JPH06240036A - Microporous polyolefin film and its production - Google Patents

Microporous polyolefin film and its production

Info

Publication number
JPH06240036A
JPH06240036A JP4727891A JP4727891A JPH06240036A JP H06240036 A JPH06240036 A JP H06240036A JP 4727891 A JP4727891 A JP 4727891A JP 4727891 A JP4727891 A JP 4727891A JP H06240036 A JPH06240036 A JP H06240036A
Authority
JP
Japan
Prior art keywords
molecular weight
polyolefin
stretching
weight
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4727891A
Other languages
Japanese (ja)
Other versions
JP2657430B2 (en
Inventor
Kotaro Takita
耕太郎 滝田
Koichi Kono
公一 河野
Tatsuya Takashima
達也 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP4727891A priority Critical patent/JP2657430B2/en
Publication of JPH06240036A publication Critical patent/JPH06240036A/en
Application granted granted Critical
Publication of JP2657430B2 publication Critical patent/JP2657430B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a microporous film having suitable pore sizes and a sharp pore size distribution by extruding and cooling a specific polyolefin soln. to give a get-like compsn. and stretching, drying, and again stretching the compsn. CONSTITUTION:A soln. is obtd. by dissolving, in 50-90wt.% solvent, 10-50wt.% poly olefin which contains at least 1wt.% component with a mol.wt. of 7X10<5> or higher and has a ratio of wt. average mol.wt. to number average mol.wt. of 10-300. The soln. is heated to 140-250 deg.C, extruded through a die, and cooled to give a gel-like compsn. The compsn. is stretched 2-10 times at least monoaxially at a temp. between the crystal dispersion temp. and the temp. 10 deg.C higher than the m.p. of the polyolefin, heated to remove the residual solvent, and stretched again 1.1-5 times at least monoaxially at a temp. at least 10 deg.C lower than the m.p., giving a microporous polyolefin film having a void content of 35-95%, a mean size of interconnecting pore of 0.05-0.2mum, a breaking strength of 0.2kg/15mm-width or higher, and a pore size distribution (a ratio of max. pore size to mean interconnecting pore size) of 1.5 or lower.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超高分子量成分を含有
するポリオレフィンからなる微多孔膜及びその製造方法
に関し、特に適度な大きさの孔径を有し、孔径分布がシ
ャープなポリオレフィン微多孔膜及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microporous membrane composed of a polyolefin containing an ultrahigh molecular weight component and a method for producing the same, and particularly to a polyolefin microporous membrane having a pore size of an appropriate size and a sharp pore size distribution. And a manufacturing method thereof.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】微多孔
膜は、電池用セパレーター、電解コンデンサー用隔膜、
各種フィルター、透湿防水衣料、逆浸透濾過膜、限外濾
過膜、精密濾過膜等の各種用途に用いられている。
2. Description of the Related Art Microporous membranes are used for battery separators, electrolytic capacitor diaphragms,
It is used in various applications such as various filters, moisture-permeable waterproof clothing, reverse osmosis filtration membranes, ultrafiltration membranes and microfiltration membranes.

【0003】従来、ポリオレフィン微多孔膜の製造方法
としては、例えば異種ポリマー等の微粉体からなる孔形
成剤をポリオレフィンに混合してミクロ分散させた後、
孔形成剤を抽出する混合抽出法、ポリオレフィン相を溶
媒でミクロ相分離することにより多孔構造とする相分離
法、異種固体がミクロ分散しているポリオレフィン成形
体に延伸などの歪を与えることにより、異種固体間を界
面破壊して空孔を生じさせて多孔化する延伸法などが用
いられている。しかし、これらの方法では通常分子量が
50万未満程度のポリオレフィンが用いられるため、延伸
による薄膜化及び高強度化には限界があった。
Conventionally, as a method for producing a microporous polyolefin membrane, for example, a pore-forming agent composed of a fine powder of a different polymer or the like is mixed with polyolefin and microdispersed,
A mixed extraction method for extracting a pore-forming agent, a phase separation method for forming a porous structure by microphase-separating a polyolefin phase with a solvent, and imparting strain such as stretching to a polyolefin molded body in which a heterogeneous solid is microdispersed, A stretching method or the like is used in which interfaces between different kinds of solids are destroyed to generate pores to make them porous. However, in these methods, the molecular weight is usually
Since polyolefin of less than 500,000 is used, there is a limit to thinning and high strength by stretching.

【0004】最近、高強度及び高弾性のフィルムに成形
し得る超高分子量ポリオレフィンが開発され、これによ
る高強度の微多孔膜の製造が種々提案された。例えば特
開昭58-5228 号は、超高分子量ポリオレフィンを不揮発
性溶媒に溶解し、この溶液から繊維またはフィルムなど
のゲルを成形し、この溶媒を含むゲルを揮発性溶剤で抽
出処理した後、加熱延伸する方法を開示している。しか
しながら、不揮発性溶媒で高度に膨潤した多孔性組織を
有するゲルは、2方向に延伸しようとしても、高配向の
延伸ができず、網状組織の拡大により破断し易く、得ら
れるフィルムは強度が小さく、また形成される孔径分布
が大きくなるという欠点があった。一方不揮発性溶媒を
揮発性溶剤で抽出した後に乾燥したゲルは、網状組織が
収縮緻密化するが、揮発性溶剤の不均一な蒸発によりフ
ィルム原反にそりが発生し易く、また収縮緻密化によ
り、高倍率の延伸ができないという欠点があった。
Recently, an ultra-high molecular weight polyolefin which can be formed into a high-strength and high-elasticity film has been developed, and various methods for producing a high-strength microporous membrane have been proposed. For example, JP-A-58-5228 discloses that ultra-high molecular weight polyolefin is dissolved in a non-volatile solvent, a gel such as a fiber or a film is molded from this solution, and the gel containing this solvent is subjected to extraction treatment with a volatile solvent. A method of heating and stretching is disclosed. However, a gel having a porous structure swollen highly in a non-volatile solvent cannot be stretched in a high orientation even when it is stretched in two directions, and is easily broken due to expansion of a network structure, and the resulting film has low strength. Also, there is a drawback that the distribution of pore diameters formed is large. On the other hand, in the gel dried after extracting the non-volatile solvent with the volatile solvent, the network shrinks and densifies, but uneven evaporation of the volatile solvent tends to cause warpage in the original film, and shrinkage and densification However, there is a drawback that stretching at a high magnification cannot be performed.

【0005】これに対し、重量平均分子量が、5×105
以上の超高分子量ポリオレフィンを溶媒中で加熱溶解し
た溶液からゲル状シートを成形し、前記ゲル状シート中
の溶媒量を脱溶媒処理により調製し、次いで加熱延伸し
た後、残留溶媒を除去することにより、超高分子量ポリ
オレフィン( ポリエチレン)の微多孔膜を製造する方法
が種々提案されている(特開昭60-242035 号、特開昭61
-495132 号、特開昭61-195133 号、特開昭63-39602号、
特開昭63-273651 号)。しかしながら、上記超高分子量
ポリオレフィン(ポリエチレン)微多孔膜の製造方法
は、いずれも超高分子量ポリオレフィンを2軸延伸する
ために、ポリオレフィンの希薄溶液を調製する必要があ
り、このため得られた溶液は、シート成形するダイス出
口でスウェルやネックインが大きく、シート成形が困難
であり、さらにシート中には、溶媒が過剰に含まれてい
るため、そのまま延伸しても目的の微多孔膜は得られな
いので脱溶媒処理してシート中の溶媒量を調製する必要
がある等、生産性において問題があった。
On the other hand, the weight average molecular weight is 5 × 10 5.
Molding a gel-like sheet from a solution obtained by heating and dissolving the above ultra-high molecular weight polyolefin in a solvent, adjusting the amount of the solvent in the gel-like sheet by a desolventizing treatment, and then drawing by heating and removing the residual solvent. Have proposed various methods for producing a microporous membrane of ultra-high molecular weight polyolefin (polyethylene) (JP-A-60-242035 and JP-A-61).
-495132, JP-A-61-195133, JP-A-63-39602,
JP-A-63-273651). However, in any of the above methods for producing an ultrahigh molecular weight polyolefin (polyethylene) microporous membrane, it is necessary to prepare a dilute solution of the polyolefin in order to biaxially stretch the ultrahigh molecular weight polyolefin, and thus the obtained solution is The swell and neck-in are large at the die exit for forming the sheet, making it difficult to form the sheet. Further, since the sheet contains an excessive amount of solvent, the target microporous membrane can be obtained even by stretching as it is. Since there is no solvent, it is necessary to remove the solvent to adjust the amount of solvent in the sheet.

【0006】このような問題を解決することを目的とし
て本発明者らは、超高分子量ポリオレフィンを含有し、
(重量平均分子量/数平均分子量)の値が特定の範囲内
にある組成物を用いたポリオレフィン微多孔膜の製造方
法を提案した(特願平1-201785号) 。この方法により、
延伸性が良好で、高濃度溶液とすることが可能なポリオ
レフィン組成物からポリオレフィン微多孔膜を製造する
ことが可能となる。
In order to solve such a problem, the inventors of the present invention contain an ultra high molecular weight polyolefin,
We proposed a method for producing a microporous polyolefin membrane using a composition having a (weight average molecular weight / number average molecular weight) value within a specific range (Japanese Patent Application No. 1-201785). By this method,
It is possible to produce a polyolefin microporous film from a polyolefin composition that has good stretchability and can be made into a high-concentration solution.

【0007】しかしながら、ポリオレフィン微多孔膜の
孔径を調べたところ、上記いずれの方法によるポリオレ
フィン微多孔膜も0.001 〜0.2 μmの範囲の平均貫通孔
径とすることが可能であるが、特に外径0.1 〜0.5 μm
程度の大きさの成分を分離する場合に必ずしも十分な濾
過効率を発揮することができない。そこで、外径0.1〜
0.5 μm程度の大きさの成分を効率よく、しかも速やか
に分離するために、孔径が0.05〜0.2 μmの範囲内にあ
り、その孔径分布がある程度シャープである微多孔膜が
望まれるようになった。
However, when the pore diameter of the polyolefin microporous membrane was examined, it was possible to obtain an average through-pore diameter in the range of 0.001 to 0.2 μm in the polyolefin microporous membrane by any of the above methods, but especially the outer diameter of 0.1 to 0.2 μm. 0.5 μm
It is not always possible to exert sufficient filtration efficiency when separating components of a moderate size. Therefore, the outer diameter is 0.1 ~
In order to efficiently and promptly separate components having a size of about 0.5 μm, a microporous membrane having a pore size within the range of 0.05 to 0.2 μm and having a somewhat sharp pore size distribution has been desired. .

【0008】したがって本発明の目的は、適度な大きさ
の孔径を有し、孔径分布がシャープなポリオレフィン微
多孔膜を提供することである。
Therefore, an object of the present invention is to provide a polyolefin microporous membrane having a pore size of an appropriate size and having a sharp pore size distribution.

【0009】また本発明のもう一つの目的は、適度な大
きさの孔径を有し、孔径分布がシャープなポリオレフィ
ン微多孔膜の製造方法を提供することである。
Another object of the present invention is to provide a method for producing a polyolefin microporous membrane having a pore size of an appropriate size and having a sharp pore size distribution.

【0010】[0010]

【課題を解決するための手段】上記目的に鑑み鋭意研究
の結果、本発明者らは、超高分子量成分を含有し、分子
量分布が広い(重量平均分子量/数平均分子量が大き
い)ポリオレフィンの溶液をシート状に成形し、急冷し
て得られるゲル状シートに特定の温度で少なくとも1軸
方向に一次及び二次延伸を施すことにより得られる微多
孔膜は、適度な大きさの孔径を有し、孔径分布がシャー
プであることを見出し、本発明に想到した。
As a result of earnest research in view of the above object, the present inventors have found that a solution of a polyolefin containing an ultrahigh molecular weight component and having a wide molecular weight distribution (weight average molecular weight / large number average molecular weight). Is formed into a sheet, and the gel-like sheet obtained by rapid cooling is subjected to primary and secondary stretching in at least a uniaxial direction at a specific temperature. The microporous membrane has a pore size of an appropriate size. The inventors have found that the pore size distribution is sharp, and have arrived at the present invention.

【0011】すなわち、本発明のポリオレフィン微多孔
膜は、分子量7×105 以上の成分を1重量%以上含有
し、(重量平均分子量/数平均分子量)が10〜300 のポ
リオレフィンからなり、空孔率が35〜95%で、平均貫通
孔径が0.05〜0.2 μmで、15mm幅の破断強度が0.2 kg以
上であり、かつ孔径分布 (最大孔径/平均貫通孔径)の
値が1.5 以下であることを特徴とする。
That is, the polyolefin microporous membrane of the present invention comprises 1% by weight or more of a component having a molecular weight of 7 × 10 5 or more, (weight average molecular weight / number average molecular weight) of 10 to 300, and has pores. The ratio is 35-95%, the average through-hole diameter is 0.05-0.2 μm, the breaking strength of 15 mm width is 0.2 kg or more, and the value of pore size distribution (maximum pore size / average through-hole diameter) is 1.5 or less. Characterize.

【0012】また、本発明のポリオレフィン微多孔膜を
製造する第一の方法は、分子量7×105 以上の成分を1
重量%以上含有し、(重量平均分子量/数平均分子量)
が10〜300 のポリオレフィン10〜50重量%と、溶媒50〜
90重量%とからなる溶液を調製し、前記溶液をダイより
押出し、冷却することにより未延伸のゲル状組成物を形
成し、前記ゲル状組成物を前記ポリオレフィンの結晶分
散温度〜融点+10℃の温度で、少なくとも1軸方向に延
伸し、次いで残存溶媒の除去を行い、その後得られた延
伸物を前記ポリオレフィンの融点−10℃以下の温度で少
なくとも1軸方向に再び延伸することを特徴とする。
The first method for producing the polyolefin microporous membrane of the present invention is one in which a component having a molecular weight of 7 × 10 5 or more is used.
Contains more than weight% (weight average molecular weight / number average molecular weight)
10 to 50% by weight of polyolefin with 10 to 300 and 50 to 50% of solvent
90 wt% to prepare a solution, extruding the solution from a die, to form an unstretched gel composition by cooling, the gel composition, the crystal dispersion temperature of the polyolefin ~ melting point + 10 ℃ It is characterized in that it is stretched at least uniaxially at a temperature, then the residual solvent is removed, and then the obtained stretched product is stretched again at least uniaxially at a temperature not higher than the melting point of the above-mentioned polyolefin -10 ° C. .

【0013】さらに本発明のポリオレフィン微多孔膜を
製造する第二の方法は、分子量7×105 以上の成分を1
重量%以上含有し、(重量平均分子量/数平均分子量)
が10〜300 のポリオレフィン10〜50重量%と、溶媒50〜
90重量%とからなる溶液を調製し、前記溶液をダイより
押出し、冷却することにより未延伸のゲル状組成物を形
成し、前記ゲル状組成物を前記ポリオレフィンの結晶分
散温度以下の温度で少なくとも1軸方向に1.2 〜10倍に
延伸し、続いて結晶分散温度〜融点+10℃の温度で、少
なくとも1軸方向に1.2 〜10倍に延伸し、しかる後残存
溶媒の除去を行うことを特徴とする。
Further, the second method for producing the polyolefin microporous membrane of the present invention is to add 1 component having a molecular weight of 7 × 10 5 or more.
Contains more than weight% (weight average molecular weight / number average molecular weight)
10 to 50% by weight of polyolefin with 10 to 300 and 50 to 50% of solvent
A solution consisting of 90% by weight is prepared, the solution is extruded from a die, and an unstretched gel composition is formed by cooling, and the gel composition is at least at a temperature not higher than the crystal dispersion temperature of the polyolefin. It is characterized in that it is stretched 1.2 to 10 times in the uniaxial direction, and subsequently stretched 1.2 to 10 times in the uniaxial direction at a temperature of the crystal dispersion temperature to the melting point + 10 ° C., and then the residual solvent is removed. To do.

【0014】本発明を以下詳細に説明する。本発明のポ
リオレフィン微多孔膜は、分子量7×105 以上の成分を
1重量%以上含有し、分子量分布(重量平均分子量/数
平均分子量)が10〜300 のポリオレフィンからなる。
The present invention is described in detail below. The polyolefin microporous membrane of the present invention comprises 1% by weight or more of a component having a molecular weight of 7 × 10 5 or more, and has a molecular weight distribution (weight average molecular weight / number average molecular weight) of 10 to 300.

【0015】上記ポリオレフィンの重量平均分子量/数
平均分子量は、10〜300 、好ましくは12〜 250である。
重量平均分子量/数平均分子量が10未満では、平均分子
鎖長が大きく、溶解時の分子鎖同志の絡み合い密度が高
くなるため、高濃度溶液の調製が困難である。また300
を超えると、延伸時に低分子量成分の破断が起こり膜全
体の強度が低下する。
The weight average molecular weight / number average molecular weight of the above polyolefin is 10 to 300, preferably 12 to 250.
If the weight average molecular weight / number average molecular weight is less than 10, the average molecular chain length is large and the entanglement density of the molecular chains becomes high during dissolution, making it difficult to prepare a high-concentration solution. Again 300
When it exceeds, the breakage of the low molecular weight component occurs during stretching, and the strength of the entire film decreases.

【0016】なお、重量平均分子量/数平均分子量は、
分子量分布の尺度として用いられるものであり、この分
子量の比が大きくなるほど分子量分布の幅は拡大する。
すなわち重量平均分子量の異なるポリオレフィンからな
る組成物の場合、組成物の分子量の比が大きいほど、配
合するポリオレフィンの重量平均分子量の差が大きく、
また小さいほど重量平均分子量の差が小さいことを示し
ている。また単独のポリオレフィンの場合、分子量の比
はその分布の広がりを示し、その値が大きいほど分布が
広がっていることを示している。
The weight average molecular weight / number average molecular weight is
It is used as a measure of the molecular weight distribution, and the larger the ratio of the molecular weights, the wider the width of the molecular weight distribution.
That is, in the case of a composition composed of polyolefins having different weight average molecular weights, the larger the ratio of the molecular weights of the compositions, the larger the difference in the weight average molecular weights of the polyolefins to be blended,
Further, the smaller the value, the smaller the difference in the weight average molecular weight. Further, in the case of a single polyolefin, the molecular weight ratio shows the spread of the distribution, and the larger the value is, the wider the distribution is.

【0017】本発明においては、ポリオレフィンの重量
平均分子量/数平均分子量を10〜300 と、通常の超高分
子量ポリオレフィン自身の重量平均分子量/数平均分子
量(通常6程度)よりも大きく設定している。この結
果、分子量分布は低分子量側へと広がりをみせるため、
高濃度のポリオレフィン溶液の調製が可能となる。
In the present invention, the weight average molecular weight / number average molecular weight of the polyolefin is set to 10 to 300, which is larger than the weight average molecular weight / number average molecular weight of ordinary ultrahigh molecular weight polyolefin itself (usually about 6). . As a result, the molecular weight distribution spreads toward the lower molecular weight side,
A highly concentrated polyolefin solution can be prepared.

【0018】また上記ポリオレフィン中に分子量7×10
5 以上の成分が1重量%未満では、延伸性の向上に寄与
する超高分子量ポリオレフィンの分子鎖の絡み合いがほ
とんど形成されず、高強度の微多孔膜を得ることができ
ない。一方、超高分子量成分の含有率の上限は特に限定
的ではないが、90重量%を超えると目的とするポリオレ
フィン溶液の高濃度化の達成が困難となるため好ましく
ない。
The above-mentioned polyolefin has a molecular weight of 7 × 10.
When the content of the component of 5 or more is less than 1% by weight, the entanglement of the molecular chains of the ultra-high molecular weight polyolefin that contributes to the improvement of the stretchability is hardly formed, and a high-strength microporous membrane cannot be obtained. On the other hand, the upper limit of the content of the ultrahigh molecular weight component is not particularly limited, but if it exceeds 90% by weight, it becomes difficult to achieve the desired high concentration of the polyolefin solution, which is not preferable.

【0019】このポリオレフィンは、上記分子量及び分
子量分布を有していれば、単独のポリオレフィン(混合
物でないもの)か、2種以上のポリオレフィンからなる
組成物のどちらでもよい。
The polyolefin may be either a single polyolefin (not a mixture) or a composition composed of two or more polyolefins as long as it has the above-mentioned molecular weight and molecular weight distribution.

【0020】単独のポリオレフィンの場合、例えば分子
量7×105 以上の超高分子量成分を1重量%以上含有
し、分子量分布(重量平均分子量/数平均分子量)が10
〜300となるように多段重合することにより製造するこ
とができる。多段重合としては、二段重合により高分子
量部分と低分子量部分を製造するのが好ましい。
In the case of a single polyolefin, it contains, for example, 1% by weight or more of an ultrahigh molecular weight component having a molecular weight of 7 × 10 5 or more, and has a molecular weight distribution (weight average molecular weight / number average molecular weight) of 10
It can be produced by carrying out multi-stage polymerization so as to obtain ~ 300. As the multi-stage polymerization, it is preferable to produce the high molecular weight portion and the low molecular weight portion by two-step polymerization.

【0021】またポリオレフィン組成物(混合物)の場
合、重量平均分子量が7×105 以上の超高分子量ポリオ
レフィンと、重量平均分子量が7×105 未満のポリオレ
フィンとを重量平均分子量/数平均分子量が上記範囲と
なるように適量混合することによって得ることができ
る。
Further, in the case of a polyolefin composition (mixture), an ultrahigh molecular weight polyolefin having a weight average molecular weight of 7 × 10 5 or more and a polyolefin having a weight average molecular weight of less than 7 × 10 5 have a weight average molecular weight / number average molecular weight of It can be obtained by mixing an appropriate amount within the above range.

【0022】組成物の場合、超高分子量ポリオレフィン
は、重量平均分子量が7×105 以上、好ましくは1×10
6 〜15×106 のものである。重量平均分子量が7×105
未満では、最大延伸倍率が低く、目的の微多孔膜が得ら
れない。一方、上限は特に限定的ではないが15×106
超えるものは、ゲル状成形物の形成において、成形性に
劣る。
In the case of the composition, the ultrahigh molecular weight polyolefin has a weight average molecular weight of 7 × 10 5 or more, preferably 1 × 10 5.
6 to 15 × 10 6 . Weight average molecular weight is 7 × 10 5
If it is less than the above, the maximum draw ratio is low and the desired microporous membrane cannot be obtained. On the other hand, the upper limit is not particularly limited, but if it exceeds 15 × 10 6 , moldability is poor in forming a gel-like molded product.

【0023】このような超高分子量ポリオレフィンとし
ては、エチレン、プロピレン、1-ブテン、4-メチル-1-
ペンテン、1-ヘキセンなどを重合した結晶性の単独重合
体、2段重合体、又は共重合体及びこれらのブレンド物
等が挙げられる。これらのうち超高分子量ポリエチレ
ン、特に高密度の超高分子量ポリエチレンが好ましい。
Such ultra high molecular weight polyolefins include ethylene, propylene, 1-butene, 4-methyl-1-
Examples thereof include crystalline homopolymers obtained by polymerizing pentene, 1-hexene and the like, two-stage polymers, copolymers and blends thereof. Of these, ultra high molecular weight polyethylene, particularly high density ultra high molecular weight polyethylene is preferred.

【0024】また上記超高分子量ポリオレフィンのポリ
オレフィン組成物中の含有量は、ポリオレフィン組成物
全体を100 重量%として、1重量%以上である。超高分
子量ポリオレフィンの含有量が1重量%未満では、延伸
性の向上に寄与する超高分子量ポリオレフィンの分子鎖
の絡み合いがほとんど形成されず、高強度の微多孔膜を
得ることができない。一方、上限は特に限定的ではない
が、90重量%を超えると目的とするポリオレフィン溶液
の高濃度化の達成が困難となるため好ましくない。
The content of the above ultrahigh molecular weight polyolefin in the polyolefin composition is 1% by weight or more, based on 100% by weight of the entire polyolefin composition. When the content of the ultrahigh molecular weight polyolefin is less than 1% by weight, the entanglement of the molecular chains of the ultrahigh molecular weight polyolefin, which contributes to the improvement of the stretchability, is hardly formed, and a high-strength microporous membrane cannot be obtained. On the other hand, the upper limit is not particularly limited, but if it exceeds 90% by weight, it is difficult to achieve the desired high concentration of the polyolefin solution, which is not preferable.

【0025】またポリオレフィン組成物中の超高分子量
ポリオレフィン以外のポリオレフィンは、重量平均分子
量が、7×105 未満のものであるが、分子量の下限とし
ては1×104 以上のものが好ましい。重量平均分子量が
1×104 未満のポリオレフィンを用いると、延伸時に破
断が起こりやすく、目的の微多孔膜が得られないので好
ましくない。特に重量平均分子量が1×105 以上7×10
5 未満のポリオレフィンを超高分子量ポリオレフィンに
配合するのが好ましい。
The polyolefin other than the ultra high molecular weight polyolefin in the polyolefin composition has a weight average molecular weight of less than 7 × 10 5 , and the lower limit of the molecular weight is preferably 1 × 10 4 or more. Use of a polyolefin having a weight average molecular weight of less than 1 × 10 4 is not preferable because breakage easily occurs during stretching and the desired microporous membrane cannot be obtained. Especially the weight average molecular weight is 1 × 10 5 or more 7 × 10
It is preferred to blend a polyolefin of less than 5 with the ultra high molecular weight polyolefin.

【0026】このようなポリオレフィンとしては、エチ
レン、プロピレン、1-ブテン、4-メチル-1- ペンテン、
1-ヘキセンなどを重合した結晶性の単独重合体、2段重
合体、又は共重合体及びこれらのブレンド物等が挙げら
れる。特にエチレンを主体とする重合体である高密度ポ
リエチレンが好ましい。
Such polyolefins include ethylene, propylene, 1-butene, 4-methyl-1-pentene,
Examples thereof include crystalline homopolymers obtained by polymerizing 1-hexene and the like, two-stage polymers, copolymers and blends thereof. High density polyethylene, which is a polymer mainly composed of ethylene, is particularly preferable.

【0027】なお、上述したようなポリオレフィンに
は、必要に応じて、酸化防止剤、紫外線吸収剤、滑剤、
アンチブロッキング剤、顔料、染料、無機充填剤などの
各種添加剤を本発明の目的を損なわない範囲で添加する
ことができる。
If necessary, the above-mentioned polyolefin may be added with an antioxidant, an ultraviolet absorber, a lubricant,
Various additives such as anti-blocking agents, pigments, dyes and inorganic fillers can be added within a range that does not impair the object of the present invention.

【0028】次に、上述したようなポリオレフィンを用
いた本発明のポリオレフィン微多孔膜の第一の製造方法
について説明する。
Next, the first method for producing the polyolefin microporous membrane of the present invention using the above-mentioned polyolefin will be described.

【0029】本発明において、原料となるポリオレフィ
ンの高濃度溶液は、上述のポリオレフィンを溶媒に加熱
溶解することにより調製する。
In the present invention, a high-concentration solution of polyolefin as a raw material is prepared by heating and dissolving the above-mentioned polyolefin in a solvent.

【0030】この溶媒としては、ポリオレフィンを十分
に溶解できるものであれば特に限定されない。例えば、
ノナン、デカン、ウンデカン、ドデカン、パラフィン油
などの脂肪族または環式の炭化水素、あるいは沸点がこ
れらに対応する鉱油留分などが挙げられるが、溶媒含有
量が安定なゲル状成形物を得るためにはパラフィン油の
ような不揮発性の溶媒が好ましい。
The solvent is not particularly limited as long as it can sufficiently dissolve the polyolefin. For example,
Aliphatic or cyclic hydrocarbons such as nonane, decane, undecane, dodecane, and paraffin oil, or mineral oil fractions having boiling points corresponding to these are used to obtain a gel-like molded product having a stable solvent content. A non-volatile solvent such as paraffin oil is preferred.

【0031】加熱溶解は、ポリオレフィンが溶媒中で完
全に溶解する温度で攪拌しながら行う。その温度は使用
する重合体及び溶媒により異なるが、例えばポリエチレ
ンの場合には140 〜250 ℃の範囲である。また、ポリオ
レフィン溶液の濃度は、10〜50重量%、好ましくは10〜
40重量%である。濃度が10重量%未満では、使用する溶
媒量が多く経済的でないばかりか、シート状に成形する
際に、ダイス出口で、スウェルやネックインが大きくシ
ートの成形が困難となる。一方、濃度が50重量%を超え
ると、均一な溶液の調製が困難となる。なお、加熱溶解
にあたってはポリオレフィンの酸化を防止するために酸
化防止剤を添加するのが好ましい。
The heating dissolution is carried out with stirring at a temperature at which the polyolefin is completely dissolved in the solvent. The temperature varies depending on the polymer and solvent used, but in the case of polyethylene, for example, it is in the range of 140 to 250 ° C. The concentration of the polyolefin solution is 10 to 50% by weight, preferably 10 to
40% by weight. When the concentration is less than 10% by weight, not only is the amount of solvent used large and it is not economical, but also when forming into a sheet, swell and neck-in are large at the die outlet, making it difficult to form the sheet. On the other hand, if the concentration exceeds 50% by weight, it becomes difficult to prepare a uniform solution. In addition, in heating and melting, it is preferable to add an antioxidant in order to prevent the oxidation of the polyolefin.

【0032】次にこのポリオレフィンの加熱溶液をダイ
スから押し出して成形する。ダイスは、通常長方形の口
金形状をしたシートダイスが用いられるが、2重円筒状
のインフレーションダイス等も用いることができる。シ
ートダイスを用いた場合のダイスギャップは通常0.1 〜
5mmであり、押出し成形時には140 〜250 ℃に加熱され
る。この際押し出し速度は、通常20〜30cm/分乃至2〜
3m/分である。
Next, this heated solution of polyolefin is extruded from a die to be molded. As the die, a sheet die having a rectangular mouthpiece shape is usually used, but a double cylindrical inflation die or the like can also be used. When using sheet dies, the die gap is usually 0.1-
It is 5 mm and is heated to 140 to 250 ° C during extrusion. At this time, the extrusion speed is usually 20 to 30 cm / min to 2 to
It is 3 m / min.

【0033】このようにしてダイスから押し出された溶
液は、冷却することによりゲル状物に成形される。冷却
は少なくともゲル化温度以下までは50℃/ 分以上の速度
で行うのが好ましい。冷却速度が遅いと結晶化度が上昇
し、延伸に適したゲル状物となりにくい。冷却方法とし
ては、冷風、冷却水、その他の冷却媒体に直接接触させ
る方法、冷媒で冷却したロールに接触させる方法等を用
いることができる。なおダイスから押し出された溶液
は、冷却前あるいは冷却中に、1〜10好ましくは1〜5
の引取比で引き取っても良い。引取比が10以上になると
ネックインが大きくなり、また延伸時に破断を起こしや
すくなり好ましくない。
The solution thus extruded from the die is cooled to form a gel. Cooling is preferably performed at a rate of 50 ° C./min or more up to at least the gelation temperature. When the cooling rate is slow, the degree of crystallinity increases and it is difficult to form a gel-like material suitable for stretching. As a cooling method, a method of directly contacting with cold air, cooling water, or other cooling medium, a method of contacting with a roll cooled with a refrigerant, or the like can be used. The solution extruded from the die should be 1-10, preferably 1-5 before or during cooling.
You may collect at the collection ratio of. When the take-up ratio is 10 or more, neck-in becomes large, and breakage easily occurs during stretching, which is not preferable.

【0034】次にこのゲル状物に対して延伸を行う(以
下、一次延伸という)。延伸は、ゲル状成形物を加熱
し、通常のテンター法、ロール法、インフレーション
法、圧延法もしくはこれらの方法の組合せによって所定
の倍率で行う。延伸は1軸延伸でも2軸延伸でもよい
が、2軸延伸が好ましい。また2軸延伸の場合、縦横同
時延伸または逐次延伸のいずれでもよいが、特に同時2
軸延伸が好ましい。
Next, the gel is stretched (hereinafter referred to as primary stretching). The stretching is carried out by heating the gel-like molded product and using a usual tenter method, roll method, inflation method, rolling method or a combination of these methods at a predetermined magnification. The stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferred. In the case of biaxial stretching, either longitudinal / transverse simultaneous stretching or sequential stretching may be used.
Axial stretching is preferred.

【0035】延伸温度は、ポリオレフィンの結晶分散温
度から結晶融点+10℃以下、好ましくは結晶分散温度か
ら結晶融点未満である。例えば、ポリエチレン組成物の
場合は90〜140 ℃で、より好ましくは、100 〜130 ℃の
範囲である。延伸温度が融点+10℃を超える場合は、樹
脂の溶融により延伸による分子鎖の配向ができない。ま
た、延伸温度が結晶分散温度未満では、樹脂の軟化が不
十分で、延伸において破膜し易く、高倍率の延伸ができ
ない。
The stretching temperature is from the crystal dispersion temperature of polyolefin to the crystal melting point + 10 ° C. or less, preferably from the crystal dispersion temperature to less than the crystal melting point. For example, in the case of a polyethylene composition, the temperature is 90 to 140 ° C, more preferably 100 to 130 ° C. If the stretching temperature is higher than the melting point + 10 ° C, the resin cannot be oriented due to the melting of the resin. On the other hand, if the stretching temperature is lower than the crystal dispersion temperature, the softening of the resin is insufficient, the film is easily broken during stretching, and high-stretching cannot be performed.

【0036】また、延伸倍率は原反の厚さによって異な
るが、1軸方向で少なくとも2倍以上、好ましくは3〜
30倍、面倍率で10倍以上、好ましくは15〜400 倍であ
る。面倍率が10倍未満では延伸が不十分で高弾性、高強
度の微多孔膜が得られない。一方、面倍率が400 倍を超
えると、延伸装置、延伸操作などの点で制約が生じる。
The stretching ratio varies depending on the thickness of the raw fabric, but is at least 2 times or more in the uniaxial direction, preferably 3 to.
The surface magnification is 30 times, 10 times or more, preferably 15 to 400 times. If the surface magnification is less than 10 times, the stretching is insufficient and a highly elastic and high-strength microporous membrane cannot be obtained. On the other hand, if the areal magnification exceeds 400 times, there are restrictions on the stretching apparatus and the stretching operation.

【0037】このようにして延伸した成形物を、続いて
溶剤で洗浄し残留する溶媒を除去する。洗浄溶剤として
は、ペンタン、ヘキサン、ヘプタンなどの炭化水素、塩
化メチレン、四塩化炭素などの塩素化炭化水素、三フッ
化エタンなどのフッ化炭化水素、ジエチルエーテル、ジ
オキサンなどのエーテル類などの易揮発性のものを用い
ることができる。これらの溶剤はポリオレフィンの溶解
に用いた溶媒に応じて適宜選択し、単独もしくは混合し
て用いる。洗浄方法は、溶剤に浸漬し抽出する方法、溶
剤をシャワーする方法、またはこれらの組合せによる方
法などにより行うことができる。
The molded product thus stretched is subsequently washed with a solvent to remove the residual solvent. Examples of cleaning solvents include hydrocarbons such as pentane, hexane and heptane, chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride, fluorohydrocarbons such as ethane trifluoride, and ethers such as diethyl ether and dioxane. A volatile one can be used. These solvents are appropriately selected according to the solvent used for dissolving the polyolefin, and used alone or as a mixture. The cleaning method can be carried out by a method of immersing in a solvent for extraction, a method of showering the solvent, or a combination thereof.

【0038】上述のような洗浄は、延伸成形物中の残留
溶媒が1重量%未満になるまで行う。その後洗浄溶剤を
乾燥するが、洗浄溶剤の乾燥方法は、加熱乾燥、風燥な
どの方法で行うことができる。乾燥した延伸成形物は、
結晶分散温度〜融点の温度範囲で熱固定することが望ま
しい。
The above-mentioned washing is carried out until the residual solvent in the stretch-molded product is less than 1% by weight. After that, the washing solvent is dried. The washing solvent can be dried by heating, air drying or the like. The dried stretched molded product is
It is desirable to heat-set in the temperature range of the crystal dispersion temperature to the melting point.

【0039】本発明の第一の方法においては、この得ら
れた延伸成形物を融点−10℃以下に加熱して再び延伸を
行う(以下、第二次延伸という)。延伸は、上述した一
次延伸と同様の方法により行うことができる。また延伸
方法は1軸延伸でも2軸延伸でもよい。また2軸延伸の
場合、縦横同時延伸または逐次延伸のいずれでもよい。
In the first method of the present invention, the stretched molded product obtained is heated to a melting point of -10 ° C or lower and stretched again (hereinafter referred to as secondary stretching). The stretching can be performed by the same method as the above-mentioned primary stretching. The stretching method may be uniaxial stretching or biaxial stretching. In the case of biaxial stretching, either longitudinal simultaneous stretching or sequential stretching may be performed.

【0040】延伸温度は、ポリオレフィンの融点−10℃
以下、好ましくは結晶分散温度以下である。下限につい
ては室温以上であるのが好ましい。例えば、ポリエチレ
ン組成物の場合は115 ℃以下が好ましい。延伸温度が11
5 ℃を超えると、局部延伸が生じ、膜厚が不均一とな
る。
The stretching temperature is the melting point of polyolefin-10 ° C.
The temperature is preferably below the crystal dispersion temperature. The lower limit is preferably room temperature or higher. For example, in the case of a polyethylene composition, the temperature is preferably 115 ° C or lower. Stretching temperature is 11
If it exceeds 5 ° C, local stretching occurs and the film thickness becomes uneven.

【0041】また、延伸倍率は原反の厚さによって異な
るが、1軸方向に1.1 〜5倍、好ましくは1.2 〜2.5
倍、面倍率が1.2 〜5倍、好ましくは1.5 〜3倍であ
る。面倍率が5倍を超えると、延伸後の膜の厚みが不均
一になってしまうので好ましくない。
The stretching ratio varies depending on the thickness of the raw fabric, but is 1.1 to 5 times in the uniaxial direction, preferably 1.2 to 2.5.
The surface magnification is 1.2 to 5 times, preferably 1.5 to 3 times. If the areal magnification exceeds 5 times, the thickness of the film after stretching becomes uneven, which is not preferable.

【0042】得られたポリオレフィン微多孔膜は、結晶
分散温度〜融点の温度範囲で熱固定することが望まし
い。さらに必要に応じて、プラズマ照射、界面活性剤含
浸、表面グラフト等で親水化処理することができる。
The obtained polyolefin microporous film is preferably heat-set in the temperature range of crystal dispersion temperature to melting point. Furthermore, if necessary, hydrophilic treatment can be performed by plasma irradiation, surfactant impregnation, surface grafting, or the like.

【0043】以上のようにして製造したポリオレフィン
微多孔膜は、空孔率が35〜95%で、平均貫通孔径が0.05
〜0.2 μmで、かつ15mm幅の破断強度が0.2kg 以上好ま
しくは0.5 kg以上である。さらに孔径分布 (最大孔径/
平均貫通孔径)の値が1.5 以下とシャープであり、精密
な濾過を効率よく行うことができる。なお、孔径分布に
おいて最大孔径とは、プルラン溶液の阻止率が90%の時
の値をもとにしてフローリの理論を利用して、算出した
値である。また本発明のポリオレフィン微多孔膜の厚さ
は、用途に応じて適宜選択しうるが、一般に0.1 〜50μ
mであり、好ましくは2〜40μmである。
The polyolefin microporous membrane produced as described above has a porosity of 35 to 95% and an average through pore diameter of 0.05.
The breaking strength in a width of 15 μm is 0.2 kg or more, preferably 0.5 kg or more. Furthermore, pore size distribution (maximum pore size /
The average through-hole diameter) is as sharp as 1.5 or less, and precise filtration can be performed efficiently. The maximum pore size in the pore size distribution is a value calculated by using the theory of Flory based on the value when the rejection rate of the pullulan solution is 90%. The thickness of the polyolefin microporous film of the present invention may be appropriately selected depending on the application, but is generally 0.1 to 50 μm.
m, preferably 2 to 40 μm.

【0044】次に本発明のポリオレフィン微多孔膜の第
二の製造方法について説明する。本発明の第二の方法に
より製造するポリオレフィン微多孔膜も上述した第一の
方法本発明と同様のポリオレフィンからなる。
Next, the second method for producing the microporous polyolefin membrane of the present invention will be described. The polyolefin microporous membrane produced by the second method of the present invention also comprises the same polyolefin as that of the first method of the present invention.

【0045】また、原料となるポリオレフィンの高濃度
溶液の調製乃至ゲル状成形物の製造工程までは上述した
第一の製造方法と同様である。
The preparation of the high-concentration solution of the polyolefin as the raw material and the manufacturing process of the gel-like molded product are the same as in the first manufacturing method described above.

【0046】次いで得られたゲル状成形物の延伸を行う
(以下、一次延伸という)。延伸は、ゲル状成形物を加
熱し、通常のテンター法、ロール法、インフレーション
法、圧延法もしくはこれらの方法の組合せによって所定
の倍率で行う。延伸は1軸延伸でも2軸延伸でもよい。
また2軸延伸の場合、縦横同時延伸または逐次延伸のい
ずれでもよい。
Then, the obtained gel-like molded product is stretched (hereinafter referred to as primary stretching). The stretching is carried out by heating the gel-like molded product and using a usual tenter method, roll method, inflation method, rolling method or a combination of these methods at a predetermined magnification. The stretching may be uniaxial stretching or biaxial stretching.
In the case of biaxial stretching, either longitudinal simultaneous stretching or sequential stretching may be performed.

【0047】上記一次延伸の温度は、ポリオレフィンの
結晶分散温度以下、室温以上である。例えば、ポリエチ
レンの場合は90℃以下である。一次延伸温度が90℃を超
えると、組成物に微細なクラックを生じるような変化が
起こらず、後述する二次延伸により、多孔膜の孔径を大
きくすることができない。
The primary stretching temperature is not higher than the crystal dispersion temperature of the polyolefin and not lower than room temperature. For example, in the case of polyethylene, the temperature is 90 ° C or lower. When the primary stretching temperature exceeds 90 ° C., the composition does not undergo changes such as generation of fine cracks, and the pore size of the porous membrane cannot be increased by the secondary stretching described below.

【0048】また、一次延伸の際の延伸倍率は原反の厚
さによって異なるが、1軸方向で少なくとも1.2 〜10
倍、好ましくは1.5 〜5倍である。延伸倍率が1.2 倍未
満では延伸が不十分なため、微細なクラックを生じるよ
うな変化が起こらず、後述する二次延伸により、多孔膜
の孔径を大きくすることができない。また10倍を超える
と膜強度が低下する。二軸延伸の場合は、面倍率で1.5
〜15倍程度、より好ましくは2〜12倍である。延伸倍率
が面倍率で15倍を超えると孔径分布がシャープでかつ大
きな孔径を有する多孔膜が得られない。
The stretching ratio in the primary stretching depends on the thickness of the raw fabric, but is at least 1.2-10 in the uniaxial direction.
Times, preferably 1.5 to 5 times. If the stretching ratio is less than 1.2 times, the stretching is insufficient, so that changes that cause fine cracks do not occur, and the pore size of the porous membrane cannot be increased by the secondary stretching described below. If it exceeds 10 times, the film strength will decrease. In the case of biaxial stretching, the area magnification is 1.5
It is about 15 times, more preferably 2 to 12 times. If the draw ratio exceeds 15 times in terms of areal magnification, a porous membrane having a sharp pore size distribution and a large pore size cannot be obtained.

【0049】このようにして延伸した成形物を、本発明
の第二の方法においては続いて延伸する(以下、二次延
伸という)。延伸は、一次延伸と同様の方法により、所
定の倍率で行う。延伸は1軸延伸でも2軸延伸でもよい
が、2軸延伸が好ましい。また2軸延伸の場合、縦横同
時延伸または逐次延伸のいずれでもよいが、特に同時2
軸延伸が好ましい。
The molded product thus stretched is subsequently stretched in the second method of the present invention (hereinafter referred to as secondary stretching). Stretching is performed at a predetermined ratio by the same method as in primary stretching. The stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferred. In the case of biaxial stretching, either longitudinal / transverse simultaneous stretching or sequential stretching may be used.
Axial stretching is preferred.

【0050】二次延伸温度は、ポリオレフィンの結晶分
散温度〜結晶融点+10℃、好ましくは結晶分散温度から
結晶融点未満の温度である。例えば、ポリエチレンの場
合は90〜140 ℃で、より好ましくは、100 〜130 ℃の範
囲である。延伸温度が融点+10℃を超える場合は、樹脂
の溶融により延伸による分子鎖の配向ができない。ま
た、延伸温度が結晶分散温度未満では、樹脂の軟化が不
十分で、延伸において破膜し易く、高倍率の延伸ができ
ない。
The secondary stretching temperature is from the crystal dispersion temperature of polyolefin to the crystal melting point + 10 ° C., preferably from the crystal dispersion temperature to below the crystal melting point. For example, in the case of polyethylene, the temperature is 90 to 140 ° C, and more preferably 100 to 130 ° C. If the stretching temperature is higher than the melting point + 10 ° C, the resin cannot be oriented due to the melting of the resin. On the other hand, if the stretching temperature is lower than the crystal dispersion temperature, the softening of the resin is insufficient, the film is easily broken during stretching, and high-stretching cannot be performed.

【0051】また、延伸倍率は原反の厚さによって異な
るが、1軸方向で少なくとも1.2 〜10倍、好ましくは2
〜5倍である。延伸倍率が10倍を超えると孔径分布がシ
ャープでかつ大きな孔径を有する多孔膜が得られない。
また一次延伸と二次延伸のトータル面倍率で10倍以上、
好ましくは10〜300 倍である。トータル面倍率が10倍未
満では延伸が不十分で高弾性、高強度の微多孔膜が得ら
れない。一方、トータル面倍率が400 倍を超えると、延
伸装置、延伸操作などの点で制約が生じる。
Although the draw ratio varies depending on the thickness of the material, it is at least 1.2 to 10 times, preferably 2 times in the uniaxial direction.
~ 5 times. If the draw ratio exceeds 10 times, a porous membrane having a sharp pore size distribution and a large pore size cannot be obtained.
In addition, the total surface magnification of primary stretching and secondary stretching is 10 times or more,
It is preferably 10 to 300 times. If the total surface magnification is less than 10 times, the stretching is insufficient and a highly elastic and high-strength microporous membrane cannot be obtained. On the other hand, if the total areal magnification exceeds 400 times, there will be restrictions in terms of the stretching device and stretching operation.

【0052】続いてこのようにして得られた延伸物を、
溶剤で洗浄し残留する溶媒を除去する。洗浄は上述した
第一の方法と同様の方法により行うことができる。その
後洗浄溶剤を乾燥するが、洗浄溶剤の乾燥方法について
も、上述した第一の方法と同様の方法と同様である。
Subsequently, the stretched product thus obtained is
Wash with solvent to remove residual solvent. The washing can be performed by the same method as the first method described above. After that, the cleaning solvent is dried, and the method for drying the cleaning solvent is the same as the above-mentioned first method.

【0053】このようにして得られたポリオレフィン微
多孔膜は、必要に応じてさらに、プラズマ照射、界面活
性剤含浸、表面グラフト等で親水化処理することができ
る。
The polyolefin microporous membrane thus obtained can be further hydrophilized by plasma irradiation, surfactant impregnation, surface grafting, etc., if necessary.

【0054】以上のようにして製造したポリオレフィン
微多孔膜は、空孔率が35〜95%で、平均貫通孔径が0.05
〜0.2 μmで、かつ15mm幅の破断強度が0.2kg 以上好ま
しくは0.5 kg以上である。さらに孔径分布 (最大孔径/
平均貫通孔径)の値が従来法によるポリオレフィン微多
孔膜の孔径分布と比較して比較的シャープである。な
お、孔径分布において最大孔径とは、プルラン溶液の阻
止率90%の場合の値をもとにしてフローリの理論を利用
して、算出した値である。また本発明のポリオレフィン
微多孔膜の厚さは、用途に応じて適宜選択しうるが、一
般に0.1 〜50μm程度であり、好ましくは2〜40μmで
ある。
The polyolefin microporous membrane produced as described above has a porosity of 35 to 95% and an average through pore diameter of 0.05.
The breaking strength in a width of 15 μm is 0.2 kg or more, preferably 0.5 kg or more. Furthermore, pore size distribution (maximum pore size /
The value of the average through-hole diameter) is relatively sharp as compared with the pore size distribution of the polyolefin microporous membrane obtained by the conventional method. The maximum pore size in the pore size distribution is a value calculated by using the theory of Flory based on the value when the rejection rate of the pullulan solution is 90%. The thickness of the polyolefin microporous film of the present invention may be appropriately selected depending on the application, but is generally about 0.1 to 50 μm, preferably 2 to 40 μm.

【0055】[0055]

【作用】本発明のポリオレフィン微多孔膜の第一の製造
方法においては、超高分子量成分を含有し、分子量分布
が広い(重量平均分子量/数平均分子量が大きい)ポリ
オレフィンの溶液をシート状に成形し、急冷して得られ
るゲル状シートを結晶分散温度〜融点+10℃の温度で、
少なくとも1軸方向に延伸し、残存溶媒の除去・乾燥を
行った後、ポリオレフィンの融点−10℃以下の温度で少
なくとも1軸方向に再び延伸することにより微多孔膜を
製造しているので、得られる微多孔膜は、適度な大きさ
の孔径を有し、孔径分布がシャープである。
In the first method for producing a microporous polyolefin membrane of the present invention, a polyolefin solution containing an ultrahigh molecular weight component and having a wide molecular weight distribution (weight average molecular weight / number average molecular weight is large) is formed into a sheet. Then, the gel-like sheet obtained by quenching is cooled at a temperature of crystal dispersion temperature to melting point + 10 ° C.
Since a microporous membrane is produced by stretching at least uniaxially, removing and drying the residual solvent, and then stretching again at least uniaxially at a temperature not higher than the melting point of the polyolefin of −10 ° C. The obtained microporous membrane has a pore size of an appropriate size and has a sharp pore size distribution.

【0056】このような効果が得られる理由については
必ずしも明らかではないが、通常孔径を大きくするため
に、延伸温度を上昇させると、膜強度が低下して実用的
でなくなり、逆に温度を結晶分散温度付近まで温度を低
下させると空孔率が低下する。一方延伸倍率を上げるこ
とが考えられるが、延伸による変形が膜の厚さ方向に対
しても生じたり、フィブリル化がさらに進行してしまう
など問題を生じてしまう。そこで本発明においては、延
伸をまず結晶分散温度〜融点+10℃の温度で行い、微多
孔を形成し、溶媒を除去した後、融点−10℃以下の温度
でさらに延伸することにより孔径を拡大させるとともに
均一化を図っているためであると考えられる。
Although the reason why such an effect is obtained is not always clear, when the stretching temperature is usually increased to increase the pore size, the film strength is lowered and it becomes unpractical. When the temperature is lowered to around the dispersion temperature, the porosity decreases. On the other hand, increasing the draw ratio is conceivable, but it causes problems such as deformation due to drawing occurring in the thickness direction of the film and further progress of fibrillation. Therefore, in the present invention, the stretching is first carried out at a temperature of the crystal dispersion temperature to the melting point + 10 ° C to form micropores, the solvent is removed, and further stretching is performed at a temperature of the melting point -10 ° C or less to enlarge the pore diameter. It is considered that this is because the homogenization is also attempted.

【0057】また本発明のポリオレフィン微多孔膜の第
二の製造方法においては、超高分子量成分を含有し、分
子量分布が広い(重量平均分子量/数平均分子量が大き
い)ポリオレフィンの溶液をシート状に成形し、急冷し
て得られるゲル状シートを結晶分散温度以下の温度で少
なくとも1軸方向に1.2 〜10倍に延伸し、続いて結晶分
散温度〜融点+10℃の温度で、少なくとも1軸方向に1.
2 〜10倍に延伸し、しかる後残存溶媒の除去・乾燥を行
うことにより微多孔膜を製造しているので、得られる微
多孔膜は、適度な大きさの孔径を有し、孔径分布がシャ
ープである。
Further, in the second method for producing a microporous polyolefin membrane of the present invention, a polyolefin solution containing an ultrahigh molecular weight component and having a wide molecular weight distribution (weight average molecular weight / number average molecular weight is large) is formed into a sheet. The gel-like sheet obtained by molding and quenching is stretched 1.2 to 10 times at least uniaxially at a temperature below the crystal dispersion temperature, and then at a temperature from the crystal dispersion temperature to the melting point + 10 ° C at least uniaxially. 1.
Since the microporous membrane is produced by stretching it 2 to 10 times and then removing and drying the residual solvent, the obtained microporous membrane has a pore size of an appropriate size and a pore size distribution of It's sharp.

【0058】このような効果が得られる理由については
必ずしも明らかではないが、通常微多孔は、ポリオレフ
ィンから生じるフィブリル間に形成されるが、本発明に
おいては、まずフィブリルの生じにくい結晶分散温度以
下の温度で特定の倍率で延伸を行うことにより、フィブ
リル化を抑制しつつ、微細なミクロクラックを生じさ
せ、続いて結晶分散温度〜融点+10℃以下の温度で延伸
を行うことにより、このミクロクラックを拡大化させる
ことにより孔径を拡大させるとともにその均一化を図っ
ているためであると考えられる。
Although the reason why such an effect is obtained is not always clear, micropores are usually formed between fibrils formed from a polyolefin. By stretching at a specific ratio at a temperature, fine microcracks are generated while suppressing fibrillation, and subsequently stretching is performed at a temperature of crystal dispersion temperature to melting point + 10 ° C. or less to generate these microcracks. It is considered that this is because the pore diameter is expanded and the pores are made uniform by enlarging.

【0059】[0059]

【実施例】以下に本発明の実施例を示す。なお、実施例
における試験方法は次の通りである。 (1) 分子量及び分子量分布:ウォーターズ(株)製のGP
C 装置を用い、カラムに東ソー(株)製GMH-6 、溶媒に
O-ジクロルベンゼンを使用し、温度135 ℃、流量1.0 ml
/ 分にて、ゲルパーミエーションクロマトグラフィー
(GPC)法により測定。 (2) フィルムの厚さ:断面を走査型電子顕微鏡により測
定。 (3) 透気度:JIS P8117 に準拠。 (4) 透水度:微多孔膜を平膜モジュールに組み込み、蒸
留水/エタノール混合液(容積比 50/50) で通水して親
水化処理を行い、蒸留水で十分に洗浄した後、380mmHg
の水圧をかけたときの濾液の透過量を測定して求めた。 (5) 平均孔径:上記(4) で記載したモジュールを用い
て、380 mmHgの差圧下で0.05重量%のプルラン(昭和電
工(株)製) の水溶液を循環させたときに、濾液中に含
まれるプルランの濃度を示差屈折率測定から求めた。そ
して、次式により計算した阻止率が50%になるプルラン
の分子量の値から、後述するようなFlory の理論を利用
して、孔径を換算した。 プルランの阻止率={1−(濾液中のプルラン濃度 /原
液中のプルラン濃度)}×100 溶液状態にある鎖状高分子は球状の糸まり状で、その直
径d は、分子鎖の両末端の2乗平均距離〈γ2 〉に対し
て、近似的に 〔d/2 〕2 =〈γ2 〉・・・(1) の関係にあると考えて良い。高分子溶液における粘性と
分子鎖の広がりに関するFlory の理論によると、高分子
の種類に無関係に 〔η〕M=2.1 ×1021〈γ2 3/2 ・・・(2) が成立するので、式(1) 及び(2) により、固有粘度
〔η〕の測定値と、阻止率が50%になる分子量Mとから
鎖状高分子の直径d を算出することができる。このdを
ポリエチレン微多孔膜の平均孔径とした。 (6) 孔径分布:上記(5) による測定において、阻止率が
90%となるプルランの分子量の値から同様に孔径を換算
し、最大孔径とし、この最大孔径の値を用いて、最大孔
径÷平均孔径の値により算出。 (7) 空孔率:水銀ポロシメータで測定。 (8) 破断強度:幅15mmの短冊状試験片に対して、ASTM D
882 に準拠して測定。
EXAMPLES Examples of the present invention will be shown below. The test method in the examples is as follows. (1) Molecular weight and molecular weight distribution: GP manufactured by Waters Co., Ltd.
Using C instrument, GOH-6 manufactured by Tosoh Corporation as a column and as a solvent
Using O-dichlorobenzene, temperature 135 ℃, flow rate 1.0 ml
/ Min, measured by gel permeation chromatography (GPC) method. (2) Film thickness: The cross section was measured with a scanning electron microscope. (3) Air permeability: Conforms to JIS P8117. (4) Water permeability: A microporous membrane was installed in a flat membrane module, water was passed through with a mixture of distilled water / ethanol (volume ratio 50/50) to make it hydrophilic, and after thoroughly washing with distilled water, 380 mmHg
It was determined by measuring the amount of permeation of the filtrate when the water pressure was applied. (5) Average pore size: Included in the filtrate when 0.05% by weight aqueous solution of pullulan (manufactured by Showa Denko KK) was circulated under a differential pressure of 380 mmHg using the module described in (4) above. The concentration of pullulan produced was determined by measuring the differential refractive index. Then, the pore diameter was converted from the value of the molecular weight of pullulan at which the rejection rate calculated by the following equation was 50%, using the Flory's theory described later. Retention rate of pullulan = {1- (pullulan concentration in filtrate / pullulan concentration in undiluted solution)} x 100 The chain polymer in the solution state is a spherical thread, and its diameter d is at both ends of the molecular chain. It can be considered that there is an approximate relationship of [d / 2] 2 = <γ 2 > ... (1) with respect to the root-mean-square distance <γ 2 >. According to Flory's theory of viscosity and molecular chain spread in polymer solution, [η] M = 2.1 × 10 212 > 3/2 (2) holds regardless of the type of polymer. From equations (1) and (2), the diameter d of the chain polymer can be calculated from the measured value of the intrinsic viscosity [η] and the molecular weight M at which the rejection is 50%. This d was defined as the average pore diameter of the polyethylene microporous membrane. (6) Pore size distribution: In the measurement according to (5) above, the rejection rate is
Similarly, the pore diameter was converted from the value of the molecular weight of pullulan to be 90% to obtain the maximum pore diameter, and the value of the maximum pore diameter was used to calculate the value of maximum pore diameter / average pore diameter. (7) Porosity: Measured with a mercury porosimeter. (8) Breaking strength: ASTM D for a strip test piece with a width of 15 mm
Measured according to 882.

【0060】実施例1 重量平均分子量(Mw)が2.5 ×106 の超高分子量ポリ
エチレン2重量部と、重量平均分子量(Mw)3.7 ×10
5 のポリエチレン13重量部とを混合したMw/Mn=11
の原料樹脂と、流動パラフィン (64cst/40℃)85 重量部
とを混合し、ポリエチレン組成物の溶液を調製した。次
にこのポリエチレン組成物の溶液100 重量部に、2,6-ジ
-t- ブチル-p- クレゾール (「BHT 」、住友化学工業
(株)製)0.125重量部とテトラキス〔メチレン-3-(3,5-
ジ-t- ブチル-4- ヒドロキシルフェニル)-プロピオネー
ト〕メタン (「イルガノックス1010」、チバガイギー
製)0.25 重量部とを酸化防止剤として加えて混合した。
この混合液を攪拌機付のオートクレーブに充填して200
℃で90分間攪拌して均一な溶液を得た。
Example 1 2 parts by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight (Mw) of 2.5 × 10 6 and a weight average molecular weight (Mw) of 3.7 × 10
Mw / Mn = 11 mixed with 13 parts by weight of polyethylene of 5
The raw material resin was mixed with 85 parts by weight of liquid paraffin (64 cst / 40 ° C.) to prepare a polyethylene composition solution. Next, to 100 parts by weight of the solution of this polyethylene composition,
0.125 parts by weight of -t-butyl-p-cresol ("BHT", Sumitomo Chemical Co., Ltd.) and tetrakis [methylene-3- (3,5-
0.25 part by weight of di-t-butyl-4-hydroxylphenyl) -propionate] methane (“Irganox 1010”, manufactured by Ciba Geigy) was added as an antioxidant and mixed.
Fill this mixture into an autoclave with a stirrer and
Stir at 90 ° C for 90 minutes to obtain a uniform solution.

【0061】この溶液を直径45mmの押出機により、Tダ
イから押出し、冷却ロールで引取りながらゲル状シート
を成形した。続いてこのゲル状シートを、温度115 ℃、
延伸速度0.5 m/ 分で5×5倍に同時二軸延伸を行っ
た。得られた延伸膜を塩化メチレンで洗浄して残留する
流動パラフィンを抽出除去した後、乾燥してポリエチレ
ン微多孔膜を得た。このポリエチレン微多孔膜を温度90
℃、延伸速度0.5 m/ 分で横方向に1.5 倍に延伸を行
い、厚さポリエチレン微多孔膜を得た。このポリエチレ
ン微多孔膜の製造条件を第1表に示す。またポリエチレ
ン微多孔膜の膜厚、透気度、透水度、空孔率、破断強
度、平均孔径及び孔径分布の測定を行った。結果を第2
表に示す。
This solution was extruded from a T-die with an extruder having a diameter of 45 mm, and a gel-like sheet was formed while being taken up by a cooling roll. Then, the gel-like sheet, a temperature of 115 ℃,
Simultaneous biaxial stretching was carried out at a stretching speed of 0.5 m / min and 5 × 5 times. The stretched film obtained was washed with methylene chloride to remove residual liquid paraffin by extraction, and then dried to obtain a polyethylene microporous film. This polyethylene microporous membrane is heated to a temperature of 90.
At a temperature of 0.5 ° C. and a stretching speed of 0.5 m / min, the film was laterally stretched 1.5 times to obtain a polyethylene microporous membrane having a thickness. The production conditions of this polyethylene microporous membrane are shown in Table 1. Further, the film thickness, air permeability, water permeability, porosity, breaking strength, average pore diameter and pore diameter distribution of the polyethylene microporous membrane were measured. Second result
Shown in the table.

【0062】実施例2 実施例1において横方向の延伸を2倍とした以外は同様
にしてポリエチレン微多孔膜を製造した。このポリエチ
レン微多孔膜の製造条件を第1表に示す。またポリエチ
レン微多孔膜の膜厚、透気度、透水度、空孔率、破断強
度、平均孔径及び孔径分布の測定を行った。結果を第2
表に示す。
Example 2 A polyethylene microporous membrane was produced in the same manner as in Example 1 except that the transverse stretching was doubled. The production conditions of this polyethylene microporous membrane are shown in Table 1. Further, the film thickness, air permeability, water permeability, porosity, breaking strength, average pore diameter and pore diameter distribution of the polyethylene microporous membrane were measured. Second result
Shown in the table.

【0063】実施例3 実施例1において、原料樹脂として2段重合のポリエチ
レン(重量平均分子量7.5 ×105 、重量平均分子量/数
平均分子量=43.0、分子量7×105 以上の成分の割合32
重量%) を用いた以外は同様にして、ポリエチレン微多
孔膜を製造した。このポリエチレン微多孔膜の製造条件
を第1表に示す。またポリエチレン微多孔膜の膜厚、透
気度、透水度、空孔率、破断強度、平均孔径及び孔径分
布の測定を行った。結果を第2表に示す。
Example 3 In Example 1, as a raw material resin, two-stage polymerized polyethylene (weight average molecular weight 7.5 × 10 5 , weight average molecular weight / number average molecular weight = 43.0, ratio of components having a molecular weight of 7 × 10 5 or more 32)
A polyethylene microporous membrane was produced in the same manner except that the (% by weight) was used. The production conditions of this polyethylene microporous membrane are shown in Table 1. Further, the film thickness, air permeability, water permeability, porosity, breaking strength, average pore diameter and pore diameter distribution of the polyethylene microporous membrane were measured. The results are shown in Table 2.

【0064】実施例4 実施例1において、原料樹脂として2段重合のポリエチ
レン(重量平均分子量8.2 ×105 、重量平均分子量/数
平均分子量=28.8、分子量7×105 以上の成分の割合40
重量%) を用いた以外は同様にして、ポリエチレン微多
孔膜を製造した。このポリエチレン微多孔膜の製造条件
を第1表に示す。またポリエチレン微多孔膜の膜厚、透
気度、透水度、空孔率、破断強度、平均孔径及び孔径分
布の測定を行った。結果を第2表に示す。
Example 4 In Example 1, as a raw material resin, two-stage polymerized polyethylene (weight average molecular weight 8.2 × 10 5 , weight average molecular weight / number average molecular weight = 28.8, ratio of components having a molecular weight of 7 × 10 5 or more 40
A polyethylene microporous membrane was produced in the same manner except that the (% by weight) was used. The production conditions of this polyethylene microporous membrane are shown in Table 1. Further, the film thickness, air permeability, water permeability, porosity, breaking strength, average pore diameter and pore diameter distribution of the polyethylene microporous membrane were measured. The results are shown in Table 2.

【0065】比較例1 実施例1において横方向の延伸を温度120 ℃ (ポリエチ
レン組成物の融点−10℃を超える温度)で1.5 倍に延伸
した以外は同様にしてポリエチレン微多孔膜を製造し
た。このポリエチレン微多孔膜の製造条件を第1表に示
す。またポリエチレン微多孔膜の膜厚、透気度、透水
度、空孔率、破断強度、平均孔径及び孔径分布の測定を
行った。結果を第2表に示す。
Comparative Example 1 A polyethylene microporous membrane was produced in the same manner as in Example 1 except that the transverse stretching was performed 1.5 times at a temperature of 120 ° C. (the melting point of the polyethylene composition was higher than −10 ° C.). The production conditions of this polyethylene microporous membrane are shown in Table 1. Further, the film thickness, air permeability, water permeability, porosity, breaking strength, average pore diameter and pore diameter distribution of the polyethylene microporous membrane were measured. The results are shown in Table 2.

【0066】比較例2 実施例1において一次延伸温度を125 ℃、延伸倍率10倍
×10倍とし、二次延伸を行わない以外は同様にしてポリ
オレフィン微多孔膜を製造した。このポリエチレン微多
孔膜の製造条件を第1表に示す。またポリエチレン微多
孔膜の膜厚、透気度、透水度、空孔率、破断強度、平均
孔径及び孔径分布の測定を行った。結果を第2表に示
す。
Comparative Example 2 A polyolefin microporous membrane was produced in the same manner as in Example 1 except that the primary stretching temperature was 125 ° C., the stretching ratio was 10 times × 10 times, and the secondary stretching was not performed. The production conditions of this polyethylene microporous membrane are shown in Table 1. Further, the film thickness, air permeability, water permeability, porosity, breaking strength, average pore diameter and pore diameter distribution of the polyethylene microporous membrane were measured. The results are shown in Table 2.

【0067】 第 1 表 一次延伸条件 二次延伸条件 例 No. 延伸温度 延伸倍率 延伸温度 延伸倍率(横方向) 実施例1 115 ℃ 5倍×5倍 90℃ 1.5 倍 実施例2 115 ℃ 5倍×5倍 90℃ 2.0 倍 実施例3 115 ℃ 5倍×5倍 90℃ 1.5 倍 実施例4 115 ℃ 5倍×5倍 90℃ 1.5 倍 比較例1 115 ℃ 5倍×5倍 120℃ 1.5 倍 比較例2 125 ℃ 10倍×10倍 − − Table 1 Primary stretching conditions Secondary stretching conditions Example No. Stretching temperature Stretching ratio Stretching temperature Stretching ratio (transverse direction) Example 1 115 ° C. 5 times × 5 times 90 ° C. 1.5 times Example 2 115 ° C. 5 times × 5 times 90 ° C. 2.0 times Example 3 115 ° C. 5 times × 5 times 90 ° C. 1.5 times Example 4 115 ° C. 5 times × 5 times 90 ° C. 1.5 times Comparative Example 1 115 ° C. 5 times × 5 times 120 ° C. 1.5 times Comparative Example 2 125 ℃ 10 times × 10 times − −

【0068】 第 2 表 膜厚 透気度 透水度 平均孔径 孔径分布 例 No. (μm) (秒/100cc) (*) (μm) 実施例1 15 180 650 0.08 1.2 実施例2 15 120 750 0.10 1.2 実施例3 15 180 650 0.08 1.2 実施例4 15 150 700 0.07 1.2 比較例1 13〜19 270 以下 350 以下 0.05 2.3 比較例2 15 300 500 0.06 2.8 注) *:単位はリットル/m2 ・hr・atm Table 2 Film Thickness Air Permeability Water Permeability Average Pore Size Pore Size Distribution Example No. (μm) (sec / 100cc) (*) (μm) Example 1 15 180 650 0.08 1.2 Example 2 15 120 750 0.10 1.2 Example 3 15 180 650 0.08 1.2 Example 4 15 150 700 0.07 1.2 Comparative Example 1 13 to 19 270 or less 350 or less 0.05 2.3 Comparative Example 2 15 300 500 0.06 2.8 Note) *: Unit is liter / m 2 · hr · atm

【0069】 [0069]

【0070】第2表から明らかなように本発明の第一の
方法による実施例1乃至4のポリエチレン微多孔膜は、
比較例1のポリエチレン微多孔膜と比較して膜厚が安定
しており、濾過効率が良好で、孔径分布がシャープであ
った。また従来法による比較例2と比べて、孔径分布が
著しくシャープである。
As is clear from Table 2, the polyethylene microporous membranes of Examples 1 to 4 according to the first method of the present invention are:
Compared with the polyethylene microporous membrane of Comparative Example 1, the membrane thickness was stable, the filtration efficiency was good, and the pore size distribution was sharp. In addition, the pore size distribution is significantly sharper than that of Comparative Example 2 using the conventional method.

【0071】実施例5 重量平均分子量(Mw)が2.5 ×106 の超高分子量ポリ
エチレン2重量部と、重量平均分子量(Mw)3.7 ×10
5 のポリエチレン13重量部とを混合したMw/Mn=11
の原料樹脂と、流動パラフィン (64cst/40℃)85 重量部
とを混合し、ポリエチレン組成物の溶液を調製した。次
にこのポリエチレン組成物の溶液100 重量部に、2,6-ジ
-t- ブチル-p- クレゾール (「BHT 」、住友化学工業
(株)製)0.125重量部とテトラキス〔メチレン-3-(3,5-
ジ-t- ブチル-4- ヒドロキシルフェニル)-プロピオネー
ト〕メタン (「イルガノックス1010」、チバガイギー
製)0.25 重量部とを酸化防止剤として加えて混合した。
この混合液を攪拌機付のオートクレーブに充填して200
℃で90分間攪拌して均一な溶液を得た。
Example 5 2 parts by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight (Mw) of 2.5 × 10 6 and a weight average molecular weight (Mw) of 3.7 × 10
Mw / Mn = 11 mixed with 13 parts by weight of polyethylene of 5
The raw material resin was mixed with 85 parts by weight of liquid paraffin (64 cst / 40 ° C.) to prepare a polyethylene composition solution. Next, to 100 parts by weight of the solution of this polyethylene composition,
0.125 parts by weight of -t-butyl-p-cresol ("BHT", Sumitomo Chemical Co., Ltd.) and tetrakis [methylene-3- (3,5-
0.25 part by weight of di-t-butyl-4-hydroxylphenyl) -propionate] methane (“Irganox 1010”, manufactured by Ciba Geigy) was added as an antioxidant and mixed.
Fill this mixture into an autoclave with a stirrer and
Stir at 90 ° C for 90 minutes to obtain a uniform solution.

【0072】この溶液を直径45mmの押出機により、Tダ
イから押出し、冷却ロールで引取りながらゲル状シート
を成形した。得られたシートを9cm×9cmの小片に切
り、2軸延伸機にセットし、一次延伸温度80℃、一次延
伸速度0.3 m/ 分で3×3倍に同時二軸延伸を行った。
続いて得られたフィルムを二次延伸温度118 ℃、一次延
伸速度0.3 m/ 分で2×2倍に同時二軸延伸を行った。
得られた延伸膜を塩化メチレンで洗浄して残留する流動
パラフィンを抽出除去した後、乾燥してポリエチレン微
多孔膜を得た。このポリエチレン微多孔膜の製造条件を
第3表に示す。またポリエチレン微多孔膜の膜厚、透気
度、空孔率、破断強度、平均孔径及び孔径分布の測定を
行った。結果を第4表に示す。
This solution was extruded from a T-die by an extruder having a diameter of 45 mm, and a gel-like sheet was formed by taking it out with a cooling roll. The obtained sheet was cut into small pieces of 9 cm × 9 cm, set in a biaxial stretching machine, and simultaneously biaxially stretched 3 × 3 times at a primary stretching temperature of 80 ° C. and a primary stretching speed of 0.3 m / min.
Subsequently, the obtained film was simultaneously biaxially stretched 2 × 2 times at a secondary stretching temperature of 118 ° C. and a primary stretching speed of 0.3 m / min.
The stretched film obtained was washed with methylene chloride to remove residual liquid paraffin by extraction, and then dried to obtain a polyethylene microporous film. The production conditions of this polyethylene microporous membrane are shown in Table 3. Further, the film thickness, air permeability, porosity, breaking strength, average pore diameter and pore diameter distribution of the polyethylene microporous membrane were measured. The results are shown in Table 4.

【0073】実施例6 実施例5において二次延伸倍率を2.5 ×2.5 倍とした以
外は実施例1と同様にしてポリエチレン微多孔膜を製造
した。このポリエチレン微多孔膜の製造条件を第3表に
示す。またポリエチレン微多孔膜の膜厚、透気度、空孔
率、破断強度、平均孔径及び孔径分布の測定を行った。
結果を第4表に示す。
Example 6 A microporous polyethylene membrane was produced in the same manner as in Example 1 except that the secondary stretching ratio was 2.5 × 2.5. The production conditions of this polyethylene microporous membrane are shown in Table 3. Further, the film thickness, air permeability, porosity, breaking strength, average pore diameter and pore diameter distribution of the polyethylene microporous membrane were measured.
The results are shown in Table 4.

【0074】実施例7 実施例5において二次延伸倍率を4×4倍とした以外は
実施例1と同様にしてポリエチレン微多孔膜を製造し
た。このポリエチレン微多孔膜の製造条件を第3表に示
す。またポリエチレン微多孔膜の膜厚、透気度、空孔
率、破断強度、平均孔径及び孔径分布の測定を行った。
結果を第4表に示す。
Example 7 A polyethylene microporous membrane was produced in the same manner as in Example 1 except that the secondary draw ratio in Example 5 was set to 4 × 4. The production conditions of this polyethylene microporous membrane are shown in Table 3. Further, the film thickness, air permeability, porosity, breaking strength, average pore diameter and pore diameter distribution of the polyethylene microporous membrane were measured.
The results are shown in Table 4.

【0075】実施例8 実施例5において、原料樹脂として2段重合のポリエチ
レン(重量平均分子量7.5 ×105 、重量平均分子量/数
平均分子量=43.0、分子量7×105 以上の成分の割合32
重量%) を用いた以外は同様にして、ポリエチレン微多
孔膜を製造した。このポリエチレン微多孔膜の製造条件
を第3表に示す。またポリエチレン微多孔膜の膜厚、透
気度、空孔率、破断強度、平均孔径及び孔径分布の測定
を行った。結果を第4表に示す。
Example 8 In Example 5, as the raw material resin, two-stage polymerized polyethylene (weight average molecular weight 7.5 × 10 5 , weight average molecular weight / number average molecular weight = 43.0, ratio of components having a molecular weight of 7 × 10 5 or more 32)
A polyethylene microporous membrane was produced in the same manner except that the (% by weight) was used. The production conditions of this polyethylene microporous membrane are shown in Table 3. Further, the film thickness, air permeability, porosity, breaking strength, average pore diameter and pore diameter distribution of the polyethylene microporous membrane were measured. The results are shown in Table 4.

【0076】実施例9 実施例5において、原料樹脂としてを2段重合のポリエ
チレン(重量平均分子量8.2 ×105 、重量平均分子量/
数平均分子量=28.8、分子量7×105 以上の成分の割合
40重量%) を用いた以外は同様にして、ポリエチレン微
多孔膜を製造した。このポリエチレン微多孔膜の製造条
件を第3表に示す。またポリエチレン微多孔膜の膜厚、
透気度、空孔率、破断強度、平均孔径及び孔径分布の測
定を行った。結果を第4表に示す。
Example 9 In Example 5, as the raw material resin, polyethylene of two-stage polymerization (weight average molecular weight 8.2 × 10 5 , weight average molecular weight /
Number average molecular weight = 28.8, ratio of components with a molecular weight of 7 x 10 5 or more
Polyethylene microporous membrane was produced in the same manner except that 40% by weight) was used. The production conditions of this polyethylene microporous membrane are shown in Table 3. Also, the thickness of the polyethylene microporous membrane,
The air permeability, porosity, breaking strength, average pore size and pore size distribution were measured. The results are shown in Table 4.

【0077】比較例3 実施例5において一次延伸倍率を4×4倍とした以外は
同様にしてポリエチレン微多孔膜を製造した。このポリ
エチレン微多孔膜の製造条件を第3表に示す。またポリ
エチレン微多孔膜の膜厚、透気度、空孔率、破断強度、
平均孔径及び孔径分布の測定を行った。結果を第4表に
示す。
Comparative Example 3 A polyethylene microporous membrane was produced in the same manner as in Example 5, except that the primary draw ratio was 4 × 4. The production conditions of this polyethylene microporous membrane are shown in Table 3. The polyethylene microporous film thickness, air permeability, porosity, breaking strength,
The average pore size and the pore size distribution were measured. The results are shown in Table 4.

【0078】比較例4 実施例5において一次延伸温度を118 ℃ (ポリエチレン
の結晶分散温度を超える温度)とした以外は同様にして
ポリエチレン微多孔膜を製造した。このポリエチレン微
多孔膜の製造条件を第3表に示す。またポリエチレン微
多孔膜の膜厚、透気度、空孔率、破断強度、平均孔径及
び孔径分布の測定を行った。結果を第4表に示す。
Comparative Example 4 A polyethylene microporous membrane was produced in the same manner as in Example 5 except that the primary stretching temperature was 118 ° C. (temperature above the crystal dispersion temperature of polyethylene). The production conditions of this polyethylene microporous membrane are shown in Table 3. Further, the film thickness, air permeability, porosity, breaking strength, average pore diameter and pore diameter distribution of the polyethylene microporous membrane were measured. The results are shown in Table 4.

【0079】比較例5 実施例5において、一次延伸を行うことなく延伸条件を
延伸温度125 ℃、延伸倍率を10倍×10倍とした以外は同
様にしてポリエチレン微多孔膜を製造した。このポリエ
チレン微多孔膜の製造条件を第3表に示す。またポリエ
チレン微多孔膜の膜厚、透気度、空孔率、破断強度、平
均孔径及び孔径分布の測定を行った。結果を第4表に示
す。
Comparative Example 5 A polyethylene microporous membrane was produced in the same manner as in Example 5, except that the stretching conditions were set to a stretching temperature of 125 ° C. and a stretching ratio of 10 times × 10 times without primary stretching. The production conditions of this polyethylene microporous membrane are shown in Table 3. Further, the film thickness, air permeability, porosity, breaking strength, average pore diameter and pore diameter distribution of the polyethylene microporous membrane were measured. The results are shown in Table 4.

【0080】 第 3 表 一次延伸条件 二次延伸条件 例 No. 延伸温度 延伸倍率 延伸温度 延伸倍率 実施例5 80 ℃ 3倍×3倍 118℃ 2倍×2倍 実施例6 80 ℃ 3倍×3倍 118℃ 2.5倍×2.5 倍 実施例7 80 ℃ 3倍×3倍 118℃ 4倍×4倍 実施例8 80 ℃ 3倍×3倍 118℃ 2倍×2倍 実施例9 80 ℃ 3倍×3倍 118℃ 2倍×2倍 比較例3 80 ℃ 4倍×4倍 118℃ 2倍×2倍 比較例4 118 ℃ 3倍×3倍 118℃ 2倍×2倍 比較例5 − − 125℃ 10倍×10倍 Table 3 Primary stretching conditions Secondary stretching conditions Example No. Stretching temperature Stretching ratio Stretching temperature Stretching ratio Example 5 80 ° C. 3 times × 3 times 118 ° C. 2 times × 2 times Example 6 80 ° C. 3 times × 3 Double 118 ° C 2.5 ×× 2.5 × Example 7 80 ° C 3 ×× 3 118 ° C 4 ×× 4 × Example 8 80 ° C 3 ×× 3 118 ° C 2 ×× 2 Example 9 80 ° C 3 × 3 times 118 ° C. 2 times × 2 times Comparative Example 3 80 ° C. 4 times × 4 times 118 ° C. 2 times × 2 times Comparative Example 4 118 ° C. 3 times × 3 times 118 ° C. 2 times × 2 times Comparative Example 5 − 125 ° C. 10 times x 10 times

【0081】 第 4 表 膜厚 透気度 平均孔径 孔径分布 空孔率 破断荷重 例 No . (μm) (秒/100cc) (μm) (%) (kg/150mm幅) 実施例5 10 120 0.09 1.3 50 0.8 実施例6 10 180 0.08 1.4 47 1.0 実施例7 10 200 0.07 1.4 45 1.1 実施例8 10 120 0.09 1.4 50 0.8 実施例9 10 150 0.08 1.4 50 0.8 比較例3 10 150 0.07 2.5 57 1.0 比較例4 10 120 0.08 2.8 55 1.0 比較例5 10 200 0.06 2.9 60 0.2 Table 4 Film Thickness Air Permeability Average Pore Size Pore Size Distribution Porosity Breaking Load Example No. (μm) ( sec / 100cc ) (μm) (%) (kg / 150mm width ) Example 5 10 120 0.09 1.3 50 0.8 Example 6 10 180 0.08 1.4 47 1.0 Example 7 10 200 0.07 1.4 45 1.1 Example 8 10 120 0.09 1.4 50 0.8 Example 9 10 150 0.08 1.4 50 0.8 Comparative Example 3 10 150 0.07 2.5 57 1.0 Comparative Example 4 10 120 0.08 2.8 55 1.0 Comparative example 5 10 200 0.06 2.9 60 0.2

【0082】第4表から明らかなように、本発明の方法
による実施例5乃至9のポリエチレン微多孔膜は、比較
例3乃至5のポリエチレン微多孔膜と比べて孔径の分布
がシャープである。
As is clear from Table 4, the polyethylene microporous membranes of Examples 5 to 9 produced by the method of the present invention have a sharper pore size distribution than the polyethylene microporous membranes of Comparative Examples 3 to 5.

【0083】[0083]

【発明の効果】以上詳述したように、本発明の第一の方
法によれば、超高分子量成分を含有し、分子量分布が広
い(重量平均分子量/数平均分子量が大きい)ポリオレ
フィンの溶液をシート状に成形し、急冷して得られるゲ
ル状シートを結晶分散温度〜融点+10℃の温度で、少な
くとも1軸方向に延伸し、残存溶媒の除去・乾燥を行っ
た後、ポリオレフィンの融点−10℃以下の温度で少なく
とも1軸方向に再び延伸することにより微多孔膜を製造
している。
As described in detail above, according to the first method of the present invention, a solution of a polyolefin containing an ultrahigh molecular weight component and having a wide molecular weight distribution (weight average molecular weight / large number average molecular weight) is prepared. The gel-like sheet obtained by forming into a sheet and quenching is stretched in at least one axial direction at a temperature of crystal dispersion temperature to melting point + 10 ° C to remove residual solvent and dry, and then to a melting point of polyolefin-10 A microporous membrane is produced by re-stretching in at least a uniaxial direction at a temperature of ℃ or less.

【0084】また本発明の第二の方法によれば、ゲル状
シートを結晶分散温度以下の温度で少なくとも1軸方向
に1.2 〜10倍に延伸し、続いて結晶分散温度〜融点+10
℃の温度で、少なくとも1軸方向に1.2 〜10倍に延伸
し、しかる後残存溶媒の除去・乾燥を行うことにより微
多孔膜を製造している。
According to the second method of the present invention, the gel-like sheet is stretched 1.2 to 10 times at least uniaxially at a temperature equal to or lower than the crystal dispersion temperature, and then the crystal dispersion temperature to the melting point +10.
A microporous membrane is produced by stretching at least uniaxially 1.2 to 10 times at a temperature of ° C, and then removing and drying the residual solvent.

【0085】このような方法により得られるポリオレフ
ィン微多孔膜は、適度な大きさの孔径を有し、孔径分布
がシャープである。
The polyolefin microporous membrane obtained by such a method has a pore size of an appropriate size, and the pore size distribution is sharp.

【0086】このような本発明の方法によるポリオレフ
ィン微多孔膜は、電池用セパレーター、電解コンデンサ
ー用隔膜、超精密濾過膜、限外濾過膜、各種フィルタ
ー、透湿防水衣料用多孔質膜等の各種用途に好適であ
る。
The polyolefin microporous membrane produced by the method of the present invention can be used in various types of separators for batteries, diaphragms for electrolytic capacitors, ultraprecision filtration membranes, ultrafiltration membranes, various filters, porous membranes for moisture-permeable waterproof clothing, etc. Suitable for use.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 分子量7×105 以上の成分を1重量%以
上含有し、(重量平均分子量/数平均分子量)が10〜30
0 のポリオレフィンからなり、空孔率が35〜95%で、平
均貫通孔径が0.05〜0.2 μmで、15mm幅の破断強度が0.
2kg以上であり、かつ孔径分布 (最大孔径/平均貫通孔
径)の値が1.5 以下であることを特徴とするポリオレフ
ィン微多孔膜。
1. Containing 1% by weight or more of a component having a molecular weight of 7 × 10 5 or more, and (weight average molecular weight / number average molecular weight) is 10 to 30.
It is made of 0 polyolefin and has a porosity of 35 to 95%, an average through hole diameter of 0.05 to 0.2 μm, and a breaking strength of 15 mm width of 0.
A microporous polyolefin membrane having a weight distribution of 2 kg or more and a pore size distribution (maximum pore size / average through pore size) of 1.5 or less.
【請求項2】 分子量7×105 以上の成分を1重量%以
上含有し、(重量平均分子量/数平均分子量)が10〜30
0 のポリオレフィン10〜50重量%と、溶媒50〜90重量%
とからなる溶液を調製し、前記溶液をダイより押出し、
冷却することにより未延伸のゲル状組成物を形成し、前
記ゲル状組成物を前記ポリオレフィンの結晶分散温度〜
融点+10℃の温度で、少なくとも1軸方向に延伸し、次
いで残存溶媒の除去を行い、その後得られた延伸物を前
記ポリオレフィンの融点−10℃以下の温度で少なくとも
1軸方向に再び延伸することを特徴とするポリオレフィ
ン微多孔膜の製造方法。
2. Containing 1% by weight or more of a component having a molecular weight of 7 × 10 5 or more, and (weight average molecular weight / number average molecular weight) is 10 to 30.
0-50% by weight polyolefin and 50-90% by weight solvent
To prepare a solution consisting of, and extruding the solution from a die,
An unstretched gel-like composition is formed by cooling, and the gel-like composition is dispersed at the crystal dispersion temperature of the polyolefin.
Stretching at least uniaxially at a temperature of melting point + 10 ° C, then removing the residual solvent, and then stretching the obtained stretched product again at least uniaxially at a temperature not higher than the melting point of the polyolefin-10 ° C. A method for producing a polyolefin microporous membrane, comprising:
【請求項3】 分子量7×105 以上の成分を1重量%以
上含有し、(重量平均分子量/数平均分子量)が10〜30
0 のポリオレフィン10〜50重量%と、溶媒50〜90重量%
とからなる溶液を調製し、前記溶液をダイより押出し、
冷却することにより未延伸のゲル状組成物を形成し、前
記ゲル状組成物を前記ポリオレフィンの結晶分散温度以
下の温度で少なくとも1軸方向に1.2 〜10倍に延伸し、
続いて結晶分散温度〜融点+10℃の温度で、少なくとも
1軸方向に1.2 〜10倍に延伸し、しかる後残存溶媒の除
去を行うことを特徴とするポリオレフィン微多孔膜の製
造方法。
3. Containing 1% by weight or more of a component having a molecular weight of 7 × 10 5 or more, and (weight average molecular weight / number average molecular weight) is 10 to 30.
0-50% by weight polyolefin and 50-90% by weight solvent
To prepare a solution consisting of, and extruding the solution from a die,
An unstretched gel composition is formed by cooling, and the gel composition is stretched 1.2 to 10 times in at least one axial direction at a temperature not higher than the crystal dispersion temperature of the polyolefin,
Then, the method for producing a microporous polyolefin membrane is characterized in that it is stretched 1.2 to 10 times at least uniaxially at a temperature of crystal dispersion temperature to melting point + 10 ° C., and then residual solvent is removed.
JP4727891A 1991-01-30 1991-01-30 Polyolefin microporous membrane and method for producing the same Expired - Lifetime JP2657430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4727891A JP2657430B2 (en) 1991-01-30 1991-01-30 Polyolefin microporous membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4727891A JP2657430B2 (en) 1991-01-30 1991-01-30 Polyolefin microporous membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06240036A true JPH06240036A (en) 1994-08-30
JP2657430B2 JP2657430B2 (en) 1997-09-24

Family

ID=12770826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4727891A Expired - Lifetime JP2657430B2 (en) 1991-01-30 1991-01-30 Polyolefin microporous membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP2657430B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245923A (en) * 1991-12-30 1993-09-24 Dsm Nv Process for product of porous film having high bursting strength
JPH08138643A (en) * 1994-11-11 1996-05-31 Asahi Chem Ind Co Ltd Separator for battery and manufacture thereof
JPH11279324A (en) * 1998-03-30 1999-10-12 Asahi Chem Ind Co Ltd Polyethylene microporous film
JP2002502446A (en) * 1996-10-18 2002-01-22 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Ultra-thin microporous material
WO2005015660A1 (en) 2003-08-06 2005-02-17 Mitsubishi Chemical Corporation Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same
WO2006104165A1 (en) * 2005-03-29 2006-10-05 Tonen Chemical Corporation Process for producing microporous polyolefin film and microporous polyolefin film
WO2006106786A1 (en) * 2005-03-31 2006-10-12 Tonen Chemical Corporation Method for producing polyolefin microporous film and microporous film
WO2007023918A1 (en) * 2005-08-25 2007-03-01 Tonen Chemical Corporation Polyethylene multilayer microporous membrane, battery separator using same, and battery
WO2007049568A1 (en) * 2005-10-24 2007-05-03 Tonen Chemical Corporation Polyolefin multilayer microporous film, method for producing same and battery separator
WO2007117042A1 (en) 2006-04-07 2007-10-18 Tonen Chemical Corporation Microporous polyolefin membrane, its production method, battery separator, and battery
EP1870430A1 (en) * 2005-03-31 2007-12-26 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
WO2008118643A1 (en) * 2007-03-27 2008-10-02 Dow Global Technologies Inc. Low relative crystallinity die drawing process for a cavitated filled oriented polymer composition
JP2009051206A (en) * 2007-08-02 2009-03-12 Canon Inc Image forming apparatus
WO2009044227A1 (en) * 2007-10-05 2009-04-09 Tonen Chemical Corporation Microporous polymer membrane
WO2009048173A1 (en) 2007-10-12 2009-04-16 Tonen Chemical Corporation Microporous membranes and methods for making and using such membranes
WO2009110396A1 (en) 2008-03-07 2009-09-11 Tonen Chemical Corporation Microporous membrane, battery separator and battery
EP2111908A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation Microporous Membrane And Manufacturing Method
EP2111913A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation Microporous membrane and manufacturing method
EP2111912A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation Microporous polyolefin membrane and manufacturing method
EP2111909A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation Microporous Polyolefin Membrane And Manufacturing Method
JP2010235707A (en) * 2009-03-30 2010-10-21 Asahi Kasei E-Materials Corp Method for producing polyolefin microporous film
US8021789B2 (en) 2007-09-28 2011-09-20 Toray Tonen Specialty Separator Godo Kaisha Microporous membrane and manufacturing method
WO2011121693A1 (en) * 2010-03-30 2011-10-06 パナソニック株式会社 Size aa lithium primary battery and size aaa lithium primary battery
US8273279B2 (en) 2007-09-28 2012-09-25 Toray Battery Separator Film Co., Ltd. Microporous polyolefin membrane and manufacturing method
US8304114B2 (en) 2007-09-20 2012-11-06 Toray Battery Separator Film Co., Ltd. Microporous polyolefin membrane and manufacturing method
US8338017B2 (en) 2007-10-12 2012-12-25 Toray Battery Separator Film Co., Ltd. Microporous membrane and manufacturing method
US8715849B2 (en) 2007-10-05 2014-05-06 Toray Battery Separator Film Co., Ltd. Microporous polymer membrane
WO2014132791A1 (en) * 2013-02-27 2014-09-04 東レバッテリーセパレータフィルム株式会社 Porous polyolefin film, battery separator obtained using same, and processes for producing these
US8906539B2 (en) 2006-08-01 2014-12-09 Toray Battery Separator Film Co., Ltd Polyolefin composition, its production method, and a battery separator made therefrom
WO2015050076A1 (en) * 2013-10-03 2015-04-09 東レバッテリーセパレータフィルム株式会社 Polyolefin porous film, separator for batteries which is manufactured using said porous film, and methods respectively for manufacturing said porous film and said separator
JPWO2014175050A1 (en) * 2013-04-22 2017-02-23 東レバッテリーセパレータフィルム株式会社 Laminated porous membrane, method for producing the same, and battery separator
WO2017170288A1 (en) * 2016-03-31 2017-10-05 東レ株式会社 Polyolefin microporous membrane, production method for polyolefin microporous membrane, battery separator, and battery
JP2019509591A (en) * 2016-03-07 2019-04-04 シャンハイ、エナジー、ニュー、マテリアルズ、テクノロジー、カンパニー、リミテッドShanghai Energy New Materials Technology Co., Ltd. Method for preparing lithium ion battery separator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700182B2 (en) 2006-05-15 2010-04-20 Tonen Chemical Corporation Microporous polyolefin membrane, its production method, and battery separator
WO2009028737A1 (en) 2007-08-31 2009-03-05 Tonen Chemical Corporation Microporous polyolefin membrane, its production method, battery separator and battery

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245923A (en) * 1991-12-30 1993-09-24 Dsm Nv Process for product of porous film having high bursting strength
JPH08138643A (en) * 1994-11-11 1996-05-31 Asahi Chem Ind Co Ltd Separator for battery and manufacture thereof
JP2002502446A (en) * 1996-10-18 2002-01-22 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Ultra-thin microporous material
JPH11279324A (en) * 1998-03-30 1999-10-12 Asahi Chem Ind Co Ltd Polyethylene microporous film
WO2005015660A1 (en) 2003-08-06 2005-02-17 Mitsubishi Chemical Corporation Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same
WO2006104165A1 (en) * 2005-03-29 2006-10-05 Tonen Chemical Corporation Process for producing microporous polyolefin film and microporous polyolefin film
JP5021461B2 (en) * 2005-03-29 2012-09-05 東レバッテリーセパレータフィルム合同会社 Method for producing polyolefin microporous membrane and microporous membrane
TWI403549B (en) * 2005-03-29 2013-08-01 Method for preparing a microporous polyolefin membrane and the microporous polyolefin membrane
EP1873194A4 (en) * 2005-03-31 2014-07-30 Toray Battery Separator Film Method for producing polyolefin microporous film and microporous film
TWI414417B (en) * 2005-03-31 2013-11-11 Method for preparing a microporous polyolefin membrane and the microporous polyolefin membrane
EP1870430A4 (en) * 2005-03-31 2012-06-06 Toray Tonen Specialty Separato Microporous polyolefin film and process for producing the same
EP1870430A1 (en) * 2005-03-31 2007-12-26 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
EP1873194A1 (en) * 2005-03-31 2008-01-02 Tonen Chemical Corporation Method for producing polyolefin microporous film and microporous film
WO2006106786A1 (en) * 2005-03-31 2006-10-12 Tonen Chemical Corporation Method for producing polyolefin microporous film and microporous film
JP5342775B2 (en) * 2005-03-31 2013-11-13 東レバッテリーセパレータフィルム株式会社 Method for producing polyolefin microporous membrane and microporous membrane
KR101231752B1 (en) * 2005-03-31 2013-02-08 도레이 배터리 세퍼레이터 필름 주식회사 Method for producing polyolefin microporous film and microporous film
WO2007023918A1 (en) * 2005-08-25 2007-03-01 Tonen Chemical Corporation Polyethylene multilayer microporous membrane, battery separator using same, and battery
US8778525B2 (en) 2005-08-25 2014-07-15 Toray Battery Separator Film Co., Ltd Multi-layer, microporous polyethylene membrane, battery separator formed thereby and battery
JP4911723B2 (en) * 2005-08-25 2012-04-04 東レ東燃機能膜合同会社 Polyethylene multilayer microporous membrane and battery separator and battery using the same
US8932748B2 (en) 2005-10-24 2015-01-13 Toray Battery Separator Film Co., Ltd Multi-layer, microporous polyolefin membrane, its production method, and battery separator
JP5026981B2 (en) * 2005-10-24 2012-09-19 東レバッテリーセパレータフィルム株式会社 Polyolefin multilayer microporous membrane, method for producing the same, and battery separator
WO2007049568A1 (en) * 2005-10-24 2007-05-03 Tonen Chemical Corporation Polyolefin multilayer microporous film, method for producing same and battery separator
EP2006088A4 (en) * 2006-04-07 2012-01-25 Toray Tonen Specialty Separato Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
US8252450B2 (en) 2006-04-07 2012-08-28 Toray Tonen Specialty Separator Godo Kaisha Multi-layer, microporous polyolefin membrane, its production method, battery separator, and battery
US9287542B2 (en) 2006-04-07 2016-03-15 Toray Battery Separator Film Co., Ltd Multi-layer, microporous polyolefin membrane, its production method, battery separator, and battery
EP2006088A1 (en) * 2006-04-07 2008-12-24 Tonen Chemical Corporation Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
KR101319911B1 (en) * 2006-04-07 2013-10-18 도레이 배터리 세퍼레이터 필름 주식회사 Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
US8026005B2 (en) 2006-04-07 2011-09-27 Tonen Chemical Corporation Microporous polyolefin membrane, its production method, battery separator, and battery
WO2007117042A1 (en) 2006-04-07 2007-10-18 Tonen Chemical Corporation Microporous polyolefin membrane, its production method, battery separator, and battery
TWI402172B (en) * 2006-04-07 2013-07-21 Microporous polyolefin membrane, its production method, battery separator, and battery
WO2007117005A1 (en) 2006-04-07 2007-10-18 Tonen Chemical Corporation Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
JP2008081513A (en) * 2006-04-07 2008-04-10 Tonen Chem Corp Polyolefin microporous membrane and method for producing the same
US8906539B2 (en) 2006-08-01 2014-12-09 Toray Battery Separator Film Co., Ltd Polyolefin composition, its production method, and a battery separator made therefrom
WO2008118643A1 (en) * 2007-03-27 2008-10-02 Dow Global Technologies Inc. Low relative crystallinity die drawing process for a cavitated filled oriented polymer composition
JP2009051206A (en) * 2007-08-02 2009-03-12 Canon Inc Image forming apparatus
US8304114B2 (en) 2007-09-20 2012-11-06 Toray Battery Separator Film Co., Ltd. Microporous polyolefin membrane and manufacturing method
US8273279B2 (en) 2007-09-28 2012-09-25 Toray Battery Separator Film Co., Ltd. Microporous polyolefin membrane and manufacturing method
US8021789B2 (en) 2007-09-28 2011-09-20 Toray Tonen Specialty Separator Godo Kaisha Microporous membrane and manufacturing method
JP2010540744A (en) * 2007-10-05 2010-12-24 東燃化学株式会社 Polymer microporous membrane
KR101143106B1 (en) * 2007-10-05 2012-05-08 토레이 밧데리 세퍼레이터 필름 고도 가이샤 Microporous polymer membrane
WO2009044227A1 (en) * 2007-10-05 2009-04-09 Tonen Chemical Corporation Microporous polymer membrane
US8715849B2 (en) 2007-10-05 2014-05-06 Toray Battery Separator Film Co., Ltd. Microporous polymer membrane
WO2009048173A1 (en) 2007-10-12 2009-04-16 Tonen Chemical Corporation Microporous membranes and methods for making and using such membranes
US8338017B2 (en) 2007-10-12 2012-12-25 Toray Battery Separator Film Co., Ltd. Microporous membrane and manufacturing method
WO2009110396A1 (en) 2008-03-07 2009-09-11 Tonen Chemical Corporation Microporous membrane, battery separator and battery
EP2111908A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation Microporous Membrane And Manufacturing Method
EP2111912A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation Microporous polyolefin membrane and manufacturing method
EP2111909A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation Microporous Polyolefin Membrane And Manufacturing Method
EP2111913A1 (en) 2008-04-24 2009-10-28 Tonen Chemical Corporation Microporous membrane and manufacturing method
JP2010235707A (en) * 2009-03-30 2010-10-21 Asahi Kasei E-Materials Corp Method for producing polyolefin microporous film
JP5631319B2 (en) * 2010-03-30 2014-11-26 パナソニック株式会社 AA lithium primary battery and AAA lithium primary battery
JPWO2011121693A1 (en) * 2010-03-30 2013-07-04 パナソニック株式会社 AA lithium primary battery and AAA lithium primary battery
WO2011121693A1 (en) * 2010-03-30 2011-10-06 パナソニック株式会社 Size aa lithium primary battery and size aaa lithium primary battery
WO2014132791A1 (en) * 2013-02-27 2014-09-04 東レバッテリーセパレータフィルム株式会社 Porous polyolefin film, battery separator obtained using same, and processes for producing these
US10153470B2 (en) 2013-02-27 2018-12-11 Toray Industries, Inc. Polyolefin porous membrane, battery separator obtained using same, and method of producing same
JPWO2014175050A1 (en) * 2013-04-22 2017-02-23 東レバッテリーセパレータフィルム株式会社 Laminated porous membrane, method for producing the same, and battery separator
WO2015050076A1 (en) * 2013-10-03 2015-04-09 東レバッテリーセパレータフィルム株式会社 Polyolefin porous film, separator for batteries which is manufactured using said porous film, and methods respectively for manufacturing said porous film and said separator
US10158112B2 (en) 2013-10-03 2018-12-18 Toray Industries, Inc. Porous membrane, battery separator obtained using same, and method of producing same
JP2019509591A (en) * 2016-03-07 2019-04-04 シャンハイ、エナジー、ニュー、マテリアルズ、テクノロジー、カンパニー、リミテッドShanghai Energy New Materials Technology Co., Ltd. Method for preparing lithium ion battery separator
US11101524B2 (en) 2016-03-07 2021-08-24 Shanghai Energy New Materials Technology Co., Ltd. Method for preparing lithium-ion battery separator
WO2017170288A1 (en) * 2016-03-31 2017-10-05 東レ株式会社 Polyolefin microporous membrane, production method for polyolefin microporous membrane, battery separator, and battery
JPWO2017170288A1 (en) * 2016-03-31 2019-02-07 東レ株式会社 Polyolefin microporous membrane and production method thereof, battery separator and battery

Also Published As

Publication number Publication date
JP2657430B2 (en) 1997-09-24

Similar Documents

Publication Publication Date Title
JP2657430B2 (en) Polyolefin microporous membrane and method for producing the same
JP2657434B2 (en) Polyethylene microporous membrane, method for producing the same, and battery separator using the same
JPH06104736B2 (en) Polyolefin microporous membrane
JP4997278B2 (en) Polyethylene microporous membrane and method for producing the same
EP0355214B1 (en) Process for producing microporous ultra-high molecular weight polyolefin membrane
JP4195810B2 (en) Polyolefin microporous membrane and production method and use thereof
JP5283379B2 (en) Polyolefin microporous membrane and method for producing the same
JP3347835B2 (en) Method for producing microporous polyolefin membrane
JP4234398B2 (en) Microporous membrane, production method and use thereof
JP4234392B2 (en) Microporous membrane, production method and use thereof
JP3549290B2 (en) Polyolefin microporous membrane and method for producing the same
JPH07228718A (en) Microporous polyolefin film
JPH0812799A (en) Polyolefin finely porous film and its manufacture
JP3072163B2 (en) Polyolefin microporous membrane, method for producing the same, and battery separator using the same
JPH05222236A (en) Production of polyolefinic microporous film
JP3009495B2 (en) Polyolefin microporous membrane and method for producing the same
JP2001200082A (en) Polyethylene microporous membrane and its manufacturing method
JPH0616862A (en) Microporous polyethylene film
JP2657431B2 (en) Polyolefin microporous membrane and method for producing the same
JPH05222237A (en) Production of polyolefinic microporous film
JPH093228A (en) Production of polyolefin finely porous membrane
JP3250894B2 (en) Method for producing microporous polyolefin membrane
JP3967421B2 (en) Method for producing polyolefin microporous membrane
JPH1192587A (en) Preparation of polyolefin microporous film
JP2711633B2 (en) Method for producing microporous polyolefin membrane

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100606

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 14