in a solvent and kneaded to near the fully extended state. From the viewpoint of obtaining sufficient entanglement of the polymer chain, it is preferably 30% by weight or less.
[0020]
The amount of the solvent in the mixture is preferably 70 to 95% by weight, more preferably 70 to 90% by weight, and even more preferably 75 to 90% by weight. The blending amount is preferably 70% by weight or more from the viewpoint of moderate kneading torque, rolling and stretching stress, and excellent productivity, and necking-in does not occur at the die outlet when extrusion, and molding is easy. From this viewpoint, the content is preferably 95% by weight or less.
[0021]
In addition, an additive such as an antioxidant, an ultraviolet absorber, a dye, a nucleating agent, a pigment, and an antistatic agent may be added to the mixture as necessary, as long as the object of the present invention is not impaired. it can.
[0022]
The melt kneading of the mixture is preferably performed by applying a sufficient shearing force to the mixture in order to obtain sufficient entanglement of the polymer chains of the high molecular weight polyolefin. Therefore, in the melt kneading of the mixture in the present invention, a kneader or a biaxial kneader capable of giving a strong shearing force to the mixture is usually preferably used.
[0023]
The temperature at which the mixture is melt-kneaded is preferably within the range of the temperature at which the solvent starts to dissolve the high-molecular-weight polyolefin (dissolution start temperature) to + 60 ° C. The temperature is preferably equal to or higher than the dissolution start temperature from the viewpoint of efficiently dispersing the high molecular weight polyolefin, and is preferably equal to or lower than the dissolution start temperature + 60 ° C. from the viewpoint of hardly causing the resin to decompose. In addition, when a resin having a melting point higher than that of the high-molecular-weight polyolefin is added, it is preferable to knead at a temperature higher than the temperature at which the added resin starts to dissolve. In order to suppress decomposition of the high molecular weight polyolefin, the temperature may be lowered to the extent that the film characteristics are not deteriorated during kneading after dissolution.
[0024]
Next, at least one kind of gel-like molded product (resin layer B) containing a crosslinkable resin obtained by extruding the melt-kneaded product into a sheet shape and a gel-like molded product (resin layer A) containing no crosslinkable resin are obtained. Laminate one by one to form a laminate.
[0025]
In the present invention, by laminating two types of gel-like products obtained by extruding the melt-kneaded material into a sheet, entanglement of molecules between layers is formed at the interface, and the fusion is strengthened. Since the separation proceeds after fusion, a porous structure similar to the bulk is formed at the interface, and the excellent effect of not reducing the air permeability is exhibited.
[0026]
The method for extruding the melt-kneaded material into a sheet is not particularly limited, and examples thereof include a method using an extruder equipped with a T die or the like.
[0027]
The lamination method may be either a batch method or a continuous method. In the batch method, for example, at least one type of gel-like molded product can be bonded in an arbitrary order using a biaxial roll. At this time, the temperature of the adhesive surface of the gel is preferably not lower than the temperature at which phase separation starts. When the temperature falls below the temperature at which the resin is deposited, a solvent such as liquid paraffin emerges on the surface of the gel-like molded product and inhibits the adhesion of each layer. . In the continuous type, for example, two or more kneaders can be used and bonded together using a roll in the vicinity of the die, or bonded at a discharge pressure just before the die outlet. In particular, a method of bonding in a die is preferable because there is no biting of impurities or air.
[0028]
In the present invention, the obtained laminate is preferably sandwiched between metal plates cooled to 0 ° C. or less, more preferably −10 ° C. or less, and then rapidly cooled to form a sheet.
[0029]
The thickness of the sheet-like molded product thus obtained is usually preferably 0.5 to 20 mm.
[0030]
Next, the obtained sheet-like molded product is stretched. The stretching method is not particularly limited, and may be a normal tenter method, a roll method, or a combination of these methods. In addition, any method such as uniaxial stretching or biaxial stretching can be applied. In the case of biaxial stretching, either longitudinal or transverse simultaneous stretching or sequential stretching may be used, but longitudinal and transverse simultaneous stretching is preferable.
[0031]
The temperature during the stretching treatment is preferably a temperature of the melting point of the high-molecular-weight polyolefin + 5 ° C. or less from the viewpoint of good uniformity of stretching and sufficient film strength.
[0032]
Next, a solvent removal treatment is performed on the sheet-like molded product after the stretching treatment.
The solvent removal treatment is a step of removing the solvent from the sheet-like molded product to form a porous structure, and can be performed, for example, by washing the sheet-like molded product with a solvent to remove the remaining solvent. The solvent can be appropriately selected according to the solvent used for the preparation of the resin composition. Specifically, hydrocarbons such as pentane, hexane, heptane and decane, chlorination such as methylene chloride and carbon tetrachloride, etc. Examples include hydrocarbons, ethers such as diethyl ether and dioxane, and readily volatile solvents such as alcohols. These may be used alone or in admixture of two or more. The method of desolvation treatment using such a solvent is not particularly limited, and examples thereof include a method of extracting a solvent by immersing a sheet-like molded product in a solvent, a method of showering the solvent on the sheet-like molded product, and the like. . The solvent removal treatment may be performed before stretching. For example, the sheet-like composition may be subjected to a solvent removal treatment and then subjected to a stretching treatment. Alternatively, the solvent removal treatment may be performed before the stretching treatment, and the solvent removal treatment may be performed again after the stretching treatment.
[0033]
In the present invention, rolling treatment may be further performed before and after the stretching and desolvation treatment. For example, the sheet-shaped molded product may be subjected to a rolling treatment as it is and then subjected to a stretching treatment and a solvent removal treatment (any of stretching and solvent removal may be performed first). Alternatively, the rolling treatment may be performed between the stretching treatment and the solvent removal treatment. For example, the solvent removal treatment is performed before the rolling treatment, and the stretching treatment and the solvent removal treatment are again performed after the rolling treatment (the order of the stretching and the solvent removal is any May be performed first) to remove the residual solvent.
[0034]
Next, it is preferable to perform a thermal oxidation treatment of the crosslinkable resin. Specifically, heat treatment is performed in the presence of oxygen or ozone. By performing the heat treatment, all or part of the double bond derived from the crosslinkable resin disappears, and in the resin layer B of the resulting porous film, the crosslinkable resins or between the crosslinkable resin and the polyolefin Cross-linking occurs and heat resistance is greatly improved.
[0035]
In addition, although the ratio which makes the said double bond lose | disappear is suitably selected in consideration of desired heat resistance, the disappearance rate of 80 to 100% (calculated based on the magnitude | size of IR peak) is preferable.
The disappearance of all or part of the double bond by heat treatment in the presence of oxygen can be confirmed by observing the infrared absorption spectrum. This indicates that the resin layer B has a crosslinked structure. I mean.
[0036]
The atmosphere during the heat treatment is particularly preferably an air atmosphere from the viewpoints of economy and stability. The heat treatment method may be a one-stage heat treatment method in which heat treatment is performed once, a multi-stage heat treatment method in which heat treatment is first performed at a low temperature, and then heat treatment is performed at a higher temperature, or a temperature increase method in which heat treatment is performed while the temperature is increased. Although a heat treatment method may be used, it is desirable to perform the treatment without impairing the original characteristics of the porous film such as air permeability. In the case of the one-stage heat treatment method, although it depends on the composition of the porous film, it is preferably 40 ° C to 140 ° C. In addition, if heat treatment is started from a low temperature and then the treatment temperature is raised, the heat resistance gradually improves with the cross-linking of the resin layer B of the porous film. It becomes possible to be exposed to high temperature without impairing Therefore, in order to complete the heat treatment in a short time without impairing various characteristics, a multistage type or a temperature rising type heat treatment method is preferable. The heat treatment time in this case cannot be determined unconditionally because the rate of disappearance of the double bond varies depending on the temperature. For example, if it is 115 ° C., it is preferably 30 minutes or longer.
[0037]
The first heat treatment temperature of the multi-stage heat treatment method depends on the composition of the porous film, but preferably 40 to 90 ° C. The second heat treatment temperature depends on the composition of the porous film, but preferably Is 90-140 ° C. Moreover, you may perform the heat processing after the 3rd step | paragraph after a further short time at further high temperature as needed. The treatment time depends on the composition of the porous film, but is preferably about 3 to 48 hours for the first heat treatment and about 0.5 to 6 hours for the heat treatment at the second higher temperature. In the case of the temperature raising type heat treatment method, it may be performed under the conditions according to the multistage heat treatment method.
As a specific heat treatment method, a known method such as fixing the four corners of the porous film into the oven, winding it into a roll and putting it into the oven, fixing the area with a tenter and continuously passing through the oven is used. It is done.
[0038]
The mechanism of the crosslinking reaction by heat treatment in the presence of oxygen is complicated and not necessarily clear, but the reason for the improvement of the heat resistance of the porous film is estimated as follows.
[0039]
First, a polymer radical generated by the action of oxygen is added to the double bond of the crosslinkable resin, and at this time, a crosslink reaction occurs between the crosslinkable resins or between the crosslinkable resin and the polyolefin. It is thought that this is because of the three-dimensionalization.
[0040]
Secondly, it is conceivable that the glass transition temperature is greatly increased by the disappearance of the C═C double bond of the crosslinkable resin and conversion to a saturated C—C bond. For example, when polynorbornene is used as the crosslinkable resin, its glass transition temperature is 35 ° C., but when the C═C double bond is hydrogenated and converted to a saturated C—C bond, it becomes hundreds of tens of ° C. It is supposed to be. The reason why the C = C double bond is converted to a saturated C—C bond and the glass transition temperature is increased is because the main chain has an aliphatic ring, and the porous film after treatment in the present invention is usually used. Such a rise in glass transition temperature is presumed to be a major factor in having higher heat resistance than that of the crosslinkable rubber.
[0041]
Thirdly, since polar groups such as hydroxyl groups, ester groups, and carboxyl groups are generated in the porous film due to the oxidation action, pseudo-crosslinking based on these contributes to the factor that improves heat resistance. It seems to have become.
[0042]
In the porous film of the present invention, it is considered that the heat resistance is greatly improved by complicatedly entwining these functions and effects.
[0043]
Moreover, when performing the said heat processing, an ultraviolet-ray, visible light, etc. may be irradiated as needed, and bridge | crosslinking may be accelerated | stimulated.
[0044]
In the present invention, the porous film obtained in this way may be subjected to heat-setting treatment or the like for preventing thermal shrinkage of the film as necessary before or after the crosslinking treatment, and the shape may be fixed. .
[0045]
The porous film obtained as described above has high lamination strength and exhibits excellent heat resistance due to the presence of a crosslinked layer. Since the required strength differs depending on the separator handling method, the lamination strength cannot be defined unconditionally, but most preferably when a T peel test is performed, a non-crosslinked layer (resin layer A) or a crosslinked layer (resin layer B) It is sufficient if the strength is sufficient to cause delamination. As an index of heat resistance, the thermal fracture temperature of the porous film is preferably 180 ° C. or higher, and more preferably 200 ° C. or higher.
[0046]
The thickness of the porous film of the present invention is 2 to 60 μm, preferably 5 to 45 μm. The thickness of each layer is 1 to 50 μm, preferably 2 to 40 μm, and the porosity is 20 to 80%, preferably Is 25-75%, air permeability is 100-1000sec / 100cmThree, Preferably 200 to 900 sec / 100 cmThreeThe SD temperature is desirably 120 to 150 ° C, preferably 130 to 140 ° C. Lamination strength, thermal rupture temperature, thickness, porosity and air permeability can be measured using the methods described in the examples described later.
[0047]
The SD (shutdown) temperature can be measured as follows. That is, a SUS cell having a cylindrical test chamber of 25 mmφ and capable of sealing the test chamber is used, and a platinum plate (thickness: 1.0 mm) of 20 mmφ is used for the lower electrode and 10 mmφ is used for the upper electrode. A measurement sample punched to 24 mmφ is immersed in an electrolytic solution, impregnated with the electrolytic solution, sandwiched between electrodes, and set in a cell. A certain surface pressure is applied to the electrode by a spring provided in the cell. As the electrolytic solution, a solution obtained by dissolving lithium borofluoride to a concentration of 1.0 mol / L in a solvent in which propylene carbonate and dimethoxyethane are mixed at a volume ratio of 1: 1 is used. A thermocouple thermometer and a resistance meter are connected to the cell so that the temperature and resistance can be measured. The temperature and resistance are measured by placing the cell in a 180 ° C. thermostat. The average temperature increase rate from 100 to 150 ° C. is 10 ° C./min, and this measurement shows that the resistance is 100 Ω · cm.2The temperature at which the temperature is reached is defined as the SD temperature.
[0048]
The porous film of the present invention having such characteristics has a high lamination strength between the resin layer A (non-crosslinked layer) and the resin layer B (crosslinked layer), and the crosslinked layer has sufficient heat resistance, so that the heat breaking temperature. And can be suitably used for battery separators and the like.
[0049]
Like the conventional separator, the porous film of the present invention can be used in the state of being interposed between the positive electrode and the negative electrode to assemble a battery. In this case, the material of the positive electrode, the negative electrode, the battery case, the electrolytic solution, etc. and the arrangement structure of these components are not required to be special, and may be the same as the conventional one, for example, as disclosed in JP-A-63-205048. May be street.
[0050]
The porous film of the present invention can be used in the state of being interposed between a pair of electrodes in the same manner as a conventional separator to assemble a capacitor. In this case, the material of the electrode, electrolyte, case, etc. and the arrangement structure of these components are not required to be special, and may be the same as in the past. For example, in an electric double layer capacitor, an activated carbon electrode formed by using polytetrafluoroethylene (PTFE) as a binder as an electrode, and 0.5 M Et in propylene carbonate as an electrolyteFourBFFourA solution to which can be added can be used.
[0051]
【Example】
The present invention will be described in more detail based on examples and comparative examples, but the present invention is not limited to only such examples. Various characteristics are measured as follows.
[0052]
(Melting point)
Using a differential scanning calorimeter “DSC-200” manufactured by Seiko Denshi Kogyo Co., Ltd., the temperature was raised from room temperature to 200 ° C. at a rate of 10 ° C./min. The onset temperature of the endothermic peak in this temperature rising process was defined as the melting point. To do.
[0053]
(Weight average molecular weight)
A gel permeation chromatograph “GPC-150C” manufactured by Waters Co., Ltd. is used, o-dichlorobenzene is used as a solvent, and “Shodex-80M” manufactured by Showa Denko KK is used as a column at 135 ° C. Data processing is performed using a data processing system manufactured by TRC. The molecular weight is calculated based on polystyrene.
[0054]
(Film thickness)
It was measured with a 1/10000 thickness gauge.
[0055]
(Porosity)
A porous film to be measured is cut out into a circle having a diameter of 6 cm, and its volume and weight are obtained, and calculation is performed using the following formula from the obtained results.
[0056]
Porosity (volume%) = 100 × [volume (cmThree) -Weight (g) / average density of resin component (g / cmThree]] / Volume (cmThree)
[0057]
(Air permeability (Gurley value))
It measured based on JISP8117.
[0058]
(Heat rupture temperature (heat resistance))
A strip-shaped sample having a width of 3 mm was attached with a chuck interval of 10 mm, set in a thermal stress strain analyzer “TMA / SS100” manufactured by Seiko Electronics, and heated at a temperature rising rate of 2 ° C./min. Evaluation was made based on the temperature rising state, and when the strip-shaped sample broke, the temperature at this time was defined as the heat breaking temperature.
[0059]
(Lamination strength)
A porous film was cut into a width of 1 cm as a test piece, and a T peel test was performed at a speed of 300 mm / min. The temperature was room temperature (25 ° C.). The value at which the peel strength became almost steady was taken as the lamination strength.
[0060]
Example 1
Weight average molecular weight 2 × 106High molecular weight polyethylene (melting point: 134 ° C., hereinafter the same) 30% by weight and weight average molecular weight 2 × 10FiveHigh molecular weight polyethylene (melting point: 127 ° C.) 60% by weight, ring-opening polymer powder of norbornene (manufactured by Nippon Zeon Co., Ltd., Nosolex NB, weight average molecular weight 2 × 106Above, the same shall apply hereinafter) 20 parts by weight of a polyolefin composition comprising 10% by weight and 80 parts by weight of liquid paraffin (solidifying point: −15 ° C., kinematic viscosity at 40 ° C .: 59 cst, the same shall apply hereinafter) in a slurry state, Melt kneading was performed at 160 ° C. using a biaxial kneader. Furthermore, the weight average molecular weight 2 × 106High molecular weight polyethylene 33% by weight and weight average molecular weight 2 × 10Five20 parts by weight of a polyolefin composition consisting of 67% by weight of high molecular weight polyethylene and 80 parts by weight of liquid paraffin were uniformly mixed in a slurry state and melt kneaded at 160 ° C. using a biaxial kneader. Two layers of the above-mentioned two kinds of melt-kneaded products were extruded from a die, and the obtained laminate (thickness 10 mm) was sandwiched between metal plates cooled to 0 ° C. and rapidly cooled into a sheet shape having a thickness of 5 mm. At this time, the thickness of each layer was 2.5 mm. This quenched sheet is heat-pressed at 115 ° C. until the thickness becomes 0.7 mm, and after solvent removal using heptane, simultaneous longitudinal and transverse biaxial stretching is performed at 115 ° C. to 3.5 × 3.5 times. went. Thereafter, the obtained porous film was heat-treated in air at 85 ° C. for 1 hour and further at 115 ° C. for 1 hour to obtain a porous film of the present invention. When the infrared absorption spectrum of the obtained porous film was observed, the double bond of the norbornene ring-opening polymer was 97% lost.
[0061]
Example 2
Weight average molecular weight 2 × 10620 parts by weight of a polyolefin composition comprising 90% by weight of a high molecular weight polyethylene and 10% by weight of a powder of a ring-opening polymer of norbornene and 80 parts by weight of liquid paraffin are uniformly mixed in a slurry state, and a biaxial kneader at 160 ° C. Was melt-kneaded. Furthermore, the weight average molecular weight 2 × 10620 parts by weight of high molecular weight polyethylene and 80 parts by weight of liquid paraffin were uniformly mixed in a slurry state and melt-kneaded at 160 ° C. using a biaxial kneader. Two layers of the above-mentioned two types of melt-kneaded products were extruded from a die, and the obtained laminate (thickness 10 mm) was sandwiched between metal plates cooled to 0 ° C. and rapidly cooled into a sheet having a thickness of 5 mm. The thickness of each layer at this time was 2.5 mm. This quenched sheet was heat-pressed at 115 ° C. until the thickness became 0.7 mm, and was simultaneously biaxially stretched 3.5 × 3.5 times at 125 ° C. and subjected to solvent removal using heptane. Thereafter, the obtained porous film was heat-treated in air at 85 ° C. for 1 hour and further at 130 ° C. for 1 hour to obtain a porous film of the present invention. In addition, when the infrared absorption spectrum of the obtained porous film was observed, 99% of the double bond of the norbornene ring-opening polymer disappeared.
[0062]
Comparative Example 1
Weight average molecular weight 2 × 106High molecular weight polyethylene 33% by weight and weight average molecular weight 2 × 10Five20 parts by weight of a polyolefin composition comprising 67% by weight of high molecular weight polyethylene and 80 parts by weight of liquid paraffin were uniformly mixed in a slurry state, melt-kneaded at 160 ° C. using a twin-screw kneader, and extruded from a die. . The obtained gel-like molded product was sandwiched between metal plates cooled to 0 ° C. and rapidly cooled into a sheet having a thickness of 3 mm. This quenched sheet was heat-pressed at 115 ° C. until the thickness became 0.4 mm, and after solvent removal using heptane, simultaneous longitudinal and transverse biaxial stretching at 115 ° C. to 3.5 × 3.5 times was performed. I did it.
[0063]
This uncrosslinked film was irradiated with an electron beam of 30 MRad in a nitrogen atmosphere to obtain a crosslinked film. The crosslinked film and the uncrosslinked film were heat-set at 85 ° C. for 1 hour and further at 115 ° C. for 1 hour to prevent thermal shrinkage, and then superposed one by one, temperature 100 ° C., pressure 0.3 kg / cm (linear pressure) ) Was laminated with a laminator to obtain a porous film. In addition, since the crosslinkable resin was not used for the obtained porous film, even if it observed the infrared absorption spectrum, there was no change.
[0064]
Table 1 shows the film thickness, porosity, air permeability, thermal fracture temperature, and lamination strength of the porous films obtained in Examples 1 and 2 and Comparative Example 1.
[0065]
[Table 1]
Figure 0004338164
[0066]
From the results shown in Table 1, the porous films of Examples 1 and 2 have higher thermal fracture temperatures and higher lamination strength than the laminated laminated porous film of Comparative Example 1, and therefore, peeling occurs in the non-crosslinked layer. From the occurrence, it can be seen that crosslinking by addition of a crosslinkable resin can provide a porous film having better heat resistance than electron beam irradiation.
[0067]
【The invention's effect】
According to the present invention, it is possible to obtain a porous film having a structure in which at least one cross-linked layer and a non-cross-linked layer are present, a high lamination strength between these layers, and excellent heat-resistant film breakability at high temperatures. .

Claims (9)

ポリオレフィンを含む層(樹脂層A)と、ポリオレフィンと架橋性樹脂のいずれも含む層(樹脂層B)とが積層されてなる多孔質フィルムであって、前記架橋性樹脂が二重結合を有し、そのα位炭素に水素原子が結合している樹脂である、多孔質フィルムA porous film in which a layer containing polyolefin (resin layer A) and a layer containing both polyolefin and a crosslinkable resin (resin layer B) are laminated , wherein the crosslinkable resin has a double bond A porous film which is a resin in which a hydrogen atom is bonded to the α-position carbon . 樹脂層A及び樹脂層Bのポリオレフィンがそれぞれ重量平均分子量5×105 以上の高分子量ポリオレフィンを含有する請求項1記載の多孔質フィルム。The porous film according to claim 1, wherein the polyolefin of the resin layer A and the resin layer B contains a high molecular weight polyolefin having a weight average molecular weight of 5 × 10 5 or more. ポリオレフィンがポリエチレンである請求項1又は2記載の多孔質フィルム。  The porous film according to claim 1 or 2, wherein the polyolefin is polyethylene. 架橋性樹脂がポリノルボルネン又はポリブタジエンである請求項1〜いずれか記載の多孔質フィルム。The porous film according to any one of claims 1 to 3 , wherein the crosslinkable resin is polynorbornene or polybutadiene. 請求項1〜いずれか記載の多孔質フィルムにおいて樹脂層Bが架橋構造を有する多孔質フィルム。The porous film in which the resin layer B has a crosslinked structure in the porous film according to any one of claims 1 to 4 . ポリオレフィンを含むゲル状成形物と、ポリオレフィンと架橋性樹脂のいずれも含むゲル状成形物とを積層して成膜処理を行うことを特徴とする多孔質フィルムの製造方法であって、前記架橋性樹脂が二重結合を有し、そのα位炭素に水素原子が結合している樹脂である、多孔質フィルムの製造方法A method for producing a porous film, characterized by laminating a gel-like molded product containing polyolefin and a gel-like molded product containing both polyolefin and a crosslinkable resin , wherein the crosslinkability A method for producing a porous film, wherein the resin has a double bond and a hydrogen atom is bonded to the α-position carbon . 請求項1〜いずれか記載の多孔質フィルムを用いてなる電池。Batteries comprising a porous film according to any one claims 1-5. 請求項1〜いずれか記載の多孔質フィルムを用いてなるキャパシター。Capacitor comprising a porous film according to any one claims 1-5. 請求項1〜5いずれか記載の多孔質フィルムからなる電池用セパレータ A battery separator comprising the porous film according to claim 1 .
JP2000231738A 2000-07-31 2000-07-31 Porous film and method for producing the same Expired - Fee Related JP4338164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000231738A JP4338164B2 (en) 2000-07-31 2000-07-31 Porous film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000231738A JP4338164B2 (en) 2000-07-31 2000-07-31 Porous film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002036459A JP2002036459A (en) 2002-02-05
JP4338164B2 true JP4338164B2 (en) 2009-10-07

Family

ID=18724526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000231738A Expired - Fee Related JP4338164B2 (en) 2000-07-31 2000-07-31 Porous film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4338164B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4582675B2 (en) * 2000-11-06 2010-11-17 日東電工株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP3983660B2 (en) * 2002-12-26 2007-09-26 日東電工株式会社 Battery separator
JP2004323827A (en) * 2003-04-09 2004-11-18 Nitto Denko Corp Adhesive-carrying porous film for battery separator and use of the same
JP5144987B2 (en) * 2007-08-07 2013-02-13 三菱樹脂株式会社 Method for producing separator for lithium ion battery
KR101473321B1 (en) * 2008-01-30 2014-12-24 삼성에스디아이 주식회사 Organic electrolytic solution comprising cycloolefin monomer and lithium battery employing the same
JP2010235707A (en) * 2009-03-30 2010-10-21 Asahi Kasei E-Materials Corp Method for producing polyolefin microporous film

Also Published As

Publication number Publication date
JP2002036459A (en) 2002-02-05

Similar Documents

Publication Publication Date Title
JP2883726B2 (en) Manufacturing method of battery separator
KR101110264B1 (en) Composite microporous film, and production method and use thereof
KR100899066B1 (en) Polyolefin Microporous Film
KR101060380B1 (en) Polyolefin Microporous Membrane
JP5635970B2 (en) Method for producing polyolefin composite microporous membrane having high heat resistant coating layer
JP5497635B2 (en) Polyolefin microporous membrane, method for producing the same, battery separator and battery
KR101723275B1 (en) Polyolefin microporous membrane
JP6297685B2 (en) Method for producing separation membrane for electrochemical device and separation membrane for electrochemical device produced by the method
EP2750216A1 (en) Battery separator
WO1996027633A1 (en) Microporous polyethylene film and process for producing the film
WO2004089627A1 (en) Polyolefin microporous membrane
JP4703076B2 (en) Microporous film
CN111684002B (en) Porous polyolefin film
JP4964565B2 (en) Polyethylene microporous membrane
JP3682120B2 (en) Composite membrane for battery separator and battery separator
JP4338164B2 (en) Porous film and method for producing the same
KR100557380B1 (en) Microporous Polyolefin Film
JP4641623B2 (en) Porous film and method for producing the same
JP2004204141A (en) Porous film
JP3983656B2 (en) Non-aqueous electrolyte battery separator
KR20220069831A (en) Polyolefin microporous membrane, battery separator and secondary battery
JP2009138159A (en) Microporous membrane
JP5411550B2 (en) Polyolefin microporous membrane
JP4916236B2 (en) Method for producing porous film
JP2004263012A (en) Porous film and separator for electric battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090629

R150 Certificate of patent or registration of utility model

Ref document number: 4338164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150710

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees