JP6297685B2 - Method for producing separation membrane for electrochemical device and separation membrane for electrochemical device produced by the method - Google Patents

Method for producing separation membrane for electrochemical device and separation membrane for electrochemical device produced by the method Download PDF

Info

Publication number
JP6297685B2
JP6297685B2 JP2016523681A JP2016523681A JP6297685B2 JP 6297685 B2 JP6297685 B2 JP 6297685B2 JP 2016523681 A JP2016523681 A JP 2016523681A JP 2016523681 A JP2016523681 A JP 2016523681A JP 6297685 B2 JP6297685 B2 JP 6297685B2
Authority
JP
Japan
Prior art keywords
separation membrane
porous
slurry
polyolefin film
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016523681A
Other languages
Japanese (ja)
Other versions
JP2016523440A (en
Inventor
リュ,ビ−オー
ソン,ヘオン−シク
Original Assignee
エルジー・ケム・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー・ケム・リミテッド filed Critical エルジー・ケム・リミテッド
Publication of JP2016523440A publication Critical patent/JP2016523440A/en
Application granted granted Critical
Publication of JP6297685B2 publication Critical patent/JP6297685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Cell Separators (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、電気化学素子用分離膜の製造方法及びその方法によって製造された電気化学素子用分離膜に関し、より詳しくは、さらに向上した機械的・熱的性能を有する電気化学素子用分離膜の製造方法及びその方法によって製造された電気化学素子用分離膜に関する。   The present invention relates to a method for manufacturing a separation membrane for electrochemical devices and a separation membrane for electrochemical devices manufactured by the method, and more particularly, to a separation membrane for electrochemical devices having further improved mechanical and thermal performance. The present invention relates to a manufacturing method and a separation membrane for an electrochemical device manufactured by the method.

本出願は、2013年10月31日出願の韓国特許出願第10−2013−0131161号に基づく優先権を主張し、該当出願の明細書及び図面に開示された内容は、すべて本出願に援用される。   This application claims priority based on Korean Patent Application No. 10-2013-0131161 filed on October 31, 2013, and all the contents disclosed in the specification and drawings of the corresponding application are incorporated in this application. The

また、本出願は、2014年10月31日出願の韓国特許出願第10−2014−0150288号に基づく優先権を主張し、該当出願の明細書及び図面に開示された内容は、すべて本出願に援用される。   In addition, this application claims priority based on Korean Patent Application No. 10-2014-0150288 filed on October 31, 2014, and all the contents disclosed in the specification and drawings of the corresponding application are incorporated herein by reference. Incorporated.

近年、エネルギー貯蔵に関する関心が高まりつつある。携帯電話、カムコーダー、及びノートブックパソコン、延いては、電気自動車及び電力貯蔵にまで適用分野が拡がり、電気化学素子の研究及び開発に対する努力が徐々に具体化している。   In recent years, interest in energy storage has been increasing. The field of application has expanded to mobile phones, camcorders and notebook computers, and eventually to electric vehicles and power storage, and the efforts for research and development of electrochemical devices are gradually becoming concrete.

電気化学素子は、このような面から最も注目されている分野であって、その中でも、充放電が可能な二次電池の開発は、関心の焦点となっている。最近は、このような電池の開発に際し、容量密度及び比エネルギーを向上させるために、新しい電極と電池の設計に関する研究開発へ進みつつある。   Electrochemical elements are the field that has received the most attention from this aspect, and among them, the development of secondary batteries that can be charged and discharged has become the focus of interest. Recently, in the development of such batteries, research and development on new electrode and battery designs are being advanced in order to improve capacity density and specific energy.

このような電気化学素子において、安全性の評価及び確保は非常に重要である。最も重要な考慮事項は、電気化学素子の誤作動時、ユーザに傷害を負わせてはいけないという点であり、このような目的から安全規格において電気化学素子内の発火及び発煙などを厳格に規制している。電気化学素子の安全性の特性において、電気化学素子が過熱して熱爆走するか分離膜が貫通される場合、爆発を起こす恐れが大きい。特に、電気化学素子の分離膜として通常使用されるポリオレフィン多孔性基材は、材料的特性及び延伸を含む製造工程上の特性によって150℃以上の温度で激しく熱収縮するため、カソードとアノードとの短絡を起こすという問題点がある。   In such an electrochemical element, it is very important to evaluate and ensure safety. The most important consideration is that the user should not be injured when the electrochemical device malfunctions. For this purpose, the safety standard strictly regulates ignition and smoke in the electrochemical device. doing. In the safety characteristics of an electrochemical element, if the electrochemical element overheats and thermally explodes or the separation membrane is penetrated, there is a high risk of explosion. In particular, the polyolefin porous substrate usually used as a separation membrane of an electrochemical element undergoes severe thermal shrinkage at a temperature of 150 ° C. or more due to material characteristics and manufacturing process characteristics including stretching. There is a problem of causing a short circuit.

これを解決するため、多数の気孔を有するポリオレフィン多孔性基材の少なくとも一面に、無機物粒子または有機物粒子とバインダー高分子とを含むスラリーがコーティングされてなる多孔性コーティング層を含む複合分離膜が提案されている。このような複合分離膜においては、ポリオレフィン多孔性基材にコーティングされたコーティング層内の無機物/有機物粒子がコーティング層の物理的形態を維持することができる支持台の役割を果たし、リチウムイオン電池の過熱時、ポリオレフィン多孔性基材が熱収縮することを抑制するようになる。   In order to solve this problem, a composite separation membrane including a porous coating layer in which a slurry containing inorganic particles or organic particles and a binder polymer is coated on at least one surface of a polyolefin porous substrate having a large number of pores is proposed. Has been. In such a composite separation membrane, the inorganic / organic particles in the coating layer coated on the polyolefin porous substrate serve as a support base that can maintain the physical form of the coating layer, and the lithium ion battery At the time of overheating, the polyolefin porous substrate is prevented from being thermally contracted.

図1を参照すれば、このような分離膜を製造するための従来の工程は、ポリオレフィン樹脂組成物を押し出す段階、押し出された樹脂組成物を延伸してシーツ状のフィルムを得る段階、得られた分離膜から可塑剤を抽出して多孔性フィルムを得る段階、多孔性フィルムを熱固定する段階、熱固定が行われた多孔性フィルムを1次ワインディング/スリッティングする段階、アンワインディングする段階、コーティングスラリーを適用する段階、コーティングスラリーを乾燥する段階、2次ワインディング/スリッティングする段階、及び製品を包装する段階で構成されていた。   Referring to FIG. 1, a conventional process for manufacturing such a separation membrane is obtained by extruding a polyolefin resin composition, and by stretching the extruded resin composition to obtain a sheet-like film. Extracting a plasticizer from the separated membrane, obtaining a porous film, thermally fixing the porous film, performing primary winding / slitting on the heat-set porous film, unwinding, It consisted of applying the coating slurry, drying the coating slurry, secondary winding / slitting, and packaging the product.

このような従来の工程による場合、前記熱固定工程は、ポリオレフィンフィルムが溶融しないくらいの温度で行わなければならないという制限が伴う。また、多孔性基材上にスラリーをコーティングして乾燥した後は、構造的安定化が崩れる恐れがあるため、追加的な熱固定工程を行いにくいという問題点がある。   In the case of such a conventional process, the heat setting process has a limitation that it must be performed at a temperature at which the polyolefin film does not melt. In addition, after the slurry is coated on the porous substrate and dried, the structural stabilization may be lost, and thus there is a problem that it is difficult to perform an additional heat setting step.

なお、日本国特許第5543715号は、i)ホ゜リオレフィン樹脂と可塑剤、又はポリオレフィン樹脂と可塑剤と無機剤とを溶融混練して押出す工程、(ii)得られた押出物を延伸する工程、(iii)可塑剤又は可塑剤と無機剤を抽出する工程を含む非水電解液電池用セパレータの製造方法を開示している。しかし、これは、多孔性基材を形成した後で無機物粒子などのスラリーをコーティングする方式ではないため、スラリーコーティングと熱固定段階の順序及びこれの具体的な条件などについては言及していない。   In addition, Japanese Patent No. 5543715 includes: i) a step of melt-kneading a polyolefin resin and a plasticizer, or a polyolefin resin, a plasticizer and an inorganic agent, and (ii) a step of stretching the obtained extrudate, (iii) A method for producing a separator for a non-aqueous electrolyte battery including a step of extracting a plasticizer or a plasticizer and an inorganic agent is disclosed. However, since this is not a method of coating a slurry such as inorganic particles after forming a porous substrate, the order of the slurry coating and the heat setting step and specific conditions thereof are not mentioned.

また、韓国登録特許第10−0406690号は、電気化学素子用分離膜として用いられる多成分系フィルムが、i)高分子支持層フィルムを提供する段階;ii)ゲル化高分子を溶媒に溶解してゲル化高分子溶液を製造する段階;iii)前記ii)段階のゲル化高分子溶液から前記i)段階の支持層フィルムの一面または両面にゲル化高分子層を形成して多層フィルムを製造する段階;及びiv)前記iii)段階の多層フィルムを延伸した後、熱固定する段階を含む方法で製造されると開示している。しかし、この文献では、多孔性基材上にゲル化高分子溶液をコーティングしてゲル化高分子層を形成しているだけであり、有機物粒子または無機物粒子を含むスラリーをコーティングして多孔性コーティング層を形成する段階については開示していない。また、この文献では、高分子支持層フィルム上にゲル化高分子層を先にコーティングした後、得られた多層フィルムを延伸及び熱固定していることから、有機物粒子及び/又は無機物粒子を含む多孔性コーティング層が備えられた複合フィルムの場合、コーティング後の延伸時、コーティング層にTD方向へのクラックが発生するなどの問題があるため、適用するのに限界がある。   Also, Korean Patent No. 10-0406690 discloses that a multi-component film used as a separation membrane for an electrochemical device provides i) a polymer support layer film; ii) a gelled polymer is dissolved in a solvent. A step of producing a gelled polymer solution; iii) forming a gelled polymer layer on one or both sides of the support layer film of step i) from the gelled polymer solution of step ii) to produce a multilayer film And iv) the multilayer film of step iii) is stretched and then heat-set. However, in this document, a gelled polymer solution is simply formed on a porous substrate to form a gelled polymer layer. A slurry containing organic particles or inorganic particles is coated to form a porous coating. The step of forming the layer is not disclosed. Further, in this document, since a gelled polymer layer is first coated on a polymer support layer film, the resulting multilayer film is stretched and heat-set, so that organic particles and / or inorganic particles are included. In the case of a composite film provided with a porous coating layer, there is a limit to application because there are problems such as cracks in the TD direction occurring in the coating layer during stretching after coating.

本発明は、上記問題点に鑑みてなされたものであり、多孔性コーティング層の形成された複合分離膜が、より構造的に安定化し、工程費用が節減し、歩留まりを向上させることができる電気化学素子用分離膜の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and the composite separation membrane on which the porous coating layer is formed is more structurally stabilized, process costs can be reduced, and yield can be improved. It aims at providing the manufacturing method of the separation membrane for chemical elements.

但し、本発明が解決しようとする課題はこれに限定されず、ここに言及されていないさらに他の技術的課題は、以下に記載された発明の説明からより明確に理解されるだろう。   However, the problem to be solved by the present invention is not limited to this, and other technical problems not mentioned here will be understood more clearly from the description of the invention described below.

上記の課題を達成するため、本発明の一面によれば、
ポリオレフィン及び可塑剤を含む樹脂組成物を押し出す段階と、押し出された前記樹脂組成物を延伸してポリオレフィンフィルムを得る段階と、得られた前記ポリオレフィンフィルムから前記可塑剤を抽出して多孔性ポリオレフィンフィルムを得る段階と、前記多孔性ポリオレフィンフィルムの少なくとも一面に多孔性コーティング層形成用スラリーをコーティングする段階と、前記スラリーがコーティングされた多孔性ポリオレフィンフィルムを熱固定し、多孔性コーティング層が形成された複合分離膜を得る段階と、を含む電気化学素子用分離膜の製造方法が提供される。
In order to achieve the above object, according to one aspect of the present invention,
A step of extruding a resin composition containing a polyolefin and a plasticizer; a step of stretching the extruded resin composition to obtain a polyolefin film; and extracting the plasticizer from the obtained polyolefin film to obtain a porous polyolefin film A step of coating a slurry for forming a porous coating layer on at least one surface of the porous polyolefin film, and heat-setting the porous polyolefin film coated with the slurry to form a porous coating layer A method for producing a separation membrane for an electrochemical device is provided.

前記押し出された前記樹脂組成物の延伸は、MD方向又はTD方向へ1回以上の一軸延伸するか、MD方向及びTD方向へ1回以上二軸延伸することであり得る。
前記熱固定の温度はTm−1℃以下であり得、ここで、Tmは前記ポリオレフィンの融点である。
前記熱固定の温度は131℃〜134℃であり得る。
前記熱固定は、前記多孔性ポリオレフィンフィルムにコーティングされたスラリーの表面に対して垂直方向に向ける熱源を用いて行われ得る。
Stretching of the extruded resin composition can be uniaxially stretching at least once in the MD direction or TD direction, or biaxially stretching at least once in the MD direction and TD direction.
The temperature of the heat setting may be T m −1 ° C. or less, where T m is the melting point of the polyolefin.
The temperature of the heat setting may be 131 ° C to 134 ° C.
The heat setting may be performed using a heat source oriented in a direction perpendicular to the surface of the slurry coated on the porous polyolefin film.

前記ポリオレフィンは、ポリエチレン、ポリプロピレン、ポリブチレン、ポリペンテン、ポリヘキセン、ポリオクテン、エチレン、プロピレン、ブテン、ペンテン、4−メチルペンテン、ヘキセン、オクテンのうち一種以上の共重合体、又はこれらの混合物を含み得る。   The polyolefin may include one or more copolymers of polyethylene, polypropylene, polybutylene, polypentene, polyhexene, polyoctene, ethylene, propylene, butene, pentene, 4-methylpentene, hexene, octene, or a mixture thereof.

前記可塑剤は、パラフィンオイル、鉱油、ワックス、大豆油、フタル酸エステル類、芳香族エーテル類、炭素数10〜20の脂肪酸類と、炭素数10〜20の脂肪酸アルコール類と、脂肪酸エステル類と、からなる群より選択される一種以上を含み得る。
前記多孔性ポリオレフィンフィルムの厚さは5〜50μmであり、気孔の大きさ及び気孔度はそれぞれ0.01〜50μm及び10〜95%であり得る。
前記多孔性コーティング層形成用スラリーは、無機物粒子及び有機物粒子のうち一種以上の粒子、バインダー高分子及び溶媒を含み得る。
The plasticizer includes paraffin oil, mineral oil, wax, soybean oil, phthalates, aromatic ethers, fatty acids having 10 to 20 carbon atoms, fatty alcohols having 10 to 20 carbon atoms, and fatty acid esters. , One or more selected from the group consisting of:
The thickness of the porous polyolefin film may be 5 to 50 μm, and the pore size and porosity may be 0.01 to 50 μm and 10 to 95%, respectively.
The slurry for forming a porous coating layer may include one or more particles among inorganic particles and organic particles, a binder polymer, and a solvent.

前記バインダー高分子は、ポリビニリデンフルオライド−ヘキサフルオロプロピレン(polyvinylidene fluoride−co−hexafluoropropylene)、ポリビニリデンフルオライド−トリクロロエチレン(polyvinylidene fluoride−co−trichloroethylene)、ポリメチルメタクリレート(polymethylmethacrylate)、ポリブチルアクリレート(polybutylacrylate)、ポリアクリロニトリル(polyacrylonitrile)、ポリビニルピロリドン(polyvinylpyrrolidone)、ポリビニルアセテート(polyvinylacetate)、エチレンビニルアセテート共重合体(polyethylene−co−vinyl acetate)、ポリエチレンオキサイド(polyethylene oxide)、セルロースアセテート(cellulose acetate)、セルロースアセテートブチレート(cellulose acetate butyrate)、セルロースアセテートプロピオネート(cellulose acetate propionate)、シアノエチルプルラン(cyanoethylpullulan)、シアノエチルポリビニルアルコール(cyanoethylpolyvinylalcohol)、シアノエチルセルロース(cyanoethylcellulose)、シアノエチルスクロース(cyanoethylsucrose)、プルラン(pullulan)、カルボキシルメチルセルロース(carboxyl methyl cellulose)、アクリロニトリルスチレンブタジエン共重合体(acrylonitrile−styrene−butadiene copolymer)、ポリイミド(polyimide)又はこれらの混合物であり得る。
前記無機物粒子は、誘電定数(比誘電率)が5以上の無機物粒子、リチウムイオン伝達能力を有する無機物粒子又はこれらの混合物であり得る。
The binder polymer may be polyvinylidene fluoride-co-trichloroethylene (polyvinylidene fluoride-co-trichloroethylene), polymethylethylene acrylate (polymethylene acrylate) ), Polyacrylonitrile, poly (vinylpyrrolidone), poly (vinyl acetate), ethylene / vinyl acetate copolymer (polyvinyl nitrile) olefinyl-co-vinyl acetate, polyethylene oxide, cellulose acetate butyrate, cellulose acetate butyrate, cellulose acetate propionate (cellulose ethyl) Polyvinyl alcohol (cyanoethylpolyvinylcohol), cyanoethyl cellulose (cyanoethylcellulose), cyanoethyl sucrose, pullulan , Carboxymethyl cellulose (carboxyl methyl cellulose), acrylonitrile-styrene-butadiene copolymer (acrylonitrile-styrene-butadiene copolymer), it may be a polyimide (polyimide) or mixtures thereof.
The inorganic particles may be inorganic particles having a dielectric constant (relative dielectric constant) of 5 or more, inorganic particles having lithium ion transfer capability, or a mixture thereof.

前記誘電定数(比誘電率)が5以上の無機物粒子は、BaTiO3、Pb(Zr,Ti)O3(PZT)、Pb1-xLaxZr1-yTiy3(PLZT)、Pb(Mg1/3Nb2/3)O3−PbTiO3(PMN−PT)、ハフニア(HfO2)、SrTiO3、 SnO2、CeO2、MgO、NiO、CaO、ZnO、ZrO2、Y23、Al23、TiO2、SiC又はこれらの混合物であり得る。 The inorganic particles having a dielectric constant (dielectric constant) of 5 or more are BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT), Pb. (Mg 1/3 Nb 2/3 ) O 3 —PbTiO 3 (PMN-PT), hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3 , TiO 2 , SiC or a mixture thereof.

前記リチウムイオン伝達能力を有する無機物粒子が、リチウムホスフェート(Li3PO4)、リチウムチタンホスフェート(LixTiy(PO43、0<x<2、0<y<3)、リチウムアルミニウムチタンホスフェート(LixAlyTiz(PO43、0<x<2、0<y<1、0<z<3)、(LiAlTiP)xy系列ガラス(0<x<4、0<y<13)、リチウムランタンチタネート(LixLayTiO3、0<x<2、0<y<3)、リチウムゲルマニウムチオホスフェート(LixGeyzw、0<x<4、0<y<1、0<z<1、0<w<5)、リチウムナイトライド(Lixy、0<x<4、0<y<2)、SiS2系列ガラス(LixSiyz、0<x<3、0<y<2、0<z<4)、P25系列ガラス(Lixyz、0<x<3、0<y<3、0<z<7)又はこれらの混合物であり得る。 The inorganic particles having lithium ion transfer capability are lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 <x <2, 0 <y <3), lithium aluminum titanium. phosphate (Li x Al y Ti z ( PO 4) 3, 0 <x <2,0 <y <1,0 <z <3), (LiAlTiP) x O y series glass (0 <x <4,0 < y <13), lithium lanthanum titanate (Li x La y TiO 3 , 0 <x <2, 0 <y <3), lithium germanium thiophosphate (Li x Ge y P z S w , 0 <x <4, 0 <Y <1, 0 <z <1, 0 <w <5), lithium nitride (Li x N y , 0 <x <4, 0 <y <2), SiS 2 series glass (Li x Si y S) z , 0 <x <3, 0 <y <2, 0 <z <4), P 2 S It can be a 5 series glass (Li x P y S z , 0 <x <3, 0 <y <3, 0 <z <7) or a mixture thereof.

前記有機物粒子が、ポリスチレン、ポリエチレン、メラミン系樹脂、フェノール系樹脂、セルロース、セルロース変性体、ポリプロピレン、ポリエステル、ポリフェニレンスルファイド、ポリアラミド、ポリアミドイミド、ポリイミド、ブチルアクリレートとエチルメタアクリレートとの共重合体又はこれらの混合物であり得る。
前記無機物粒子及び有機物粒子の平均粒径がそれぞれ独立的に0.001〜10μmであり得る。
前記複合分離膜をワインディング及びスリッティングする段階を更に含み得る。
The organic particles are polystyrene, polyethylene, melamine resin, phenol resin, cellulose, cellulose modified, polypropylene, polyester, polyphenylene sulfide, polyaramide, polyamideimide, polyimide, a copolymer of butyl acrylate and ethyl methacrylate, or It can be a mixture of these.
The average particle size of the inorganic particles and the organic particles may be 0.001 to 10 μm independently.
The method may further include winding and slitting the composite separation membrane.

前記多孔性コーティング層形成用スラリーをコーティングする段階の前は、熱固定する段階、及びワインディング及びスリッティングする段階を含まないこともある。
前記ワインディング及びスリッティングが完了した複合分離膜を包装する段階を更に含み得る。
また、本発明の一面によれば、上述の製造方法によって製造された電気化学素子用分離膜が提供される。
The step of coating the slurry for forming the porous coating layer may not include the step of heat setting, and the step of winding and slitting.
The method may further include wrapping the composite separation membrane that has been wound and slitted.
Moreover, according to one surface of this invention, the separation membrane for electrochemical elements manufactured by the above-mentioned manufacturing method is provided.

本発明の他面によれば、カソード、アノード、及びカソードとアノードとの間に介された分離膜を含み、前記分離膜は、上述の電気化学素子用分離膜である電気化学素子が提供される。
前記電気化学素子は、リチウム二次電池であり得る。
According to another aspect of the present invention, there is provided an electrochemical device comprising a cathode, an anode, and a separation membrane interposed between the cathode and the anode, wherein the separation membrane is a separation membrane for an electrochemical device as described above. The
The electrochemical device may be a lithium secondary battery.

本発明の一実施例によれば、押出工程、延伸工程、可塑剤抽出工程、スラリーコーティング工程、及び熱固定工程順に分離膜を製造することで、従来の可塑剤抽出工程とスラリーコーティング工程との間に実施されていた熱固定/ワインディング及びスリッティング/アンワインディングの工程を画期的に省略することができる。   According to an embodiment of the present invention, a separation membrane is manufactured in the order of an extrusion process, a stretching process, a plasticizer extraction process, a slurry coating process, and a heat setting process, so that a conventional plasticizer extraction process and a slurry coating process are performed. The heat setting / winding and slitting / unwinding steps performed in the meantime can be dramatically omitted.

また、本発明の一実施例によれば、スラリーコーティング後、熱固定工程を導入することで、複合分離膜の物性改善、生産費用の節減、高品質化、歩留まりの向上、超広幅コーティングの具現、空間活用などのような多様な効果を奏することができる。   In addition, according to an embodiment of the present invention, by introducing a heat setting process after slurry coating, the physical properties of the composite separation membrane are improved, the production cost is reduced, the quality is improved, the yield is improved, and the ultra-wide coating is realized. Various effects such as space utilization can be achieved.

具体的に、本発明の一実施例によれば、多孔性ポリオレフィンフィルムにスラリーコーティングを行うため、従来の熱固定温度よりもさらに高い温度で熱固定を行い、機械的及び熱的性能が向上し、通気性に優れた複合分離膜を提供することができ、熱固定オーブンの長さをコンパクトに減少させることができるため、空間活用、工程費用及び生産費用の節減が可能である。   Specifically, according to one embodiment of the present invention, slurry coating is performed on a porous polyolefin film, so that heat setting is performed at a temperature higher than the conventional heat setting temperature, and mechanical and thermal performance is improved. In addition, a composite separation membrane having excellent air permeability can be provided, and the length of the heat setting oven can be reduced in a compact manner, so that space utilization, process costs, and production costs can be reduced.

また、本発明の一実施例によれば、スラリーコーティング段階の前に熱固定段階が省略されるため、従来、熱固定オーブンと乾燥オーブンとを別に使用していたことを同時に使用することで、空間活用及び費用節減が可能となる。   In addition, according to one embodiment of the present invention, since the heat setting step is omitted before the slurry coating step, by using the heat setting oven and the drying oven separately, Space utilization and cost savings are possible.

また、スラリーコーティングに続いて熱固定を行い、多孔性コーティング層の形成された複合分離膜を製造することで、熱固定工程で加えられた熱が、多孔性コーティング層を介してポリオレフィンフィルムに伝達されるため、比較的高い温度における熱固定が可能となり、ポリオレフィンフィルムのフィブリル(fibril)構造に対するコーティングスラリーの濡れ性が向上する。   Also, heat setting is performed following slurry coating to produce a composite separation membrane with a porous coating layer, so that heat applied in the heat setting process is transferred to the polyolefin film through the porous coating layer. Therefore, heat setting at a relatively high temperature is possible, and the wettability of the coating slurry with respect to the fibril structure of the polyolefin film is improved.

さらに、熱固定工程で加えられた熱が、多孔性コーティング層を介してポリオレフィンフィルムに伝達されるため、ポリオレフィンフィルムがより小さい直径のフィブリルを有するようになり、単位面積当たりフィブリル個数密度(fibrilar number density)が増加し、多孔性コーティング層を形成するコーティングスラリーとの界面接触面積が増加するようになり、このためポリオレフィンフィルムの物理的形態の維持がさらに容易になって複合分離膜の熱収縮率が改善し、コーティング層の剥離強度が向上する。   Furthermore, since the heat applied in the heat setting process is transferred to the polyolefin film through the porous coating layer, the polyolefin film has fibrils having a smaller diameter, and the fibril number density (fibrilla number per unit area). Density) increases and the interface contact area with the coating slurry forming the porous coating layer increases, which makes it easier to maintain the physical form of the polyolefin film, and the thermal contraction rate of the composite separation membrane Is improved, and the peel strength of the coating layer is improved.

本明細書に添付される次の図面は、本発明の望ましい実施例を例示するものであり、発明の詳細な説明とともに本発明の技術的な思想をさらに理解させる役割をするため、本発明は図面に記載された事項だけに限定されて解釈されてはならない。
電気化学素子用分離膜を製造するための従来の工程を示す概念図である。 本発明の一実施例による電気化学素子用分離膜の製造方法を示す概念図である。
The following drawings attached to the specification illustrate preferred embodiments of the present invention, and together with the detailed description, serve to further understand the technical idea of the present invention. It should not be construed as being limited to the matters described in the drawings.
It is a conceptual diagram which shows the conventional process for manufacturing the separation membrane for electrochemical elements. It is a conceptual diagram which shows the manufacturing method of the separation membrane for electrochemical elements by one Example of this invention.

以下、添付された図面を参照して本発明の望ましい実施例を詳しく説明する。これに先立ち、本明細書及び請求範囲に使われた用語や単語は通常的や辞書的な意味に限定して解釈されてはならず、発明者自らは発明を最善の方法で説明するために用語の概念を適切に定義できるという原則に則して本発明の技術的な思想に応ずる意味及び概念で解釈されねばならない。したがって、本明細書に記載された実施例及び図面に示された構成は、本発明のもっとも望ましい一実施例に過ぎず、本発明の技術的な思想のすべてを代弁するものではないため、本出願の時点においてこれらに代替できる多様な均等物及び変形例があり得ることを理解せねばならない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, the terms and words used in this specification and claims should not be construed to be limited to ordinary or lexicographic meanings, and the inventor himself should explain the invention in the best possible manner. It must be interpreted with the meaning and concept corresponding to the technical idea of the present invention in accordance with the principle that the term concept can be appropriately defined. Therefore, the configuration described in the embodiments and drawings described in this specification is only the most preferable embodiment of the present invention, and does not represent all of the technical idea of the present invention. It should be understood that there are various equivalents and variations that can be substituted at the time of filing.

本発明の一面による電気化学素子用分離膜の製造方法は、ポリオレフィン及び可塑剤を含む樹脂組成物を押し出す段階と、押し出された前記樹脂組成物を延伸してポリオレフィンフィルムを得る段階と、得られた前記ポリオレフィンフィルムから前記可塑剤を抽出して多孔性ポリオレフィンフィルムを得る段階と、前記多孔性ポリオレフィンフィルムの少なくとも一面に多孔性コーティング層形成用スラリーをコーティングする段階と、前記スラリーがコーティングされた多孔性ポリオレフィンフィルムを熱固定し、多孔性コーティング層が形成された複合分離膜を得る段階と、を含む。
図2は、本発明の一実施例による電気化学素子用分離膜の製造方法を示す概念図である。
A method for producing a separation membrane for an electrochemical device according to one aspect of the present invention includes a step of extruding a resin composition containing a polyolefin and a plasticizer, and a step of obtaining a polyolefin film by stretching the extruded resin composition. Extracting a plasticizer from the polyolefin film to obtain a porous polyolefin film; coating at least one surface of the porous polyolefin film with a slurry for forming a porous coating layer; and a porous layer coated with the slurry. Heat-setting the porous polyolefin film to obtain a composite separation membrane having a porous coating layer formed thereon.
FIG. 2 is a conceptual diagram illustrating a method for manufacturing a separation membrane for an electrochemical device according to an embodiment of the present invention.

図2を参照すれば、本発明の一実施例による電気化学素子用分離膜の製造方法は、最終製品を得るために熱固定が完了した複合分離膜をワインディング及びスリッティングする段階を更に含み得る。また、前記ワインディング及びスリッティングの完了した複合分離膜を包装する段階を更に含み得る。   Referring to FIG. 2, the method for manufacturing a separation membrane for an electrochemical device according to an embodiment of the present invention may further include winding and slitting the composite separation membrane that has been heat-set to obtain a final product. . In addition, the method may further include packaging the composite separation membrane that has been wound and slitted.

また、本発明の一実施例による電気化学素子用分離膜の製造方法は、図1に示した従来の製造方法に比べ、前記多孔性コーティング層形成用スラリーをコーティングする段階の前は、熱固定する段階、及びワインディング及びスリッティングする段階を含まない。   In addition, the method for manufacturing a separation membrane for an electrochemical device according to an embodiment of the present invention is heat-set before the step of coating the slurry for forming a porous coating layer as compared with the conventional manufacturing method shown in FIG. And the steps of winding and slitting are not included.

具体的に、本発明の一実施例によれば、押出工程、延伸工程、可塑剤抽出工程、スラリーコーティング工程、及び熱固定工程の順に分離膜を製造することで、図1に示した従来の製造方法のような、可塑剤抽出工程後の熱固定工程、ワインディング及びスリッティング工程、アンワインディング工程が不要であるため、これらの工程を画期的に省略することができる。
以下、各段階について詳しく説明する。
Specifically, according to an embodiment of the present invention, the separation membrane is manufactured in the order of the extrusion process, the stretching process, the plasticizer extraction process, the slurry coating process, and the heat setting process, thereby the conventional process illustrated in FIG. Since the heat setting step after the plasticizer extraction step, the winding and slitting step, and the unwinding step as in the manufacturing method are not necessary, these steps can be omitted epoch-makingly.
Hereinafter, each stage will be described in detail.

まず、前記押出段階において、前記ポリオレフィンは、当業界において通常使用されるものであれば、特に制限されない。このようなポリオレフィンの具体的な例には、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、線状低密度ポリエチレン(LLDPE)、超高分子量ポリエチレン(UHMWPE)などのようなポリエチレン、ポリプロピレン、ポリブチレン、ポリペンテン、ポリヘキセン、ポリオクテン、エチレン、プロピレン、ブテン、ペンテン、4−メチルペンテン、ヘキセン、オクテンのうち一種以上の共重合体、又はこれらの混合物が挙げられるが、これらに制限されない。   First, in the extrusion step, the polyolefin is not particularly limited as long as it is usually used in the industry. Specific examples of such polyolefins include polyethylene such as high density polyethylene (HDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ultra high molecular weight polyethylene (UHMWPE), polypropylene, Examples thereof include, but are not limited to, polybutylene, polypentene, polyhexene, polyoctene, ethylene, propylene, butene, pentene, 4-methylpentene, hexene, octene, one or more copolymers, or a mixture thereof.

前記可塑剤は、当業界において通常使用されるものであれば、特に制限されない。このような可塑剤の非制限的な例には、ジブチルフタレート(dibutyl phthalate)、ジヘキシルフタレート(dihexyl phthalate)、ジオクチルフタレート(dioctyl phthalate)などのフタル酸エステル(phthalic acid ester)類と、ジフェニルエーテル(diphenyl ether)、ベンジルエーテル(benzyl ether)などの芳香族エーテル類と、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸などの炭素数10〜20の地方酸類と、パルミチン酸アルコール、ステアリン酸アルコール、オレイン酸アルコールなどの炭素数10〜20の脂肪酸アルコール類と、パルミチン酸モノ−、ジ−、又はトリエステール、ステアリン酸モノ−、ジ−、又はトリエステール、オレイン酸モノ−、ジ−、又はトリエステール、リノール酸モノ−、ジ−、又はトリエステールなどの脂肪酸グループの炭素元素数が4〜26である飽和及び不飽和脂肪酸又は不飽和脂肪酸の二重結合がエポキシに置き換えられた一つ又は二つ以上の脂肪酸が、ヒドロキシ基が1〜8個であり、炭素数が1〜10であるアルコールとエステル結合した脂肪酸エステル類がある。
また、前記可塑剤としては、前述の成分を二種以上含む混合物としても使用可能である。
The plasticizer is not particularly limited as long as it is usually used in the art. Non-limiting examples of such plasticizers include phthalic acid esters such as dibutyl phthalate, dihexyl phthalate, dioctyl phthalate, and diphenyl ether. ether), aromatic ethers such as benzyl ether, local acids having 10 to 20 carbon atoms such as palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, palmitic acid alcohol, stearic acid alcohol Fatty acid alcohols having 10 to 20 carbon atoms such as oleic alcohol, palmitic acid mono-, di- or triesteral, stearic acid Saturated and non-saturated and unsaturated carbon groups of 4 to 26 carbon atoms in fatty acid groups such as no-, di- or triesteral, oleic acid mono-, di- or triesteral, linoleic acid mono-, di- or triesteral. One or two or more fatty acids in which the double bond of saturated fatty acid or unsaturated fatty acid is replaced by epoxy, the fatty acid ester-bonded with an alcohol having 1 to 8 hydroxy groups and 1 to 10 carbon atoms There are esters.
Moreover, as said plasticizer, it can be used also as a mixture containing 2 or more types of the above-mentioned component.

前記ポリオレフィンと可塑剤の重量比は80:20〜10:90、望ましくは70:30〜20:80、より望ましくは50:50〜30:70であり得る。前記重量比が80:20よりも大きく、ポリオレフィンの含量が多くなれば、気孔度が減少して気孔の大きさが小くなり、気孔間の相互連結が減少して透過度が大幅低下し、ポリオレフィン溶液の粘度が上昇することによる押出負荷の上昇から加工が困難となり得、前記重量比が10:90よりも少なくてポリオレフィンの含量が減少すれば、ポリオレフィンと可塑剤との混練性が低下してポリオレフィンが可塑剤に熱力学的に混練されずゲル状で押し出され、延伸時、破断及び厚さのばらつきなどの問題をもたらす恐れがあり、製造された分離膜の強度が低下し得る。   The weight ratio of the polyolefin to the plasticizer may be 80:20 to 10:90, desirably 70:30 to 20:80, more desirably 50:50 to 30:70. If the weight ratio is larger than 80:20 and the content of polyolefin is increased, the porosity is reduced and the pore size is reduced, the interconnection between the pores is reduced and the permeability is greatly reduced, Processing may be difficult due to an increase in extrusion load due to an increase in the viscosity of the polyolefin solution. If the weight ratio is less than 10:90 and the content of the polyolefin decreases, the kneadability between the polyolefin and the plasticizer decreases. Thus, the polyolefin is not thermodynamically kneaded into the plasticizer and extruded in a gel form, which may cause problems such as breakage and thickness variation at the time of stretching, and the strength of the produced separation membrane may be lowered.

本発明において、複合分離膜を製造するために、まず、材料の一部又は全部をヘンシェルミキサー、リボンブレンダー、タンブラーブレンダーなどを用いて混合する。続いて、一軸押出機、二軸押出機などのスクリュー押出機、混練機、ミキサーなどで溶融混練し、T型ダイ、環状ダイなどから押し出される。混練/押し出された溶融物は、圧縮冷却によって固化させることができ、冷却方法としては、冷風や冷却水などの冷却媒体に直接接触させる方法、冷媒で冷却したロールやプレス機に接触させる方法などが挙げられる。   In the present invention, in order to produce a composite separation membrane, first, part or all of the material is mixed using a Henschel mixer, a ribbon blender, a tumbler blender, or the like. Subsequently, it is melt-kneaded by a screw extruder such as a single screw extruder or a twin screw extruder, a kneader, a mixer, etc., and extruded from a T-die, an annular die or the like. The kneaded / extruded melt can be solidified by compression cooling, and as a cooling method, a method of directly contacting a cooling medium such as cold air or cooling water, a method of contacting a roll or press machine cooled by a refrigerant, etc. Is mentioned.

その後、押し出された樹脂組成物を延伸してポリオレフィンフィルムを得る。 この際、延伸方法は、当業界に知られた通常の方法で行われ得、非制限的な例には、ロール延伸機によるMD(縦方向)一軸延伸、テンターによるTD(横方向)一軸延伸、ロール延伸機とテンター、又はテンターとテンターとの組合せによる逐次二軸延伸、同時二軸テンターやインフレーション成形による同時二軸延伸などが挙げられる。具体的に、前記押し出された前記樹脂組成物の延伸は、MD方向又はTD方向へ1回以上の一軸延伸するか、MD方向及びTD方向へ1回以上二軸延伸し得る。
延伸比は、縦方向及び横方向へそれぞれ3倍以上、望ましくは5〜10倍であり、総延伸比(合計面倍率)では20倍以上、望ましくは20〜80にし得る。
Thereafter, the extruded resin composition is stretched to obtain a polyolefin film. In this case, the stretching method may be performed by a conventional method known in the art. Non-limiting examples include MD (longitudinal direction) uniaxial stretching by a roll stretching machine and TD (transverse direction) uniaxial stretching by a tenter. And sequential biaxial stretching by a roll stretching machine and a tenter, or a combination of a tenter and a tenter, simultaneous biaxial stretching by simultaneous biaxial tenter or inflation molding, and the like. Specifically, the extruded resin composition may be uniaxially stretched one or more times in the MD direction or TD direction, or biaxially stretched one or more times in the MD direction and TD direction.
The draw ratio can be 3 times or more, preferably 5 to 10 times in the longitudinal direction and the transverse direction, respectively, and the total draw ratio (total surface magnification) can be 20 times or more, preferably 20 to 80 times.

もし、一方向の延伸比が3倍未満の場合は、一方向の配向が十分ではないと共に、縦方向及び横方向間の物性均衡が崩れ、引張強度及び穿孔強度などが低下し得る。また、総延伸比が20倍未満であれば未延伸が発生し、気孔が形成されないことがあり、80倍を超過すれば延伸中に破断が発生し、最終フィルムの収縮率が増加するという不具合がある。   If the stretch ratio in one direction is less than 3 times, the orientation in one direction is not sufficient, the physical property balance between the longitudinal direction and the transverse direction is broken, and the tensile strength and the puncture strength can be lowered. Further, if the total stretch ratio is less than 20 times, unstretched may occur and pores may not be formed. If it exceeds 80 times, breakage occurs during stretching, and the shrinkage rate of the final film increases. There is.

この際、延伸温度は、使用されたポリオレフィンの融点、可塑剤の濃度及び種類によって変わり得、望ましくは、前記延伸温度は前記フィルム内のポリオレフィンの結晶部分の30〜80重量%が溶ける温度範囲から選択することが望ましい。   At this time, the stretching temperature may vary depending on the melting point of the polyolefin used, the concentration and type of the plasticizer, and preferably the stretching temperature is within a temperature range in which 30 to 80% by weight of the crystalline portion of the polyolefin in the film is melted. It is desirable to choose.

前記延伸温度が前記シーツ成形物内のポリオレフィンの結晶部分の30重量%が溶ける温度よりも低い温度範囲から選択されれば、フィルムの軟質性(softness)がないことから延伸性が低下し、延伸時に破断が発生する可能性が高くなるとともに未延伸も発生する。これに対し、前記延伸温度が結晶部分の80重量%が溶ける温度よりも高い温度範囲から選択されば、延伸が容易であり、未延伸の発生は少ないが、部分的な過延伸によって厚さのばらつきが発生し、樹脂の配向効果が少なくなり、物性が大幅劣化するようになる。なお、温度による結晶部分の溶ける程度は、フィルム成形物のDSC(differential scanning calorimeter)分析から得ることができる。   If the stretching temperature is selected from a temperature range lower than the temperature at which 30% by weight of the crystalline portion of the polyolefin in the sheet molding is melted, the film has no softness and the stretchability is reduced. Sometimes the possibility of breakage increases and unstretching also occurs. On the other hand, if the stretching temperature is selected from a temperature range higher than the temperature at which 80% by weight of the crystal part is melted, stretching is easy, and the occurrence of unstretching is small. Variation occurs, the orientation effect of the resin is reduced, and the physical properties are greatly deteriorated. In addition, the extent to which the crystal part melts depending on the temperature can be obtained from DSC (differential scanning calorimeter) analysis of the film molding.

続いて、延伸されたフィルムから可塑剤を抽出して多孔性ポリオレフィンフィルムを得る。具体的に、有機溶媒を用いて延伸されたフィルムから可塑剤を抽出し、乾燥する。   Subsequently, a plasticizer is extracted from the stretched film to obtain a porous polyolefin film. Specifically, the plasticizer is extracted from the stretched film using an organic solvent and dried.

前記可塑剤の抽出に用いられる抽出溶媒としては、ポリオレフィンに対して貧溶媒であり、可塑剤に対しては良溶媒でありながら、沸点がポリオレフィンの融点よりも低くて乾燥が速いものが望ましい。このような抽出溶媒の非制限的な例には、n−ヘキサンやシクロヘキサンなどの炭化水素類、塩化メチレンや1,1,1−トリクロロエタン、フルオロカーボン系などのハロゲン化炭化水素類、エタノールやイソプロパノールなどのアルコール類、アセトンや2−ブタノンなどのケトン類が挙げられる。   The extraction solvent used for extraction of the plasticizer is preferably a poor solvent for polyolefin and a good solvent for plasticizer, but has a boiling point lower than that of polyolefin and quick drying. Non-limiting examples of such extraction solvents include hydrocarbons such as n-hexane and cyclohexane, halogenated hydrocarbons such as methylene chloride, 1,1,1-trichloroethane, and fluorocarbons, ethanol and isopropanol, etc. Alcohols, and ketones such as acetone and 2-butanone.

前記抽出方法としては、浸漬(immersion)法、溶剤スフ゜レー(solvent spray)法、超音波(ultrasonic)法など、通常の全ての溶媒抽出方法をそれぞれ又は複合的に用い得る。抽出に際し、残留可塑剤の含量は1重量%以下が望ましい。残留可塑剤が1重量%を超過すれば、物性が低下して多孔性膜の透過度が減少する。残留可塑剤の量は、抽出温度と抽出時間に影響を受け得、抽出温度は可塑剤及び有機溶媒の溶解度増加のために高いことが良いが、有機溶媒が沸くことによる安全性の問題を考慮すれば、40℃以下が望ましい。前記抽出温度が可塑剤の凝固点以下であれば、抽出効率が大幅低下するため、可塑剤の凝固点よりは必ず高くなければならない。
また、抽出時間は、製造される多孔性ポリオレフィンフィルムの厚さによって相違するが、10〜30μm厚さの場合は2〜4分が適当である。
As the extraction method, all usual solvent extraction methods such as an immersion method, a solvent spray method, and an ultrasonic method can be used individually or in combination. In the extraction, the content of the residual plasticizer is preferably 1% by weight or less. If the residual plasticizer exceeds 1% by weight, the physical properties deteriorate and the permeability of the porous membrane decreases. The amount of residual plasticizer can be affected by the extraction temperature and extraction time, and the extraction temperature should be high to increase the solubility of the plasticizer and organic solvent, but consider the safety issues due to boiling of the organic solvent In this case, 40 ° C. or lower is desirable. If the extraction temperature is equal to or lower than the freezing point of the plasticizer, the extraction efficiency is greatly reduced, so it must be higher than the freezing point of the plasticizer.
Moreover, although extraction time changes with thickness of the porous polyolefin film manufactured, in the case of 10-30 micrometers thickness, 2-4 minutes are suitable.

前記得られた多孔性ポリオレフィンフィルムの厚さは特に制限されないが、5〜50μmが望ましく、多孔性基材に存在する気孔の大きさ及び気孔度も特に制限されないが、それぞれ0.001〜50μm及び10〜99%であることが望ましい。   The thickness of the obtained porous polyolefin film is not particularly limited, but is preferably 5 to 50 μm, and the size and porosity of the pores present in the porous substrate are not particularly limited, but 0.001 to 50 μm and It is desirable that it is 10 to 99%.

続いて、多孔性ポリオレフィンフィルムの少なくとも一面に、多孔性コーティング層の形成のためのスラリーをコーティングする。このために、多孔性コーティング層形成用スラリーを先に準備し、この際、前記スラリーは、無機物粒子及び有機物粒子のうち一種以上の粒子と共にバインダー高分子を溶媒に分散させて準備する。すなわち、前記スラリーは、無機物粒子単独、有機物粒子単独、又は無機物粒子と有機物粒子とを同時に含み得る。   Subsequently, a slurry for forming a porous coating layer is coated on at least one surface of the porous polyolefin film. For this purpose, a slurry for forming a porous coating layer is prepared in advance, and at this time, the slurry is prepared by dispersing a binder polymer in a solvent together with one or more particles of inorganic particles and organic particles. That is, the slurry may include inorganic particles alone, organic particles alone, or inorganic particles and organic particles simultaneously.

前記無機物粒子は、電気化学的に安定すれば特に制限されない。すなわち、本発明において使用可能な無機物粒子は適用される電気化学素子の作動電圧範囲(例えば、Li/Li+を基準で0〜5V)で酸化及び/又は還元反応が起きないものであれば特に制限されない。特に、イオン伝達能力のある無機物粒子を使う場合、電気化学素子内のイオン伝導度を高めて性能向上を図ることができる。また、無機物粒子として誘電定数の高い無機物粒子を使う場合、液体電解質内の電解質塩、例えば、リチウム塩の解離度増加に寄与して電解液のイオン伝導度を向上させることができる。 The inorganic particles are not particularly limited as long as they are electrochemically stable. That is, the inorganic particles that can be used in the present invention are particularly those that do not undergo oxidation and / or reduction reaction within the operating voltage range of the applied electrochemical device (for example, 0 to 5 V based on Li / Li + ). Not limited. In particular, when using inorganic particles having ion transfer capability, the performance can be improved by increasing the ionic conductivity in the electrochemical element. In addition, when inorganic particles having a high dielectric constant are used as the inorganic particles, the ionic conductivity of the electrolytic solution can be improved by contributing to an increase in the dissociation degree of an electrolyte salt in the liquid electrolyte, for example, a lithium salt.

無機物粒子の非制限的な例には、誘電定数が5以上、望ましくは10以上の高誘電定数の無機物粒子、リチウムイオン伝達能力を有する無機物粒子又はこれらの混合体が挙げられる。   Non-limiting examples of the inorganic particles include inorganic particles having a dielectric constant of 5 or more, desirably 10 or more, inorganic particles having lithium ion transfer capability, or a mixture thereof.

誘電定数が5以上の無機物粒子の非制限的な例には、BaTiO3、Pb(Zr,Ti)O3(PZT)、Pb1-xLaxZr1-yTiy3(PLZT)、Pb(Mg1/3Nb2/3)O3−PbTiO3(PMN−PT)、ハフニア(HfO2)、SrTiO3、SnO2、CeO2、MgO、NiO、CaO、ZnO、ZrO2、 Y23、Al23、TiO2、SiC又はこれらの混合物などがある。 Non-limiting examples of inorganic particles having a dielectric constant of 5 or more include BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT), Pb (Mg 1/3 Nb 2/3 ) O 3 —PbTiO 3 (PMN-PT), hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 There are O 3 , Al 2 O 3 , TiO 2 , SiC or a mixture thereof.

本明細書において、「リチウムイオン伝達能力を有する無機物粒子」とは、リチウム元素を含むが、リチウムを保存せずリチウムイオンを移動させる機能を有する無機物粒子をいい、リチウムイオン伝達能力を有する無機物粒子の非制限的な例には、リチウムホスフェート(Li3PO4)、リチウムチタンホスフェート(LixTiy(PO43、0<x<2、0<y<3)、リチウムアルミニウムチタンホスフェート(LixAlyTiz(PO43、0<x<2、0<y<1、0<z<3)、14Li2O−9Al23−38TiO2−39P25などのような(LiAlTiP)xy系列ガラス(0<x<4、0<y<13)、リチウムランタンチタネート(LixLayTiO3、0<x<2、0<y<3)、Li3.25Ge0.250.754などのようなリチウムゲルマニウムチオホスフェート(LixGeyzw、0<x<4、0<y<1、0<z<1、0<w<5)、Li3Nなどのようなリチウムナイトライド(Lixy、0<x<4、0<y<2)、Li3PO4−Li2S−SiS2などのようなSiS2系列ガラス(LixSiyz、0<x<3、0<y<2、0<z<4)、LiI−Li2S−P25などのようなP25系列ガラス(Lixyz、0<x<3、0<y<3、0<z<7)又はこれらの混合物などがある。
前記スラリーに含まれる有機物粒子は、通気性、熱収縮性、剥離強度の面で有利であり、バインダー高分子との結着性に優れる。
In the present specification, “inorganic particles having lithium ion transfer capability” refers to inorganic particles containing lithium element but having a function of moving lithium ions without preserving lithium, and having lithium ion transfer capability. Non-limiting examples of lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 <x <2, 0 <y <3), lithium aluminum titanium phosphate ( li x Al y Ti z (PO 4) 3, 0 <x <2,0 <y <1,0 <z <3), 14Li 2 O-9Al 2 O 3 -38TiO 2 -39P 2 O 5 such as a (LiAlTiP) x O y series glass (0 <x <4,0 <y <13), lithium lanthanum titanate (Li x La y TiO 3, 0 <x <2,0 <y <3), Li 3.25 G e Lithium germanium thiophosphate such as 0.25 P 0.75 S 4 (Li x Ge y P z S w , 0 <x <4, 0 <y <1, 0 <z <1, 0 <w <5), Li LiN nitride such as 3 N (Li x N y , 0 <x <4, 0 <y <2), SiS 2 series glass such as Li 3 PO 4 —Li 2 S—SiS 2 (Li x Si y S z, 0 <x <3,0 <y <2,0 <z <4), P 2 S 5 series glass such as LiI-Li 2 S-P 2 S 5 (Li x P y S z , 0 <x <3, 0 <y <3, 0 <z <7) or a mixture thereof.
The organic particles contained in the slurry are advantageous in terms of air permeability, heat shrinkability, and peel strength, and have excellent binding properties with the binder polymer.

多孔性コーティング層の形成のためのスラリーに使われ得る有機物粒子の非制限的な例には、ポリスチレン、ポリエチレン、メラミン系樹脂、フェノール系樹脂、セルロース、セルロース変性体(カルボキシメチルセルロースなど)、ポリプロピレン、ポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートなど)、ポリフェニレンスルファイド、ポリアラミド、ポリアミドイミド、ポリイミド、ブチルアクリレートとエチルメタクリレートとの共重合体(ブチルアクリレートとエチルメタクリレートとの架橋高分子など)などの各種高分子からなる粒子などが挙げられる。有機物粒子は、二種以上の高分子からもなり得る。   Non-limiting examples of organic particles that can be used in the slurry for forming the porous coating layer include polystyrene, polyethylene, melamine resin, phenol resin, cellulose, cellulose modified (such as carboxymethyl cellulose), polypropylene, Polyester (polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, etc.), polyphenylene sulfide, polyaramid, polyamideimide, polyimide, copolymer of butyl acrylate and ethyl methacrylate (cross-linked polymer of butyl acrylate and ethyl methacrylate, etc.), etc. And particles made of various polymers. The organic particles can be composed of two or more kinds of polymers.

前記無機物粒子又は有機物粒子の大きさは制限されないが、均一な厚さのコーティング層を形成し、適切な孔隙率を有するために、それぞれ独立的に0.001〜10μmの範囲であり得る。   The size of the inorganic particles or organic particles is not limited, but may be independently in the range of 0.001 to 10 μm in order to form a coating layer with a uniform thickness and have an appropriate porosity.

多孔性コーティング層の形成のためのスラリーに使われるバインダー高分子としては、無機物粒子又は有機物粒子同士を連結して安定的に固定する機能を行うことができるものであれば特に制限されず、その非制限的な例には、ポリビニリデンフルオライド−ヘキサフルオロプロピレン(polyvinylidene fluoride−co−hexafluoropropylene)、ポリビニリデンフルオライド−トリクロロエチレン(polyvinylidene fluoride−co−trichloroethylene)、ポリメチルメタクリレート(polymethylmethacrylate)、ポリブチルアクリレート(polybutylacrylate)、ポリアクリロニトリル(polyacrylonitrile)、ポリビニルピロリドン(polyvinylpyrrolidone)、ポリビニルアセテート(polyvinylacetate)、エチレンビニルアセテート共重合体(polyethylene−co−vinyl acetate)、ポリエチレンオキサイド(polyethylene oxide)、セルロースアセテート(cellulose acetate)、セルロースアセテートブチレート(cellulose acetate butyrate)、セルロースアセテートプロピオネート(cellulose acetate propionate)、シアノエチルプルラン(cyanoethylpullulan)、シアノエチルポリビニルアルコール(cyanoethylpolyvinylalcohol)、シアノエチルセルロース(cyanoethylcellulose)、シアノエチルスクロース(cyanoethylsucrose)、プルラン(pullulan)、カルボキシルメチルセルロース(carboxyl methyl cellulose)、アクリロニトリルスチレンブタジエン共重合体(acrylonitrile−styrene−butadiene copolymer)、ポリイミド(polyimide)などが挙げられ、これらはそれぞれ単独で、又はこれらの二種以上を混合して用い得る。   The binder polymer used in the slurry for forming the porous coating layer is not particularly limited as long as it can perform a function of stably fixing inorganic particles or organic particles connected to each other. Non-limiting examples include polyvinylidene fluoride-hexafluoropropylene (polyvinylidene fluoride-co-trichloroethylene), poly (vinylidene fluoride-co-trichloroethylene), (Polybutylacrylate), polyacrylonitrile (polyacryl) lontrile, polyvinylpyrrolidone, polyvinyl acetate, ethylene vinyl acetate copolymer (polyethylene-co-vinyl acetate), polyethylene oxide (cell), cellulose acetate (cell) acetate butyrate, cellulose acetate propionate, cyanoethyl pullulan, cyanoethyl polyvinyl alcohol (cyanoethylpolypo) yvinylylcohol), cyanoethyl cellulose (cyanoethylcellulose), cyanoethyl sucrose, pullulan, dimethylmethyl cellulose, acrylonitrile styrene butadiene copolymer (e.g. These may be used alone or in admixture of two or more.

多孔性コーティング層の形成のためのスラリーの粒子とバインダー高分子との組成比は、例えば、重量基準で50:50〜99:1の範囲、又は70:30〜95:5であり得る。バインダー高分子に対して粒子の含量が少なすぎれば、分離膜の熱的安全性の改善が低下する恐れがあり、粒子間に形成される空き空間が充分形成されず、気孔の大きさ及び気孔度が減少して最終電池の性能低下に繋がり得る。これに対し、バインダー高分子に対して粒子の含量が多すぎれば、多孔性コーティング層の耐剥離性が弱化し得る。   The composition ratio of the particles of the slurry for forming the porous coating layer to the binder polymer may be, for example, in the range of 50:50 to 99: 1 or 70:30 to 95: 5 on a weight basis. If the content of the particles is too small with respect to the binder polymer, the improvement of the thermal safety of the separation membrane may be lowered, and there is not enough space formed between the particles, and the pore size and pores are not formed. The degree can be reduced and the performance of the final battery can be reduced. On the other hand, if the content of the particles is too large with respect to the binder polymer, the peel resistance of the porous coating layer can be weakened.

前記スラリーに含まれる溶媒としては、粒子とバインダー高分子とが均一に分散可能であり、かつ後で容易に除去可能なものが望ましい。使用可能な溶媒の非制限的な例には、アセトン(acetone)、テトラハイドロフラン(tetrahydrofuran)、メチレンクロライド(methylene chloride)、クロロホルム(chloroform)、ジメチルホルムアミド(dimethylformamide)、N−メチル−2−ピロリドン(N−methyl−2−pyrrolidone,NMP)、シクロヘキサン(cyclohexane)、水又はこれらの混合物などが挙げられる。   As the solvent contained in the slurry, a solvent in which the particles and the binder polymer can be uniformly dispersed and can be easily removed later is desirable. Non-limiting examples of solvents that can be used include acetone, tetrahydrofuran, methylene chloride, chloroform, dimethylformamide, N-methyl-2-pyrrolidone. (N-methyl-2-pyrrolidone, NMP), cyclohexane, water, or a mixture thereof.

前記多孔性コーティング層形成用スラリーは、多孔性ポリオレフィンフィルムの少なくとも一面にコーティングされる。コーティングの具体的な方法としては、当業界に知られた通常のコーティング方法を用いることができ、例えば、ディップ(Dip)コーティング、ダイ(Die)コーティング、ロール(roll)コーティング、コンマ(comma)コーティング又はこれらの混合方式など、多様な方式を用いることができる。また、多孔性コーティング層は、多孔性ポリオレフィンフィルムの両面とも、又は一面にのみ選択的に形成することができる。
続いて、前記スラリーがコーティングされた多孔性ポリオレフィンフィルムを熱固定し、多孔性コーティング層の形成された複合分離膜を得る。
The slurry for forming a porous coating layer is coated on at least one surface of a porous polyolefin film. As a specific coating method, a conventional coating method known in the art can be used. For example, Dip coating, Die coating, roll coating, comma coating can be used. Alternatively, various methods such as a mixed method thereof can be used. The porous coating layer can be selectively formed on both sides or only on one side of the porous polyolefin film.
Subsequently, the porous polyolefin film coated with the slurry is heat-set to obtain a composite separation membrane having a porous coating layer formed thereon.

前記熱固定は、フィルムを固定して熱を加え、収縮しようとするフィルムを強制で捕まえ残留応力を除去する工程である。熱固定温度が高いほど収縮率が減少するため望ましいが、熱固定温度が高すぎる場合、ポリオレフィンフィルムが部分的に溶け、形成された微細気孔を塞いで透過度が低下し得る。   The heat setting is a process of fixing the film and applying heat to forcibly catch the film to be shrunk and remove the residual stress. A higher heat setting temperature is desirable because the shrinkage ratio is reduced. However, when the heat setting temperature is too high, the polyolefin film is partially melted, and the formed fine pores are blocked and the permeability can be lowered.

本発明においては、ポリオレフィンフィルムを延伸した後、可塑剤を抽出してから多孔性コーティング層形成用スラリーをコーティングした後で熱固定を行いため、従来の、ポリオレフィンフィルムを延伸した後、可塑剤を抽出して熱固定を行っていた工程とは相違に、ポリオレフィンフィルムではなくコーティングされたスラリーに熱固定を行うため、ポリオレフィンフィルムに直接熱が加えられなくなる。   In the present invention, after the polyolefin film is stretched, the plasticizer is extracted and then coated with the slurry for forming the porous coating layer, followed by heat setting. Unlike the process of extracting and heat-setting, heat-fixing is performed on the coated slurry instead of the polyolefin film, so that heat is not directly applied to the polyolefin film.

したがって、従来の方法に比べ、高い温度で熱固定を行ってもポリオレフィンフィルムの溶融を抑制できる。また、ポリオレフィンフィルムに直接加えられる熱量が少なくなるため、従来の熱固定処理済みのポリオレフィンフィルムのフィブリルに比べて、多孔性コーティング層に隣接したポリエチレン基材のフィブリルの厚さがより薄く形成される。これによって、多孔性コーティング層に隣接した多孔性フィルムの表面の単位面積当たりフィブリル個数密度が増加するため、コーティングスラリーとの界面接触面積が増加し、コーティングスラリーのガラス転移温度Tg又は融点Tmよりも高い温度領域における熱固定処理に際し、多孔性ポリオレフィンフィルムの繊維状構造に対する前記スラリーの濡れ性が向上できる。
前記熱固定の温度は、望ましくは、Tm−1℃以下に調節され、この際、Tmは前記ポリオレフィンの融点である。
Therefore, compared with the conventional method, melting of the polyolefin film can be suppressed even if heat setting is performed at a high temperature. Also, since the amount of heat directly applied to the polyolefin film is reduced, the thickness of the fibril of the polyethylene substrate adjacent to the porous coating layer is made thinner than the fibril of the polyolefin film that has been heat-fixed. . Thus, since the fibril number density per unit area of the surface of the porous film adjacent to the porous coating layer is increased, an increase in interfacial contact area between the coating slurry, the glass transition temperature T g or melting T m of a coating slurry In the heat setting treatment in a higher temperature range, the wettability of the slurry with respect to the fibrous structure of the porous polyolefin film can be improved.
The temperature of the heat setting is desirably adjusted to T m −1 ° C. or less, where T m is the melting point of the polyolefin.

本発明の一実施例によれば、ポリオレフィンとしてポリエチレンが使われる場合、熱固定の温度は131〜135℃、望ましくは131〜133℃の温度で行い得、熱固定温度がこのような範囲を満たす場合、多孔性コーティング層と多孔性ポリオレフィンフィルムとの結着力(剥離強度)が改善して構造的安定性も確保することができ、熱的機械的物性が向上できる。
また、前記熱固定は、前記多孔性ポリオレフィンフィルムにコーティングされたスラリーの表面に対して垂直方向に向ける熱源を用いて行われ得る。
According to one embodiment of the present invention, when polyethylene is used as the polyolefin, the heat setting temperature may be 131 to 135 ° C., preferably 131 to 133 ° C., and the heat setting temperature satisfies such a range. In this case, the binding force (peeling strength) between the porous coating layer and the porous polyolefin film can be improved, the structural stability can be secured, and the thermal mechanical properties can be improved.
The heat setting may be performed using a heat source directed in a direction perpendicular to the surface of the slurry coated on the porous polyolefin film.

このように熱固定段階において高温の熱源が、多孔性ポリオレフィンフィルムにコーティングされたスラリーの表面に対して垂直方向に向かうため、コーティングされたスラリー内のバインダー高分子は、多孔性ポリオレフィンフィルムの表面に対して垂直方向に再配列される確率が高くなる。このため、多孔性コーティング層内にリチウムイオンの移動が容易なコーティングレイヤー構造が形成され、リチウムイオンは多孔性ポリオレフィンフィルムに形成された気孔と連通可能となる。また、粒子間のバインダー高分子や、粒子と完全に結合してないバインダー高分子も、高温熱源による再結晶作用によって再配列され、バインダー高分子による抵抗を大幅減少させることができる。このように、バインダー高分子が垂直方向に配置される確率が高くなった傾向は、特に、シアノエチルポリビニルアルコールのように、溶媒によく分散されず、多孔性ポリオレフィンフィルム上で高密度の(dense)フィルムを形成するバインダー高分子の場合に特に有効である。   As described above, since the high-temperature heat source is directed perpendicular to the surface of the slurry coated with the porous polyolefin film in the heat setting step, the binder polymer in the coated slurry is placed on the surface of the porous polyolefin film. On the other hand, the probability of rearrangement in the vertical direction increases. For this reason, a coating layer structure in which movement of lithium ions is easy is formed in the porous coating layer, and the lithium ions can communicate with pores formed in the porous polyolefin film. Also, the binder polymer between the particles and the binder polymer that is not completely bonded to the particles are rearranged by the recrystallization action by the high-temperature heat source, and the resistance due to the binder polymer can be greatly reduced. Thus, the tendency that the probability that the binder polymer is arranged in the vertical direction is high is not particularly well dispersed in the solvent, such as cyanoethyl polyvinyl alcohol, and it is dense on the porous polyolefin film. This is particularly effective in the case of a binder polymer that forms a film.

このように形成された多孔性コーティング層の厚さは特に制限されないが、0.01〜20μmの範囲であり得、気孔の大きさ及び気孔度も特に制限されないが、気孔の大きさは0.001〜10μmの範囲であり得、気孔度は10〜99%の範囲であり得る。気孔の大きさ及び気孔度は、主に使われる粒子の大きさに依存し、例えば、粒径が1μm以下の粒子を使う場合、形成される気孔も約1μm以下を有するようになる。   The thickness of the porous coating layer thus formed is not particularly limited, but may be in the range of 0.01 to 20 μm, and the pore size and porosity are not particularly limited, but the pore size is 0. The range may be 001-10 μm and the porosity may be in the range 10-99%. The size and porosity of the pores mainly depend on the size of the particles used. For example, when particles having a particle size of 1 μm or less are used, the formed pores also have about 1 μm or less.

前記多孔性コーティング層においては、粒子が充填されて互いに接触した状態で、前記バインダー高分子によって相互結着されることで、粒子の間にインタースティシャル・ボリューム(interstitial volume)が形成され、前記無機物粒子間のインタースティシャル・ボリュームは空き空間となり気孔を形成するようになる。   In the porous coating layer, the particles are filled and in contact with each other, and are interconnected by the binder polymer to form an interstitial volume between the particles. The interstitial volume between the inorganic particles becomes an empty space and forms pores.

すなわち、バインダー高分子は、粒子が相互結着された状態を維持するようにこれらを互いに付着、例えば、バインダー高分子が粒子同士を連結及び固定している。また、前記多孔性コーティング層の気孔は、粒子間のインタースティシャル・ボリュームが空き空間となることで形成された気孔であり、これは粒子による充填構造(closed packed or densely packed)にて実質的に面接触する粒子によって限定される空間である。このような気孔構造は、後で注液される電解液で満たされ、このように満たされた電解液は多孔性コーティング層の気孔を通じて電池を作動させるために必須であるリチウムイオンが移動する経路を提供できる。   That is, the binder polymer is attached to each other so as to maintain the state in which the particles are bonded to each other, for example, the binder polymer connects and fixes the particles to each other. In addition, the pores of the porous coating layer are pores formed by the interstitial volume between the particles becoming an empty space, and this is substantially due to the particle packed structure (closed packed or densely packed). It is a space limited by the particles that are in surface contact with each other. Such a pore structure is filled with an electrolyte solution to be injected later, and the electrolyte solution filled in this way is a path through which lithium ions, which are essential for operating the battery, move through the pores of the porous coating layer. Can provide.

なお、前述のように、本発明の一実施例による分離膜の製造方法は、図1に示した従来の製造方法とは違い、可塑剤の抽出工程後の熱固定工程、ワインディング及びスリッティング工程、アンワインディング工程が不要である。   As described above, the separation membrane manufacturing method according to an embodiment of the present invention is different from the conventional manufacturing method shown in FIG. 1 in that the heat setting step, the winding and slitting step after the plasticizer extraction step. No unwinding process is required.

ここで、ワインディング工程とは、押出/延伸/抽出段階を経て得られた多孔性ポリオレフィンフィルムに、スラリーコーティング及び熱固定を経った後で得られた複合分離膜を、ローラー上に巻き取る段階をいい、スリッティング工程とは、複合分離膜の巻取り時、両端の不要な部分を切断する段階をいう。従来の方法では、多孔性ポリオレフィンフィルムの熱固定後、ワインディング及びスリッティング工程を経て、スラリーコーティングのために、巻取したフィルムを解くアンワインディング工程が必ず必要であり、スラリーコーティング及び乾燥工程の後で、再度ワインディング及びスリッティング工程を経て最終的に包装段階に至った。   Here, the winding process is a step of winding a composite separation membrane obtained after slurry coating and heat setting on a porous polyolefin film obtained through an extrusion / stretching / extraction step on a roller. The slitting process refers to a step of cutting unnecessary portions at both ends when winding the composite separation membrane. In the conventional method, after the heat-setting of the porous polyolefin film, an unwinding process for unwinding the wound film is necessarily required for the slurry coating through the winding and slitting processes, and after the slurry coating and drying processes. Then, after the winding and slitting process again, it finally reached the packaging stage.

これに対し、本発明の一実施例によれば、ワインディング及びスリッティング工程を、従来の二回から一回に減らすことで、ワインディング及びスリッティング工程において多孔性ポリオレフィンフィルムが一部損失する問題を防止し、歩留まりが増加できる。   On the other hand, according to one embodiment of the present invention, the winding and slitting process is reduced from the conventional two times to one time, so that the porous polyolefin film is partially lost in the winding and slitting process. Can prevent and increase yield.

また、従来のスラリーコーティング段階の前、ワインディング及びスリッティング工程後のアンワインディング工程が省略されるため、空間活用及び工程費用を節減することができる。更に、このようなスラリーコーティング段階前のスリッティング工程や、ワインディング/アンワインディング工程を経ないため、超広幅の大面的コーティングが可能であり、最終分離膜のしわ、ピンホール、スクラッチなどの傷の発生が大幅減少し、未コーティング領域も減少する。   In addition, since the unwinding process before the conventional slurry coating process and after the winding and slitting process is omitted, space utilization and process costs can be reduced. Furthermore, since the slitting process before the slurry coating step and the winding / unwinding process are not performed, a super-wide coating is possible, and scratches such as wrinkles, pinholes and scratches on the final separation membrane are possible. Occurrence is greatly reduced and uncoated areas are also reduced.

また、従来の可塑剤抽出後の熱固定工程と、スラリーコーティング後の乾燥工程との二回の個別熱処理工程の代わりに、スラリーコーティング後の熱固定工程の単一熱処理工程に改善することで、乾燥オーブンと熱固定オーブンとを別途に使わず、一つの熱固定オーブンのみを使うことで、空間活用と費用節減とを図ることができる。   Also, instead of the conventional heat setting step after the plasticizer extraction and the two individual heat treatment steps after the slurry coating, by improving to a single heat treatment step of the heat setting step after slurry coating, By using only one heat setting oven instead of using a drying oven and heat setting oven separately, space utilization and cost saving can be achieved.

本発明の一面によれば、カソード、アノード、及びカソードとアノードとの間に介された分離膜を含む電気化学素子として、前記分離膜が前述の電気化学素子用分離膜である電気化学素子が提供される。   According to one aspect of the present invention, an electrochemical element including a cathode, an anode, and a separation membrane interposed between the cathode and the anode is an electrochemical device in which the separation membrane is the aforementioned separation membrane for an electrochemical device. Provided.

このような電気化学素子は、当技術分野に知られた通常の方法によって製造され得、その一実施例としては、カソードとアノードとの間に前述の分離膜を介して組み立てた後、電解液を注入することで製造され得る。   Such an electrochemical device can be manufactured by a conventional method known in the art. For example, the electrochemical device is assembled through the above-described separation membrane between the cathode and the anode, and then the electrolytic solution. It can be manufactured by injecting.

前記分離膜とともに適用される電極は特に制限されず、当業界に知られた通常の方法によって電極活物質が電極電流集電体に結着された形態に製造することができる。   The electrode applied together with the separation membrane is not particularly limited, and can be manufactured in a form in which an electrode active material is bound to an electrode current collector by an ordinary method known in the art.

前記電極活物質のうちカソード活物質の非制限的な例には、従来の電気化学素子のカソードに使われる通常のカソード活物質が使用可能であり、特にリチウムマンガン酸化物、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウム鉄酸化物又はこれらを組み合わせたリチウム複合酸化物を使うことが望ましい。アノード活物質の非制限的な例には、従来の電気化学素子のアノードに使われる通常のアノード活物質が使用可能であり、特にリチウム金属又はリチウム合金、炭素、石油コーク(petroleum coke)、活性化炭素(activated carbon)、グラファイト(graphite) 又はその他の炭素類などのようなリチウム吸着物質などが望ましい。   Non-limiting examples of the cathode active material among the electrode active materials may include a normal cathode active material used for a cathode of a conventional electrochemical device, in particular, lithium manganese oxide, lithium cobalt oxide, It is desirable to use lithium nickel oxide, lithium iron oxide, or a lithium composite oxide combining these. Non-limiting examples of the anode active material may include conventional anode active materials used for anodes of conventional electrochemical devices, particularly lithium metal or lithium alloys, carbon, petroleum coke, active Lithium adsorbents such as activated carbon, graphite or other carbons are desirable.

カソード電流集電体の非制限的な例には、アルミニウム、ニッケル又はこれらの組合せによって製造されるホイルなどがあり、アノード電流集電体の非制限的な例には、銅、金、ニッケル又は銅合金、又はこれらの組合せによって製造されるホイルなどがある。   Non-limiting examples of cathode current collectors include foils made from aluminum, nickel or combinations thereof, and non-limiting examples of anode current collectors include copper, gold, nickel or There are foils made of copper alloys, or combinations thereof.

本発明の一実施例で使用可能な電解液は、A+-のような構造の塩であって、 A+は、Li+、Na+、K+のようなアルカリ金属の陽イオン又はこれらの組合せからなるイオンを含み、B-は、PF6 -、BF4 -、Cl-、Br-、I-、 ClO4 -、AsF6 -、CH3CO2 -、CF3SO3 -、N(CF3SO22 -、C(CF2SO23 -のような陰イオン又はこれらの組合せからなるイオンを含む塩が、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、ジプロピルカーボネート(DPC)、ジメチルスルホキシド、アセトニトリル、ジメトキシエタン、ジエトキシエタン、テトラハイドロフラン、N−メチル−2−ピロリドン(NMP)、エチルメチルカーボネート(EMC)、ガンマ−ブチロラクトン又はこれらの混合物からなる有機溶媒に溶解又は解離されたものがあるが、これらに限定されることではない。 The electrolyte solution that can be used in one embodiment of the present invention is a salt having a structure such as A + B , where A + is an alkali metal cation such as Li + , Na + , K + , or the like B is PF 6 , BF 4 , Cl , Br , I , ClO 4 , AsF 6 , CH 3 CO 2 , CF 3 SO 3 , N A salt containing an anion such as (CF 3 SO 2 ) 2 , C (CF 2 SO 2 ) 3 , or an ion composed of a combination thereof is propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate ( DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl-2-pyrrolidone (NMP) , Ethylmethyl carbonate (EMC), gamma-butyrolactone, or a mixture thereof, but not limited thereto.

電解液の注入は最終製品の製造工程及び要求物性に応じて、電池の製造工程中の適切な段階で行われ得る。即ち、電池の組立ての前又は電池の組立ての最終段階などで適用され得る。   The injection of the electrolytic solution can be performed at an appropriate stage in the battery manufacturing process depending on the manufacturing process and required physical properties of the final product. That is, it can be applied before the battery is assembled or at the final stage of the battery assembly.

本発明の一実施例による分離膜を電池に適用する工程としては、一般的な工程である巻取(winding)の他、分離膜と電極との積層(lamination、stack)及び折り畳み(folding)工程が適用可能である。   As a process of applying a separation membrane according to an embodiment of the present invention to a battery, in addition to winding, which is a general process, lamination and stacking and folding processes of a separation membrane and an electrode Is applicable.

以下、本発明を具体的な実施例を挙げて詳細に説明する。しかし、本発明による実施例は多くの他の形態に変形されることができ、本発明の範囲が後述する実施例に限定されると解釈されてはならない。本発明の実施例は当業界で平均的な知識を有する者に本発明をより完全に説明するために提供されるものである。   Hereinafter, the present invention will be described in detail with specific examples. However, the embodiments according to the present invention can be modified in many other forms, and the scope of the present invention should not be construed to be limited to the embodiments described later. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art.

実施例1
ポリオレフィンとして重量平均分子量が500,000である高密度ポリエチレンと、可塑剤として動粘度が68.00cStである液体パラフィンを35:65の重量比で用いて、210℃の温度で押し出した。延伸温度は115℃にし、延伸比は縦方向と横方向にそれぞれ7倍延伸した。続いて、抽出溶媒としてメチルレンクロライドを用いて2M/minの条件で可塑剤である液体パラフィンを抽出した後、0.04μmの平均気孔サイズを有する多孔性ポリオレフィンフィルムを得た。
Example 1
Extruded at a temperature of 210 ° C. using high density polyethylene having a weight average molecular weight of 500,000 as polyolefin and liquid paraffin having a kinematic viscosity of 68.00 cSt as a plasticizer at a weight ratio of 35:65. The stretching temperature was 115 ° C., and the stretching ratio was 7 times each in the machine direction and the transverse direction. Then, after extracting liquid paraffin which is a plasticizer on the conditions of 2 M / min using methyllen chloride as an extraction solvent, a porous polyolefin film having an average pore size of 0.04 μm was obtained.

その後、多孔層形成用スラリーとして0.5μmの平均粒径を有するAl23粒子/シアノエチルポリビニルアルコール(Cyano resin CR−V,Shin−Etsu Chemical,Ltd.製)/PVDF−HFP(LBG2,Arkema,Inc.製)/アセトンを13.5/0.225/1.275/85の重量比を有するように混合して準備した。 Thereafter, Al 2 O 3 particles / cyanoethyl polyvinyl alcohol (Cyano Resin CR-V, Shin-Etsu Chemical, Ltd.) / PVDF-HFP (LBG2, Arkema) having an average particle diameter of 0.5 μm as a slurry for forming a porous layer , Inc.) / Acetone were mixed and prepared to have a weight ratio of 13.5 / 0.225 / 1.275 / 85.

前記可塑剤抽出工程まで完了した多孔性ポリオレフィンフィルムの一面に前記スラリーを3.5μmの厚さで片面コーティングし、続いて132.5℃、5m/minの条件で熱固定を行い、多孔性コーティング層が形成された厚さ14.5μmの分離膜を製造した。得られた分離膜の多孔性コーティング層は0.4μmの平均気孔サイズ及び55%の平均気孔度を有した。   The slurry is coated on one side with a thickness of 3.5 μm on one side of the porous polyolefin film that has been completed up to the plasticizer extraction step, followed by heat setting under conditions of 132.5 ° C. and 5 m / min. A separation membrane having a thickness of 14.5 μm on which a layer was formed was produced. The resulting porous coating layer of the separation membrane had an average pore size of 0.4 μm and an average porosity of 55%.

実施例2
多孔層形成用スラリー(PX9022、ゼオン社製)として0.5μmの平均粒径を有するブチルアクリレートとエチルメタクリレートとの架橋高分子化合物からなる有機物粒子、バインダー(ポリブチルアクリレート)、分散剤(カルボキシメチルセルロース)及び溶媒として超純水を18/1.5/0.5/80の重量比で準備したものを用い、コーティング厚さを4.0μmとして多孔性ポリエチレンフィルムの両面にコーティングを行い、熱固定温度を133℃としたことを除いては、実施例1と同様の方法で電気化学素子用分離膜を製造した。得られた分離膜の多孔性コーティング層は0.5μmの平均気孔サイズ及び61%の平均気孔度を有した。
Example 2
As a slurry for forming a porous layer (PX9022, manufactured by Zeon Corporation), organic particles composed of a crosslinked polymer compound of butyl acrylate and ethyl methacrylate having an average particle diameter of 0.5 μm, a binder (polybutyl acrylate), a dispersant (carboxymethyl cellulose) ) And a solvent prepared by ultrapure water at a weight ratio of 18 / 1.5 / 0.5 / 80, coating the both sides of the porous polyethylene film with a coating thickness of 4.0 μm, and heat setting A separation membrane for an electrochemical device was produced in the same manner as in Example 1 except that the temperature was 133 ° C. The resulting porous coating layer of the separation membrane had an average pore size of 0.5 μm and an average porosity of 61%.

比較例1
実施例1で用いられたものと同一のポリオレフィンフィルムを130℃で熱固定した後、その一面に実施例1で用いられたものと同一の多孔性コーティング層形成用スラリーを3.5μmの厚さにコーティングし、70℃、5M/minの条件で乾燥して電気化学素子用分離膜を製造した。
Comparative Example 1
After the same polyolefin film as used in Example 1 was heat-set at 130 ° C., the same slurry for forming a porous coating layer as that used in Example 1 was 3.5 μm thick. And dried under conditions of 70 ° C. and 5 M / min to produce a separation membrane for an electrochemical device.

比較例2
実施例2で用いられたものと同一の多孔性ポリオレフィンフィルムを130℃で熱固定した後、その両面に実施例2で用いられたものと同一の多孔性コーティング層形成用スラリーを4.0μmの厚さにコーティングし、その後、70℃、5M/minの条件で乾燥することで電気化学素子用分離膜を製造した。
Comparative Example 2
The same porous polyolefin film as used in Example 2 was heat-set at 130 ° C., and then the same slurry for forming a porous coating layer as used in Example 2 on both sides thereof was 4.0 μm. The film was coated to a thickness and then dried under conditions of 70 ° C. and 5 M / min to produce a separation membrane for an electrochemical device.

比較例3
実施例1で用いられたものと同一のポリオレフィンフィルムを130℃で熱固定した後、その一面に実施例1で用いられたものと同一の多孔性コーティング層形成用スラリーを3.5μmの厚さにコーティングし、132.5℃で5M/minの条件でさらに熱固定して電気化学素子用分離膜を製造した。
Comparative Example 3
After the same polyolefin film as used in Example 1 was heat-set at 130 ° C., the same slurry for forming a porous coating layer as that used in Example 1 was 3.5 μm thick. The film was further heat-set at 132.5 ° C. under the condition of 5 M / min to produce a separation membrane for an electrochemical device.

比較例4
実施例1で用いられたものと同様に、210℃で押し出した後、110℃でアニーリングした。アニーリングしたフィルムに実施例1で用いられたものと同一の多孔性コーティング層形成用スラリーを3.5μmの厚さにコーティングし、115℃で延伸率7倍に延伸した。その後、実施例1と同様に抽出し、132.5℃、5M/minの条件でさらに熱固定して電気化学素子用分離膜を製造した。このように製造した分離膜は、コーティングした後で延伸しながらコーティング層が剥離してしまい、分離膜として使うのに不適切であった。
Comparative Example 4
Similar to the one used in Example 1, it was extruded at 210 ° C. and then annealed at 110 ° C. The annealed film was coated with the same porous coating layer forming slurry as used in Example 1 to a thickness of 3.5 μm, and stretched at 115 ° C. to a stretch ratio of 7 times. Thereafter, extraction was performed in the same manner as in Example 1, and further heat setting was performed under conditions of 132.5 ° C. and 5 M / min to produce a separation membrane for an electrochemical device. The separation membrane thus produced was unsuitable for use as a separation membrane because the coating layer peeled off while being stretched after coating.

評価例
前述の実施例1及び比較例1による電気化学素子用分離膜それぞれの通気時間、引張強度、熱収縮率及び水分含量を測定し、その結果を下記の表1に示した。
Evaluation Example The aeration time, tensile strength, heat shrinkage rate and moisture content of the separation membranes for electrochemical devices according to Example 1 and Comparative Example 1 were measured. The results are shown in Table 1 below.

(1)通気時間の測定
通気度測定機(EG01−55−1MR、Asahi Seiko社製)を用いて一定の圧力(0.05MPa)で100mlの空気が分離膜を通過するにかかる時間(sec)を測定した。サンプルの左/中/右の各1点ずつ総3点で測定してその平均を記録した。
(1) Measurement of aeration time Time required for 100 ml of air to pass through the separation membrane at a constant pressure (0.05 MPa) using an air permeability measuring device (EG01-55-1MR, manufactured by Asahi Seiko) (sec) Was measured. The sample was measured at a total of three points, one for each of left / middle / right of the sample, and the average was recorded.

(2)引張強度の測定
引張強度測定機(3345 UTM 、Instron社製)を用いて500mm/minの速度で分離膜試片(長さ12cm、幅1.5cm)の両端を引っ張り、試片が切れるまで耐える力の最大値として測定される強度を3回測定し、その平均を記録した。
(2) Measurement of tensile strength Using a tensile strength measuring device (3345 UTM, manufactured by Instron), both ends of a separation membrane specimen (length 12 cm, width 1.5 cm) were pulled at a speed of 500 mm / min. The strength measured as the maximum value of the force that can withstand until it was cut was measured three times, and the average was recorded.

(3)熱収縮の測定
コンベクションオーブン(Convection Oven)を用いて120℃、60minの条件で分離膜試料(大きさ:50mm×50mm)を保管後、取り出して常温で収縮が最も激しく発生した部分の長さをスチール尺などを用いて測定し、熱収縮率に換算した。サンプルの左/中/右の各1点ずつ総3点で測定し、その平均を記録した。

熱収縮率(%)=[1−(収縮が最も激しい部分の長さ)/最初の長さ)]×100
(3) Measurement of heat shrinkage Using a convection oven, the separation membrane sample (size: 50 mm × 50 mm) was stored at 120 ° C. for 60 min, and then taken out. The length was measured using a steel ruler and converted into heat shrinkage. Measurements were made at a total of 3 points, one for each of left / middle / right of the sample, and the average was recorded.

Thermal contraction rate (%) = [1− (length of the portion where contraction is most intense) / initial length)] × 100

(4)水分含量の測定
Karl Fisher(Mettler toledo社製)の装備を用いてオーブン温度120℃の条件でblank testを終えた後、約0.5〜0.6g内外の分離膜が入っているバイアルに窒素ガスを投入して抽出時間は5分とし、その水分含量を測定した。各分離膜サンプルの左/中/右の各1点ずつ総3点で測定し、その平均を記録した。
(4) Measurement of moisture content After finishing blank test under the condition of an oven temperature of 120 ° C. using Karl Fisher (manufactured by Mettler toledo) equipment, about 0.5 to 0.6 g of inner and outer separation membranes are contained. Nitrogen gas was introduced into the vial, the extraction time was 5 minutes, and the water content was measured. Each separation membrane sample was measured at a total of 3 points, one for each of left / middle / right, and the average was recorded.

表1に示した結果を参照すれば、熱固定工程の手順のみを異にし、同一の原料を用いた実施例1と比較例1とを比べれば、ポリオレフィンフィルムから可塑剤を抽出した後、無機物粒子を含んだスラリーをコーティングした実施例 1が、比較例1よりも優れた引張強度及び熱収縮率を示すことが分かる。   Referring to the results shown in Table 1, when only the heat setting step is different and Example 1 using the same raw material is compared with Comparative Example 1, after extracting the plasticizer from the polyolefin film, the inorganic substance It can be seen that Example 1 in which the slurry containing particles was coated exhibits a tensile strength and a heat shrinkage ratio superior to those of Comparative Example 1.

このような引張強度の向上及び熱収縮率の減少のような性能向上は、抽出後のポリオレフィンフィルムにスラリーコーティングを行った後でこれを熱固定する工程を行うことで、熱固定してからスラリーコーティングを行った後で乾燥作業を経る従来の方法(比較例1)に比べて、さらに高い温度で熱固定を行ったためであると把握される。   The performance improvement such as the improvement of the tensile strength and the reduction of the heat shrinkage ratio is performed by performing a process of heat-fixing the polyolefin film after extraction by applying the slurry to the slurry after heat-fixing. It is understood that this is because heat setting was performed at a higher temperature than the conventional method (Comparative Example 1) in which a drying operation is performed after coating.

あわせて、このような高い熱固定温度を取る場合、熱固定オーブンの長さをより減少させることができるため、空間活用の長所があり、これによって生産費の節減が可能となるのみならず、130℃よりも高い温度で乾燥することで水分含量が少なくなり、水分に敏感な電池に好適であるとの長所がある。
次は、前述の実施例2と比較例2による電気化学素子用分離膜それぞれの通気時間、引張強度、熱収縮率及び水分含量を測定し、その結果を下記の表2に示した。
In addition, when taking such a high heat-fixing temperature, the length of the heat-fixing oven can be further reduced, so there is an advantage of space utilization, which not only makes it possible to reduce production costs, By drying at a temperature higher than 130 ° C., the moisture content is reduced, which is advantageous for a battery sensitive to moisture.
Next, the aeration time, tensile strength, thermal shrinkage rate and moisture content of the separation membranes for electrochemical devices according to Example 2 and Comparative Example 2 were measured, and the results are shown in Table 2 below.

表2に示した結果を参照すれば、表1に示した結果と同様に、コーティングの後で熱固定工程が行った実施例2による分離膜が、熱固定工程の後でコーティングが行われた比較例2による分離膜に比べ、さらに優れた引張強度、熱収縮率及び水分含量の特性を示すことが分かる。
次は、前述の実施例1と比較例3による電気化学素子用分離膜それぞれの通気時間、引張強度、熱収縮率及び水分含量を測定し、その結果を下記の表3に示した。
Referring to the results shown in Table 2, similarly to the results shown in Table 1, the separation membrane according to Example 2 that was subjected to the heat setting step after coating was coated after the heat setting step. Compared with the separation membrane of Comparative Example 2, it can be seen that the properties of tensile strength, thermal shrinkage, and moisture content are further improved.
Next, the aeration time, tensile strength, heat shrinkage rate and moisture content of the separation membranes for electrochemical devices according to Example 1 and Comparative Example 3 were measured, and the results are shown in Table 3 below.

表3に示した結果を参照すれば、比較例3の場合、既存の130℃で熱固定されたポリオレフィンフィルムの一面に、実施例1と同一のコーティング条件で複合分離膜を製造した。この場合、生地にスラリーコーティングする前に熱固定(アニーリング)したため、フィブリル同士の結着がすでに完了している状態である。フィブリル同士の結着が完了すれば、後でTm以下の温度で熱固定をさらに行っても太いフィブリル同士の再結着が容易でないため、機械的強度と熱特性は殆ど向上しない。そして、多孔性コーティング層と多孔性ポリオレフィンフィルムとの結着力も向上しないため、実施例1のような優れた物性を示しにくい。 Referring to the results shown in Table 3, in the case of Comparative Example 3, a composite separation membrane was produced on one side of an existing polyolefin film heat-set at 130 ° C. under the same coating conditions as in Example 1. In this case, since the fabric is heat-set (annealed) before slurry coating, the binding between the fibrils is already completed. If the binding between the fibrils is completed, the mechanical strength and the thermal properties are hardly improved because the rebinding between the thick fibrils is not easy even if the heat fixation is further performed at a temperature of Tm or less later. And since the binding force of a porous coating layer and a porous polyolefin film does not improve, it is hard to show the outstanding physical property like Example 1. FIG.

以上のように、本発明を限定された実施例と図面によって説明したが、本発明はこれに限定されるものではなく、本発明の属する技術分野で通常の知識を持つ者によって本発明の技術思想と特許請求の範囲の均等範囲内で多様な修正及び変形が可能であることは言うまでもない。   As described above, the present invention has been described with reference to the limited embodiments and drawings. However, the present invention is not limited to this, and the technology of the present invention can be obtained by those who have ordinary knowledge in the technical field to which the present invention belongs. It goes without saying that various modifications and variations can be made within the scope of the idea and the scope of claims.

Claims (16)

電気化学素子用分離膜の製造方法であって、
ポリオレフィン及び可塑剤を含む樹脂組成物を押し出す段階と、
押し出された前記樹脂組成物を延伸してポリオレフィンフィルムを得る段階と、
得られた前記ポリオレフィンフィルムから前記可塑剤を抽出して多孔性ポリオレフィンフィルムを得る段階と、
粒子とバインダー高分子とを、組成比(重量基準)で50:50〜99:1の範囲で含んでなる多孔性コーティング層形成用スラリーを用意する段階と、
前記多孔性ポリオレフィンフィルムの少なくとも一面に、前記多孔性コーティング層形成用スラリーをコーティングする段階と、
前記多孔性コーティング層形成用スラリーがコーティングされた多孔性ポリオレフィンフィルムを131℃〜135℃の温度で熱固定する段階と、
前記多孔性コーティング層が形成された複合分離膜を得る段階とを含んでなり、
前記ポリオレフィンフィルムがポリエチレンである、電気化学素子用分離膜の製造方法。
A method for producing a separation membrane for an electrochemical element,
Extruding a resin composition comprising a polyolefin and a plasticizer;
Stretching the extruded resin composition to obtain a polyolefin film;
Extracting the plasticizer from the obtained polyolefin film to obtain a porous polyolefin film;
Preparing a slurry for forming a porous coating layer comprising particles and a binder polymer in a composition ratio (weight basis) in the range of 50:50 to 99: 1;
Coating at least one surface of the porous polyolefin film with the slurry for forming a porous coating layer;
Heat- setting the porous polyolefin film coated with the slurry for forming a porous coating layer at a temperature of 131 ° C. to 135 ° C . ;
Ri Na and a step of obtaining a composite separator in which the porous coating layer is formed,
The manufacturing method of the separation membrane for electrochemical elements whose said polyolefin film is polyethylene .
前記押し出された前記樹脂組成物の延伸が、MD方向又はTD方向へ1回以上の一軸延伸し、又は、MD方向及びTD方向へ1回以上二軸延伸することを特徴とする、請求項1に記載の電気化学素子用分離膜の製造方法。   The stretch of the extruded resin composition is uniaxially stretched one or more times in the MD direction or TD direction, or biaxially stretched one or more times in the MD direction and the TD direction. The manufacturing method of the separation membrane for electrochemical elements as described in any one of. 前記熱固定の温度がTm−1℃(式中、Tmは、前記ポリオレフィンの融点である)以下であることを特徴とする、請求項1又は2に記載の電気化学素子用分離膜の製造方法。 3. The separation membrane for an electrochemical element according to claim 1, wherein the heat setting temperature is T m −1 ° C. (wherein T m is a melting point of the polyolefin) or lower. Production method. 前記熱固定が、前記多孔性ポリオレフィンフィルムにコーティングされた前記多孔性コーティング層形成用スラリーの表面に対して垂直方向に向ける熱源を用いて行われることを特徴とする、請求項1〜3の何れか一項に記載の電気化学素子用分離膜の製造方法。   The heat setting is performed using a heat source directed in a direction perpendicular to the surface of the slurry for forming a porous coating layer coated on the porous polyolefin film. A method for producing a separation membrane for an electrochemical element according to claim 1. 前記可塑剤が、パラフィンオイル、鉱油、ワックス、大豆油、フタル酸エステル類、芳香族エーテル類、炭素数10〜20の脂肪酸類と、炭素数10〜20の脂肪酸アルコール類と、脂肪酸エステル類とからなる群より選択される一種以上を含むことを特徴とする、請求項1〜4の何れか一項に記載の電気化学素子用分離膜の製造方法。   The plasticizer is paraffin oil, mineral oil, wax, soybean oil, phthalic acid esters, aromatic ethers, fatty acids having 10 to 20 carbon atoms, fatty acid alcohols having 10 to 20 carbon atoms, and fatty acid esters. The method for producing a separation membrane for an electrochemical element according to any one of claims 1 to 4, comprising at least one selected from the group consisting of: 前記多孔性ポリオレフィンフィルムの厚さが5〜50μmであり、
前記多孔性ポリオレフィンフィルムの気孔の大きさ及び気孔度が、それぞれ0.01〜50μm及び10〜95%であることを特徴とする、請求項1〜5の何れか一項に記載の電気化学素子用分離膜の製造方法。
The porous polyolefin film has a thickness of 5 to 50 μm,
The electrochemical device according to any one of claims 1 to 5, wherein the porous polyolefin film has a pore size and a porosity of 0.01 to 50 µm and 10 to 95%, respectively. Method for manufacturing a separation membrane.
前記多孔性コーティング層形成用スラリーが、無機物粒子及び有機物粒子のうち一種以上の粒子、バインダー高分子、及び溶媒を含むことを特徴とする、請求項1〜6の何れか一項に記載の電気化学素子用分離膜の製造方法。   The electricity according to any one of claims 1 to 6, wherein the slurry for forming a porous coating layer contains one or more particles of inorganic particles and organic particles, a binder polymer, and a solvent. A method for producing a separation membrane for a chemical element. 前記バインダー高分子が、ポリビニリデンフルオライド−ヘキサフルオロプロピレン、ポリビニリデンフルオライド−トリクロロエチレン、ポリメチルメタクリレート、ポリブチルアクリレート、ポリアクリロニトリル、ポリビニルピロリドン、ポリビニルアセテート、エチレンビニルアセテート共重合体、ポリエチレンオキサイド、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート、シアノエチルプルラン、シアノエチルポリビニルアルコール、シアノエチルセルロース、シアノエチルスクロース、プルラン、カルボキシルメチルセルロース、アクリロニトリルスチレンブタジエン共重合体、ポリイミド又はこれらの混合物であることを特徴とする、請求項7に記載の電気化学素子用分離膜の製造方法。   The binder polymer is polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride-trichloroethylene, polymethyl methacrylate, polybutyl acrylate, polyacrylonitrile, polyvinyl pyrrolidone, polyvinyl acetate, ethylene vinyl acetate copolymer, polyethylene oxide, cellulose. Acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethyl pullulan, cyanoethyl polyvinyl alcohol, cyanoethyl cellulose, cyanoethyl sucrose, pullulan, carboxymethyl cellulose, acrylonitrile styrene butadiene copolymer, polyimide or a mixture thereof The separation membrane for an electrochemical element according to claim 7 Manufacturing method. 前記無機物粒子が、誘電定数が5以上の無機物粒子、リチウムイオン伝達能力を有する無機物粒子又はこれらの混合物であることを特徴とする、請求項7に記載の電気化学素子用分離膜の製造方法。   The method for producing a separation membrane for an electrochemical element according to claim 7, wherein the inorganic particles are inorganic particles having a dielectric constant of 5 or more, inorganic particles having lithium ion transfer capability, or a mixture thereof. 前記誘電定数が5以上の無機物粒子が、BaTiO3、Pb(Zr,Ti)O3(PZT)、Pb1-xLaxZr1-yTiy3(PLZT)、Pb(Mg1/3Nb2/3)O3−PbTiO3(PMN−PT)、ハフニア(HfO2)、SrTiO3、 SnO2、CeO2、MgO、NiO、CaO、ZnO、ZrO2、Y23、Al23、TiO2、SiC又はこれらの混合物であることを特徴とする、請求項9に記載の電気化学素子用分離膜の製造方法。 The inorganic particles having a dielectric constant of 5 or more are BaTiO 3 , Pb (Zr, Ti) O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT), Pb (Mg 1/3 ). Nb 2/3 ) O 3 —PbTiO 3 (PMN-PT), hafnia (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3 , Al 2 O 3, characterized in that it is a TiO 2, SiC or mixtures thereof, method for manufacturing the electrochemical device for separation membrane according to claim 9. 前記リチウムイオン伝達能力を有する無機物粒子が、リチウムホスフェート(Li3PO4)、リチウムチタンホスフェート(LixTiy(PO43、0<x<2、0<y<3)、リチウムアルミニウムチタンホスフェート(LixAlyTiz(PO43、0<x<2、0<y<1、0<z<3)、(LiAlTiP)xy系列ガラス(0<x<4、0<y<13)、リチウムランタンチタネート(LixLayTiO3、0<x<2、0<y<3)、リチウムゲルマニウムチオホスフェート(LixGeyzw、0<x<4、0<y<1、0<z<1、0<w<5)、リチウムナイトライド(Lixy、0<x<4、0<y<2)、SiS2系列ガラス(LixSiyz、0<x<3、0<y<2、0<z<4)、P25系列ガラス(Lixyz、0<x<3、0<y<3、0<z<7)又はこれらの混合物であることを特徴とする、請求項9に記載の電気化学素子用分離膜の製造方法。 The inorganic particles having lithium ion transfer capability are lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0 <x <2, 0 <y <3), lithium aluminum titanium. phosphate (Li x Al y Ti z ( PO 4) 3, 0 <x <2,0 <y <1,0 <z <3), (LiAlTiP) x O y series glass (0 <x <4,0 < y <13), lithium lanthanum titanate (Li x La y TiO 3 , 0 <x <2, 0 <y <3), lithium germanium thiophosphate (Li x Ge y P z S w , 0 <x <4, 0 <Y <1, 0 <z <1, 0 <w <5), lithium nitride (Li x N y , 0 <x <4, 0 <y <2), SiS 2 series glass (Li x Si y S) z , 0 <x <3, 0 <y <2, 0 <z <4), P 2 S The electrochemical device according to claim 9, wherein the electrochemical device is a 5 series glass (Li x P y S z , 0 <x <3, 0 <y <3, 0 <z <7) or a mixture thereof. Method for manufacturing a separation membrane. 前記有機物粒子が、ポリスチレン、ポリエチレン、メラミン系樹脂、フェノール系樹脂、セルロース、セルロース変性体、ポリプロピレン、ポリエステル、ポリフェニレンスルファイド、ポリアラミド、ポリアミドイミド、ポリイミド、ブチルアクリレートとエチルメタアクリレートとの共重合体又はこれらの混合物であることを特徴とする、請求項7に記載の電気化学素子用分離膜の製造方法。   The organic particles are polystyrene, polyethylene, melamine resin, phenol resin, cellulose, cellulose modified, polypropylene, polyester, polyphenylene sulfide, polyaramide, polyamideimide, polyimide, a copolymer of butyl acrylate and ethyl methacrylate, or The method for producing a separation membrane for an electrochemical element according to claim 7, which is a mixture thereof. 前記無機物粒子及び前記有機物粒子の平均粒径がそれぞれ独立的に0.001〜10μmであることを特徴とする、請求項7〜12の何れか一項に記載の電気化学素子用分離膜の製造方法。   13. The separator for an electrochemical device according to claim 7, wherein the inorganic particles and the organic particles each independently have an average particle size of 0.001 to 10 μm. Method. 前記複合分離膜をワインディング及びスリッティングする段階を更に含むことを特徴とする、請求項1〜13の何れか一項に記載の電気化学素子用分離膜の製造方法。   The method of manufacturing a separation membrane for an electrochemical device according to any one of claims 1 to 13, further comprising winding and slitting the composite separation membrane. 前記多孔性コーティング層形成用スラリーをコーティングする段階の前は、熱固定する段階、ワインディング及びスリッティングする段階を含まないことを特徴とする、請求項1〜14の何れか一項に記載の電気化学素子用分離膜の製造方法。   The electricity according to any one of claims 1 to 14, wherein the step of coating the slurry for forming a porous coating layer does not include a step of heat setting, a step of winding and slitting. A method for producing a separation membrane for a chemical element. 前記ワインディング及びスリッティングが完了した複合分離膜を包装する段階を更に含むことを特徴とする、請求項15に記載の電気化学素子用分離膜の製造方法。   The method for manufacturing a separation membrane for an electrochemical device according to claim 15, further comprising a step of packaging the composite separation membrane after the winding and slitting.
JP2016523681A 2013-10-31 2014-10-31 Method for producing separation membrane for electrochemical device and separation membrane for electrochemical device produced by the method Active JP6297685B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20130131161 2013-10-31
KR10-2013-0131161 2013-10-31
KR1020140150288A KR101656413B1 (en) 2013-10-31 2014-10-31 A method of manufacturing separator for electrochemical device and separator for electrochemical device manufactured thereby
PCT/KR2014/010393 WO2015065122A1 (en) 2013-10-31 2014-10-31 Method for preparing separation membrane for electrochemical device, and separation membrane for electrochemical device prepared thereby
KR10-2014-0150288 2014-10-31

Publications (2)

Publication Number Publication Date
JP2016523440A JP2016523440A (en) 2016-08-08
JP6297685B2 true JP6297685B2 (en) 2018-03-20

Family

ID=53388275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016523681A Active JP6297685B2 (en) 2013-10-31 2014-10-31 Method for producing separation membrane for electrochemical device and separation membrane for electrochemical device produced by the method

Country Status (7)

Country Link
US (1) US10056589B2 (en)
EP (1) EP3024061B1 (en)
JP (1) JP6297685B2 (en)
KR (1) KR101656413B1 (en)
CN (1) CN105393383B (en)
TW (1) TWI557165B (en)
WO (1) WO2015065122A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021211914A1 (en) * 2020-04-17 2021-10-21 Celgard, Llc Assymetric porous membrane

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6373387B2 (en) * 2013-11-06 2018-08-15 エルジー・ケム・リミテッド Separation membrane for electrochemical devices
JP6263611B2 (en) 2013-12-17 2018-01-17 エルジー・ケム・リミテッド Separation membrane for electrochemical devices
KR20170117442A (en) * 2015-02-20 2017-10-23 도레이 카부시키가이샤 Process for producing microporous plastic film
CN106099260A (en) * 2016-08-12 2016-11-09 洁能电投(北京)新能源科技有限公司 Solid electrolyte composite diaphragm and preparation method and flow battery electrolyte system
KR102137533B1 (en) 2017-01-06 2020-07-27 주식회사 엘지화학 Separator for battery with functional binder and electrochemical device prepared thereby
CN107958982B (en) * 2017-08-23 2023-08-04 湖南中锂新材料有限公司 Chimeric composite diaphragm for lithium ion power battery and preparation method
CN108172745B (en) * 2018-01-05 2021-08-06 杨晓丽 Preparation method of lithium ion battery diaphragm
US11674011B2 (en) 2018-08-31 2023-06-13 Lg Chem, Ltd. Cross-linked polyolefin separator and manufacturing method thereof
CN109742294B (en) * 2018-12-25 2022-03-04 江西省通瑞新能源科技发展有限公司 Preparation method of cellulose diaphragm
CN111477821A (en) * 2020-05-16 2020-07-31 深圳市劢全新材料科技有限责任公司 Preparation method of aromatic polyester L CP composite diaphragm and composite diaphragm prepared by same
CN111477820A (en) * 2020-05-16 2020-07-31 深圳市劢全新材料科技有限责任公司 Aromatic polyester L CP composite diaphragm and lithium battery comprising same
CN112886067B (en) * 2021-02-01 2022-04-26 上海恩捷新材料科技有限公司 Preparation method of synchronous substrate-supported solid composite electrolyte membrane
CN114024092A (en) * 2021-11-09 2022-02-08 江苏厚生新能源科技有限公司 Ice crystallization induced self-assembly porous coating diaphragm and preparation process thereof
CN114597587A (en) * 2022-03-17 2022-06-07 中材锂膜有限公司 Aramid fiber coated diaphragm and preparation method thereof

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1571022C3 (en) 1963-11-14 1976-01-08 Hoechst Ag, 6000 Frankfurt Process for the continuous coating of thermoplastic polyester films
JPH0976437A (en) 1995-09-12 1997-03-25 Toyobo Co Ltd Laminated polyamide film
DE60144235D1 (en) * 2000-08-12 2011-04-28 Lg Chemical Ltd COMPILED FILM WITH SEVERAL COMPONENTS AND METHOD FOR THE PRODUCTION THEREOF
KR100406690B1 (en) 2001-03-05 2003-11-21 주식회사 엘지화학 Electrochemical device using multicomponent composite membrane film
JP4287622B2 (en) 2002-06-28 2009-07-01 デュポン帝人アドバンスドペーパー株式会社 COATING SEPARATOR, MANUFACTURING METHOD THEREOF, AND ELECTRIC AND ELECTRONIC COMPONENT USING THE SAME
US7323274B1 (en) * 2004-05-12 2008-01-29 Garrin Samii Shutdown separators with improved properties
ES2438738T3 (en) * 2005-07-15 2014-01-20 Toray Battery Separator Film Co., Ltd. Multilayer microporous polyolefin membrane and battery separator
CN101326658B (en) * 2005-12-06 2010-09-29 Lg化学株式会社 Organic/ inorganic composite separator having morphology gradient, manufacturing method thereof and electrochemical device containing the same
JP4988197B2 (en) 2005-12-30 2012-08-01 三菱樹脂株式会社 Coating film
EP1996531A2 (en) * 2006-02-28 2008-12-03 Primet Precision Materials, Inc. Lithium-based compound nanoparticle compositions and methods of forming the same
JP5543715B2 (en) 2006-10-30 2014-07-09 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
KR100727248B1 (en) * 2007-02-05 2007-06-11 주식회사 엘지화학 Organic/inorganic composite separator having porous active coating layer and electrochemical device containing the same
KR101590339B1 (en) * 2007-08-21 2016-02-01 에이일이삼 시스템즈 인코포레이티드 Separator for electrochemical cell and method for its manufacture
KR101437852B1 (en) 2007-12-26 2014-09-04 에스케이이노베이션 주식회사 Microporous polyolefin multi layer film and preparing method thereof
JP5588964B2 (en) 2008-04-08 2014-09-10 エスケー イノベーション カンパニー リミテッド Polyolefin-based composite microporous membrane having a high heat-resistant porous coating layer
US20110059368A1 (en) * 2008-05-09 2011-03-10 Daisuke Inagaki Separtor for high-power density lithium ion secondary battery (as amended)
JP2009087948A (en) * 2008-12-05 2009-04-23 Du Pont Teijin Advanced Paper Kk Coating separator, its manufacturing method, and electric/electronic parts using it
JP4846882B2 (en) * 2009-08-25 2011-12-28 旭化成イーマテリアルズ株式会社 Microporous membrane wound body and method for producing the same
KR101055431B1 (en) * 2009-11-23 2011-08-08 주식회사 엘지화학 Method for producing a separator having a porous coating layer, a separator formed therefrom and an electrochemical device having the same
KR101394624B1 (en) * 2010-08-13 2014-05-14 에스케이이노베이션 주식회사 Pore-Protected Multi-layered Composite Separator and the Method for manufacturing the same
JP5147976B2 (en) 2010-11-01 2013-02-20 帝人株式会社 Connected porous sheet and method for producing the same, separator for non-aqueous secondary battery, non-aqueous secondary battery and method for producing the same
CN102064300A (en) * 2010-12-25 2011-05-18 佛山塑料集团股份有限公司 Porous composite diaphragm for lithium ion secondary battery and preparation method thereof
KR101301595B1 (en) * 2011-10-06 2013-08-29 더블유스코프코리아 주식회사 Micro porous separator coated with ceramics and its preparing method
WO2012137847A1 (en) 2011-04-05 2012-10-11 ダブル・スコープ株式会社 Porous membrane and method for producing same
TWI497790B (en) 2011-04-08 2015-08-21 Teijin Ltd Non-aqueous secondary battery separator and non-aqueous secondary battery
KR101344939B1 (en) 2011-12-13 2013-12-27 주식회사 코캄 A complex separator with excellent heat resistance for lithium secondary batteries and Lithium secondary batteries comprising the same
KR101903189B1 (en) 2012-02-29 2018-10-01 주식회사 엘지화학 A separator, the manufacturing method thereof, and electrochemical device containing the same
TWI619611B (en) * 2012-03-28 2018-04-01 Asahi Kasei E Mat Corporation Porous membranes and multilayer porous membranes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021211914A1 (en) * 2020-04-17 2021-10-21 Celgard, Llc Assymetric porous membrane

Also Published As

Publication number Publication date
TW201533104A (en) 2015-09-01
CN105393383A (en) 2016-03-09
JP2016523440A (en) 2016-08-08
KR101656413B1 (en) 2016-09-09
CN105393383B (en) 2019-02-01
EP3024061B1 (en) 2018-12-05
EP3024061A1 (en) 2016-05-25
TWI557165B (en) 2016-11-11
EP3024061A4 (en) 2017-02-22
US20160141574A1 (en) 2016-05-19
WO2015065122A1 (en) 2015-05-07
US10056589B2 (en) 2018-08-21
KR20150050511A (en) 2015-05-08

Similar Documents

Publication Publication Date Title
JP6297685B2 (en) Method for producing separation membrane for electrochemical device and separation membrane for electrochemical device produced by the method
JP6373387B2 (en) Separation membrane for electrochemical devices
JP6263611B2 (en) Separation membrane for electrochemical devices
KR102586597B1 (en) Improved coatings, coated separators, batteries, and related methods
JP6458015B2 (en) Separation membrane for electrochemical devices
KR20200108474A (en) Improved coated separator, lithium battery, and related method
KR101692413B1 (en) Separator for electrochemical device with improved curling/crack condition and a method of making the same
KR101915345B1 (en) A method of manufacturing separator for electrochemical device and separator for electrochemical device manufactured thereby
KR101827425B1 (en) Separator for electrochemical device with improved curling condition and a method of making the same
KR20150030102A (en) A method of manufacturing separator for electrochemical device and separator for electrochemical device manufactured thereby
KR102354110B1 (en) polyolefin microporous membrane
KR101924988B1 (en) A method of manufacturing separator for electrochemical device
KR101816764B1 (en) A method of manufacturing separator for electrochemical device and separator for electrochemical device manufactured thereby
KR101822592B1 (en) A method of making the separator for electrochemical device and a separator for electrochemical device manufactured thereby
KR101984881B1 (en) Separator for electrochemical device with improved safety and Electrode assembly comprising the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171220

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180221

R150 Certificate of patent or registration of utility model

Ref document number: 6297685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250