JP2002036459A - Porous film and its manufacturing method - Google Patents

Porous film and its manufacturing method

Info

Publication number
JP2002036459A
JP2002036459A JP2000231738A JP2000231738A JP2002036459A JP 2002036459 A JP2002036459 A JP 2002036459A JP 2000231738 A JP2000231738 A JP 2000231738A JP 2000231738 A JP2000231738 A JP 2000231738A JP 2002036459 A JP2002036459 A JP 2002036459A
Authority
JP
Japan
Prior art keywords
porous film
resin
polyolefin
weight
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000231738A
Other languages
Japanese (ja)
Other versions
JP4338164B2 (en
Inventor
Toshisuke Nomi
俊祐 能見
Kazunari Yamamoto
一成 山本
Mutsuko Yamaguchi
睦子 山口
Yoshihiro Uetani
慶裕 植谷
Hideyuki Emori
秀之 江守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2000231738A priority Critical patent/JP4338164B2/en
Publication of JP2002036459A publication Critical patent/JP2002036459A/en
Application granted granted Critical
Publication of JP4338164B2 publication Critical patent/JP4338164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous film having at least one crosslinking layer and one non-crosslinking layer so that a laminating strength between the layers is high and excellent film breakage resistance is incorporated even at a high temperature, a method for manufacturing the same, a battery and a capacitor using the porous film. SOLUTION: The porous film comprises a layer (resin layer A) containing a polyolefin, and a layer (resin layer B) containing both the polyolefin and a crosslinkable resin and laminated on the layer A. The method for manufacturing the porous film comprises the steps of laminating the porous film having the resin layer B including a crosslinking structure, a gel-like molding containing the polyolefin, and the gel-like molding containing both the polyolefin and the crosslinkable resin, and treating to form a film. The battery using the porous film, and the capacitor using the porous film are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は多孔質フィルム及び
その製造方法に関する。さらに詳しくは、電池の正極負
極間に配置されてこれらを隔離させる電池用セパレータ
等として好適に用いられる多孔質フィルム、その製造方
法、前記多孔質フィルムを用いてなる電池およびキャパ
シターに関する。
The present invention relates to a porous film and a method for producing the same. More specifically, the present invention relates to a porous film which is preferably used as a battery separator or the like which is disposed between a positive electrode and a negative electrode of a battery and isolates them, a method for producing the same, a battery and a capacitor using the porous film.

【0002】[0002]

【従来の技術】近年、電子機器のコードレス化等に対応
するため、電池として軽量で、高起電力、高エネルギー
が得られ、しかも自己放電が少ないリチウム電池が注目
を集めている。このリチウム電池の正極負極間には、正
極負極の短絡防止のためにセパレータが設けられている
が、このセパレータとしては正極負極間のイオンの透過
を確保するために多数の微多孔が形成された多孔質フィ
ルムが使用されている。中でも、電池の誤接続等によ
り、異常電流が発生した場合に電池内部温度の上昇にと
もない樹脂が熱変形して微多孔を塞ぎ電池反応を停止さ
せる、いわゆるシャットダウン機能(SD機能)を有す
るものが、安全性向上の観点から採用されている。この
ようなSD機能を有するセパレータは、例えばポリエチ
レン製微多孔膜やポリエチレンとポリプロピレンの多層
構造の微多孔膜等が知られている。
2. Description of the Related Art In recent years, lithium batteries that are lightweight, have high electromotive force and high energy, and have low self-discharge have been attracting attention in order to cope with cordless electronic devices. Between the positive electrode and the negative electrode of this lithium battery, a separator is provided to prevent short circuit of the positive electrode and the negative electrode, and as this separator, a large number of microporous holes were formed in order to ensure the transmission of ions between the positive electrode and the negative electrode. A porous film has been used. Among them, those having a so-called shutdown function (SD function), in which when an abnormal current is generated due to incorrect connection of the battery, the resin is thermally deformed as the battery internal temperature rises to close the micropores and stop the battery reaction. It is adopted from the viewpoint of improving safety. As the separator having such an SD function, for example, a microporous film made of polyethylene, a microporous film having a multilayer structure of polyethylene and polypropylene, and the like are known.

【0003】しかしながら、昨今のリチウムイオン二次
電池等の進歩により、上記SD機能のみならず、耐熱的
な要素、すなわちシャットダウン後にさらに温度が上昇
したときにセパレータ自身が溶融破膜(メルトダウ
ン)、または可塑化され破断する状態が起こると、電池
の発火、爆発の危険性がある。従って、より高い温度ま
で破膜、破断されないセパレータが切望されている。特
に高容量化された電池や電池内部抵抗の低減が進むと、
発熱が大きくなる要素が増すため、ますます重要であ
る。
However, due to recent advances in lithium ion secondary batteries and the like, not only the SD function described above, but also a heat-resistant element, that is, the separator itself melts when the temperature rises after shutdown. Or, if a state of plasticization and breakage occurs, there is a risk of ignition and explosion of the battery. Therefore, there is a strong demand for a separator that does not break or break to higher temperatures. In particular, as the capacity of batteries with higher capacity and the reduction of battery internal resistance progress,
This is increasingly important because the factors that generate heat increase.

【0004】かかる耐熱性とSD特性を両立させる方法
として、我々は特許第2768745号明細書で開示し
たように、少なくとも2枚のポリエチレン多孔質フィル
ムが積層されており、これら積層された多孔質フィルム
のうち少なくとも1枚が架橋されており且つ少なくとも
1枚が未架橋であるセパレータが有効であることを見出
した。この方法では特定の温度範囲で多孔質フィルムを
ラミネートすることにより微孔閉塞せず積層が可能であ
ったが、ラミネート温度が低いためフィルム相互の積層
強度は十分高いものとはいえず、剥離を防止するため製
造後のフィルムの取り扱いに注意する必要があった。ま
た、積層後に、例えば電子線を照射すると、非架橋層が
得られず、耐熱性とSD特性が両立できないという問題
が生じる。
As a method for achieving both the heat resistance and the SD characteristics, as disclosed in Japanese Patent No. 2768745, at least two polyethylene porous films are laminated, and the laminated porous films are laminated. It has been found that a separator in which at least one sheet is crosslinked and at least one sheet is not crosslinked is effective. In this method, lamination of a porous film in a specific temperature range enabled lamination without closing micropores.However, since the lamination temperature was low, the lamination strength between the films was not sufficiently high. In order to prevent this, care must be taken in handling the film after production. In addition, if, for example, an electron beam is irradiated after lamination, a problem arises in that a non-crosslinked layer cannot be obtained, and heat resistance and SD characteristics cannot be compatible.

【0005】従って、耐熱性とSD特性を両立したセパ
レータを得るため、積層後に多孔化し、架橋層と非架橋
層とを少なくとも一層ずつ有し、かつその層間が剥離し
ない多孔質フィルム及びその製造方法が望まれていた。
Accordingly, in order to obtain a separator having both heat resistance and SD characteristics, a porous film which is porous after lamination, has at least one cross-linked layer and one non-cross-linked layer, and has no delamination between layers, and a method for producing the same Was desired.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、架橋
層および非架橋層をそれぞれ少なくとも1層有し、それ
らの層間の積層強度が高く、且つ高温でも優れた耐破膜
破断性を有する多孔質フィルム、その製造方法、前記多
孔質フィルムを用いてなる電池およびキャパシターを提
供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide at least one crosslinked layer and at least one non-crosslinked layer, to have a high lamination strength between the layers and to have excellent rupture resistance at high temperatures. An object of the present invention is to provide a porous film, a method for producing the same, and a battery and a capacitor using the porous film.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前記課題
を達成するべく鋭意検討した結果、高分子量ポリオレフ
ィンを含むゲル状成形物同士を相分離前に積層すること
により製膜後も高い積層強度が得られることを見出し
た。また、そのうち少なくとも一層に架橋性樹脂を添加
することにより、製膜後の熱処理等により架橋が起こ
り、高耐熱層を形成することを見出し、本発明に至っ
た。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, by laminating gel-like molded products containing a high-molecular-weight polyolefin before phase separation, a high level is obtained even after film formation. It has been found that lamination strength can be obtained. Further, they have found that by adding a crosslinkable resin to at least one of them, crosslinking occurs by heat treatment after film formation and the like, and a high heat-resistant layer is formed, and the present invention has been accomplished.

【0008】即ち、本発明の要旨は、〔1〕ポリオレフ
ィンを含む層(樹脂層A)と、ポリオレフィンと架橋性
樹脂のいずれも含む層(樹脂層B)とが積層されてなる
多孔質フィルム、〔2〕前記〔1〕記載の多孔質フィル
ムにおいて樹脂層Bが架橋構造を有する多孔質フィル
ム、〔3〕ポリオレフィンを含むゲル状成形物と、ポリ
オレフィンと架橋性樹脂のいずれも含むゲル状成形物と
を積層して成膜処理を行うことを特徴とする多孔質フィ
ルムの製造方法、〔4〕前記〔1〕又は〔2〕記載の多
孔質フィルムを用いてなる電池、ならびに〔5〕前記
〔1〕又は〔2〕記載の多孔質フィルムを用いてなるキ
ャパシターに関するものである。
That is, the gist of the present invention is to provide a porous film in which [1] a layer containing a polyolefin (resin layer A) and a layer containing both a polyolefin and a crosslinkable resin (resin layer B) are laminated; [2] The porous film according to the above [1], wherein the resin layer B has a crosslinked structure, [3] a gel molded product containing a polyolefin, and a gel molded product containing both a polyolefin and a crosslinkable resin. And a method for producing a porous film, characterized in that a film is formed by laminating the above, [4] a battery using the porous film according to [1] or [2], and [5] the [ The present invention relates to a capacitor using the porous film according to 1) or 2).

【0009】[0009]

【発明の実施の形態】本発明の多孔質フィルムは、ポリ
オレフィンを含む層(樹脂層A)と、ポリオレフィンと
架橋性樹脂のいずれも含む層(樹脂層B)とが積層され
てなるものである。なお、本明細書において、樹脂層A
は非架橋層、樹脂層Bは架橋層ともいう。
BEST MODE FOR CARRYING OUT THE INVENTION The porous film of the present invention is formed by laminating a layer containing a polyolefin (resin layer A) and a layer containing both a polyolefin and a crosslinkable resin (resin layer B). . In this specification, the resin layer A
Is also referred to as a non-crosslinked layer, and the resin layer B is also referred to as a crosslinked layer.

【0010】樹脂層A、Bで用いるポリオレフィンは、
好ましくは重量平均分子量が5×105 以上の高分子量
ポリオレフィンであり、例えば、エチレン、プロピレ
ン、1−ブテン、4−メチル−1−ペンテン、1−ヘキ
セン等を重合した単独重合体、共重合体及びこれらのブ
レンド物等が挙げられる。中でも機械的強度にすぐれ、
高い結晶性が得られる高分子量ポリエチレンが素材とし
て望ましい。該高分子量ポリオレフィンの重量平均分子
量としては、さらに1×106 以上の超高分子量のもの
が好ましく、1.5×106 以上がより好ましい。
The polyolefin used in the resin layers A and B is
Preferably, it is a high molecular weight polyolefin having a weight average molecular weight of 5 × 10 5 or more, for example, a homopolymer or copolymer obtained by polymerizing ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and the like. And blends thereof. Among them, excellent mechanical strength,
High-molecular-weight polyethylene, from which high crystallinity can be obtained, is desirable as a material. The weight average molecular weight of the high molecular weight polyolefin, more preferably has 1 × 10 6 or more ultra-high molecular weight, and more preferably 1.5 × 10 6 or more.

【0011】樹脂層A中の高分子量ポリオレフィンの含
有量は、5〜100重量%、好ましくは10〜100重
量%、より好ましくは20〜100重量%である。該含
有量の下限は、製膜した膜の強度が十分である観点か
ら、5重量%以上が好ましい。
The content of the high molecular weight polyolefin in the resin layer A is 5 to 100% by weight, preferably 10 to 100% by weight, more preferably 20 to 100% by weight. The lower limit of the content is preferably 5% by weight or more from the viewpoint that the strength of the formed film is sufficient.

【0012】また、樹脂層Aには、その他の樹脂とし
て、重量平均分子量が5×105 未満のポリオレフィ
ン、熱可塑性エラストマー、水添ポリブタジエン樹脂、
変性オレフィン樹脂、エチレンプロピレンジエンモノマ
ーゴム(EPDM)等が含有されていてもよい。熱可塑
性エラストマー樹脂としては、例えば「TPE」(住友
化学工業(株)製)、「ハイトレル」(東レ・デュポン
(株)製)、「セプトン」((株)クラレ製)等が挙げ
られる。水添ポリブタジエン樹脂としては、「DYNA
RON」(日本合成ゴム製)等が挙げられる。変性オレ
フィン樹脂としては、例えば「エバフレックス」(三井
・デュポンポリケミカル(株)製)、「モディパー」
(日本油脂(株)製)等が挙げられる。EPDMとして
は、例えば「エスプレン」(住友化学工業(株)製)等
が挙げられる。
In the resin layer A, as other resins, a polyolefin having a weight average molecular weight of less than 5 × 10 5 , a thermoplastic elastomer, a hydrogenated polybutadiene resin,
Modified olefin resin, ethylene propylene diene monomer rubber (EPDM) and the like may be contained. Examples of the thermoplastic elastomer resin include “TPE” (manufactured by Sumitomo Chemical Co., Ltd.), “Hytrel” (manufactured by Dupont Toray), and “Septon” (manufactured by Kuraray Co., Ltd.). As the hydrogenated polybutadiene resin, "DYNA
RON "(made by Japan Synthetic Rubber) and the like. Examples of the modified olefin resin include “Evaflex” (manufactured by DuPont-Mitsui Polychemicals) and “Modiper”
(Manufactured by NOF Corporation) and the like. As the EPDM, for example, “Esprene” (manufactured by Sumitomo Chemical Co., Ltd.) and the like can be mentioned.

【0013】樹脂層Aでのその他の樹脂の含有量は、好
ましくは0〜95重量%、より好ましくは0〜90重量
%、更に好ましくは0〜80重量%である。
The content of the other resin in the resin layer A is preferably 0 to 95% by weight, more preferably 0 to 90% by weight, and still more preferably 0 to 80% by weight.

【0014】本発明における樹脂層Bにおいて用いられ
る架橋性樹脂は、二重結合を有し、そのα位炭素に水素
原子が結合している樹脂であり、少なくとも熱処理によ
り架橋構造を形成するものであれば限定されない。例え
ば、不飽和縮合脂環式化合物誘導体が開環重合したもの
であって、主鎖にそのモノマー単位に由来する脂肪族環
と二重結合とを有する樹脂(例えば、ポリノルボルネ
ン)や、末端に二重結合をもつ低級炭化水素の末端水素
原子をエチレン基に置換した構造を有するモノマーを重
合したものであって、主鎖にメチレン基が結合している
構造を有する樹脂(例えば、ポリブタジエン)等が挙げ
られる。これらの中では、分散性の観点から、ポリノル
ボルネンが好ましく、重量平均分子量が2×106 以上
のポリノルボルネンが特に好ましい。
The crosslinkable resin used in the resin layer B in the present invention is a resin having a double bond and a hydrogen atom bonded to the carbon at the α-position, and at least forming a crosslinked structure by heat treatment. If there is, it is not limited. For example, a resin obtained by ring-opening polymerization of an unsaturated condensed alicyclic compound derivative and having an aliphatic ring derived from its monomer unit and a double bond in the main chain (for example, polynorbornene), Resin (for example, polybutadiene), which is obtained by polymerizing a monomer having a structure in which a terminal hydrogen atom of a lower hydrocarbon having a double bond is substituted with an ethylene group, and having a structure in which a methylene group is bonded to a main chain. Is mentioned. Among these, polynorbornene is preferable from the viewpoint of dispersibility, and polynorbornene having a weight average molecular weight of 2 × 10 6 or more is particularly preferable.

【0015】樹脂層B中での架橋性樹脂の含有量は、1
〜50重量%、好ましくは3〜40重量%、より好まし
くは5〜35重量%である。該含有量は、架橋性樹脂の
添加作用が有効である観点から、1重量%以上が好まし
く、また、多孔質フィルムの空孔率が高く、高通気度を
得る観点から、50重量%以下が好ましい。従って、樹
脂層B中のポリオレフィンの含有量は、50〜99重量
%、好ましくは60〜97重量%、より好ましくは65
〜95重量%である。
The content of the crosslinkable resin in the resin layer B is 1
-50% by weight, preferably 3-40% by weight, more preferably 5-35% by weight. The content is preferably 1% by weight or more from the viewpoint that the addition action of the crosslinkable resin is effective, and 50% by weight or less from the viewpoint of high porosity of the porous film and high air permeability. preferable. Therefore, the content of the polyolefin in the resin layer B is 50 to 99% by weight, preferably 60 to 97% by weight, more preferably 65 to 99% by weight.
~ 95% by weight.

【0016】本発明において、これらの成分を有する樹
脂層A、Bの積層順序としては、特に限定はないが、樹
脂層A、Bを交互に積層していることが好ましい。各層
の厚みは、1〜50μmが好ましく、5〜50μmがよ
り好ましい。また、これら各層間は、溶融状態で積層す
るため、互いの層の分子が貫入し合っていると考えら
れ、全体に強固に融着しているようになっている。
In the present invention, the order of laminating the resin layers A and B having these components is not particularly limited, but it is preferable that the resin layers A and B are alternately laminated. The thickness of each layer is preferably from 1 to 50 μm, more preferably from 5 to 50 μm. In addition, since these layers are laminated in a molten state, it is considered that molecules of the layers penetrate each other, and the layers are firmly fused as a whole.

【0017】本発明の多孔質フィルムは、例えば、ポリ
オレフィンを含む樹脂成分やポリオレフィンと架橋性樹
脂のいずれも含む樹脂成分にそれぞれ溶媒を添加して得
られた混合物をそれぞれ溶融混練後、シート状に押し出
して得られた2種のゲル状成形物を積層したシート状成
形物に対して延伸処理と脱溶媒処理等を含む成膜処理を
行うことにより得ることができる。本発明において成膜
処理とは、積層したシート状成形物の延伸、脱溶媒、要
すれば圧延等の処理により樹脂層Aと樹脂層Bが積層さ
れた多孔質フィルムを形成する処理工程をいう。
The porous film of the present invention is prepared by, for example, melting and kneading a mixture obtained by adding a solvent to a resin component containing a polyolefin or a resin component containing both a polyolefin and a crosslinkable resin, and then forming a sheet. It can be obtained by subjecting a sheet-like molded product obtained by laminating two types of gel-like molded products obtained by extrusion to a film-forming treatment including a stretching treatment and a desolvation treatment. In the present invention, the film forming process refers to a process step of forming a porous film in which the resin layer A and the resin layer B are laminated by a process such as stretching, desolvation, and, if necessary, rolling of the laminated sheet-like molded product. .

【0018】溶媒としては、各樹脂成分の溶解性に優れ
たものであればよく、例えばノナン、デカン、ウンデカ
ン、ドデカン、デカリン、流動パラフィン等の脂肪族ま
たは環状の炭化水素、あるいは沸点がこれらに対応する
鉱油留分が挙げられるが、流動パラフィンなどの不揮発
性溶媒が好ましい。
The solvent may be any solvent that is excellent in the solubility of each resin component. For example, aliphatic or cyclic hydrocarbons such as nonane, decane, undecane, dodecane, decalin, liquid paraffin and the like, or those having a boiling point of Corresponding mineral oil fractions may be mentioned, but non-volatile solvents such as liquid paraffin are preferred.

【0019】樹脂成分及び溶媒の配合量は、樹脂の種
類、溶解性、混練温度等により異なるため、一概には決
定できないが、得られるスラリー状の混合物を溶融混練
してシート状に成形できる程度であれば特に限定されな
い。例えば、樹脂成分の配合量は混合物中の5〜30重
量%が好ましく、10〜30重量%がより好ましく、1
0〜25重量%がさらに好ましい。樹脂成分の配合量
は、得られる多孔質フィルムの強度を向上させる観点か
ら、5重量%以上が好ましく、また、ポリオレフィンを
十分に溶媒に溶解させて、伸び切り状態近くにまで混練
することができ、ポリマー鎖の十分な絡み合いを得られ
る観点から、30重量%以下が好ましい。
The amount of the resin component and the solvent varies depending on the type of the resin, the solubility, the kneading temperature and the like, and cannot be unconditionally determined. However, the amount of the obtained slurry-like mixture can be melt-kneaded and formed into a sheet. If it is, there is no particular limitation. For example, the compounding amount of the resin component is preferably 5 to 30% by weight of the mixture, more preferably 10 to 30% by weight, and
0-25% by weight is more preferred. From the viewpoint of improving the strength of the obtained porous film, the amount of the resin component is preferably 5% by weight or more. In addition, the polyolefin can be sufficiently dissolved in a solvent and kneaded to near the stretched state. From the viewpoint of obtaining sufficient entanglement of the polymer chains, the content is preferably 30% by weight or less.

【0020】混合物中の溶媒の配合量は、70〜95重
量%が好ましく、70〜90重量%がより好ましく、7
5〜90重量%がさらに好ましい。該配合量は、混練り
トルク、圧延、延伸応力が適度で、生産性に優れる観点
から、70重量%以上が好ましく、また、押し出す際に
ダイス出口でネックインが発生せず、成形が容易になる
観点から、95重量%以下が好ましい。
The amount of the solvent in the mixture is preferably from 70 to 95% by weight, more preferably from 70 to 90% by weight,
More preferably, it is 5 to 90% by weight. The compounding amount is preferably 70% by weight or more from the viewpoint that the kneading torque, rolling and stretching stress are moderate and the productivity is excellent, and neck-in does not occur at the die exit when extruding, and molding is easy. From the viewpoint, it is preferably 95% by weight or less.

【0021】なお、前記混合物には、必要に応じて、酸
化防止剤、紫外線吸収剤、染料、造核剤、顔料、帯電防
止剤等の添加剤を、本発明の目的を損なわない範囲で添
加することができる。
If necessary, additives such as an antioxidant, an ultraviolet absorber, a dye, a nucleating agent, a pigment, and an antistatic agent are added to the mixture as long as the object of the present invention is not impaired. can do.

【0022】混合物の溶融混練は、高分子量ポリオレフ
ィンのポリマー鎖の十分な絡み合いを得るために、混合
物に十分な剪断力を作用させて行うことが好ましい。従
って、本発明における混合物の溶融混練には、通常、混
合物に強い剪断力を与えることができるニーダや二軸混
練り機が好ましく用いられる。
The melt-kneading of the mixture is preferably performed by applying a sufficient shearing force to the mixture in order to obtain sufficient entanglement of the polymer chains of the high-molecular-weight polyolefin. Therefore, for melt-kneading the mixture in the present invention, usually, a kneader or a twin-screw kneader capable of giving a strong shearing force to the mixture is preferably used.

【0023】混合物を溶融混練する際の温度は、溶媒が
高分子量ポリオレフィンを溶解開始させる温度(溶解開
始温度)〜+60℃の範囲で行うことが好ましい。該温
度は、高分子量ポリオレフィンが効率よく分散する観点
から、溶解開始温度以上が好ましく、また、樹脂の分解
が生じにくい観点から、溶解開始温度+60℃以下が好
ましい。また、高分子量ポリオレフィンより融点の高い
樹脂を添加する場合、それらの添加樹脂が溶解開始する
温度以上で混練するのが好ましい。なお、高分子量ポリ
オレフィンの分解を抑制するため、溶解後の混練時に、
膜特性を低下させない程度に温度を下げても差し支えな
い。
The temperature at which the mixture is melt-kneaded is preferably in the range of a temperature at which the solvent starts dissolving the high molecular weight polyolefin (dissolution starting temperature) to + 60 ° C. The temperature is preferably equal to or higher than the dissolution start temperature from the viewpoint of efficiently dispersing the high-molecular-weight polyolefin, and is preferably equal to or lower than the dissolution start temperature + 60 ° C from the viewpoint of preventing the resin from being easily decomposed. When resins having a melting point higher than that of the high-molecular-weight polyolefin are added, kneading is preferably performed at a temperature at which the added resins start melting or higher. In addition, in order to suppress the decomposition of the high molecular weight polyolefin, at the time of kneading after dissolution,
The temperature may be lowered to such an extent that the film characteristics are not deteriorated.

【0024】次に、溶融混練物をシート状に押し出して
得られた架橋性樹脂を含むゲル状成形物(樹脂層B)
と、架橋性樹脂を含まないゲル状成形物(樹脂層A)を
少なくとも一種類ずつ積層して、積層物を形成する。
Next, a gel-like molded product containing a crosslinkable resin obtained by extruding the melt-kneaded product into a sheet (resin layer B)
And at least one type of gel-like molded product (resin layer A) containing no crosslinkable resin is laminated to form a laminate.

【0025】本発明において、溶融混練物をシート状に
押し出して得られる2種類のゲル状成形物を積層するこ
とにより、界面において各層間の分子の絡み合いが形成
され、融着が強固になる上に、相分離が融着後に進行す
るため界面にもバルク同様の多孔構造が形成され、通気
性を低下させないという優れた効果が発現される。
In the present invention, by laminating two types of gel-like molded products obtained by extruding the melt-kneaded product into a sheet, molecules are entangled between the layers at the interface, and the fusion is strengthened. In addition, since the phase separation proceeds after fusion, a porous structure similar to the bulk is formed at the interface, and an excellent effect that the air permeability is not reduced is exhibited.

【0026】溶融混練物をシート状に押し出す方法は、
特に限定されず、例えば、Tダイ等を取り付けた押出機
などを用いる方法が挙げられる。
The method of extruding the melt-kneaded material into a sheet is as follows.
There is no particular limitation, and examples thereof include a method using an extruder equipped with a T-die or the like.

【0027】積層方法としては、バッチ式と連続式のい
ずれの方法でもよい。バッチ式では、例えば少なくとも
一種類ずつのゲル状成形物を、二軸ロールを用いて任意
の順番で貼り合わせることができる。この時、ゲルの接
着表面の温度は相分離し始める温度以下でないことが好
ましい。樹脂が析出する温度以下になると、表面に流動
パラフィン等の溶媒がゲル状成形物表面に浮き出て、各
層の接着を阻害するため、そのまま製膜しても、外観が
悪く、容易に界面剥離する。連続式では、例えば2台以
上の混練機を用い、ダイス近傍でロールを用いて貼り合
わせるか、もしくはダイス出口の直前の所で吐出圧で貼
り合わせることができる。特に、ダイス内で貼り合わせ
る方法が、不純物や空気等の噛み込みがなく好ましい。
As a lamination method, either a batch method or a continuous method may be used. In the batch method, for example, at least one type of gel-like molded product can be bonded in an arbitrary order using a biaxial roll. At this time, the temperature of the adhesive surface of the gel is preferably not lower than the temperature at which phase separation starts. When the temperature is lower than the temperature at which the resin is deposited, a solvent such as liquid paraffin emerges on the surface of the gel-like molded product and hinders the adhesion of each layer. . In the continuous method, for example, two or more kneaders can be used to bond together using a roll in the vicinity of a die, or can be bonded by a discharge pressure immediately before a die outlet. In particular, a method of bonding in a die is preferable because it does not involve the entry of impurities or air.

【0028】なお、本発明では、得られた積層物を、好
ましくは0℃以下、より好ましくは−10℃以下に冷却
した金属板に挟み込み急冷して、シート状に成形するこ
とが望ましい。
In the present invention, the obtained laminate is desirably sandwiched between metal plates cooled to preferably 0 ° C. or lower, more preferably -10 ° C. or lower, and quenched to form a sheet.

【0029】このようにして得られるシート状成形物の
厚みは、通常、0.5〜20mmが好ましい。
The thickness of the sheet-like molded product thus obtained is usually preferably 0.5 to 20 mm.

【0030】次に、得られたシート状成形物を延伸処理
する。延伸処理の方式は特に限定されるものではなく、
通常のテンター法、ロール法またはこれらの方法の組み
合わせであってもよい。また、一軸延伸、二軸延伸等い
ずれの方式をも適用することができ、二軸延伸の場合
は、縦横同時延伸又は逐次延伸のいずれでもよいが、縦
横同時延伸が好ましい。
Next, the obtained sheet-like molded product is subjected to a stretching treatment. The method of the stretching treatment is not particularly limited,
Ordinary tenter method, roll method or a combination of these methods may be used. In addition, any method such as uniaxial stretching and biaxial stretching can be applied. In the case of biaxial stretching, either vertical or horizontal simultaneous stretching or sequential stretching may be used, but vertical and horizontal simultaneous stretching is preferred.

【0031】延伸処理時の温度は、延伸の均一性が良好
で、十分な膜強度が得られる観点から、高分子量ポリオ
レフィンの融点+5℃以下の温度が好ましい。
The temperature at the time of the stretching treatment is preferably a temperature not higher than the melting point of the high-molecular-weight polyolefin + 5 ° C. from the viewpoint that the uniformity of the stretching is good and sufficient film strength is obtained.

【0032】次に、延伸処理後のシート状成形物の脱溶
媒処理を行う。脱溶媒処理は、シート状成形物から溶媒
を除去して多孔質構造を形成させる工程であり、例え
ば、シート状成形物を溶剤で洗浄して残留する溶媒を除
去することにより行うことができる。溶剤は、樹脂組成
物の調製に用いた溶媒に応じて適宜選択することができ
るが、具体的には、ペンタン、ヘキサン、ヘプタン、デ
カン等の炭化水素、塩化メチレン、四塩化炭素等の塩素
化炭化水素、ジエチルエーテル、ジオキサン等のエーテ
ル類、アルコール類等の易揮発性溶剤が挙げられ、これ
らは単独で又は二種以上を混合して用いることができ
る。かかる溶剤を用いた脱溶媒処理の方法は、特に限定
されず、例えば、シート状成形物を溶剤中に浸漬して溶
媒を抽出する方法、溶剤をシート状成形物にシャワーす
る方法等が挙げられる。脱溶媒処理は延伸前に行っても
よい。例えば、シート状組成物を脱溶媒処理してから延
伸処理に供してもよく、あるいは延伸処理前に脱溶媒処
理を行い、延伸処理後に再度脱溶媒処理を行ってもよ
い。
Next, the sheet-like molded product after the stretching treatment is subjected to a desolvation treatment. The solvent removal treatment is a step of forming a porous structure by removing the solvent from the sheet-like molded product, and can be performed, for example, by washing the sheet-like molded product with a solvent to remove the residual solvent. The solvent can be appropriately selected according to the solvent used in the preparation of the resin composition.Specifically, pentane, hexane, heptane, hydrocarbons such as decane, methylene chloride, chlorination of carbon tetrachloride, etc. Examples include volatile solvents such as hydrocarbons, ethers such as diethyl ether and dioxane, and alcohols, and these can be used alone or in combination of two or more. The method of desolvation treatment using such a solvent is not particularly limited, and examples thereof include a method of immersing a sheet-like molded product in a solvent to extract the solvent, a method of showering the solvent to the sheet-like molded product, and the like. . The desolvation treatment may be performed before stretching. For example, the sheet-like composition may be subjected to a desolvation treatment and then subjected to a stretching treatment, or a desolvation treatment may be performed before the stretching treatment and the desolvation treatment may be performed again after the stretching treatment.

【0033】なお、本発明では、延伸及び脱溶媒処理の
前後に、さらに圧延処理を行ってもよい。例えば、シー
ト状成形物をそのまま圧延処理してから延伸処理と脱溶
媒処理(延伸と脱溶媒の順序はいずれが先でもよい)を
行ってもよい。あるいは、延伸処理と脱溶媒処理の間に
圧延処理を行ってもよく、例えば、圧延処理前に脱溶媒
処理を行い、圧延処理後に再度延伸処理と脱溶媒処理
(延伸と脱溶媒の順序はいずれが先でもよい)を行って
残存溶媒を除去する態様であってもよい。
In the present invention, a rolling treatment may be further performed before and after the stretching and the desolvation treatment. For example, a sheet-like molded product may be subjected to a rolling treatment as it is, and then subjected to a stretching treatment and a desolvation treatment (the stretching and the desolvation may be performed in any order). Alternatively, a rolling process may be performed between the stretching process and the desolvation process. For example, a desolvation process is performed before the rolling process, and the stretching process and the desolvation process are performed again after the rolling process. May be performed first) to remove the residual solvent.

【0034】次いで、架橋性樹脂の熱酸化処理を行うこ
とが好ましい。具体的には、酸素またはオゾン存在下で
熱処理を行う。該熱処理を行うことにより、架橋性樹脂
由来の二重結合の全部、または一部が消失し、得られる
多孔質フィルムの樹脂層B中において架橋性樹脂どう
し、または架橋性樹脂とポリオレフィンとの間で架橋が
起こり、耐熱性が大きく向上する。
Next, it is preferable to perform a thermal oxidation treatment of the crosslinkable resin. Specifically, heat treatment is performed in the presence of oxygen or ozone. By performing the heat treatment, all or some of the double bonds derived from the crosslinkable resin disappear, and the crosslinkable resins in the resin layer B of the obtained porous film, or between the crosslinkable resin and the polyolefin, Crosslinking occurs and heat resistance is greatly improved.

【0035】なお、前記二重結合を消失させる割合は、
所望の耐熱性を考慮して適宜選択されるが、80〜10
0%(IRのピークの大きさに基づき算出)の消失率が
好ましい。二重結合の全部又は一部が酸素存在下での加
熱処理により消失することは、赤外吸収スペクトルを観
察することによって確認することができるが、これは樹
脂層Bが架橋構造を有することを意味している。
The ratio of eliminating the double bond is as follows:
It is appropriately selected in consideration of the desired heat resistance.
A disappearance rate of 0% (calculated based on the size of the IR peak) is preferable. The disappearance of all or a part of the double bonds due to the heat treatment in the presence of oxygen can be confirmed by observing an infrared absorption spectrum, which indicates that the resin layer B has a crosslinked structure. Means.

【0036】熱処理の際の雰囲気は、経済性、安定性の
観点から空気雰囲気が特に好ましい。熱処理方法として
は、一回で熱処理する一段式熱処理法でも、最初に低温
でまず熱処理し、その後さらに高温での熱処理を行う多
段式の熱処理法でもよく、あるいは昇温しながら熱処理
する昇温式熱処理法でもよいが、通気度等の多孔質フィ
ルムの元の諸特性を損なうことなく処理することが望ま
しい。一段式熱処理法の場合には、多孔質フィルムの組
成にもよるが、40℃〜140℃が好ましい。また、低
温から熱処理を開始し、その後、処理温度を上げていく
と、多孔質フィルムの樹脂層Bの架橋とともに耐熱性が
しだいに向上していくので、加熱によって通気度等の元
の諸特性を損なうことなく高温に暴露することができる
ようになる。そのため、諸特性を損なわずに、短時間で
熱処理を完了するためには、多段式あるいは昇温式熱処
理法が好ましい。この場合の熱処理時間は、温度により
二重結合の消失速度が異なるため一概には決められない
が、例えば115℃であれば30分以上であることが好
ましい。
The atmosphere for the heat treatment is particularly preferably an air atmosphere from the viewpoint of economy and stability. As the heat treatment method, a single-stage heat treatment method in which heat treatment is performed once, a multi-stage heat treatment method in which heat treatment is first performed at a low temperature and then a heat treatment at a higher temperature may be performed, or a temperature-rise heat treatment method in which heat treatment is performed while increasing the temperature Although a heat treatment method may be used, it is desirable to carry out the treatment without impairing the original properties of the porous film such as air permeability. In the case of the single-stage heat treatment method, the temperature is preferably from 40 ° C to 140 ° C, although it depends on the composition of the porous film. Also, when the heat treatment is started at a low temperature and then increased, the heat resistance gradually increases with the crosslinking of the resin layer B of the porous film. Can be exposed to high temperatures without damaging the Therefore, in order to complete the heat treatment in a short time without deteriorating various characteristics, a multi-stage or elevated temperature heat treatment is preferable. The heat treatment time in this case cannot be unconditionally determined because the rate of disappearance of the double bond varies depending on the temperature, but it is preferably 30 minutes or more at 115 ° C., for example.

【0037】多段式の熱処理法の最初の熱処理温度とし
ては、多孔質フィルムの組成にもよるが、好ましくは4
0〜90℃、2段目の熱処理温度としては、多孔質フィ
ルムの組成にもよるが、好ましくは90〜140℃であ
る。また、必要に応じてさらに高温で、さらに短時間の
3段目以降の熱処理を行ってもよい。処理時間は、多孔
質フィルムの組成にもよるが、最初の熱処理には3〜4
8時間程度、2段目のより高温での熱処理には0.5〜
6時間程度が好ましい。昇温式熱処理法の場合には、前
記の多段式熱処理法に準じた条件で行えばよい。具体的
な熱処理方法として、多孔質フィルムの四隅を固定して
オーブンに投入する、ロールに捲回してオーブンに投入
する、テンターで面積固定して連続的にオーブンに通す
等の公知の方法が用いられる。
The initial heat treatment temperature in the multistage heat treatment depends on the composition of the porous film, but is preferably 4
The temperature of the second heat treatment is preferably from 90 to 140 ° C., although it depends on the composition of the porous film. If necessary, heat treatment at a higher temperature and for a shorter time in the third and subsequent stages may be performed. The treatment time depends on the composition of the porous film, but is 3 to 4 for the first heat treatment.
About 8 hours, 0.5-
About 6 hours are preferable. In the case of the elevated temperature heat treatment, the heat treatment may be performed under the same conditions as those of the above-described multi-stage heat treatment. As a specific heat treatment method, a known method such as fixing the four corners of the porous film into the oven, winding into a roll and putting into the oven, or fixing the area with a tenter and continuously passing through the oven is used. Can be

【0038】酸素存在下での熱処理による架橋反応の機
構は複雑であり、必ずしも明確ではないが、多孔質フィ
ルムの耐熱性の向上の理由は以下のように推定される。
The mechanism of the crosslinking reaction by the heat treatment in the presence of oxygen is complicated and not always clear, but the reason for the improvement in the heat resistance of the porous film is presumed as follows.

【0039】第一に、酸素の作用で生じたポリマーラジ
カルが前記架橋性樹脂の二重結合に付加し、その際に架
橋性樹脂どうしあるいは、架橋性樹脂と前記ポリオレフ
ィンとの間で架橋反応が起こり、構造が三次元化するた
めであると考えられる。
First, a polymer radical generated by the action of oxygen is added to a double bond of the crosslinkable resin, and at this time, a crosslinking reaction between the crosslinkable resins or between the crosslinkable resin and the polyolefin is caused. It is thought that this occurs because the structure becomes three-dimensional.

【0040】第二に、架橋性樹脂のC=C二重結合が消
失して、飽和C−C結合に転化することにより、ガラス
転移温度が大きく上昇することが考えられる。例えば、
架橋性樹脂としてポリノルボルネンを使用した場合、そ
のガラス転移温度は35℃であるが、C=C二重結合が
水素添加されて飽和C−C結合に転化されると百数十℃
になるとされている。C=C二重結合が飽和C−C結合
に転化されてガラス転移温度が高くなるのは、その主鎖
に脂肪族環を有するためであり、本発明における処理後
の多孔質フィルムが、通常の架橋性ゴムの場合よりも高
い耐熱性を有するのは、このようなガラス転移温度の上
昇も大きな要因であると推測される。
Second, it is conceivable that the C = C double bond of the crosslinkable resin disappears and is converted into a saturated C—C bond, thereby greatly increasing the glass transition temperature. For example,
When polynorbornene is used as the crosslinkable resin, its glass transition temperature is 35 ° C., but when the C = C double bond is hydrogenated and converted into a saturated C—C bond, the glass transition temperature is over one hundred and several tens of degrees Celsius.
It is supposed to be. The reason why the C = C double bond is converted into a saturated CC bond and the glass transition temperature is increased is that the main chain has an aliphatic ring. It is presumed that such a rise in glass transition temperature is also a major factor in having a higher heat resistance than that of the crosslinkable rubber.

【0041】第三に、酸化作用によって、水酸基、エス
テル基、カルボキシル基等の極性基が多孔質フィルム中
に生成していることから、これらに基づく擬似的な架橋
も寄与し、耐熱性が向上する要因になっているものと思
われる。
Third, since polar groups such as a hydroxyl group, an ester group, and a carboxyl group are generated in the porous film by the oxidizing action, pseudo-crosslinking based on these groups also contributes to improve heat resistance. It seems to be a factor to do.

【0042】本発明の多孔質フィルムは、これらの作用
効果が複雑にからみあって耐熱性が大きく向上するもの
と考えられる。
It is considered that the porous film of the present invention has a great improvement in heat resistance due to the complicated effects of these effects.

【0043】また、前記熱処理をする場合、必要に応じ
て、紫外線、可視光線等を照射し、架橋を促進してもよ
い。
In the case of performing the heat treatment, if necessary, irradiation with ultraviolet rays, visible rays, or the like may be performed to promote crosslinking.

【0044】本発明では、このようにして得られた多孔
質フィルムに、架橋処理の前または後に必要に応じてさ
らにフィルムの熱収縮を防止するためのヒートセット処
理等を施して、形状固定してもよい。
In the present invention, the porous film thus obtained is subjected to a heat setting treatment or the like before or after the cross-linking treatment, if necessary, to prevent heat shrinkage of the film, thereby fixing the shape. You may.

【0045】以上のようにして得られた多孔質フィルム
は、高い積層強度を有し、且つ架橋層が存在するために
優れた耐熱性を示す。積層強度は、セパレータの取り扱
い方法により必要な強度が異なるため、一概には規定で
きないが、最も好ましくはTピール試験を行なった場合
に非架橋層(樹脂層A)または架橋層(樹脂層B)で層
内剥離が起こるほどの強度であれば良い。耐熱性の指標
として、多孔質フィルムの熱破断温度は180℃以上が
好ましく、200℃以上がより好ましい。
The porous film obtained as described above has a high lamination strength and exhibits excellent heat resistance due to the presence of the crosslinked layer. The lamination strength cannot be specified unconditionally because the required strength varies depending on the method of handling the separator. However, most preferably, a non-crosslinked layer (resin layer A) or a crosslinked layer (resin layer B) when a T-peel test is performed. It is sufficient if the strength is such that the in-layer peeling occurs. As an index of heat resistance, the thermal rupture temperature of the porous film is preferably 180 ° C. or higher, more preferably 200 ° C. or higher.

【0046】また、本発明の多孔質フィルムの厚みは2
〜60μm、好ましくは5〜45μmであることが望ま
しく、各層の厚みは1〜50μm、好ましくは2〜40
μm、空孔率は20〜80%、好ましくは25〜75
%、通気度は100〜1000sec/100cm3
好ましくは200〜900sec/100cm3 、SD
温度は120〜150℃、好ましくは130〜140℃
であることが、それぞれ望ましい。積層強度、熱破断温
度、厚み、空孔率及び通気度は、後述の実施例に記載の
方法を用いて測定することができる。
The thickness of the porous film of the present invention is 2
6060 μm, preferably 5 to 45 μm, and the thickness of each layer is 1 to 50 μm, preferably 2 to 40 μm.
μm, porosity is 20 to 80%, preferably 25 to 75
%, Air permeability is 100 to 1000 sec / 100 cm 3 ,
Preferably, 200 to 900 sec / 100 cm 3 , SD
Temperature is 120-150 ° C, preferably 130-140 ° C
Are respectively desirable. Lamination strength, thermal rupture temperature, thickness, porosity, and air permeability can be measured using the methods described in Examples described later.

【0047】また、SD(シャットダウン)温度は、以
下のようにして測定することができる。即ち、25mm
φの筒状の試験室を有し、試験室が密閉可能なSUS製
のセルを用い、下部電極は20mmφ、上部電極は10
mmφの白金板(厚さ1.0mm)を使用する。24m
mφに打ち抜いた測定試料を電解液に浸漬して電解液を
含浸させ、電極間に挟み、セルにセットする。電極はセ
ルに設けられたばねにて一定の面圧がかかるようにす
る。電解液はプロピレンカーボネートとジメトキシエタ
ンを容量比で1:1の割合で混合した溶媒に、ホウフッ
化リチウムを1.0mol/Lの濃度になるように溶解
させたものを用いる。このセルに熱電対温度計と、抵抗
計を接続して温度と抵抗を測定できるようにし、180
℃恒温器中へ投入し、温度と抵抗を測定する。100〜
150℃の平均昇温速度は10℃/分であり、この測定
により、抵抗が100Ω・cm2 に達した時の温度をS
D温度とする。
The SD (shutdown) temperature can be measured as follows. That is, 25 mm
It has a cylindrical test chamber of φ, uses a SUS cell that can seal the test chamber, the lower electrode is 20 mmφ, and the upper electrode is 10 mm.
A platinum plate of mmφ (thickness: 1.0 mm) is used. 24m
A measurement sample punched to mφ is immersed in an electrolyte to impregnate the electrolyte, sandwiched between electrodes, and set in a cell. The electrodes are applied with a constant surface pressure by a spring provided in the cell. As the electrolytic solution, a solution obtained by dissolving lithium borofluoride to a concentration of 1.0 mol / L in a solvent in which propylene carbonate and dimethoxyethane are mixed at a volume ratio of 1: 1 is used. A thermocouple thermometer and an ohmmeter are connected to this cell so that temperature and resistance can be measured.
Put into a constant temperature oven and measure the temperature and resistance. 100 ~
The average temperature rise rate at 150 ° C. is 10 ° C./min, and the temperature at which the resistance reaches 100 Ω · cm 2
D temperature.

【0048】このような特性を有する本発明の多孔質フ
ィルムは、樹脂層A(非架橋層)と樹脂層B(架橋層)
の積層強度が高く、かつ架橋層が充分な耐熱性を有する
ため熱破断温度が高く、電池用セパレータ等に好適に用
いることができる。
The porous film of the present invention having such characteristics has a resin layer A (non-crosslinked layer) and a resin layer B (crosslinked layer).
Has a high laminating strength, and has a high thermal rupture temperature because the crosslinked layer has sufficient heat resistance, and can be suitably used for a battery separator and the like.

【0049】本発明の多孔質フィルムは、従来のセパレ
ータと同様に、正極と負極の間に介在せしめた状態で用
いて電池を組み立てることができる。この際の正極、負
極、電池ケース、電解液等の材質やこれら構成要素の配
置構造も何ら格別なことは要求されず、従来と同様で良
く、例えば特開昭63−205048号公報に示される
通りであってよい。
The battery can be assembled by using the porous film of the present invention in a state of being interposed between the positive electrode and the negative electrode, similarly to the conventional separator. At this time, the materials of the positive electrode, the negative electrode, the battery case, the electrolytic solution and the like and the arrangement structure of these components are not required to be exceptional, and may be the same as conventional ones, for example, as shown in JP-A-63-205048. May be street.

【0050】また、本発明の多孔質フィルムは、従来の
セパレータと同様に、一対の電極の間に介在せしめた状
態で用いてキャパシターを組み立てることができる。こ
の際の電極、電解液、ケース等の材質やこれらの構成要
素の配置構造も何ら格別なことは要求されず、従来と同
様で良い。例えば、電気二重層キャパシターでは、電極
としてポリテトラフルオロエチレン(PTFE)をバイ
ンダーとして形成した活性炭電極、電解液には炭酸プロ
ピレンに0.5M Et4 BF4 を添加した溶液を用い
ることができる。
Further, the capacitor can be assembled by using the porous film of the present invention in a state of being interposed between a pair of electrodes, similarly to a conventional separator. At this time, the materials of the electrodes, the electrolytic solution, the case, and the like and the arrangement structure of these components are not required to be exceptional, and may be the same as the conventional one. For example, in an electric double layer capacitor, an activated carbon electrode formed of polytetrafluoroethylene (PTFE) as a binder can be used as an electrode, and a solution obtained by adding 0.5 M Et 4 BF 4 to propylene carbonate can be used as an electrolyte.

【0051】[0051]

【実施例】本発明を実施例、比較例に基づいてさらに詳
細に説明するが、本発明はかかる実施例のみに限定され
るものではない。なお、各種特性については、下記要領
にて測定を行う。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to only these Examples. In addition, about various characteristics, it measures as follows.

【0052】(融点)セイコー電子工業社製の示差走査
熱量計「DSC−200」を使用し、室温から200℃
まで10℃/minの割合で昇温させ、この昇温過程で
の吸熱ピークのオンセット温度を融点とする。
(Melting point) Using a differential scanning calorimeter “DSC-200” manufactured by Seiko Denshi Kogyo KK, the temperature was changed from room temperature to 200 ° C.
The temperature is raised at a rate of 10 ° C./min up to this temperature, and the onset temperature of the endothermic peak in this temperature rising process is defined as the melting point.

【0053】(重量平均分子量)ウォーターズ社製のゲ
ル浸透クロマトグラフ「GPC−150C」を用い、溶
媒にo−ジクロロベンゼンを、また、カラムとして昭和
電工(株)製の「Shodex−80M」を用いて13
5℃で測定する。データ処理は、TRC社製データ処理
システムを用いて行う。分子量はポリスチレンを基準と
して算出する。
(Weight average molecular weight) A gel permeation chromatograph "GPC-150C" manufactured by Waters was used, o-dichlorobenzene was used as a solvent, and "Shodex-80M" manufactured by Showa Denko KK was used as a column. 13
Measure at 5 ° C. Data processing is performed using a data processing system manufactured by TRC. The molecular weight is calculated based on polystyrene.

【0054】(フィルムの厚み)1/10000シック
ネスゲージにより測定した。
(Film Thickness) Measured using a 1/10000 thickness gauge.

【0055】(空孔率)測定対象の多孔質フィルムを直
径6cmの円状に切り抜き、その体積と重量を求め、得
られる結果から次式を用いて計算する。
(Porosity) The porous film to be measured is cut out in a circular shape having a diameter of 6 cm, the volume and weight are obtained, and the obtained result is calculated by the following equation.

【0056】空孔率(体積%)=100×〔体積(cm
3 )−重量(g)/樹脂成分の平均密度(g/c
3 )〕/体積(cm3
Porosity (% by volume) = 100 × [Volume (cm)
3 ) -weight (g) / average density of resin component (g / c)
m 3 )] / volume (cm 3 )

【0057】(通気度(ガーレ値))JIS P811
7に準拠して測定した。
(Air permeability (Gurley value)) JIS P811
7 was measured.

【0058】(熱破断温度(耐熱性))幅3mmの短冊
状サンプルをチャック間を10mmとして取り付け、セ
イコー電子製熱応力歪み分析装置「TMA/SS10
0」にセットして、昇温速度2℃/minで昇温した。
この昇温時の状態より評価し、短冊状サンプルが破断し
た場合はこの時の温度を熱破断温度とした。
(Thermal Rupture Temperature (Heat Resistance)) A strip sample having a width of 3 mm was attached with a chuck space of 10 mm, and a thermal stress strain analyzer “TMA / SS10” manufactured by Seiko Electronics Co., Ltd.
0 "and the temperature was raised at a rate of 2 ° C / min.
Evaluation was made from the state at the time of the temperature rise. When the strip-shaped sample was broken, the temperature at this time was defined as the thermal break temperature.

【0059】(積層強度)試験片として多孔質フィルム
を幅1cmにカットし、300mm/minの速度でT
ピール試験を行なった。温度は室温(25℃)であっ
た。ピール強度がほぼ定常になった値を積層強度とし
た。
(Lamination strength) As a test piece, a porous film was cut into a width of 1 cm, and T was cut at a speed of 300 mm / min.
A peel test was performed. The temperature was room temperature (25 ° C.). The value at which the peel strength became almost steady was defined as the lamination strength.

【0060】実施例1 重量平均分子量2×106 の高分子量ポリエチレン(融
点:134℃、以下同じ)30重量%と重量平均分子量
2×105 の高分子量ポリエチレン(融点:127℃)
60重量%、ノルボルネンの開環重合体の粉末(日本ゼ
オン(株)製、ノーソレックスNB、重量平均分子量2
×106 以上、以下同じ)10重量%からなるポリオレ
フィン組成物20重量部と流動パラフィン(凝固点:−
15℃、40℃における動粘度:59cst、以下同
じ)80重量部とをスラリー状に均一に混合し、160
℃で二軸混練機を用い溶融混練した。さらに、重量平均
分子量2×106 の高分子量ポリエチレン33重量%と
重量平均分子量2×105 の高分子量ポリエチレン67
重量%とからなるポリオレフィン組成物20重量部と流
動パラフィン80重量部とをスラリー状に均一に混合
し、160℃で二軸混練機を用い溶融混練した。上記2
種の溶融混練物をダイスより2層押し出しし、得られた
積層物(厚み10mm)を0℃に冷却された金属板に挟
み込み、厚み5mmのシート状に急冷した。この時各層
の厚みは2.5mmであった。この急冷シートを115
℃で厚みが0.7mmになるまでヒートプレスし、ヘプ
タンを使用して脱溶媒処理を行った後、115℃で3.
5×3.5倍に縦横同時二軸延伸を行った。その後、得
られた多孔質フィルムを空気中で85℃で1時間、さら
に115℃で1時間熱処理し、本発明の多孔質フィルム
を得た。なお、得られた多孔質フィルムについて赤外吸
収スペクトル観察したところ、ノルボルネンの開環重合
体の二重結合は97%消失していた。
Example 1 High molecular weight polyethylene having a weight average molecular weight of 2 × 10 6 (melting point: 134 ° C., the same applies hereinafter) and 30% by weight and high molecular weight polyethylene having a weight average molecular weight of 2 × 10 5 (melting point: 127 ° C.)
60% by weight of a powder of a ring-opening polymer of norbornene (manufactured by Zeon Corporation, Nosorex NB, weight average molecular weight 2)
× 10 6 or more, the same applies hereinafter) 20 parts by weight of a polyolefin composition consisting of 10% by weight and liquid paraffin (freezing point: −
80 parts by weight of a kinematic viscosity at 15 ° C. and 40 ° C .: 59 cst;
The mixture was melt-kneaded using a twin-screw kneader at ℃. Furthermore, 33% by weight of a high molecular weight polyethylene having a weight average molecular weight of 2 × 10 6 and a high molecular weight polyethylene 67 having a weight average molecular weight of 2 × 10 5 were used.
In a slurry, 20 parts by weight of a polyolefin composition of 80% by weight and 80 parts by weight of liquid paraffin were uniformly mixed and melt-kneaded at 160 ° C. using a twin-screw kneader. 2 above
Two kinds of the melt-kneaded material were extruded from a die, and the obtained laminate (thickness: 10 mm) was sandwiched between metal plates cooled to 0 ° C., and rapidly cooled into a sheet having a thickness of 5 mm. At this time, the thickness of each layer was 2.5 mm. This quenched sheet is
After heat pressing at 0.7 ° C. until the thickness becomes 0.7 mm, desolvation treatment was performed using heptane.
Simultaneous vertical and horizontal biaxial stretching was performed 5 × 3.5 times. Thereafter, the obtained porous film was heat-treated in air at 85 ° C. for 1 hour and further at 115 ° C. for 1 hour to obtain a porous film of the present invention. When the infrared absorption spectrum of the obtained porous film was observed, 97% of the double bonds of the ring-opened polymer of norbornene had disappeared.

【0061】実施例2 重量平均分子量2×106 の高分子量ポリエチレン90
重量%とノルボルネンの開環重合体の粉末10重量%か
らなるポリオレフィン組成物20重量部と流動パラフィ
ン80重量部とをスラリー状に均一に混合し、160℃
で二軸混練機を用い溶融混練した。さらに、重量平均分
子量2×106 の高分子量ポリエチレン20重量部と流
動パラフィン80重量部とをスラリー状に均一に混合
し、160℃で二軸混練機を用い溶融混練した。上記2
種の溶融混練物をダイスより2層押し出しし、得られた
積層物(厚み10mm)を0℃に冷却された金属板に挟
み込み、厚み5mmのシート状に急冷した。この時の各
層の厚みは2.5mmであった。この急冷シートを11
5℃で厚みが0.7mmになるまでヒートプレスし、1
25℃で3.5×3.5倍に縦横同時二軸延伸し、ヘプ
タンを使用して脱溶媒処理を行った。その後、得られた
多孔質フィルムを空気中85℃で1時間、さらに130
℃で1時間熱処理し、本発明の多孔質フィルムを得た。
なお、得られた多孔質フィルムについて赤外吸収スペク
トル観察したところ、ノルボルネンの開環重合体の二重
結合は99%消失していた。
Example 2 High molecular weight polyethylene 90 having a weight average molecular weight of 2 × 10 6
20 parts by weight of a polyolefin composition consisting of 10% by weight of a powder of a ring-opening polymer of norbornene and 80 parts by weight of liquid paraffin are uniformly mixed in a slurry form at 160 ° C.
Was melt-kneaded using a twin-screw kneader. Further, 20 parts by weight of a high-molecular-weight polyethylene having a weight-average molecular weight of 2 × 10 6 and 80 parts by weight of liquid paraffin were uniformly mixed in a slurry form, and melt-kneaded at 160 ° C. using a biaxial kneader. 2 above
Two kinds of the melt-kneaded material were extruded from a die, and the obtained laminate (thickness: 10 mm) was sandwiched between metal plates cooled to 0 ° C., and rapidly cooled into a sheet having a thickness of 5 mm. At this time, the thickness of each layer was 2.5 mm. This quenched sheet is 11
Heat press at 5 ° C until the thickness becomes 0.7 mm.
The film was stretched simultaneously and vertically and horizontally by 3.5 × 3.5 at 25 ° C., and subjected to a solvent removal treatment using heptane. Then, the obtained porous film was further heated at 85 ° C.
C. for 1 hour to obtain a porous film of the present invention.
When the infrared absorption spectrum of the obtained porous film was observed, 99% of the double bonds of the ring-opened polymer of norbornene had disappeared.

【0062】比較例1 重量平均分子量2×106 の高分子量ポリエチレン33
重量%と重量平均分子量2×105 の高分子量ポリエチ
レン67重量%からなるポリオレフィン組成物20重量
部と流動パラフィン80重量部とをスラリー状に均一に
混合し、160℃で二軸混練機を用いて溶融混練し、ダ
イスより押出し成形した。得られたゲル状成形物を0℃
に冷却された金属板に挟み込み、厚み3mmのシート状
に急冷した。この急冷シートを115℃で厚みが0.4
mmになるまでヒートプレスし、ヘプタンを使用して脱
溶媒処理を行なった後、115℃で3.5×3.5倍に
縦横同時二軸延伸を行なった。
Comparative Example 1 High molecular weight polyethylene 33 having a weight average molecular weight of 2 × 10 6
In a slurry, 20 parts by weight of a polyolefin composition composed of 67% by weight of a high-molecular-weight polyethylene having a weight-average molecular weight of 2 × 10 5 and 80 parts by weight of liquid paraffin are uniformly mixed in a slurry form, and the mixture is mixed at 160 ° C. using a biaxial kneader. The mixture was melt-kneaded and extruded from a die. The obtained gel-like molded product was cooled to 0 ° C.
And rapidly quenched into a sheet having a thickness of 3 mm. The quenched sheet is heated at 115 ° C. to a thickness of 0.4
mm, and subjected to a desolvation treatment using heptane, followed by simultaneous vertical and horizontal biaxial stretching of 3.5 × 3.5 at 115 ° C.

【0063】この未架橋フィルムに窒素雰囲気下で30
MRadの電子線を照射し、架橋フィルムを得た。架橋
フィルムと未架橋フィルムをそれぞれ85℃で1時間、
さらに115℃で1時間ヒートセットして熱収縮を防止
した後、1枚ずつ重ね合わせ、温度100℃、圧力0.
3kg/cm(線圧)の条件でラミネーターにより積層
し、多孔質フィルムを得た。なお、得られた多孔質フィ
ルムには架橋性樹脂を用いていないので赤外吸収スペク
トル観察しても変化はなかった。
The uncrosslinked film was treated under nitrogen atmosphere for 30 minutes.
Irradiation with MRad electron beam was performed to obtain a crosslinked film. The crosslinked film and the uncrosslinked film are each at 85 ° C. for 1 hour,
After heat-setting at 115 ° C. for 1 hour to prevent heat shrinkage, the sheets were superposed one by one, at a temperature of 100 ° C. and a pressure of 0.1 ° C.
Lamination was performed with a laminator under the condition of 3 kg / cm (linear pressure) to obtain a porous film. Since no crosslinkable resin was used in the obtained porous film, there was no change in infrared absorption spectrum observation.

【0064】実施例1、2及び比較例1で得られた多孔
質フィルムの膜厚、空孔率、通気度、熱破断温度及び積
層強度を表1に示す。
Table 1 shows the film thickness, porosity, air permeability, thermal rupture temperature and lamination strength of the porous films obtained in Examples 1 and 2 and Comparative Example 1.

【0065】[0065]

【表1】 [Table 1]

【0066】表1の結果より、実施例1及び2の多孔質
フィルムは、ラミネート積層した比較例1の多孔質フィ
ルムに比べ、熱破断温度が高く、また積層強度が高いた
め、非架橋層内で剥離が発生したことから、架橋性樹脂
添加による架橋の方が、電子線照射よりも耐熱性に優れ
た多孔質フィルムを得られることがわかる。
From the results shown in Table 1, the porous films of Examples 1 and 2 have higher thermal rupture temperatures and higher lamination strengths than the porous films of Comparative Example 1 laminated and laminated. , It can be seen that the cross-linking by the addition of the cross-linkable resin can obtain a porous film having better heat resistance than the electron beam irradiation.

【0067】[0067]

【発明の効果】本発明により、架橋層および非架橋層を
それぞれ少なくとも1層存在する構造を有し、それらの
層間の積層強度が高く、且つ高温で優れた耐熱膜破断性
を有する多孔質フィルムを得ることができる。
According to the present invention, a porous film having a structure having at least one cross-linked layer and at least one non-cross-linked layer, having high lamination strength between the layers and excellent heat-resistant film rupture properties at high temperatures. Can be obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 65/00 C08L 65/00 H01M 2/16 H01M 2/16 L // C08J 9/26 CES C08J 9/26 CES 102 102 (72)発明者 山口 睦子 大阪府茨木市下穂積1−1−2 日東電工 株式会社内 (72)発明者 植谷 慶裕 大阪府茨木市下穂積1−1−2 日東電工 株式会社内 (72)発明者 江守 秀之 大阪府茨木市下穂積1−1−2 日東電工 株式会社内 Fターム(参考) 4F074 AA09 AA16 AA17 AB01 BB25 CA03 CB03 CB16 CC02Y CC02Z CC06Z DA02 DA49 4F100 AK01B AK02B AK03A AK03B AK04A AK04B AK29B AL05B BA02 BA08 BA10A BA10B BA16 DJ10A DJ10B EJ05B EJ37 GB43 JA07A JA07B JJ03 JK01 JK06 JM10A JM10B YY00A YY00B 4J002 AC032 BB031 BB121 BB171 CE002 GQ00 5H021 CC04 EE02 EE04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08L 65/00 C08L 65/00 H01M 2/16 H01M 2/16 L // C08J 9/26 CES C08J 9 / 26 CES 102 102 (72) Inventor Mutsuko Yamaguchi 1-1-2 Shimohozumi, Ibaraki-shi, Osaka Nitto Denko Corporation (72) Inventor Yoshihiro Uetani 1-1-2 Shimohozumi, Ibaraki-shi, Osaka Nitto Denko Corporation (72) Inventor Hideyuki Emori 1-1-2 Shimohozumi, Ibaraki-shi, Osaka Nitto Denko Corporation F-term (reference) 4F074 AA09 AA16 AA17 AB01 BB25 CA03 CB03 CB16 CC02Y CC02Z CC06Z DA02 DA49 4F100 AK01B AK02B AK03A AK03B04 AK03B04A AL05B BA02 BA08 BA10A BA10B BA16 DJ10A DJ10B EJ05B EJ37 GB43 JA07A JA07B JJ03 JK01 JK06 JM10A JM10B YY00A YY00B 4J002 AC032 BB031 BB121 BB171 CE002 GQ00 5H021 CC04 EE02 EE04

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 ポリオレフィンを含む層(樹脂層A)
と、ポリオレフィンと架橋性樹脂のいずれも含む層(樹
脂層B)とが積層されてなる多孔質フィルム。
1. Layer containing polyolefin (resin layer A)
And a layer (resin layer B) containing both a polyolefin and a crosslinkable resin.
【請求項2】 樹脂層A及び樹脂層Bのポリオレフィン
がそれぞれ重量平均分子量5×105 以上の高分子量ポ
リオレフィンを含有する請求項1記載の多孔質フィル
ム。
2. The porous film according to claim 1, wherein the polyolefins of the resin layers A and B each contain a high molecular weight polyolefin having a weight average molecular weight of 5 × 10 5 or more.
【請求項3】 ポリオレフィンがポリエチレンである請
求項1又は2記載の多孔質フィルム。
3. The porous film according to claim 1, wherein the polyolefin is polyethylene.
【請求項4】 架橋性樹脂が二重結合を有し、そのα位
炭素に水素原子が結合している樹脂である請求項1〜3
いずれか記載の多孔質フィルム。
4. The resin according to claim 1, wherein the crosslinkable resin has a double bond, and a hydrogen atom is bonded to the α-position carbon.
The porous film according to any one of the above.
【請求項5】 架橋性樹脂がポリノルボルネン又はポリ
ブタジエンである請求項1〜4いずれか記載の多孔質フ
ィルム。
5. The porous film according to claim 1, wherein the crosslinkable resin is polynorbornene or polybutadiene.
【請求項6】 請求項1〜5いずれか記載の多孔質フィ
ルムにおいて樹脂層Bが架橋構造を有する多孔質フィル
ム。
6. The porous film according to claim 1, wherein the resin layer B has a crosslinked structure.
【請求項7】 架橋性樹脂の二重結合の全部又は一部が
消失してなる請求項6記載の多孔質フィルム。
7. The porous film according to claim 6, wherein all or some of the double bonds of the crosslinkable resin have disappeared.
【請求項8】 ポリオレフィンを含むゲル状成形物と、
ポリオレフィンと架橋性樹脂のいずれも含むゲル状成形
物とを積層して成膜処理を行うことを特徴とする多孔質
フィルムの製造方法。
8. A gel-like molded product containing a polyolefin,
A method for producing a porous film, comprising laminating a polyolefin and a gel-like molded product containing both of a crosslinkable resin and performing a film forming treatment.
【請求項9】 請求項1〜7いずれか記載の多孔質フィ
ルムを用いてなる電池。
9. A battery comprising the porous film according to claim 1.
【請求項10】 請求項1〜7いずれか記載の多孔質フ
ィルムを用いてなるキャパシター。
10. A capacitor using the porous film according to claim 1.
JP2000231738A 2000-07-31 2000-07-31 Porous film and method for producing the same Expired - Fee Related JP4338164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000231738A JP4338164B2 (en) 2000-07-31 2000-07-31 Porous film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000231738A JP4338164B2 (en) 2000-07-31 2000-07-31 Porous film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002036459A true JP2002036459A (en) 2002-02-05
JP4338164B2 JP4338164B2 (en) 2009-10-07

Family

ID=18724526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000231738A Expired - Fee Related JP4338164B2 (en) 2000-07-31 2000-07-31 Porous film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4338164B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141045A (en) * 2000-11-06 2002-05-17 Nitto Denko Corp Non-aqueous electrolyte battery separator and non- aqueous electrolyte battery
EP1434287A1 (en) * 2002-12-26 2004-06-30 Nitto Denko Corporation Porous film, battery separator comprising the film, and non-aqueous electrolyte battery using the separator
EP1650818A1 (en) * 2003-04-09 2006-04-26 Nitto Denko Corporation Adhesive-carrying porous film for cell separator and its application
JP2009043485A (en) * 2007-08-07 2009-02-26 Mitsubishi Plastics Inc Separator for lithium ion battery, and manufacturing method thereof
JP2010235707A (en) * 2009-03-30 2010-10-21 Asahi Kasei E-Materials Corp Method for producing polyolefin microporous film
US8802285B2 (en) * 2008-01-30 2014-08-12 Samsung Sdi Co., Ltd. Organic electrolytic solution comprising cycloolefin monomer and lithium battery employing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141045A (en) * 2000-11-06 2002-05-17 Nitto Denko Corp Non-aqueous electrolyte battery separator and non- aqueous electrolyte battery
JP4582675B2 (en) * 2000-11-06 2010-11-17 日東電工株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
EP1434287A1 (en) * 2002-12-26 2004-06-30 Nitto Denko Corporation Porous film, battery separator comprising the film, and non-aqueous electrolyte battery using the separator
KR100970021B1 (en) * 2002-12-26 2010-07-16 닛토덴코 가부시키가이샤 Porous film, battery separator comprising the film, and non-aqueous electrolyte battery using the separator
EP1650818A1 (en) * 2003-04-09 2006-04-26 Nitto Denko Corporation Adhesive-carrying porous film for cell separator and its application
EP1650818A4 (en) * 2003-04-09 2008-01-09 Nitto Denko Corp Adhesive-carrying porous film for cell separator and its application
EP2306553A1 (en) * 2003-04-09 2011-04-06 Nitto Denko Corporation Adhesive-carrying porous film for cell separator and its application
JP2009043485A (en) * 2007-08-07 2009-02-26 Mitsubishi Plastics Inc Separator for lithium ion battery, and manufacturing method thereof
US8802285B2 (en) * 2008-01-30 2014-08-12 Samsung Sdi Co., Ltd. Organic electrolytic solution comprising cycloolefin monomer and lithium battery employing the same
JP2010235707A (en) * 2009-03-30 2010-10-21 Asahi Kasei E-Materials Corp Method for producing polyolefin microporous film

Also Published As

Publication number Publication date
JP4338164B2 (en) 2009-10-07

Similar Documents

Publication Publication Date Title
JP5497635B2 (en) Polyolefin microporous membrane, method for producing the same, battery separator and battery
JP4931911B2 (en) Polyolefin microporous membrane
KR100899066B1 (en) Polyolefin Microporous Film
KR101110264B1 (en) Composite microporous film, and production method and use thereof
JP5216327B2 (en) Polyolefin microporous membrane
US9340653B2 (en) Method for production of porous film, porous film, separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the separator
WO2004089627A1 (en) Polyolefin microporous membrane
CN111295285A (en) Polyolefin composite porous film, method for producing same, battery separator, and battery
WO1996027633A1 (en) Microporous polyethylene film and process for producing the film
JP4703076B2 (en) Microporous film
CN111684002B (en) Porous polyolefin film
JP4206182B2 (en) Microporous film
KR100970021B1 (en) Porous film, battery separator comprising the film, and non-aqueous electrolyte battery using the separator
JP4338164B2 (en) Porous film and method for producing the same
WO2000068305A1 (en) Porous films and processes for the production thereof
JP5411550B2 (en) Polyolefin microporous membrane
JP3983656B2 (en) Non-aqueous electrolyte battery separator
JP7532843B2 (en) Polyolefin microporous membrane, battery separator, and secondary battery
KR20220069831A (en) Polyolefin microporous membrane, battery separator and secondary battery
JP2001059036A (en) Porous film
JP2009138159A (en) Microporous membrane
JP2002343326A (en) Battery separator
JP2004263012A (en) Porous film and separator for electric battery
JP2001131328A (en) Production process for porous film
JP4073241B2 (en) Battery separator made of polyethylene microporous membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090629

R150 Certificate of patent or registration of utility model

Ref document number: 4338164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150710

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees