JPH08138643A - Separator for battery and manufacture thereof - Google Patents

Separator for battery and manufacture thereof

Info

Publication number
JPH08138643A
JPH08138643A JP6277425A JP27742594A JPH08138643A JP H08138643 A JPH08138643 A JP H08138643A JP 6277425 A JP6277425 A JP 6277425A JP 27742594 A JP27742594 A JP 27742594A JP H08138643 A JPH08138643 A JP H08138643A
Authority
JP
Japan
Prior art keywords
molecular weight
separator
polyethylene
average molecular
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6277425A
Other languages
Japanese (ja)
Other versions
JP3486785B2 (en
Inventor
Koichi Yasugata
公一 安形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP27742594A priority Critical patent/JP3486785B2/en
Publication of JPH08138643A publication Critical patent/JPH08138643A/en
Application granted granted Critical
Publication of JP3486785B2 publication Critical patent/JP3486785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE: To improve the workability, mechanical properties, etc., of a separator by producing the separator from a finely porous membrane with the viscosity-average molecular weight of the whole system less than a specified value and specifying the maximum viscosity-average molecular weight, the weight percents of the content, etc., of polyethylene in the composition of the membrane. CONSTITUTION: A separator is made of a polyethylene-based finely porous membrane whose composition consists of polyethylene with the maximum viscosity-average molecular weight less than 500,000 and which contains not less than 5wt.% of the polyethylene with the maximum viscosity-average molecular weight, has fuse temperature lower than 135 deg.C and a short circuit temperature not lower than 180 deg.C, and which has viscosity-average molecular weight of the whole system less than 400,000. To manufacture the separator, proper amounts of two types of high molecular weight polyethylene and low density polyethylene with different viscosity-average molecular weight are mixed with proper amounts of fine silicate powder and DOP by a mixer and the resulting mixture is formed into a prescribed thickness by a biaxial extruder with prescribed roll surface temperature. After the DOP and the fine silicate powder are extracted, the obtained sheet is extended in the longitudinal and width directions by a roll drawing machine and heat-treated to form a separator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ電池・リチウ
ム一次・二次電池、リチウムイオン一次・二次電池など
の電池セパレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery separator such as an alkaline battery / lithium primary / secondary battery or a lithium ion primary / secondary battery.

【0002】[0002]

【従来の技術】電池セパレータには、種々の微多孔膜が
提案されており、特にセパレータの機械的強度の向上に
は、超高分子量ポリエチレンの含有が必須とされてき
た。例えば、特開平2−21559号公報には、粘度平
均分子量100万以上のポリエチレンと粘度平均分子量
30万以下のポリエチレンの混合物からなるセパレータ
が開示されている。また、特開平5−25305号公報
には、重量平均分子量70万以上の超高分子量ポリオレ
フィンと高密度ポリエチレン及び低密度ポリエチレンの
組成物からなる微多孔膜が開示されている。
2. Description of the Related Art Various microporous membranes have been proposed for battery separators, and in order to improve the mechanical strength of the separator, inclusion of ultrahigh molecular weight polyethylene has been essential. For example, JP-A-2-21559 discloses a separator made of a mixture of polyethylene having a viscosity average molecular weight of 1,000,000 or more and polyethylene having a viscosity average molecular weight of 300,000 or less. Further, JP-A-5-25305 discloses a microporous membrane composed of a composition of ultrahigh molecular weight polyolefin having a weight average molecular weight of 700,000 or more, high density polyethylene and low density polyethylene.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記に開示さ
れている技術では、超高分子量ポリエチレンを含有して
いることが成形加工性を著しく低下させ、薄膜化できな
いという問題等があった。そこで、上記の問題点を解決
するため、特開平6−212006号公報では、高密度
ポリエチレンを含み、系全体の分子量100万以上の分
率が1〜20重量%、1万以下の分率が1〜40受領%
であるポリエチレンからなる微多孔性膜が開示されてい
る。しかし、この膜ではショート温度が低いという欠点
があった。
However, in the technique disclosed above, there is a problem that the inclusion of ultra-high molecular weight polyethylene remarkably lowers the moldability and cannot form a thin film. Therefore, in order to solve the above-mentioned problems, in JP-A-6-212006, a high molecular weight polyethylene containing a high molecular weight of 1,000,000 or more and a molecular weight of 1 to 20% by weight or 10,000 or less is used. 1-40% received
A microporous membrane made of polyethylene is disclosed. However, this film has a drawback that the short circuit temperature is low.

【0004】そこで本発明は、セパレータの加工性、電
池セパレータとして望まれる機械的強度や電気的特性に
優れ、電池組立性が良く、安全性の高く、かつショート
温度が高いバランスの取れたセパレータを提供すること
を目的としている。
Therefore, the present invention provides a well-balanced separator having excellent separator workability, mechanical strength and electrical characteristics desired as a battery separator, good battery assembly property, high safety and high short-circuit temperature. It is intended to be provided.

【0005】[0005]

【課題を解決するための手段】本発明者は、超高分子量
ポリエチレンを含有することなく、成形加工性、機械的
強度、安全性等に優れた電池用の電池セパレータを見い
出し、本発明を完成した。すなわち本発明は、系全体の
粘度平均分子量が40万未満の微多孔膜であって、該微
多孔膜の組成物中のポリエチレンの最大粘度平均分子量
が50万未満であり、かつ該最大粘度平均分子量のポリ
エチレンが5重量%以上含有されたヒューズ温度135
℃未満、ショート温度180℃以上のポリエチレン製微
多孔膜であることを特徴とする電池用のセパレータであ
る。
Means for Solving the Problems The present inventors have found a battery separator for a battery which does not contain ultra high molecular weight polyethylene and is excellent in moldability, mechanical strength, safety and the like, and completed the present invention. did. That is, the present invention is a microporous membrane having a viscosity average molecular weight of less than 400,000 in the entire system, wherein the maximum viscosity average molecular weight of polyethylene in the composition of the microporous membrane is less than 500,000, and the maximum viscosity average Fuse temperature containing 5% by weight or more of molecular weight polyethylene 135
A separator for a battery, which is a microporous polyethylene film having a short-circuit temperature of 180 ° C or higher and a temperature of lower than ℃.

【0006】ポリエチレンとしては、エチレンを重合し
た結晶性の単独重合体が望ましく、エチレンと10モル
%以下のプロピレン、1−ブテン、4−メチル−1−ペ
ンテン、1−ヘキセン等との共重合体でも良い。また、
高密度ポリエチレン、中密度ポリエチレン、低密度ポリ
エチレン、線状低密度ポリエチレンのいずれであっても
良く、機械的強度の向上の点で、高密度ポリエチレンの
含有が好ましい。
The polyethylene is preferably a crystalline homopolymer obtained by polymerizing ethylene, and is a copolymer of ethylene and 10 mol% or less of propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and the like. But good. Also,
It may be any of high-density polyethylene, medium-density polyethylene, low-density polyethylene, and linear low-density polyethylene, and the inclusion of high-density polyethylene is preferable from the viewpoint of improving mechanical strength.

【0007】また、安全性の向上の点で、中密度ポリエ
チレン、低密度ポリエチレン、線状低密度ポリエチレン
の含有が好ましい。本発明においては、粘度平均分子量
50万未満の分子量のポリエチレンが使用されることが
必要であり、好ましくは5万以上、より好ましくは15
万〜35万である。これは、後述するように高い機械的
強度等を発現させる為に重要な点であり、使用されるポ
リエチレンの粘度平均分子量が50万以上であると成形
加工が困難である。また、前記ポリエチレンの含有量
は、5重量%以上必要であり、好ましくは60重量%以
下、さらに好ましくは10〜60重量%である。5重量
%未満では、高強度の電池用セパレータは得られず、6
0重量%を越えると成形加工が困難である。
From the viewpoint of improving safety, medium density polyethylene, low density polyethylene, and linear low density polyethylene are preferably contained. In the present invention, it is necessary to use polyethylene having a viscosity average molecular weight of less than 500,000, preferably 50,000 or more, more preferably 15
It is 10,000 to 350,000. This is an important point for exhibiting high mechanical strength and the like as described later, and molding processing is difficult when the viscosity average molecular weight of polyethylene used is 500,000 or more. The content of the polyethylene needs to be 5% by weight or more, preferably 60% by weight or less, and more preferably 10 to 60% by weight. If it is less than 5% by weight, a high-strength battery separator cannot be obtained,
If it exceeds 0% by weight, molding is difficult.

【0008】含有量が10重量%未満では、機械的強度
の低下は防止できず、含有量の上限は、組成物の粘度平
均分子量で調整される。また、本発明のセパレータにお
いては、系全体の粘度平均分子量が、40万未満である
ことが必要である。これは、後述するように高い機械的
強度等を発現させる為に重要な点であり、使用されるポ
リエチレンの電池用のセパレータの粘度平均分子量が4
0万以上では、成形加工が困難である。好ましくは35
万以下、さらに好ましくは30万以下である。特に、3
5万以下になると成形加工性が顕著に向上する。
When the content is less than 10% by weight, deterioration of mechanical strength cannot be prevented, and the upper limit of the content is adjusted by the viscosity average molecular weight of the composition. Moreover, in the separator of the present invention, the viscosity average molecular weight of the entire system needs to be less than 400,000. This is an important point for developing high mechanical strength and the like, as will be described later, and the viscosity average molecular weight of the polyethylene battery separator used is 4
If it is more than 0,000, the molding process is difficult. Preferably 35
It is preferably 10,000 or less, more preferably 300,000 or less. Especially 3
When it is less than 50,000, the molding processability is remarkably improved.

【0009】膜厚は、好ましくは15〜100μm、さ
らに好ましくは20〜50μmである。15μm未満で
は、電池組立時の短絡不良率が増加し、100μmをこ
えると電池性能が低下する。本発明のセパーレータにす
ることにより、以下の物性を得ることができる。MDの
弾性率は、5000kg/cm2 以上、好ましくは60
00kg/cm 2 以上であるので、電池組み立て性、生
産性に優れ、実用性が高い。
The film thickness is preferably 15 to 100 μm.
Furthermore, it is preferably 20 to 50 μm. Less than 15 μm
The short circuit failure rate during battery assembly increases, and
Battery performance deteriorates. The separator of the present invention
By doing so, the following physical properties can be obtained. MD's
Elastic modulus is 5000 kg / cm2Or more, preferably 60
00 kg / cm 2Since it is above,
Excellent productivity and high practicality.

【0010】また、破断強度は、200kg/cm2
上、好ましくは230kg/cm2であるので、電池捲
回時の短絡不良率が低く、電池組立上で起きる問題が少
ない。気孔率は、25%以上85%未満、望ましくは3
0%以上85%未満となる。電解液の含浸性・含浸量及
び電池内部の電気抵抗が良好でありながら、機械的強度
の低下、電池組立上の不具合を生じることがない。
Further, since the breaking strength is 200 kg / cm 2 or more, preferably 230 kg / cm 2 , the defective rate of short circuit when the battery is wound is low, and there are few problems in battery assembly. Porosity is 25% or more and less than 85%, desirably 3
It becomes 0% or more and less than 85%. Although the impregnation property / impregnation amount of the electrolytic solution and the electric resistance inside the battery are good, the mechanical strength does not decrease and the battery assembly does not have a problem.

【0011】透気度は、1000秒/100cc未満、
好ましくは800秒/100cc以下、さらに好ましく
は500秒/100cc以下となので、電池内部の電気
抵抗が高くなりすぎ、電池特性を低下させることがな
い。エタノール中でのバブルポイントは、1kg/cm
2 〜10kg/cm2 、好ましくは2kg/cm2 〜9
kg/cm2 、さらに好ましくは2kg/cm2 〜7k
g/cm2 となり、電解液の含浸性が良好で、電池の生
産性が良く、電池組立時の短絡不良率等の増加が心配さ
れる。
The air permeability is less than 1000 seconds / 100 cc,
Since it is preferably 800 seconds / 100 cc or less, more preferably 500 seconds / 100 cc or less, the electric resistance inside the battery becomes too high, and the battery characteristics are not deteriorated. Bubble point in ethanol is 1kg / cm
2 to 10 kg / cm 2 , preferably 2 kg / cm 2 to 9
kg / cm 2 , more preferably 2 kg / cm 2 to 7 k
Since it is g / cm 2 , the impregnating property of the electrolytic solution is good, the productivity of the battery is good, and there is a concern about an increase in the short circuit failure rate during battery assembly.

【0012】さらに本発明の効果として、ヒューズ温
度、ショート温度が改善されたことが挙げられる。電池
の外部短絡等により、電池内部温度が上昇した場合など
熱暴走により、電池が破裂したり、発火したりする場合
がある。この熱暴走は、セパレータで未然に防止する事
が可能である。すなわち、所定温度になるとセパレータ
の微細孔が塞がれるようセパレータを設計し、セパレー
タの電気抵抗あるいは透気度を上昇させ、電池の正極と
負極間を遮断してしまい、正極と負極間の反応を防止す
るものである。このセパレータの電気抵抗あるいは透気
度が上昇する温度をフューズ温度という。
Further, the effect of the present invention is that the fuse temperature and the short circuit temperature are improved. When the internal temperature of the battery rises due to an external short circuit of the battery, thermal runaway may cause the battery to burst or ignite. This thermal runaway can be prevented by the separator. That is, the separator is designed so that the micropores of the separator are closed at a predetermined temperature, the electric resistance or the air permeability of the separator is increased, the positive electrode and the negative electrode of the battery are cut off, and the reaction between the positive electrode and the negative electrode occurs. Is to prevent. The temperature at which the electrical resistance or air permeability of this separator rises is called the fuse temperature.

【0013】また、さらに温度が上昇すると、セパレー
タは破れて(実質的に電気抵抗あるいは透気度がフュー
ズ時より減少)しまい、正極と負極間を遮断できない状
態になる。この温度をショート温度という。電池の安全
性の観点から、フューズ温度は低く、ショート温度は高
い方が望ましく、フューズ温度は、135℃以下、さら
に好ましくは130℃以下、ショート温度は、180℃
以上、さらに好ましくは185℃以上である。一般的に
は、フューズ温度を下げるために、流動性の高い、ある
いは低分子量のポリオレフィンポリマーを混合するが、
機械的強度が低下する。機械的強度の低下を極力抑える
ため、超高分子量のポリオレフィンポリマーを混合する
ことになる。つまり、従来のセパレータにおいては、超
高分子量のポリオレフィンポリマーを混合することな
く、このように高いシュート温度は得ることができなか
った。
Further, when the temperature further rises, the separator is broken (substantially the electric resistance or the air permeability is lower than in the fuse), and the positive electrode and the negative electrode cannot be shut off. This temperature is called short-circuit temperature. From the viewpoint of battery safety, it is desirable that the fuse temperature is low and the short circuit temperature is high. The fuse temperature is 135 ° C or lower, more preferably 130 ° C or lower, and the short circuit temperature is 180 ° C.
Or higher, more preferably 185 ° C. or higher. Generally, in order to lower the fuse temperature, a highly fluid or low molecular weight polyolefin polymer is mixed,
Mechanical strength is reduced. In order to suppress the decrease in mechanical strength as much as possible, an ultrahigh molecular weight polyolefin polymer is mixed. That is, in the conventional separator, such a high shoot temperature could not be obtained without mixing the ultra-high molecular weight polyolefin polymer.

【0014】以下、本発明の製造方法について詳細に述
べる。まず、組成物を規定の範囲となるよう調製を行
う。この組成物の粘度平均分子量の調整には、より低分
子量のポリマーや低密度、線状低密度、中密度ポリエチ
レン、エチレン−プロピレンラバー等の混合により達成
される。より具体的には、機械的強度の低下を防ぐため
には、粘度平均分子量が15万〜35万の高密度ポリエ
チレンを10重量%以上含有させるのが好ましい。
The manufacturing method of the present invention will be described in detail below. First, the composition is prepared so as to be within a specified range. The viscosity average molecular weight of this composition can be adjusted by mixing a lower molecular weight polymer, low density, linear low density, medium density polyethylene, ethylene-propylene rubber or the like. More specifically, in order to prevent a decrease in mechanical strength, it is preferable to contain 10% by weight or more of high density polyethylene having a viscosity average molecular weight of 150,000 to 350,000.

【0015】含有量が10重量%未満では、機械的強度
の低下は防止できず、含有量の上限は、組成物の粘度平
均分子量で調整される。また、安全性の観点からは、フ
ューズ温度を下げるために、MIが0.1以上の高密度
・中密度・低密度・線状低密度ポリエチレンや分子量1
00万以下のエチレン−プロピレンラバーを含有させる
のが望ましい。その含有量は、機械的強度が低下しない
程度に抑える必要があり、50重量%未満である。
When the content is less than 10% by weight, deterioration of mechanical strength cannot be prevented, and the upper limit of the content is adjusted by the viscosity average molecular weight of the composition. From the viewpoint of safety, in order to lower the fuse temperature, high density / medium density / low density / linear low density polyethylene with a MI of 0.1 or more and molecular weight 1
It is desirable to contain up to, 000,000 of ethylene-propylene rubber. Its content must be suppressed to the extent that mechanical strength does not decrease, and is less than 50% by weight.

【0016】以上のように組成物を調整した上で、下記
に示すような製造方法により製造する。例えば、ポリマ
ーと孔形成剤である、無機微粉体又は/及び可塑剤を混
練・加熱溶融しながらシート状に成形しながら圧延した
後、孔形成剤をそれぞれ抽出除去及び乾燥し、一軸方向
または二軸方向に延伸して得られる。
After the composition is adjusted as described above, it is produced by the following production method. For example, a polymer and an inorganic fine powder or / and a plasticizer, which is a pore-forming agent, are kneaded, melted under heating and rolled while being formed into a sheet while being rolled, and then the pore-forming agent is extracted and removed, respectively, and dried in a uniaxial direction or a biaxial direction. It is obtained by stretching in the axial direction.

【0017】具体的には、ポリエチレン、孔形成剤を混
合、成形後、孔形成剤を抽出除去した後乾燥し、さらに
延伸することにより製造する。孔形成剤として無機微粉
体を用いる場合、微粉珪酸、珪酸カルシウム、炭酸カル
シウム、微粉タルク等が上げられ、特に微粉珪酸が好ま
しい。無機微粉体の抽出溶剤は、無機微粉体を溶解する
もので、ポリマーを溶解しないものであればよく、微粉
珪酸の場合、苛性ソーダが好ましい。
Specifically, it is produced by mixing and molding polyethylene and a pore-forming agent, extracting and removing the pore-forming agent, drying, and further stretching. When inorganic fine powder is used as the pore forming agent, fine powder silicic acid, calcium silicate, calcium carbonate, fine powder talc and the like can be mentioned, and fine powder silicic acid is particularly preferable. The extraction solvent for the inorganic fine powder may be any solvent that dissolves the inorganic fine powder and does not dissolve the polymer. In the case of finely divided silicic acid, caustic soda is preferable.

【0018】孔形成剤として無機微粉体を用いる場合、
DBP、DOP、DNP、DBS,TBP、流動パラフ
ィン等が上げられ、特にDOP、流動パラフィンが好ま
しい。可塑剤の溶剤としては、メタノール、エタノール
等のアルコール類、アセトン、MEK等のケトン類、
1.1.1−トリクロロエタン等の塩素系炭化水素等一
般的有機溶剤が用いられる。
When an inorganic fine powder is used as the pore-forming agent,
DBP, DOP, DNP, DBS, TBP, liquid paraffin and the like are mentioned, and DOP and liquid paraffin are particularly preferable. Solvents for plasticizers include alcohols such as methanol and ethanol, ketones such as acetone and MEK,
A general organic solvent such as a chlorine-based hydrocarbon such as 1.1.1-trichloroethane is used.

【0019】可塑剤量は、ポリマー・可塑剤・無機微粉
体混合物重量の50〜100重量%、好ましくは、50
〜80重量%である。50重量%以下では、適度な孔径
(エタノール中のバブルポイントが、1kg/cm2
10kg/cm2 )が得られない。100重量%を越え
ると、成形加工が困難になる。無機微粉体の量は、該混
合物重量の5〜35重量%、好ましくは15〜25重量
%である。5重量%未満、35重量%を越えても適度な
孔径(エタノール中のバブルポイントが、1kg/cm
2 〜10kg/cm2 )が得られない。
The amount of the plasticizer is 50 to 100% by weight, preferably 50, of the weight of the polymer / plasticizer / inorganic fine powder mixture.
~ 80% by weight. When the content is 50% by weight or less, an appropriate pore size (the bubble point in ethanol is 1 kg / cm 2 to
10 kg / cm 2 ) cannot be obtained. If it exceeds 100% by weight, the molding process becomes difficult. The amount of the inorganic fine powder is 5 to 35% by weight, preferably 15 to 25% by weight based on the weight of the mixture. Appropriate pore size below 5 wt% and above 35 wt% (bubble point in ethanol is 1 kg / cm
2 to 10 kg / cm 2 ) cannot be obtained.

【0020】製造方法の一例として、ポリマー、無機微
粉体、可塑剤を所定の混合比率で、ヘンシェルミキサー
等の通常の混合機で混合した後、押出機等の溶融混練装
置によりTダイ等を用いて押し出し、ロール表面温度1
50℃以下の温度で圧延しながら60μm〜200μm
の厚さのシート状に成形する。さらに、該成形物から溶
剤を用いて可塑剤を抽出除去し、続いて無機微粉体の抽
出溶剤にて無機微粉体を抽出したのち、加熱延伸して所
定厚みのセパレータを得る。
As an example of the production method, a polymer, an inorganic fine powder, and a plasticizer are mixed in a predetermined mixing ratio by a normal mixer such as a Henschel mixer, and then a T-die or the like is used by a melt-kneading device such as an extruder. Extrusion, roll surface temperature 1
60 μm to 200 μm while rolling at a temperature of 50 ° C. or less
It is formed into a sheet with the thickness of. Further, the plasticizer is extracted and removed from the molded product with a solvent, the inorganic fine powder is subsequently extracted with a solvent for extracting the inorganic fine powder, and then heat-stretched to obtain a separator having a predetermined thickness.

【0021】ロール表面温度は、150℃以下でないと
機械的に高強度なセパレータは得られない。好ましくは
140℃以下、さらに好ましくは130以下、ロール表
面温度が50℃以下になると、安定的にフィルム状に成
形加工するのが困難になる。機械方向に延伸する時、2
枚以上重ね合わせて延伸するのは、機械方向・幅方向共
に高強度なセパレータが得られる為、好ましい。
If the roll surface temperature is not higher than 150 ° C., a mechanically high-strength separator cannot be obtained. When the roll surface temperature is preferably 140 ° C. or lower, more preferably 130 ° C. or lower, and the roll surface temperature is 50 ° C. or lower, it becomes difficult to stably form into a film. 2 when stretched in the machine direction
It is preferable to stack and stretch one or more sheets because a separator having high strength in the machine direction and the width direction can be obtained.

【0022】また、延伸操作は、機械方向の延伸倍率と
横方向の延伸倍率の関係が、横方向延伸倍率≧機械方向
延伸倍率×1.3倍、好ましくは横方向延伸倍率≧機械
方向延伸倍率×1.5倍、さらに好ましくは、横方向延
伸倍率≧機械方向延伸倍率×2倍である必要がある。横
方向延伸倍率が機械方向延伸倍率×1.3倍未満になる
と、透気度が高くなり、電気的特性に劣る。また、理由
は定かではないが、この延伸倍率の条件を規定すること
により、ショート温度がより高いセパレータが得られ
る。
In the stretching operation, the relationship between the stretch ratio in the machine direction and the stretch ratio in the transverse direction is such that the stretch ratio in the transverse direction ≧ the stretch ratio in the machine direction × 1.3 times, preferably the stretch ratio in the transverse direction ≧ the stretch ratio in the machine direction. × 1.5 times, and more preferably, transverse draw ratio ≧ machine direction draw ratio × 2 times. If the transverse draw ratio is less than the machine direction draw ratio × 1.3 times, the air permeability will be high and the electrical properties will be poor. Although the reason is not clear, a separator having a higher short-circuit temperature can be obtained by defining the conditions for the draw ratio.

【0023】この延伸比の関係が満足されるような、成
形加工性に優れた組成物でかつ、本発明の製造方法によ
れば、機械的強度等に優れ、かつ電気的特性にも優れた
セパレータが得られる。延伸前あるいは延伸後に公知方
法、例えば、界面活性剤の塗布・含浸やコロナ処理等の
親水化処理を施すことにより、アルカリ電池用のセパレ
ータとしても用いることができる。
According to the production method of the present invention, the composition is excellent in molding processability such that the relationship of the stretch ratio is satisfied, and the mechanical strength and the like are excellent and the electrical characteristics are excellent. A separator is obtained. It can be used as a separator for an alkaline battery by a known method before or after stretching, for example, by applying a hydrophilic agent such as coating / impregnation of a surfactant or corona treatment.

【0024】[0024]

【実施例】以下、実施例により本発明を説明するが、本
発明は下記実施例に限定されるものではない。なお、測
定方法を下記に示す。 (1)膜厚 最小目盛り1μmのダイヤルゲージにて測定した。 (2)気孔率 10cm×10cmのサンプルを切り出し、サンプルの
含水時の重量・絶乾時の重量及び膜厚を測定し、下式か
ら求めた。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the following examples. The measuring method is shown below. (1) Film thickness Measured with a dial gauge having a minimum scale of 1 μm. (2) Porosity A sample with a size of 10 cm × 10 cm was cut out, and the weight of the sample when it was wet, the weight when it was absolutely dried, and the film thickness were measured and determined from the following formula.

【0025】 気孔率=(空孔容積/微多孔膜容積)×100(%) 空孔容積=(含水重量(g)−絶乾重量(g))/水の
密度(g/cm3 ) 微多孔膜容積=100×膜厚(cm) (3)バブルポイント ASTM E−128−61に準拠し、エタノール中の
バブルポイントを測定した。 (4)透気度 JIS P−8117に準拠し、東洋精機製B型ガーレ
ー式デンソメータを用い、標線目盛り0〜100までに
要する時間をストップウォッチで測定した。 (5)弾性率及び破断強度 島津社製の型式オートグラフAG−A型を用いて、試験
片の大きさが幅10mm×長さ100mmでチャック間
距離50mm、引張速度200mm/minにおいて引
張試験を行い、弾性率及び破断強度を測定した。なお、
試験片は、MDとCMDそれぞれについて該大きさで切
り出した。
Porosity = (pore volume / microporous membrane volume) × 100 (%) Porosity volume = (water content weight (g) -excess dry weight (g)) / water density (g / cm 3 ) Porous membrane volume = 100 × film thickness (cm) (3) Bubble point The bubble point in ethanol was measured according to ASTM E-128-61. (4) Air Permeability According to JIS P-8117, a B-type Gurley type densometer manufactured by Toyo Seiki was used to measure the time required for the marking line scale 0 to 100 with a stopwatch. (5) Elastic Modulus and Breaking Strength Using a model Autograph AG-A manufactured by Shimadzu, a tensile test was conducted at a test piece size of width 10 mm x length 100 mm, a chuck distance of 50 mm, and a pulling speed of 200 mm / min. Then, the elastic modulus and the breaking strength were measured. In addition,
The test piece was cut out in the size for each of MD and CMD.

【0026】断面積は、(1)項で測定した膜厚×膜幅
によって算出した。 (6)粘度平均分子量 デカリンを用い、測定温度135℃でウベローゼ型粘度
計により粘度を測定し、Chiangの式により粘度平
均分子量を求めた。 (7)重量平均分子量 GPCにより、Shodex Columnsを用いて
測定した。 (8)フューズ温度及びショート温度 図1に実施例で使用するインピーダンス測定装置の概略
を示す。図1の装置を用い、連続的にインピーダンスを
測定しながら、25℃から180℃まで2℃/minの
昇温速度に設定されたオーブン内において昇温する。昇
温過程において観測されるシャットダウン領域のインピ
ーダンスを記録するものとする。
The cross-sectional area was calculated by (film thickness × film width measured in item (1)). (6) Viscosity average molecular weight Using decalin, the viscosity was measured at a measurement temperature of 135 ° C. by an Ubbelose type viscometer, and the viscosity average molecular weight was determined by the Chang's formula. (7) Weight average molecular weight It was measured by GPC using Shodex Columns. (8) Fuse Temperature and Short Circuit Temperature FIG. 1 schematically shows the impedance measuring device used in the examples. Using the device of FIG. 1, while continuously measuring the impedance, the temperature is raised from 25 ° C. to 180 ° C. in an oven set at a heating rate of 2 ° C./min. The impedance of the shutdown area observed during the heating process shall be recorded.

【0027】電解液:炭酸プロピレン テトラフルオロホウ酸リチウム 1mol/dm3 条件:ニッケル箔電極 極板間距離 実質的に隔膜の膜厚 極板面積 1.5cm2 交流 1kHz ヒューズ温度は、インピーダンスが100Ωに達した時
の温度とした。ショート温度はインピーダンスが最高値
インピーダンスの10分の1まで低下した時の温度とし
た。 (9)MI JIS K7210に準拠して測定した。
Electrolyte: Propylene carbonate Lithium tetrafluoroborate 1 mol / dm 3 Conditions: Nickel foil electrode Distance between electrode plates Substantially film thickness of electrode plate area 1.5 cm 2 AC 1 kHz Impedance is 100Ω at fuse temperature It was the temperature when it was reached. The short-circuit temperature was the temperature when the impedance dropped to 1/10 of the maximum value impedance. (9) Measured according to MI JIS K7210.

【0028】[0028]

【実施例1】粘度平均分子量33万の高分子量ポリエチ
レン12重量%、粘度平均分子量28万の高分子量ポリ
エチレン16重量%、MIが8の低密度ポリエチレン2
0重量%、微粉珪酸22重量%、DOP43重量%をヘ
ンシェルミキサーで混合し、該混合物をφ30mm二軸
押し出し機に450mm幅のTダイを取り付け、フィル
ム状に押し出しながら、ロール表面温度130℃の間に
該フィルムを通し、厚さ120μmのフィルム状に成形
した。
Example 1 12% by weight of high-molecular-weight polyethylene having a viscosity-average molecular weight of 330,000, 16% by weight of high-molecular-weight polyethylene having a viscosity-average molecular weight of 280,000, and low-density polyethylene 2 having an MI of 2
0% by weight, 22% by weight of finely divided silicic acid and 43% by weight of DOP were mixed in a Henschel mixer, and the mixture was attached to a φ30 mm twin-screw extruder equipped with a 450 mm wide T-die, while being extruded into a film, while the roll surface temperature was 130 ° C. The film was passed through to form a film having a thickness of 120 μm.

【0029】成形されたフィルムは、1,1,1−トリ
クロロエタン中に10分間浸漬し、DOPを抽出した後
水洗して乾燥し、さらに60℃の25%苛性ソーダ中に
60分間浸漬して、微粉珪酸を抽出した後乾燥して、微
多孔膜とした。さらに、該微多孔膜を125℃に加熱さ
れた一軸ロール延伸機により1.5倍延伸した後、幅方
向に4.5倍延伸し、115℃の雰囲気下で5秒間熱処
理を行い、セパレータとした。
The formed film was dipped in 1,1,1-trichloroethane for 10 minutes to extract DOP, washed with water, dried and further dipped in 25% caustic soda at 60 ° C. for 60 minutes to obtain fine powder. After extracting the silicic acid, it was dried to obtain a microporous membrane. Further, the microporous membrane was stretched 1.5 times by a uniaxial roll stretching machine heated to 125 ° C., then stretched 4.5 times in the width direction, and heat-treated at 115 ° C. for 5 seconds to form a separator. did.

【0030】得られたセパレータの特性を表−1に示
す。また、図2に本実施例のインピーダンスの推移を示
した。
The characteristics of the obtained separator are shown in Table 1. Further, FIG. 2 shows the transition of the impedance of this example.

【0031】[0031]

【実施例2】MIが8の低密度ポリエチレンの代わり
に、MIが20の線状低密度ポリエチレンを用いた以外
は、実施例1と同様に実施した。得られたセパレータの
特性を表−1に示す。
Example 2 The procedure of Example 1 was repeated, except that linear low density polyethylene having MI of 20 was used in place of low density polyethylene having MI of 8. The characteristics of the obtained separator are shown in Table 1.

【0032】[0032]

【実施例3】粘度平均分子量48万の高分子量ポリエチ
レン14重量%、粘度平均分子量28万の高分子量ポリ
エチレン20重量%、MIが20の線状低密度ポリエチ
レン6重量%、微粉珪酸20重量%、DOP40重量%
をヘンシェルミキサーで混合し、該混合物をφ30mm
二軸押し出し機に450mm幅のTダイを取り付け、フ
ィルム状に押し出しながら、ロール温度130℃の間に
該フィルムを通し、厚さ120μmのフィルム状に成形
した。
Example 3 14% by weight of high molecular weight polyethylene having a viscosity average molecular weight of 480,000, 20% by weight of high molecular weight polyethylene having a viscosity average molecular weight of 280,000, 6% by weight of linear low density polyethylene having an MI of 20 and 20% by weight of finely divided silicic acid, 40% by weight of DOP
Are mixed with a Henschel mixer, and the mixture is φ30 mm.
A T-die having a width of 450 mm was attached to a twin-screw extruder, and while being extruded into a film, the film was passed while the roll temperature was 130 ° C. to form a film having a thickness of 120 μm.

【0033】成形されたフィルムは、1,1,1−トリ
クロロエタン中に10分間浸漬し、DOPを抽出した後
水洗して乾燥し、さらに60℃の25%苛性ソーダ中に
60分間浸漬して、微粉珪酸を抽出した後乾燥して、微
多孔膜とした。さらに、該微多孔膜を125℃に加熱さ
れた一軸ロール延伸機により、1.5倍延伸した後、幅
方向に4.5倍延伸し、115℃の雰囲気下で5秒間熱
処理を行い、セパレータとした。
The formed film was dipped in 1,1,1-trichloroethane for 10 minutes to extract DOP, washed with water and dried, and further dipped in 25% caustic soda at 60 ° C. for 60 minutes to obtain fine powder. After extracting the silicic acid, it was dried to obtain a microporous membrane. Further, the microporous membrane was stretched 1.5 times by a uniaxial roll stretching machine heated to 125 ° C., then stretched 4.5 times in the width direction, and heat-treated at 115 ° C. for 5 seconds to obtain a separator. And

【0034】得られたセパレータの特性を表−1に示
す。
The characteristics of the obtained separator are shown in Table 1.

【0035】[0035]

【実施例4】粘度平均分子量48万の高分子量ポリエチ
レンを10.5重量%、粘度平均分子量28万の高分子
量ポリエチレン15重量%、MIが25線状低密度ポリ
エチレン4.5重量%、微粉珪酸23重量%、流動パラ
フィン47重量%をヘンシェルミキサーで混合し、該混
合物をφ30mm二軸押し出し機に450mm幅のTダ
イを取り付けフィルム状に押し出しながら、ロール温度
130℃の間に該フィルムを通し、厚さ100μmのフ
ィルム状に成形した。
Example 4 10.5% by weight of high-molecular-weight polyethylene having a viscosity-average molecular weight of 480,000, 15% by weight of high-molecular-weight polyethylene having a viscosity-average molecular weight of 280,000, MI of 25 linear low-density polyethylene of 4.5% by weight, finely divided silicic acid 23% by weight of liquid paraffin and 47% by weight of liquid paraffin were mixed with a Henschel mixer, and while the T-die having a width of 450 mm was attached to a φ30 mm twin-screw extruder and extruded into a film shape, the film was passed while the roll temperature was 130 ° C., It was formed into a film having a thickness of 100 μm.

【0036】成形されたフィルムは、1,1,1−トリ
クロロエタン中に10分間浸漬し、DOPを抽出した後
水洗して乾燥し、さらに60℃の25%苛性ソーダ中に
60分間浸漬して、微粉珪酸を抽出した後乾燥して、微
多孔膜とした。さらに、該微多孔膜2枚を重ね合わせて
125℃に加熱された一軸ロール延伸機により2.5倍
延伸した後、幅方向に4倍延伸し、115℃の雰囲気下
で5秒間熱処理を行った。
The formed film is dipped in 1,1,1-trichloroethane for 10 minutes to extract DOP, washed with water, dried and further dipped in 25% caustic soda at 60 ° C. for 60 minutes to obtain fine powder. After extracting the silicic acid, it was dried to obtain a microporous membrane. Further, the two microporous membranes were superposed and stretched 2.5 times by a uniaxial roll stretching machine heated to 125 ° C., then stretched 4 times in the width direction, and heat-treated at 115 ° C. for 5 seconds. It was

【0037】得られたセパレータの特性を表1に示す。The characteristics of the obtained separator are shown in Table 1.

【0038】[0038]

【比較例1】粘度平均分子量33万のポリエチレンの替
わりに、粘度平均分子量300万のポリエチレンを使用
した以外は、実施例1と同様に実施した。しかしなが
ら、均一なシート状に成形加工できず、延伸により薄膜
化できなかった。
Comparative Example 1 The procedure of Example 1 was repeated, except that polyethylene having a viscosity average molecular weight of 3,000,000 was used instead of polyethylene having a viscosity average molecular weight of 330,000. However, it could not be formed into a uniform sheet and could not be thinned by stretching.

【0039】[0039]

【比較例2】粘度平均分子量70万の超高分子量ポリエ
チレン30重量%、微粉珪酸23重量%、流動パラフィ
ン47重量%を使用した以外は、実施例4と同様に実施
した。
Comparative Example 2 The procedure of Example 4 was repeated except that 30% by weight of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 700,000, 23% by weight of finely divided silicic acid and 47% by weight of liquid paraffin were used.

【0040】[0040]

【比較例3】粘度平均分子量33万の高分子量ポリエチ
レンの代わりに、粘度平均分子量70万の超高分子量ポ
リエチレンを使用した以外は、実施例1同様に実施し
た。しかしながら、均一なシート状に成形加工できず、
延伸により薄膜化できなかった。
Comparative Example 3 Example 1 was repeated except that ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 700,000 was used instead of high molecular weight polyethylene having a viscosity average molecular weight of 330,000. However, it could not be formed into a uniform sheet,
The film could not be thinned by stretching.

【0041】[0041]

【比較例4】メルトインデックス(測定荷重5kg、1
90℃)0.25g/10min、粘度平均分子量21
万の高密度ポリエチレン30重量%、メルトインデック
ス(測定荷重5kg、190℃)0g/10min、粘
度平均分子量48万の高密度ポリエチレン20重量%、
フタル酸ジオクチル38重量%、および微粉ケイ酸12
重量%をヘンシェルミキサーで混合し、該混合物をφ3
5mmに二軸押出機に650mm幅Tダイを取り付けた
製膜装置に供給して成形物を得た。
Comparative Example 4 Melt index (measurement load 5 kg, 1
90 ° C.) 0.25 g / 10 min, viscosity average molecular weight 21
30% by weight of high-density polyethylene, melt index (measurement load 5 kg, 190 ° C.) 0 g / 10 min, viscosity-average molecular weight 480,000 high-density polyethylene 20% by weight,
38% by weight of dioctyl phthalate and 12 finely divided silicic acid
Wt% is mixed with a Henschel mixer, and the mixture is mixed with φ3
The film was supplied to a film forming apparatus in which a T-die having a width of 650 mm was attached to a twin-screw extruder at 5 mm to obtain a molded product.

【0042】該成形物を1,1,1−トリクロロエタン
中に浸漬して微粉ケイ酸を溶出除去し、水洗、乾燥し、
厚さ100μmのシート上の原膜を得た。更に該膜を、
二軸延伸試験機にて、温度125℃、延伸速度1000
%/minの条件下で、機械方向に4倍、続いて幅方向
に1.4倍逐次二軸延伸した。得られたセパレータの特
性を表1に示す。
The molded product is dipped in 1,1,1-trichloroethane to elute and remove finely divided silicic acid, washed with water and dried,
A raw film on a sheet having a thickness of 100 μm was obtained. Furthermore, the film
Using a biaxial stretching tester, temperature 125 ° C, stretching speed 1000
Under the condition of% / min, the film was sequentially biaxially stretched 4 times in the machine direction and then 1.4 times in the width direction. The characteristics of the obtained separator are shown in Table 1.

【0043】[0043]

【比較例5】実施例1と同一組成物を同様な操作によ
り、フィルム上に押し出しながら、ロール表面温度15
5℃の間に該フィルムを通し、厚さ120μmのフィル
ム状に成形し、同様な方法でDOP及微粉珪酸を抽出し
て微多孔膜を得た。さらに該微多孔膜を125℃に加熱
された一軸ロール延伸機により、4.5倍延伸したの
ち、幅方向に1.5倍延伸し、115℃の雰囲気下で5
秒間熱処理を行い、セパレータとした。
Comparative Example 5 The same composition as in Example 1 was extruded onto the film by the same operation as described above, while the roll surface temperature was 15
The film was passed through it at 5 ° C. to form a film having a thickness of 120 μm, and DOP and finely divided silicic acid were extracted by the same method to obtain a microporous membrane. Further, the microporous membrane was stretched 4.5 times by a uniaxial roll stretching machine heated to 125 ° C., then stretched 1.5 times in the width direction, and the microporous membrane was stretched 5 times in an atmosphere of 115 ° C.
Heat treatment was performed for 2 seconds to obtain a separator.

【0044】得られたセパレータの特性を表1に示す。
また、図2に本比較例のインピーダンスの推移を示し
た。
The characteristics of the obtained separator are shown in Table 1.
Further, FIG. 2 shows changes in impedance of this comparative example.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【発明の効果】本発明の構成とすることにより、セパレ
ータの加工性、電池セパレータとして望まれる機械的強
度や電気的特性に優れ、電池組立性が良く、安全性の高
く、かつショート温度が高いバランスの取れたセパレー
タを提供することができる。
EFFECTS OF THE INVENTION By adopting the constitution of the present invention, the workability of the separator, the mechanical strength and electrical characteristics desired as a battery separator are excellent, the battery assemblability is good, the safety is high, and the short-circuit temperature is high. A well-balanced separator can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例で製造したセパレータのインピーダン
スを測定する装置。
FIG. 1 is an apparatus for measuring the impedance of a separator manufactured in this example.

【図2】実施例1及び比較例5のインピーダンスの推移
を表すグラフ
FIG. 2 is a graph showing changes in impedance of Example 1 and Comparative Example 5.

【符号の説明】[Explanation of symbols]

1 厚さ10μmのニッケル箔製電極 2 ガラス板 3 電解液が含浸された隔膜 4 ケース 5 熱電対 6 マスキング用テフロンテープ 7 記録装置 8 インピーダンス測定装置 1 Electrode made of nickel foil with a thickness of 10 μm 2 Glass plate 3 Diaphragm impregnated with electrolytic solution 4 Case 5 Thermocouple 6 Teflon tape for masking 7 Recording device 8 Impedance measuring device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 系全体の粘度平均分子量が40万未満の
微多孔膜であって、該微多孔膜の組成物中のポリエチレ
ンの最大粘度平均分子量が50万未満であり、かつ該最
大粘度平均分子量のポリエチレンが5重量%以上含有さ
れたヒューズ温度135℃未満、ショート温度180℃
以上のポリエチレン製微多孔膜であることを特徴とする
電池用のセパレータ。
1. A microporous membrane having a viscosity average molecular weight of less than 400,000 in the entire system, wherein the polyethylene in the composition of the microporous membrane has a maximum viscosity average molecular weight of less than 500,000, and the maximum viscosity average is less than 500,000. Fuse temperature less than 135 ° C and short-circuit temperature 180 ° C containing 5 wt% or more of high molecular weight polyethylene
A separator for a battery, which is the above microporous polyethylene film.
【請求項2】 系全体の粘度平均分子量が40万未満、
該組成物中に最大粘度平均分子量が50万未満ポリエチ
レンを5重量%以上含有した樹脂組成物に、孔形成剤を
添加混合し成形した後、孔形成剤を抽出除去して得られ
る微多孔膜を、横方向延伸倍率≧機械方向延伸倍率×
1.3倍の割合で延伸操作することを特徴とする電池用
のセパレータの製造方法。
2. The viscosity average molecular weight of the entire system is less than 400,000,
A microporous membrane obtained by adding and mixing a pore-forming agent to a resin composition containing 5% by weight or more of polyethylene having a maximum viscosity average molecular weight of less than 500,000, and then extracting and removing the pore-forming agent. , Transverse direction draw ratio ≧ machine direction draw ratio ×
A method for producing a separator for a battery, which comprises performing a stretching operation at a ratio of 1.3 times.
JP27742594A 1994-11-11 1994-11-11 Battery separator and method of manufacturing the same Expired - Fee Related JP3486785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27742594A JP3486785B2 (en) 1994-11-11 1994-11-11 Battery separator and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27742594A JP3486785B2 (en) 1994-11-11 1994-11-11 Battery separator and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08138643A true JPH08138643A (en) 1996-05-31
JP3486785B2 JP3486785B2 (en) 2004-01-13

Family

ID=17583386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27742594A Expired - Fee Related JP3486785B2 (en) 1994-11-11 1994-11-11 Battery separator and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3486785B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993954A (en) * 1997-04-29 1999-11-30 3M Innovative Properties Company Temperature-sensitive microporous film
US6296969B1 (en) 1998-03-30 2001-10-02 Noritake Co., Ltd. Separator for battery having a function of avoiding dangers caused by overheat, and method for producing the same
KR100371401B1 (en) * 1999-03-03 2003-02-07 주식회사 엘지화학 Separator for lithium ion polymer battery and lithium ion polymer battery comprising the same
KR100391933B1 (en) * 2000-10-23 2003-07-16 베스 주식회사 Porous polymeric electrolyte and method for making the same
KR100675572B1 (en) * 2004-06-11 2007-01-30 에스케이 주식회사 Microporous high density polyethylene film and preparing method thereof
WO2007094530A1 (en) * 2006-02-14 2007-08-23 Sk Energy Co., Ltd. Microporous polyolefin film with improved meltdown property and preparing method thereof
US8349236B2 (en) 2004-12-23 2013-01-08 Toray Advanced Materials Korea Inc. Method of preparing a polyethylene microporous film for a rechargeable battery separator
WO2022002094A1 (en) * 2020-07-01 2022-01-06 华为技术有限公司 Separator and manufacturing method therefor, and battery, electronic device, and mobile device
CN113964448A (en) * 2020-07-01 2022-01-21 华为技术有限公司 Separator, method for manufacturing separator, battery, electronic device, and mobile device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212006A (en) * 1993-01-19 1994-08-02 Asahi Chem Ind Co Ltd Polyethylene millipore membrane
JPH06240036A (en) * 1991-01-30 1994-08-30 Tonen Corp Microporous polyolefin film and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240036A (en) * 1991-01-30 1994-08-30 Tonen Corp Microporous polyolefin film and its production
JPH06212006A (en) * 1993-01-19 1994-08-02 Asahi Chem Ind Co Ltd Polyethylene millipore membrane

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993954A (en) * 1997-04-29 1999-11-30 3M Innovative Properties Company Temperature-sensitive microporous film
US6296969B1 (en) 1998-03-30 2001-10-02 Noritake Co., Ltd. Separator for battery having a function of avoiding dangers caused by overheat, and method for producing the same
KR100371401B1 (en) * 1999-03-03 2003-02-07 주식회사 엘지화학 Separator for lithium ion polymer battery and lithium ion polymer battery comprising the same
KR100391933B1 (en) * 2000-10-23 2003-07-16 베스 주식회사 Porous polymeric electrolyte and method for making the same
KR100675572B1 (en) * 2004-06-11 2007-01-30 에스케이 주식회사 Microporous high density polyethylene film and preparing method thereof
US8349236B2 (en) 2004-12-23 2013-01-08 Toray Advanced Materials Korea Inc. Method of preparing a polyethylene microporous film for a rechargeable battery separator
WO2007094530A1 (en) * 2006-02-14 2007-08-23 Sk Energy Co., Ltd. Microporous polyolefin film with improved meltdown property and preparing method thereof
WO2022002094A1 (en) * 2020-07-01 2022-01-06 华为技术有限公司 Separator and manufacturing method therefor, and battery, electronic device, and mobile device
CN113964448A (en) * 2020-07-01 2022-01-21 华为技术有限公司 Separator, method for manufacturing separator, battery, electronic device, and mobile device
CN113964448B (en) * 2020-07-01 2023-12-15 华为技术有限公司 Separator, method for manufacturing separator, battery, electronic device, and mobile device

Also Published As

Publication number Publication date
JP3486785B2 (en) 2004-01-13

Similar Documents

Publication Publication Date Title
JP4753446B2 (en) Polyolefin microporous membrane
JP5216327B2 (en) Polyolefin microporous membrane
JP5586152B2 (en) Polyolefin microporous membrane
JP6680206B2 (en) Polyolefin microporous membrane, battery separator and battery
JP5325405B2 (en) Polyolefin microporous membrane
JP3497569B2 (en) Polyethylene microporous membrane for non-aqueous battery separator
JP5572334B2 (en) Polyolefin microporous membrane
JP3449656B2 (en) Battery separator
JP3917721B2 (en) Method for producing microporous membrane
JP6988881B2 (en) Separator for secondary batteries containing polyethylene microporous membrane
JP6895570B2 (en) Polyolefin microporous membrane and method for producing polyolefin microporous membrane
JPH06212006A (en) Polyethylene millipore membrane
JP4964565B2 (en) Polyethylene microporous membrane
JP3486785B2 (en) Battery separator and method of manufacturing the same
WO2020137336A1 (en) Microporous polyolefin membrane and method for producing microporous polyolefin membrane
JPH0696753A (en) Polyolefine micro-cellular porous film
JP4713441B2 (en) Method for producing polyolefin microporous membrane
JP2018154834A (en) Method for producing polyolefin microporous film, battery separator, and nonaqueous electrolyte secondary battery
JP6596270B2 (en) Method for producing polyolefin microporous membrane
JPH06163023A (en) Battery separator
JPH04212265A (en) Polyethylene poromeric film for cell separator
JPH0760084A (en) Polyolefin microporous membrane and production thereof
JP3642597B2 (en) Separator used for battery
JP2016188374A (en) Method for producing polyolefin microporous film, battery separator, and nonaqueous electrolyte secondary battery
JP2009138159A (en) Microporous membrane

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees