JP2002141045A - Non-aqueous electrolyte battery separator and non- aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery separator and non- aqueous electrolyte battery

Info

Publication number
JP2002141045A
JP2002141045A JP2000336891A JP2000336891A JP2002141045A JP 2002141045 A JP2002141045 A JP 2002141045A JP 2000336891 A JP2000336891 A JP 2000336891A JP 2000336891 A JP2000336891 A JP 2000336891A JP 2002141045 A JP2002141045 A JP 2002141045A
Authority
JP
Japan
Prior art keywords
separator
aqueous electrolyte
electrolyte battery
battery
porous film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000336891A
Other languages
Japanese (ja)
Other versions
JP4582675B2 (en
Inventor
Toshisuke Nomi
俊祐 能見
Takashi Yamamura
隆 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2000336891A priority Critical patent/JP4582675B2/en
Publication of JP2002141045A publication Critical patent/JP2002141045A/en
Application granted granted Critical
Publication of JP4582675B2 publication Critical patent/JP4582675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte battery separator that has small degradation of air permeability of the separator at each part inside the battery even if it is stored for a long period at 20 deg.C-80 deg.C that is assumed in summer or in the automobile, and thereby can make longer the battery life, and a non- aqueous electrolyte battery using this separator. SOLUTION: The non-aqueous electrolyte separator is made of a porous film that contains a cross-linked substance made by cross-linking a polyolefine system polymer and a polymer having double bond and that has a rate of rise of 10% or less before and after storage of the Gurley value measured in accordance with the JIS P8117 when it is stored for 20 days at 60 deg.C under the pressure of 500 kPa (gauge pressure) by fixing the surrounding with a frame.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリオレフィン系
重合体と二重結合を有する重合体とが架橋してなる架橋
物を含有する多孔質フィルムを用いた非水電解液電池用
セパレータ及び非水電解液電池に関する。
The present invention relates to a separator for a non-aqueous electrolyte battery using a porous film containing a crosslinked product obtained by cross-linking a polyolefin polymer and a polymer having a double bond, and a non-aqueous solution. The present invention relates to an electrolyte battery.

【0002】[0002]

【従来の技術】リチウムなどの軽金属を電極とする非水
電解液電池は、エネルギー密度が高く自己放電も少ない
ため、電子機器の高性能化、小型化などを背景として利
用範囲を大きく広げてきている。このような非水電解液
電池の電極としては、帯状の正極、負極、およびセパレ
ータを積層し捲回して構成することにより、広い有効電
極面積を確保した渦巻状捲回体が用いられている。電極
間に介在するセパレータは、基本的には両極の短絡を防
止するとともに、その多孔質構造によりイオンを透過さ
せて電池反応を可能とするものである。そして、誤接続
などにより異常電流が発生した場合、電池内部温度の上
昇に伴い樹脂が熱変形して微多孔を塞ぐことで、電池反
応を停止させるいわゆるシャットダウン機能(SD機
能)を有するものが安全性向上の観点から採用されてい
る。
2. Description of the Related Art Non-aqueous electrolyte batteries using a light metal such as lithium as an electrode have a high energy density and low self-discharge. I have. As an electrode of such a nonaqueous electrolyte battery, a spiral wound body having a wide effective electrode area secured by laminating and winding a strip-shaped positive electrode, a negative electrode, and a separator is used. The separator interposed between the electrodes basically prevents both electrodes from being short-circuited, and allows the battery to react by allowing ions to permeate due to its porous structure. If an abnormal current is generated due to an incorrect connection or the like, a resin having a so-called shutdown function (SD function) that stops the battery reaction by thermally deforming the resin and closing the micropores as the battery internal temperature rises is safe. It is adopted from the viewpoint of improving the performance.

【0003】このようなSD機能を有するセパレータと
しては、例えば、ポリエチレン製微多孔膜やポリエチレ
ンとポリプロピレンとの多層構造の微多孔膜などが知ら
れている。また、ポリオレフィン系重合体の他にさらに
ゴム等を含有した多孔質フィルムが提案されている(例
えば特公平1−18091号公報、特開平6−1630
23号公報)。
As a separator having such an SD function, for example, a microporous film made of polyethylene, a microporous film having a multilayer structure of polyethylene and polypropylene, and the like are known. In addition, a porous film further containing a rubber or the like in addition to the polyolefin polymer has been proposed (for example, Japanese Patent Publication No. 1-18091, Japanese Patent Application Laid-Open No. 6-1630).
No. 23).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来のセパレータを用いた非水電解液電池は、長期にわた
る充放電サイクルや、夏場や自動車内など高温状態で保
存される場合などには必ずしも初期状態を長く維持でき
るものではなかった。例えば、夏場や自動車内などで想
定される20℃〜80℃で電池を保存した場合、電池捲
回体の内部張力や圧力によってしだいにセパレータが変
形すること等により、通気度が低下(ガーレ値が上昇)
し、これが電池寿命の低下などの原因となっていること
が判明した。
However, a non-aqueous electrolyte battery using the above-mentioned conventional separator is not always in the initial state when it is stored in a high-temperature state such as in a long-term charge / discharge cycle or in a summer or in an automobile. Could not be maintained for a long time. For example, when a battery is stored at 20 ° C. to 80 ° C., which is assumed in a summer or in an automobile, the separator gradually deforms due to the internal tension and pressure of the battery roll, and the air permeability decreases (Gurley value). Rises)
However, it has been found that this causes a decrease in battery life and the like.

【0005】なお、耐熱性を改善すべく、特開昭63−
308866号公報には、低融点ポリエチレンと高融点
のポリプロピレンからなる単膜を積層化することによ
り、高強度かつ優れた高温特性を有する微孔性多孔膜を
得る方法が開示されているが、積層内の弱い低融点ポリ
エチレン部分が変形を起こしやすく、高温状態で保持さ
れる場合、劣化が進行して電池寿命が低下し易い。
In order to improve the heat resistance, Japanese Patent Application Laid-Open
JP-A-308866 discloses a method for obtaining a microporous porous film having high strength and excellent high-temperature characteristics by laminating a single film made of low-melting polyethylene and high-melting polypropylene. The weak low-melting-point polyethylene portion inside is liable to be deformed, and when kept in a high temperature state, the deterioration proceeds, and the battery life is likely to be shortened.

【0006】そこで、本発明の目的は、夏場や自動車内
などで想定される20℃〜80℃で長期保存した場合で
も、電池内の各部におけるセパレータの通気度の低下が
少なく、これにより電池寿命を長くすることができる非
水電解液電池用セパレータ、及びこれを用いてなる非水
電解液電池を提供することにある。
Accordingly, an object of the present invention is to reduce the air permeability of the separator in each part of the battery even when the battery is stored at 20 ° C. to 80 ° C. for a long period of time, which is assumed in a summer or in an automobile. The present invention provides a separator for a non-aqueous electrolyte battery that can be made longer, and a non-aqueous electrolyte battery using the same.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく、セパレータを構成する多孔質フィルムの
各種物性、材質等について鋭意研究したところ、ポリオ
レフィン系重合体と二重結合を有する重合体とが架橋し
てなる架橋物を含有する多孔質フィルムでは、高温に長
期保存した際に、通気度や膜強度の低下が少なくなるこ
とを見出し、本発明を完成するに至った。
Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies on various physical properties, materials, etc. of a porous film constituting a separator, and found that a double bond is formed with a polyolefin polymer. The present inventors have found that a porous film containing a crosslinked product obtained by crosslinking a polymer having the polymer has less decrease in air permeability and membrane strength when stored at a high temperature for a long period of time, and completed the present invention.

【0008】即ち、本発明の非水電解液電池用セパレー
タは、ポリオレフィン系重合体と二重結合を有する重合
体とが架橋してなる架橋物を含有する多孔質フィルムよ
りなり、その周囲を枠固定して500kPa(ゲージ
圧)の加圧下で60℃、20日間保存する際に、JIS
P8117に準拠して測定したガーレ値の保存前後の
上昇率が10%以下であることを特徴とする。なお、本
発明におけるパラメータ値は何れも実施例の測定方法で
測定される値である。
That is, the separator for a non-aqueous electrolyte battery of the present invention comprises a porous film containing a crosslinked product obtained by crosslinking a polyolefin polymer and a polymer having a double bond. When fixed and stored at 60 ° C for 20 days under a pressure of 500 kPa (gauge pressure), JIS
The increase rate before and after storage of the Gurley value measured according to P8117 is 10% or less. Note that the parameter values in the present invention are all values measured by the measuring method of the embodiment.

【0009】上記において、周囲を枠固定して130℃
で3日間保存する際に、先端直径が0.5mmの加圧針
を用いて測定した突き刺し強度の保存前後の低下率が1
0%以下であることが好ましい。
In the above, the periphery is fixed at 130 ° C.
When stored for 3 days, the rate of decrease in the piercing strength measured using a pressure needle having a tip diameter of 0.5 mm before and after storage is 1
It is preferably 0% or less.

【0010】また、前記ポリオレフィン系重合体が重量
平均分子量50万以上のポリエチレンであることが好ま
しい。
It is preferable that the polyolefin polymer is polyethylene having a weight average molecular weight of 500,000 or more.

【0011】一方、本発明の非水電解液電池は、上記い
ずれかに記載の非水電解液電池用セパレータを用いてな
ることを特徴とする。
On the other hand, a non-aqueous electrolyte battery according to the present invention is characterized by using any one of the separators for a non-aqueous electrolyte battery described above.

【0012】[作用効果]本発明の非水電解液電池用セ
パレータによると、架橋物を含有させて、高温高圧保存
下での保存前後のガーレ値の上昇率を小さくすることに
より、実施例の結果が示すように、比較的高温(約60
℃)で長期保存した場合でも、電池内の各部におけるセ
パレータの通気度の低下が少なく、これにより電池寿命
を長くすることができる。その理由の詳細は不明である
が、架橋構造を有しないポリオレフィン系重合体では、
融点以下の温度(約60℃)でもクリープ現象を防ぐこ
とが困難で、多孔質構造を維持し難いのに対し、架橋物
を含有する多孔質フィルムでは、クリープ現象を殆どな
くすことができ、電池内部においても多孔質構造が維持
され易いためと考えられる。
[Effects] According to the separator for a non-aqueous electrolyte battery of the present invention, a cross-linked product is contained to reduce the rate of increase in the Gurley value before and after storage under high-temperature and high-pressure storage. The results show that relatively high temperatures (about 60
C) for a long period of time, there is little decrease in the air permeability of the separator in each part of the battery, which can prolong the battery life. Although the details of the reason are unknown, in a polyolefin polymer having no crosslinked structure,
It is difficult to prevent the creep phenomenon even at a temperature equal to or lower than the melting point (about 60 ° C.), and it is difficult to maintain the porous structure. On the other hand, the porous film containing a crosslinked product can substantially eliminate the creep phenomenon, It is considered that the porous structure is easily maintained inside.

【0013】上記の突き刺し強度の保存前後の低下率が
10%以下である場合、誤接続や過充電により昇温した
場合でも、膜強度を維持して短絡を防止することで電池
の安全性を高めることができる。
When the rate of decrease in the piercing strength before and after storage is 10% or less, even if the temperature rises due to erroneous connection or overcharge, the safety of the battery is maintained by maintaining the membrane strength to prevent a short circuit. Can be enhanced.

【0014】前記ポリオレフィン系重合体が重量平均分
子量50万以上のポリエチレンである場合、このような
高分子量のポリエチレンは、多孔質構造の形成の際に延
伸配向によりセパレータとしての機械特性を発現させ易
く、また二重結合を有する重合体との架橋反応も生じ易
いため、高温で長期保存した場合の通気度の低下をより
小さくすることができる。
When the polyolefin polymer is polyethylene having a weight-average molecular weight of 500,000 or more, such a high-molecular-weight polyethylene tends to exhibit mechanical properties as a separator by stretching orientation when forming a porous structure. In addition, since a cross-linking reaction with a polymer having a double bond easily occurs, a decrease in air permeability when stored at a high temperature for a long time can be further reduced.

【0015】一方、本発明の非水電解液電池によると、
上記いずれかに記載の非水電解液電池用セパレータを用
いるため、比較的高温で長期保存した場合でも、電池内
の各部におけるセパレータの通気度の低下が少なく、こ
れにより電池寿命を長くすることができる。
On the other hand, according to the nonaqueous electrolyte battery of the present invention,
In order to use the separator for a non-aqueous electrolyte battery according to any of the above, even when stored at a relatively high temperature for a long period of time, a decrease in the air permeability of the separator in each part in the battery is small, and thus the battery life can be prolonged. it can.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0017】本発明の非水電解液電池用セパレータは、
周囲を枠固定して500kPa(ゲージ圧)の加圧下で
60℃、20日間保存する際に、JIS P8117に
準拠して測定したガーレ値の保存前後の上昇率が10%
以下である多孔質フィルムからなり、特に上昇率が5%
以下が好ましい。
The separator for a non-aqueous electrolyte battery according to the present invention comprises:
When the peripheral part is fixed to a frame and stored at 60 ° C. for 20 days under a pressure of 500 kPa (gauge pressure), the rate of increase in the Gurley value measured according to JIS P8117 before and after storage is 10%.
Consisting of the following porous film, the rate of increase is particularly 5%
The following is preferred.

【0018】また、多孔質フィルムの周囲を枠固定して
130℃で3日間保存する際に、先端直径が0.5mm
の加圧針を用いて測定した突き刺し強度の保存前後の低
下率が10%以下であることが好ましい。
When the porous film is fixed around the periphery of the porous film and stored at 130 ° C. for 3 days, the tip diameter is 0.5 mm.
It is preferable that the rate of decrease in the piercing strength measured using a pressure needle before and after storage is 10% or less.

【0019】更に、多孔質フィルムを周囲を枠固定した
まま、135℃で60分間加熱して、微多孔が閉塞した
透明化フィルムを得、その周囲を枠固定したまま130
℃で50時間保存する際に、先端直径が0.5mmの加
圧針を用いて測定した突き刺し強度の保存前後の低下率
が10%以下であることが好ましい。
Further, the porous film was heated at 135 ° C. for 60 minutes with the periphery thereof fixed to the frame to obtain a transparent film with microporous clogged.
When storing at 50 ° C. for 50 hours, it is preferable that a decrease rate of the piercing strength measured using a pressure needle having a tip diameter of 0.5 mm before and after storage is 10% or less.

【0020】本発明における多孔質フィルムは、ポリオ
レフィン系重合体と二重結合を有する重合体とが架橋し
てなる架橋物を含有するものである。当該架橋物は、例
えばポリオレフィン系重合体と二重結合を有する重合体
とを含有する樹脂組成物を、酸素、オゾン、酸素化合物
等の存在下で加熱架橋等することで得ることが出来る。
このため、本発明における多孔質フィルムには、部分的
に残存するポリオレフィン系重合体や二重結合を有する
重合体などを同時に含有してもよい。
The porous film in the present invention contains a crosslinked product obtained by crosslinking a polyolefin polymer and a polymer having a double bond. The crosslinked product can be obtained, for example, by heat-crosslinking a resin composition containing a polyolefin-based polymer and a polymer having a double bond in the presence of oxygen, ozone, an oxygen compound, or the like.
For this reason, the porous film in the present invention may simultaneously contain a partially remaining polyolefin-based polymer or a polymer having a double bond.

【0021】ポリオレフィン系重合体としては、ポリエ
チレン、ポリプロピレン、ポリブチレンなどが挙げられ
るが、ポリエチレン、ポリプロピレンが好ましい。ポリ
エチレンとしては、超高分子量ポリエチレン、高密度ポ
リエチレン、低密度ポリエチレンなどが挙げられるが、
重量平均分子量50万以上のポリエチレン、特に重量平
均分子量100万以上のポリエチレンが好ましい。ま
た、ポリプロピレンとしては、アイソタクチッタポリプ
ロピレン、シンジオタクチックポリプロピレンなどが好
ましく、中でも多孔質構造を形成しやすいため、結晶性
の高いアイソタクチックポリプロピレンが好ましい。
Examples of the polyolefin-based polymer include polyethylene, polypropylene, and polybutylene, but polyethylene and polypropylene are preferred. Examples of polyethylene include ultra high molecular weight polyethylene, high density polyethylene, low density polyethylene, etc.
Polyethylene having a weight average molecular weight of 500,000 or more, particularly polyethylene having a weight average molecular weight of 1,000,000 or more is preferable. Further, as the polypropylene, isotactic polypropylene, syndiotactic polypropylene and the like are preferable, and among them, isotactic polypropylene having high crystallinity is preferable because a porous structure is easily formed.

【0022】二重結合を有する重合体としては、ポリブ
タジエン、ポリノルボルネン、ポリイソプレン、その他
の架橋性ゴムの未加硫物などが挙げられるが、特にポリ
ノルボルネンが好ましい。これらの重合体としては重量
平均分子量50万以上のものが好ましい。
Examples of the polymer having a double bond include polybutadiene, polynorbornene, polyisoprene, and uncured products of other crosslinkable rubbers, and polynorbornene is particularly preferable. These polymers preferably have a weight average molecular weight of 500,000 or more.

【0023】二重結合を有する重合体は、多孔質フィル
ム中に1〜40重量%、特に5〜35重量%含有される
のが好ましい。含有量が1重量%未満では、架橋が十分
進行しにくく、高温高圧保存後のガーレ値の上昇率が大
きくなる傾向がある。また、含有量が40重量%を超え
ると、得られる多孔質フィルムの機械特性が低下する傾
向がある。
The polymer having a double bond is preferably contained in the porous film in an amount of 1 to 40% by weight, particularly preferably 5 to 35% by weight. If the content is less than 1% by weight, crosslinking does not proceed sufficiently, and the rate of increase in the Gurley value after high-temperature and high-pressure storage tends to increase. On the other hand, if the content exceeds 40% by weight, the mechanical properties of the obtained porous film tend to decrease.

【0024】また、セパレータのシャットダウン温度を
下げ、安全性を高める目的で、上記の樹脂成分のうち、
融点の比較的低いものを併用してもよく、また、熱可塑
性エラストマー、グラフトコポリマーを併用してもよ
い。熱可塑性エラストマーとしては、ポリスチレン系
や、ポリオレフィン系、ポリジエン系、塩化ビニル系、
ポリエステル系等の熱可塑性エラストマーが挙げられ
る。グラフトコポリマーとしては、主鎖にポリオレフィ
ン、側鎖に非相溶性基を有するビニル系ポリマーを側鎖
としたグラフトコポリマーが挙げられるが、ポリアクリ
ル類、ポリメタクリル類、ポリスチレン、ポリアクリト
ニトリル、ポリオキシアルキレン類が好ましい。なお、
ここで非相溶性基とは、ポリオレフィンに対して非相溶
性基を意味し、例えば、ビニル系ポリマーに由来する基
などが挙げられる。これらのSD成分の含有量は、多孔
質フィルム中に1〜40重量%、特に5〜25重量%が
好ましい。
For the purpose of lowering the shutdown temperature of the separator and increasing the safety, among the above resin components,
Those having a relatively low melting point may be used in combination, and thermoplastic elastomers and graft copolymers may be used in combination. As the thermoplastic elastomer, polystyrene, polyolefin, polydiene, vinyl chloride,
Examples include thermoplastic elastomers such as polyesters. Examples of the graft copolymer include a graft copolymer having a polyolefin in the main chain and a vinyl-based polymer having an incompatible group in the side chain as a side chain, and include polyacryls, polymethacryls, polystyrene, polyacrylonitrile, and polyoxyethylene. Alkylenes are preferred. In addition,
Here, the incompatible group means a group incompatible with the polyolefin, and includes, for example, a group derived from a vinyl polymer. The content of these SD components in the porous film is preferably 1 to 40% by weight, particularly preferably 5 to 25% by weight.

【0025】本発明の非水電解液電池用セパレータの厚
みは、5〜100μmが好ましい。空孔率は20〜80
%が好ましく、また、平均孔径は0.01〜0.5μm
が好ましい。これらによる総合的な特性として、JIS
P8117に準拠する通気度(ガーレ値)は100〜
1000sec/100mlが好ましい。
The thickness of the non-aqueous electrolyte battery separator of the present invention is preferably 5 to 100 μm. Porosity 20-80
% Is preferable, and the average pore size is 0.01 to 0.5 μm
Is preferred. JIS as a comprehensive property by these
Air permeability (Gurley value) conforming to P8117 is 100 to
1000 sec / 100 ml is preferable.

【0026】次に、本発明における多孔質フィルムの製
造方法について説明する。当該多孔質フィルムの製造に
は、乾式成膜法、湿式成膜法など公知の方法を利用する
ことができる。たとえば、前記樹脂組成物を溶媒と混合
し、混練、加熱溶解しながらシート状に押出し、冷却し
てゲル化(固化)させた後、加熱下で圧延や延伸により
一軸方向以上に延伸し、溶媒を抽出除去することにより
製造することができる。混練、加熱溶解の際に酸化反応
が進行しないように、酸化防止剤を使用するのが好まし
い。
Next, a method for producing a porous film according to the present invention will be described. For the production of the porous film, a known method such as a dry film forming method and a wet film forming method can be used. For example, the resin composition is mixed with a solvent, kneaded, extruded into a sheet while being heated and dissolved, cooled and gelled (solidified), and then stretched in a uniaxial direction or more by rolling or stretching under heating. Can be produced by extracting. It is preferable to use an antioxidant so that the oxidation reaction does not proceed during kneading and heat dissolution.

【0027】ポリオレフィン系重合体と二重結合を有す
る重合体との架橋は、抽出除去後に行うのが好ましく、
多孔質フィルムに対し、熱、紫外線、電子線等の架橋処
理することにより、両者が延伸配向された状態で架橋し
てなる架橋物を得ることができる。
The crosslinking between the polyolefin polymer and the polymer having a double bond is preferably carried out after extraction and removal.
By subjecting the porous film to a cross-linking treatment with heat, ultraviolet rays, an electron beam or the like, a cross-linked product obtained by cross-linking the two in a stretched and oriented state can be obtained.

【0028】本発明における初期のガーレ値の調整は、
上記ゲル化時の冷却速度、熱処理条件、延伸条件等を変
更することにより行うことができる。また、ガーレ値の
保存前後の上昇率や、突き刺し強度の保存前後の低下率
は、二重結合を有する重合体の含有量、ポリオレフィン
系重合体の種類、延伸条件、架橋条件等により調整する
ことができる。
The initial adjustment of the Gurley value in the present invention is as follows.
The gelation can be performed by changing the cooling rate, the heat treatment conditions, the stretching conditions, and the like. In addition, the rate of increase in Gurley value before and after storage and the rate of decrease in piercing strength before and after storage are adjusted by the content of the polymer having a double bond, the type of polyolefin polymer, stretching conditions, crosslinking conditions, and the like. Can be.

【0029】次に本発明の非水電解液電池について説明
する。当該非水電解液電池は、以上の如き本発明のセパ
レータを用いてなり、その構造は、例えば帯状の負極、
正極およびセパレータを積層捲回して得た捲回型電極体
を電池缶に収納し、これに電解液を注入し、さらに電池
上下の絶縁板など必要な部材を市販の電池に準じて適宜
配して構成したものである。
Next, the nonaqueous electrolyte battery of the present invention will be described. The non-aqueous electrolyte battery uses the separator of the present invention as described above, and its structure is, for example, a strip-shaped negative electrode,
The wound electrode body obtained by laminating and winding the positive electrode and the separator is accommodated in a battery can, an electrolytic solution is injected into the battery can, and necessary members such as insulating plates above and below the battery are appropriately arranged according to a commercially available battery. It is configured.

【0030】電解液としては、例えば、リチウム塩を電
解液とし、これを有機溶媒に溶解した電解液が用いられ
る。有機溶媒としては、特に限定されるものではない
が、たとえば、プロピレンカーボネート、エチレンカー
ボネート、ブチレンカーボネート、γ−ブチロラクト
ン、γ−バレロラクトン、ジメチルカーボネート、プロ
ピオン酸メチル、酢酸ブチルなどのエステル類、アセト
ニトリル等のニトリル類、1,2−ジメトキシエタン、
1,2−ジメトキシメタン、ジメトキシプロパン、1,
3−ジオキソラン、テトラヒドロフラン、2−メチルテ
トラヒドロフラン、4−メチル−1,3−ジオキソラン
などのエーテル類、さらにはスルフォランなどの単独、
もしくは二種類以上の混合溶媒が使用できる。
As the electrolyte, for example, an electrolyte obtained by dissolving a lithium salt in an organic solvent is used. Examples of the organic solvent include, but are not particularly limited to, propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, γ-valerolactone, dimethyl carbonate, esters such as methyl propionate, butyl acetate, acetonitrile, and the like. Nitriles, 1,2-dimethoxyethane,
1,2-dimethoxymethane, dimethoxypropane, 1,
Ethers such as 3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, 4-methyl-1,3-dioxolane, and further alone such as sulfolane;
Alternatively, two or more kinds of mixed solvents can be used.

【0031】負極としてはアルカリ金属またはアルカリ
金属を含む化合物をステンレス鋼製網などの集電材料と
一体化したものが用いられる。その際のアルカリ金属と
して、たとえばリチウム、ナトリウム、カリウムなどが
挙げられ、アルカリ金属を含む化合物としては、たとえ
ばアルカリ金属とアルミニウム、鉛、インジウム、カリ
ウム、カドミウム、スズ、マグネシウムなどの合金、さ
らにはアルカリ金属と炭素材料との化合物、低電位のア
ルカリ金属と金属酸化物、硫化物との化合物などが挙げ
られる。負極に炭素材料を用いる場合、炭素材料として
は、リチウムイオンをドープ、脱ドープできるものであ
ればよく、たとえば、黒鉛、熱分解炭素類、コークス
類、ガラス状炭素類、有機高分子化合物の焼成体、メソ
カーボンマイクロビーズ、炭素繊維、活性炭などを用い
ることができる。
As the negative electrode, one obtained by integrating an alkali metal or a compound containing an alkali metal with a current collecting material such as a stainless steel net is used. Examples of the alkali metal at this time include lithium, sodium, potassium and the like, and examples of the compound containing the alkali metal include alloys of the alkali metal and aluminum, lead, indium, potassium, cadmium, tin, magnesium, etc. Examples include a compound of a metal and a carbon material, and a compound of a low-potential alkali metal and a metal oxide or sulfide. When a carbon material is used for the negative electrode, any carbon material can be used as long as it can dope and undope lithium ions. For example, graphite, pyrolytic carbons, cokes, glassy carbons, and firing of organic polymer compounds Body, mesocarbon microbeads, carbon fiber, activated carbon and the like can be used.

【0032】正極としては、たとえばリチウムコバルト
酸化物、リチウムニッケル酸化物、リチウムマンガン酸
化物、二酸化マンガン、五酸化バナジウム、クロム酸化
物、などの金属酸化物、二硫化モリブデンなどの金属窒
化物などが活物質として用いられ、これらの正極活物質
に導電助剤やポリテトラフルオロエチレンなどの結着剤
などを適宜添加した合剤を、ステンレス鋼製網などの集
電材料を芯材として成形体に仕上げたものが用いられ
る。
As the positive electrode, for example, metal oxides such as lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, manganese dioxide, vanadium pentoxide, and chromium oxide, and metal nitrides such as molybdenum disulfide are used. Used as an active material, a mixture obtained by appropriately adding a conductive additive or a binder such as polytetrafluoroethylene to these positive electrode active materials is formed into a molded body using a current collector material such as a stainless steel net as a core material. Finished products are used.

【0033】[0033]

【実施例】以下、本発明の構成と効果を具体的に示す実
施例等について説明する。なお、実施例における試験方
法は次の通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and the like specifically showing the configuration and effects of the present invention will be described below. In addition, the test method in an Example is as follows.

【0034】(フィルムの膜厚)1/10000シック
ネスゲージおよび多孔質フィルムの断面の走査型電子顕
微鏡により測定した。
(Film Thickness) The cross section of the porous film was measured with a 1/10000 thickness gauge and a scanning electron microscope.

【0035】(空孔率)厚み(t)、重量(W)、樹脂
密度(d)、面積(S)より以下の式 空効率(%)=(1−W/(S×d×t))×100 により測定した。
(Porosity) From the thickness (t), weight (W), resin density (d), and area (S), the following equation is used: Air efficiency (%) = (1−W / (S × d × t)) ) × 100.

【0036】(通気度)JIS P8117に準拠し
て、初期のガーレ値と保存後のガーレ値とを測定した。
保存後のガーレ値は、100×100mmにカットした
サンプルを用いて、その周囲をSUS枠で固定し、熱風
が直接当たらないようにバットに入れて、500kPa
(ゲージ圧)の加圧下で60℃、20日間保存した後の
ガーレ値を測定したものである。
(Air permeability) The initial Gurley value and the Gurley value after storage were measured according to JIS P8117.
The Gurley value after storage was measured using a sample cut to 100 × 100 mm, the periphery of which was fixed with a SUS frame, and put in a bat so that hot air did not directly hit it.
The Gurley value was measured after storing at 60 ° C. for 20 days under a pressure of (gauge pressure).

【0037】(架橋構造の確認)IRスペクトル中のC
=C二重結合に由来する吸収ピーク(960cm-1)の
消失を確認した。また、10mm角の試料を金属メッシ
ュに挟んで熱キシレン(255℃)中で溶解させ、残存
する成分の比率をゲル分率として測定し、熱処理前の多
孔質フィルムのゲル分率(通常は0%)と比較した。
(Confirmation of cross-linked structure) C in IR spectrum
The disappearance of the absorption peak (960 cm -1 ) derived from the = C double bond was confirmed. Further, a sample of 10 mm square was sandwiched between metal meshes and dissolved in hot xylene (255 ° C.), and the ratio of remaining components was measured as a gel fraction, and the gel fraction of the porous film before heat treatment (usually 0%) was measured. %).

【0038】[実施例1]重量平均分子量200万の超
高分子量ポリエチレン15.0重量部、及びポリノルボ
ルネン樹脂(ノーソレックスNB、重量平均分子量20
0万以上、日本ゼオン(株)製)2.14重量部からな
るポリオレフィン組成物と流動パラフィン85重量部、
酸化防止剤としてイルガノックス1010及びBHT
を、ポリエチレンに対してそれぞれ0.5重量%、0.
3重量%をさらに添加してスラリー状に均一に混合し、
160℃の温度で二軸混練り機を用い溶解混練りした。
その後これらの混練物を0℃に冷却された金属板に挟み
込み5mmのシート状に急冷した。
Example 1 15.0 parts by weight of ultra-high molecular weight polyethylene having a weight average molecular weight of 2,000,000 and a polynorbornene resin (Nosorex NB, weight average molecular weight of 20)
100,000 or more, manufactured by Nippon Zeon Co., Ltd.) 2.14 parts by weight of a polyolefin composition and 85 parts by weight of liquid paraffin,
Irganox 1010 and BHT as antioxidants
Is 0.5% by weight with respect to the polyethylene, respectively.
3% by weight is further added and uniformly mixed into a slurry,
The mixture was melted and kneaded at a temperature of 160 ° C. using a biaxial kneader.
Thereafter, these kneaded materials were sandwiched between metal plates cooled to 0 ° C., and rapidly cooled into a sheet of 5 mm.

【0039】これらの急冷シートを115℃の温度でシ
ート厚が0.7mmになるまでヒートプレスし、120
℃の温度で3.5×3.5倍に縦横同時に二軸延伸し、
へプタンを使用して脱溶媒処理を行なった。脱溶媒後、
85℃×12h+120℃×2hで空気中で熱処理を行
ない、多孔質フィルムを得た。この多孔質フィルムはI
Rとゲル分率との測定から架橋構造が確認され、膜厚2
4μm、空孔率40%、初期のガーレ値600sec/
100cc、保存後のガーレ値620sec/100c
cであった。
These quenched sheets were heat-pressed at a temperature of 115 ° C. until the sheet thickness became 0.7 mm.
At the temperature of ° C., it is simultaneously stretched 3.5 × 3.5 times vertically and horizontally,
The solvent was removed using heptane. After desolvation,
Heat treatment was performed in air at 85 ° C. × 12 h + 120 ° C. × 2 h to obtain a porous film. This porous film is I
The crosslinked structure was confirmed from the measurement of R and the gel fraction.
4 μm, porosity 40%, initial Gurley value 600 sec /
100cc, Gurley value after storage 620sec / 100c
c.

【0040】[実施例2]実施例1において、重量平均
分子量100万の超高分子量ポリエチレン6.0重量
部、重量平均分子量20万の高密度ポリエチレン9.0
重量部、及びポリノルボルネン樹脂(ノーソレックスN
B、重量平均分子量200万以上、日本ゼオン(株)
製)1.22重量部からなるポリオレフィン組成物と流
動パラフィン85重量部を用いること以外は、実施例1
と同様にして、多孔質フィルムを得た。この多孔質フィ
ルムはIRとゲル分率との測定から架橋構造が確認さ
れ、膜厚25μm、空孔率39%、初期のガーレ値50
0sec/100cc、保存後のガーレ値530sec
/100ccであった。
Example 2 In Example 1, 6.0 parts by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 1,000,000 and high density polyethylene 9.0 having a weight average molecular weight of 200,000 were used.
Parts by weight and polynorbornene resin (NOSOLEX N
B, weight average molecular weight of 2,000,000 or more, ZEON CORPORATION
Example 1 except that a polyolefin composition of 1.22 parts by weight and liquid paraffin of 85 parts by weight were used.
In the same manner as in the above, a porous film was obtained. This porous film was confirmed to have a crosslinked structure by measurement of IR and gel fraction, and had a thickness of 25 μm, a porosity of 39%, and an initial Gurley value of 50.
0sec / 100cc, Gurley value after storage 530sec
/ 100cc.

【0041】[実施例3]実施例1において、重量平均
分子量100万の超高分子量ポリエチレン11.5重量
部、熱可塑性エラストマー(TPE821、住友化学
製)3.5重量部及びポリノルボルネン樹脂(ノーソレ
ックスNB、重量平均分子量200万以上、日本ゼオン
(株)製)1.22重量部からなるポリオレフィン組成
物と流動パラフィン85重量部を用いること以外は、実
施例1と同様にして、多孔質フィルムを得た。この多孔
質フィルムはIRとゲル分率との測定から架橋構造が確
認され、膜厚24μm、空孔率38%、初期のガーレ値
520sec/100cc、保存後のガーレ値542s
ec/100ccであった。
Example 3 In Example 1, 11.5 parts by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 1,000,000, 3.5 parts by weight of a thermoplastic elastomer (TPE821, manufactured by Sumitomo Chemical Co., Ltd.) and polynorbornene resin (No. Porous film in the same manner as in Example 1 except that Solex NB, a weight average molecular weight of 2,000,000 or more, and a polyolefin composition consisting of 1.22 parts by weight of Nippon Zeon Co., Ltd. and 85 parts by weight of liquid paraffin are used. I got This porous film was confirmed to have a crosslinked structure by measurement of IR and gel fraction, a film thickness of 24 μm, a porosity of 38%, an initial Gurley value of 520 sec / 100 cc, and a Gurley value of 542 s after storage.
ec / 100 cc.

【0042】[比較例1]ポリノルボルネン樹脂を添加
しないこと以外は実施例1と同様にして、多孔質フィル
ムを得た。この多孔質フィルムはIRとゲル分率との測
定から架橋構造がほとんど認められず、膜厚23μm、
空孔率38%、初期のガーレ値585sec/100c
c、保存後のガーレ値657sec/100ccであっ
た。
Comparative Example 1 A porous film was obtained in the same manner as in Example 1 except that no polynorbornene resin was added. This porous film showed almost no crosslinked structure from the measurement of IR and gel fraction, and had a film thickness of 23 μm.
Porosity 38%, initial Gurley value 585 sec / 100c
c, Gurley value after storage was 657 sec / 100 cc.

【0043】[比較例2]重量平均分子量20万のポリ
エチレン9重量%、重量平均分子量200万の超高分子
量ポリエチレン6重量%からなる重合体組成物15重量
部と流動パラフィン85重量部とをスラリー状に均一に
混合し、160℃の温度で小型ニーダーを用い約60分
溶解混練りした。その後これらの混練物を0℃に冷却さ
れたロールまたは金属板に挟み込みシート状に急冷し
た。これらの冷却シート状樹脂を、115℃の温度でシ
ート厚が0. 4〜0. 6mmになるまでヒートプレス
し、ヘプタンを使用して脱溶媒処理を行った。ついで1
16℃の温度で同時に縦横4×4倍に二軸延伸を行っ
た。その後、得られた多孔質フィルムを空気中で85℃
・1時間熱処理し、ついで110℃で1時間熱処理し
て、多孔質フィルムを得た。この多孔質フィルムはIR
とゲル分率との測定から架橋構造がほとんど認められ
ず、膜厚27μm、空孔率37%、初期のガーレ値58
0sec/100cc、保存後のガーレ値750sec
/100ccであった。
Comparative Example 2 A slurry comprising 15 parts by weight of a polymer composition comprising 9% by weight of polyethylene having a weight average molecular weight of 200,000 and 6% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 2,000,000 and 85 parts by weight of liquid paraffin was used. The mixture was uniformly mixed and melt-kneaded at a temperature of 160 ° C. using a small kneader for about 60 minutes. Thereafter, these kneaded materials were sandwiched between rolls or metal plates cooled to 0 ° C. and rapidly cooled in a sheet shape. These cooled sheet-shaped resins were heat-pressed at a temperature of 115 ° C. until the sheet thickness became 0.4 to 0.6 mm, and desolvation treatment was performed using heptane. Then 1
Biaxial stretching was carried out at a temperature of 16 ° C. at the same time, 4 × 4 in length and width. Then, the obtained porous film was heated at 85 ° C. in air.
-Heat treatment was performed for 1 hour and then at 110 ° C for 1 hour to obtain a porous film. This porous film is IR
And a gel fraction, almost no crosslinked structure was observed. The film thickness was 27 μm, the porosity was 37%, and the initial Gurley value was 58.
0sec / 100cc, Gurley value after storage 750sec
/ 100cc.

【0044】[比較例3]ポリノルボルネン樹脂を添加
しないこと以外は実施例2と同様にして、多孔質フィル
ムを得た。この多孔質フィルムはIRとゲル分率との測
定から架橋構造がほとんど認められず、膜厚23μm、
空孔率38%、初期のガーレ値540sec/100c
c、保存後のガーレ値610sec/100ccであっ
た。
Comparative Example 3 A porous film was obtained in the same manner as in Example 2 except that no polynorbornene resin was added. This porous film showed almost no crosslinked structure from the measurement of IR and gel fraction, and had a film thickness of 23 μm.
Porosity 38%, initial Gurley value 540 sec / 100c
c, Gurley value after storage was 610 sec / 100 cc.

【0045】[電池貯蔵試験]リチウムコバルト酸化物
(LiCoO2 )に導電助剤としてリン状黒鉛を重量比
90:5で加えて混合し、この混合物と、ポリフッ化ビ
ニリデンをN−メチルピロリドンに溶解させた溶液とを
混合してスラリーにした。この正極合剤スラリーを70
メッシュの網を通過させて大きなものを取り除いた後、
厚さ20μmのアルミニウム箔からなる正極集電体の両
面に均一に塗布して乾燥し、その後、ローラプレス機に
より圧縮成形した後、切断し、リード体を溶接して、帯
状の正極を作製した。
[Battery Storage Test] Phosphorous graphite as a conductive additive was added to lithium cobalt oxide (LiCoO 2 ) at a weight ratio of 90: 5 and mixed, and this mixture and polyvinylidene fluoride were dissolved in N-methylpyrrolidone. The resulting solution was mixed to form a slurry. This positive electrode material mixture slurry is
After removing large things by passing through the mesh net,
A positive electrode current collector made of an aluminum foil having a thickness of 20 μm was uniformly coated on both sides and dried, then compression-molded by a roller press machine, cut, and the lead body was welded to produce a belt-shaped positive electrode. .

【0046】つぎに平均粒径10μmの炭素材料を、フ
ッ化ビニリデンをN−メチルピロリドンに溶解させた溶
液と混合してスラリーにした。この負極合剤スラリーを
70メッシュの網を通過させて大きなものを取り除いた
後、厚さ18μmの帯状の銅箔からなる負極集電体の両
面に均一に塗布して乾燥し、その後ローラプレス機によ
り圧縮成形し切断した後、リード体を溶接して帯状負極
を作製した。
Next, a carbon material having an average particle size of 10 μm was mixed with a solution of vinylidene fluoride in N-methylpyrrolidone to form a slurry. This negative electrode mixture slurry was passed through a 70-mesh net to remove large ones, and then uniformly coated on both surfaces of a negative electrode current collector made of a strip-shaped copper foil having a thickness of 18 μm, dried, and then roll-pressed. After compression molding and cutting, the lead body was welded to produce a strip-shaped negative electrode.

【0047】セパレータは実施例2及び比較例3で得ら
れた多孔質フィルムを用いた。これらの正極、負極およ
びセパレータを両極がセパレータを介して互いに重なる
ように、渦巻き状に捲回して渦巻状捲回電極体として巻
き止めテープで外側を止めて捲回体とし、外径18mm
の有底円筒状の電池ケース内に充填し、正極及び負極の
リード体の溶接を行った。
As the separator, the porous films obtained in Example 2 and Comparative Example 3 were used. The positive electrode, the negative electrode and the separator are wound spirally so that both electrodes overlap each other with the separator interposed therebetween.
In the bottomed cylindrical battery case, and the positive and negative electrode lead bodies were welded.

【0048】つぎに電解液としてエチレンカーボネート
が1重量部に対してメチルエチルカーボネートを2重量
部の混合溶媒中にLiPF6を1.4モル/リットルの
割合で溶解した電解液を調製した。これを、電池ケース
内に注入し、電解液がセパレータなどに十分に浸透した
後、封口し、予備充電、エージングを行い、筒型の二次
電池を作製した。
Next, an electrolytic solution was prepared by dissolving LiPF6 at a ratio of 1.4 mol / liter in a mixed solvent of 2 parts by weight of methyl ethyl carbonate and 1 part by weight of ethylene carbonate as an electrolytic solution. This was poured into a battery case, and after the electrolyte had sufficiently penetrated into the separator and the like, sealing was performed, preliminary charging and aging were performed, and a cylindrical secondary battery was manufactured.

【0049】この電池を、60℃で20日間貯蔵した
後、電池を分解して電池各部のセパレータを取り出し、
各部の通気度を測定した。その結果を、捲回前の初期の
値と比較して図1に示した。なお、a、b、c、dはセ
パレータの全長を外周側から内周側へと4等分した際、
各中央部の位置のガーレ値を夫々示すものである。
After storing the battery at 60 ° C. for 20 days, the battery was disassembled and the separators of each part of the battery were taken out.
The air permeability of each part was measured. The result is shown in FIG. 1 in comparison with the initial value before winding. Note that a, b, c, and d are obtained by dividing the total length of the separator into four equal parts from the outer peripheral side to the inner peripheral side,
The Gurley value at each central position is shown.

【0050】図1の結果が示すように、実施例の多孔質
フィルムでは、60℃で長期保存した場合でも、電池内
の各部における通気度の低下が殆どない。これに対し
て、比較例の多孔質フィルムでは、60℃で長期保存し
た場合に通気度の低下が大きく、特に電池の内周側で通
気度の低下が顕著になる。
As shown in the results of FIG. 1, in the porous film of the example, even when stored at 60 ° C. for a long time, the air permeability of each part in the battery hardly decreases. On the other hand, in the porous film of the comparative example, when stored at 60 ° C. for a long period of time, the air permeability is greatly reduced, and particularly the air permeability is significantly reduced on the inner peripheral side of the battery.

【0051】[電池充・放電サイクル試験]上記と同様
にして実施例1及び比較例3で得られた多孔質フィルム
を用いて作製した二次電池について、上限電圧4.2V
で0.2C定電流充電を行い、5時間行い、その後0.
2C放電を行った。このときの放電容量を初期放電容量
とした。この充・放電サイクルを400回繰り返したと
ころ、実施例1の二次電池については、200回目のサ
イクルにおいて放電容量の初期に対する比率が85%で
あり、それ以降も殆ど放電容量の低下が認められなかっ
た。これに対し、比較例3の二次電池については200
回目のサイクルにおいて、放電容量の初期に対する比率
が70%であり、それ以降も放電容量の低下が認められ
た。つまり、60℃で長期保存した場合の通気度の低下
が大きいものでは、電池のサイクル寿命も短くなる傾向
がある。
[Battery Charge / Discharge Cycle Test] For the secondary batteries produced using the porous films obtained in Example 1 and Comparative Example 3 in the same manner as described above, the upper limit voltage was 4.2 V.
To charge at 0.2 C constant current for 5 hours.
2C discharge was performed. The discharge capacity at this time was defined as the initial discharge capacity. When the charge / discharge cycle was repeated 400 times, in the secondary battery of Example 1, the ratio of the initial discharge capacity to the initial cycle in the 200th cycle was 85%, and the discharge capacity was substantially reduced thereafter. Did not. On the other hand, for the secondary battery of Comparative Example 3, 200
In the first cycle, the ratio of the discharge capacity to the initial state was 70%, and thereafter, a decrease in the discharge capacity was observed. That is, when the air permeability is significantly reduced when stored at 60 ° C. for a long time, the cycle life of the battery tends to be short.

【0052】[透明化フィルムの熱劣化試験]実施例1
〜3及び比較例1で得られた多孔質フィルムを用い、周
囲を枠固定したまま135℃で60分間加熱して、微多
孔が閉塞した透明化フィルムを得た。この透明化フィル
ムを100×100mmにカットしたものを用いて、そ
の周囲をSUS枠で固定し、熱風が直接当たらないよう
にバットに入れて、130℃で200時間保存した。所
定時間毎にサンプルを取り出し、先端直径が0.5mm
の加圧針を用いて突き刺し強度を測定した。その結果を
初期値に対する強度比(%)として図2に示した。
[Heat Deterioration Test of Transparent Film]
Using the porous films obtained in Examples 1 to 3 and Comparative Example 1, heating was performed at 135 ° C. for 60 minutes with the periphery fixed with a frame to obtain a transparentized film in which microporosity was closed. Using a transparent film cut into a size of 100 × 100 mm, the periphery was fixed with a SUS frame, put in a bat so that hot air did not directly hit it, and stored at 130 ° C. for 200 hours. Take out the sample every predetermined time, the tip diameter is 0.5mm
The piercing strength was measured using a pressure needle. The result is shown in FIG. 2 as the intensity ratio (%) to the initial value.

【0053】実施例1〜3の多孔質フィルムでは、架橋
物を含有するため、一旦部分溶融させた場合でも、高温
保存において強度を長期間維持することができ、電池の
安全性を高めることができる。これに対し、架橋物を含
有しない比較例1では一旦部分溶融させた場合でも、高
温保存において強度の低下が著しく、電池の安全性の低
下が懸念される。
Since the porous films of Examples 1 to 3 contain a crosslinked product, even if they are partially melted, the strength can be maintained for a long time in high-temperature storage, and the safety of the battery can be improved. it can. On the other hand, in Comparative Example 1 which does not contain a crosslinked product, even if it is once partially melted, the strength is significantly reduced during high-temperature storage, and there is a concern that the safety of the battery may be reduced.

【0054】[多孔質フィルムの熱劣化試験]実施例1
及び比較例1で得られた多孔質フィルムを100×10
0mmにカットしたものを用いて、その周囲をSUS枠
で固定し、熱風が直接当たらないようにバットに入れ
て、130℃で120時間保存した。所定時間毎にサン
プルを取り出し、先端直径が0.5mmの加圧針を用い
て突き刺し強度を測定した。その結果を初期値に対する
強度比(%)として図3に示した。
[Thermal Deterioration Test of Porous Film] Example 1
And the porous film obtained in Comparative Example 1 was 100 × 10
Using the one cut to 0 mm, the periphery was fixed with a SUS frame, placed in a bat so that hot air did not directly hit it, and stored at 130 ° C. for 120 hours. A sample was taken out every predetermined time, and the piercing strength was measured using a pressure needle having a tip diameter of 0.5 mm. The results are shown in FIG. 3 as the intensity ratio (%) to the initial value.

【0055】実施例1の多孔質フィルムでは、架橋物を
含有するため、高温保存において強度を長期間維持する
ことができ、電池の安全性を高めることができる。これ
に対し、架橋物を含有しない比較例1では、高温保存に
おいて強度の低下が著しく、電池の安全性の低下が懸念
される。
Since the porous film of Example 1 contains a crosslinked product, the strength can be maintained for a long time in high-temperature storage, and the safety of the battery can be improved. On the other hand, in Comparative Example 1, which does not contain a crosslinked product, the strength is significantly reduced during high-temperature storage, and there is a concern that the safety of the battery is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電池貯蔵試験で得られたガーレ値の変化を示す
グラフ
FIG. 1 is a graph showing a change in Gurley value obtained in a battery storage test.

【図2】透明化フィルムの熱劣化試験で得られた強度比
の経時変化を示すグラフ
FIG. 2 is a graph showing a change with time of an intensity ratio obtained in a thermal deterioration test of a transparentized film.

【図3】多孔質フィルムの熱劣化試験で得られた強度比
の経時変化を示すグラフ
FIG. 3 is a graph showing a change over time of a strength ratio obtained in a thermal degradation test of a porous film.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ポリオレフィン系重合体と二重結合を有
する重合体とが架橋してなる架橋物を含有する多孔質フ
ィルムよりなり、その周囲を枠固定して500kPa
(ゲージ圧)の加圧下で60℃、20日間保存する際
に、JIS P8117に準拠して測定したガーレ値の
保存前後の上昇率が10%以下である非水電解液電池用
セパレータ。
1. A porous film containing a cross-linked product obtained by cross-linking a polyolefin polymer and a polymer having a double bond, and the periphery thereof is fixed to a frame to 500 kPa.
A separator for a non-aqueous electrolyte battery, wherein the increase rate of a Gurley value measured according to JIS P8117 before and after storage is 10% or less when stored at 60 ° C. for 20 days under a pressure of (gauge pressure).
【請求項2】 周囲を枠固定して130℃で3日間保存
する際に、先端直径が0.5mmの加圧針を用いて測定
した突き刺し強度の保存前後の低下率が10%以下であ
る請求項1記載の非水電解液電池用セパレータ。
2. The method according to claim 1, wherein when storing at 130 ° C. for 3 days with the periphery fixed to a frame, the puncture strength measured by using a pressure needle having a tip diameter of 0.5 mm before and after storage is 10% or less. Item 2. A separator for a non-aqueous electrolyte battery according to Item 1.
【請求項3】 前記ポリオレフィン系重合体が重量平均
分子量50万以上のポリエチレンである請求項1又は2
に記載の非水電解液電池用セパレータ。
3. The polyolefin-based polymer is a polyethylene having a weight average molecular weight of 500,000 or more.
4. The separator for a non-aqueous electrolyte battery according to claim 1.
【請求項4】 請求項1〜3いずれかに記載の非水電解
液電池用セパレータを用いてなる非水電解液電池。
4. A non-aqueous electrolyte battery comprising the non-aqueous electrolyte battery separator according to claim 1.
JP2000336891A 2000-11-06 2000-11-06 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery Expired - Fee Related JP4582675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000336891A JP4582675B2 (en) 2000-11-06 2000-11-06 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000336891A JP4582675B2 (en) 2000-11-06 2000-11-06 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2002141045A true JP2002141045A (en) 2002-05-17
JP4582675B2 JP4582675B2 (en) 2010-11-17

Family

ID=18812363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000336891A Expired - Fee Related JP4582675B2 (en) 2000-11-06 2000-11-06 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4582675B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004091014A1 (en) * 2003-04-09 2004-10-21 Nitto Denko Corporation Adhesive-carrying porous film for cell separator and its application
KR100675699B1 (en) * 2001-03-16 2007-02-01 산요덴키가부시키가이샤 Separator for Alkaline Secondary Battery, Method for Preparing the Same and Alkaline Secondary Battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827294A (en) * 1994-07-20 1996-01-30 Oji Yuka Synthetic Paper Co Ltd Oriented film of opaque resin
JPH10204199A (en) * 1996-11-19 1998-08-04 Mitsubishi Chem Corp Porous molding
WO2000068305A1 (en) * 1999-05-07 2000-11-16 Nitto Denko Corporation Porous films and processes for the production thereof
JP2001059036A (en) * 1999-08-23 2001-03-06 Nitto Denko Corp Porous film
WO2001016219A1 (en) * 1999-08-31 2001-03-08 Nitto Denko Corporation Microporous film
JP2001131328A (en) * 1999-11-01 2001-05-15 Nitto Denko Corp Production process for porous film
JP2002036459A (en) * 2000-07-31 2002-02-05 Nitto Denko Corp Porous film and its manufacturing method
JP2002047372A (en) * 2000-07-31 2002-02-12 Nitto Denko Corp Porous film and method of preparing the same and battery using the same
JP2002121313A (en) * 2000-10-18 2002-04-23 Nitto Denko Corp Porous film
JP2002134091A (en) * 2000-10-30 2002-05-10 Nitto Denko Corp Nonacqueous electrolyte battery separator and nonacqueous electrolyte battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0827294A (en) * 1994-07-20 1996-01-30 Oji Yuka Synthetic Paper Co Ltd Oriented film of opaque resin
JPH10204199A (en) * 1996-11-19 1998-08-04 Mitsubishi Chem Corp Porous molding
WO2000068305A1 (en) * 1999-05-07 2000-11-16 Nitto Denko Corporation Porous films and processes for the production thereof
JP2001059036A (en) * 1999-08-23 2001-03-06 Nitto Denko Corp Porous film
WO2001016219A1 (en) * 1999-08-31 2001-03-08 Nitto Denko Corporation Microporous film
JP2001131328A (en) * 1999-11-01 2001-05-15 Nitto Denko Corp Production process for porous film
JP2002036459A (en) * 2000-07-31 2002-02-05 Nitto Denko Corp Porous film and its manufacturing method
JP2002047372A (en) * 2000-07-31 2002-02-12 Nitto Denko Corp Porous film and method of preparing the same and battery using the same
JP2002121313A (en) * 2000-10-18 2002-04-23 Nitto Denko Corp Porous film
JP2002134091A (en) * 2000-10-30 2002-05-10 Nitto Denko Corp Nonacqueous electrolyte battery separator and nonacqueous electrolyte battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675699B1 (en) * 2001-03-16 2007-02-01 산요덴키가부시키가이샤 Separator for Alkaline Secondary Battery, Method for Preparing the Same and Alkaline Secondary Battery
WO2004091014A1 (en) * 2003-04-09 2004-10-21 Nitto Denko Corporation Adhesive-carrying porous film for cell separator and its application
US7833654B2 (en) 2003-04-09 2010-11-16 Nitto Denko Corporation Adhesive-carrying porous film for battery separator and use thereof
KR101025187B1 (en) 2003-04-09 2011-03-31 닛토덴코 가부시키가이샤 Adhesive-carrying porous film for cell separator and its application

Also Published As

Publication number Publication date
JP4582675B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
EP1191622B1 (en) Lithium ion secondary cell, separator, cell pack, and charging method
EP2819215B1 (en) Method of manufacturing porous separator comprising elastic material, porous separator manufactured by the method, and secondary battery comprising the separator
CN108137842B (en) Porous film and electricity storage device
US20170309915A1 (en) Electrode assembly having improved safety, manufacturing method therefor and electrochemical element comprising electrode assembly
JP2001043897A (en) Solid electrolyte battery
US11936065B2 (en) Separator including polyethylene with highly entangled polymer chains, and electrochemical device including the same
US20050196664A1 (en) Nonaqueous electrolyte secondary battery
JP5235324B2 (en) Polyolefin microporous membrane
JP2004307712A (en) Porous film
JP2002134091A (en) Nonacqueous electrolyte battery separator and nonacqueous electrolyte battery
JP4582675B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JPH10302748A (en) Non-aqueous electrolytic battery
JP2003147109A (en) Porous film, separator for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP4189961B2 (en) Porous film
JP2002141049A (en) Non-aqueous electrolyte battery separator and non- aqueous electrolyte battery
JP4260982B2 (en) Non-aqueous electrolyte battery
KR101803526B1 (en) Separator for electrochemical device and electrochemical device containing the same
JP2000048794A (en) Separator for cell, and non-aqueous electrolyte cell using it
JP2002141046A (en) Non-aqueous electrolyte battery separator and non- aqueous electrolyte battery
JP2004311339A (en) Nonaqueous electrolyte secondary battery
JP2007087958A (en) Solid electrolyte battery
JP2004263012A (en) Porous film and separator for electric battery
JP2006190507A (en) Lithium secondary battery
JPH11185723A (en) Separator for battery and secondary battery using the same
JP7293809B2 (en) Precursor film for porous film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100827

R150 Certificate of patent or registration of utility model

Ref document number: 4582675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160910

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees