JP5572334B2 - Polyolefin microporous membrane - Google Patents

Polyolefin microporous membrane Download PDF

Info

Publication number
JP5572334B2
JP5572334B2 JP2009120685A JP2009120685A JP5572334B2 JP 5572334 B2 JP5572334 B2 JP 5572334B2 JP 2009120685 A JP2009120685 A JP 2009120685A JP 2009120685 A JP2009120685 A JP 2009120685A JP 5572334 B2 JP5572334 B2 JP 5572334B2
Authority
JP
Japan
Prior art keywords
microporous membrane
polyolefin microporous
ratio
width direction
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009120685A
Other languages
Japanese (ja)
Other versions
JP2010007053A (en
Inventor
吉宏 今村
貴志 池本
健 鬼澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei E Materials Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2009120685A priority Critical patent/JP5572334B2/en
Publication of JP2010007053A publication Critical patent/JP2010007053A/en
Application granted granted Critical
Publication of JP5572334B2 publication Critical patent/JP5572334B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/002Organic membrane manufacture from melts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/003Organic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/20Plasticizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/50Control of the membrane preparation process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/22Thermal or heat-resistance properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、ポリオレフィン製微多孔膜、及びその製造方法に関する。   The present invention relates to a polyolefin microporous membrane and a method for producing the same.

ポリオレフィン製微多孔膜は、種々の物質の分離や選択透過分離膜、及び隔離材等として広く用いられており、その用途例としては、精密濾過膜、燃料電池用セパレーター、コンデンサー用セパレーター、機能材を孔の中に充填させ新たな機能を出現させるための機能膜の母材、電池用セパレーター等が挙げられる。これらの用途の中でも、ノート型パーソナルコンピュータや携帯電話、デジタルカメラ等のモバイル機器に広く使用されているリチウムイオン電池用のセパレーターとして、特に好適に使用されている。その理由としては、膜の機械強度や絶縁性能が高いことが挙げられる。   Polyolefin microporous membranes are widely used as separators for various substances, selective permeation separation membranes, and separators. Examples of applications include microfiltration membranes, separators for fuel cells, separators for capacitors, and functional materials. For example, a functional film base material for filling the pores into the holes and causing new functions to appear, battery separators, and the like. Among these uses, it is particularly suitably used as a separator for lithium ion batteries widely used in mobile devices such as notebook personal computers, mobile phones, and digital cameras. The reason is that the mechanical strength and insulation performance of the film are high.

特許文献1及び2には、良好な透過性能と高い強度を持ち合わせたポリエチレン微多孔膜が開示されている。特許文献3には、熱収縮を抑制したポリオレフィン製微多孔膜が開示されている。特許文献4には、孔の分布が狭く、強度の高いポリオレフィン製微多孔膜が開示されている。   Patent Documents 1 and 2 disclose polyethylene microporous membranes having good permeability and high strength. Patent Document 3 discloses a polyolefin microporous membrane that suppresses thermal shrinkage. Patent Document 4 discloses a polyolefin microporous membrane having a narrow pore distribution and high strength.

特開2002−194132号公報JP 2002-194132 A 特開平10−258462号公報Japanese Patent Laid-Open No. 10-258462 特開平9−012756号公報JP-A-9-012756 国際公開第2005/061599号パンフレットInternational Publication No. 2005/061599 Pamphlet

近年、電池の高容量化に伴って、捲回する電極やセパレーターの長さが長くなる傾向にある。また、捲回工程の生産性を向上させる観点から、高速での生産がしばしば実施される。
ここで、ライン速度が高い条件において、ポリオレフィン製微多孔膜、又は電池を安定して生産する観点から、ポリオレフィン製微多孔膜には良好なスリット性を有することや、電池捲回時に巻きズレやシワが発生し難い特性を有していることが望まれる。
しかしながら、上記特許文献1〜4に記載されたポリオレフィン製微多孔膜はいずれも、そのスリット性の観点からは、なお改善の余地を有するものであった。
In recent years, with the increase in capacity of batteries, the lengths of winding electrodes and separators tend to be longer. In addition, high-speed production is often performed from the viewpoint of improving the productivity of the winding process.
Here, from the viewpoint of stably producing a polyolefin microporous membrane or a battery under a condition where the line speed is high, the polyolefin microporous membrane has a good slit property, It is desirable to have the characteristic that wrinkles do not easily occur.
However, all of the polyolefin microporous membranes described in Patent Documents 1 to 4 still have room for improvement from the viewpoint of slit property.

上記事情に鑑み、本発明は、ポリオレフィン製微多孔膜の製造ラインや加工ライン等において、スリットを行う工程における不良率を低減することの可能なポリオレフィン製微多孔膜を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a polyolefin microporous membrane capable of reducing a defect rate in a slitting process in a polyolefin microporous membrane production line, a processing line, or the like. .

本発明者らは上記課題を解決するために鋭意検討を行った結果、長さ方向と幅方向の弾性率の比、最大孔径、及び120℃熱収縮率が特定範囲に調整されたポリオレフィン製微多孔膜が、上記課題を解決し得ることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have determined that the ratio of the elastic modulus in the length direction to the width direction, the maximum pore diameter, and the 120 ° C. heat shrinkage rate are adjusted to a specific range. The inventors have found that a porous membrane can solve the above-mentioned problems, and have completed the present invention.

すなわち、本発明は以下の通りである。
[1]
長さ方向弾性率/幅方向弾性率の比が1.0〜2.5であり、
最大孔径が0.10μm〜0.25μmであり、
120℃熱収縮率が、長さ方向及び幅方向で共に5%以下である
ポリオレフィン製微多孔膜。
[2]
長さ方向の最大収縮応力が0.1N未満である[1]記載のポリオレフィン製微多孔膜。
[3]
粘度平均分子量が70万以上の超高分子量ポリエチレンを5〜90質量%含む[1]又は[2]記載のポリオレフィン製微多孔膜。
[4]
[1]〜[3]のいずれかに記載のポリオレフィン製微多孔膜からなる非水電解液系二次電池用セパレーター。
[5]
[4]記載のセパレーターと、正極と、負極と、電解液とを備える非水電解液系二次電池。
[6]
[1]〜[3]のいずれかに記載のポリオレフィン製微多孔膜の製造方法であって、下記(a)〜(f)の各工程を含み、
(a)少なくともポリオレフィン樹脂、可塑剤、無機微粉体を混合する工程、
(b)(a)工程で得られた混合物を、溶融混練する工程、
(c)(b)工程で得られた混練物をシート状に成形する工程、
(d)シート状の成形物から可塑剤及び無機微粉体を抽出する工程、
(e)シート状の成形物を二軸延伸する工程、
(f)(e)工程で得られた延伸シートを幅方向に延伸緩和させる工程、
前記(e)工程における幅方向延伸速度が20〜100%/秒、幅方向延伸倍率が1.1〜4.0倍、長さ方向延伸倍率/幅方向延伸倍率の比が0.5〜1.5であり、
前記(f)工程における延伸シートの幅方向緩和率が3%以上である
ポリオレフィン製微多孔膜の製造方法。
That is, the present invention is as follows.
[1]
The ratio of the elastic modulus in the length direction / the elastic modulus in the width direction is 1.0 to 2.5,
The maximum pore size is 0.10 μm to 0.25 μm,
A polyolefin microporous membrane having a heat shrinkage of 120 ° C. of 5% or less in both the length direction and the width direction.
[2]
The polyolefin microporous membrane according to [1], wherein the maximum shrinkage stress in the length direction is less than 0.1 N.
[3]
The polyolefin microporous film according to [1] or [2], comprising 5 to 90% by mass of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 700,000 or more.
[4]
A separator for a non-aqueous electrolyte secondary battery comprising the polyolefin microporous membrane according to any one of [1] to [3].
[5]
[4] A nonaqueous electrolyte secondary battery comprising the separator according to [4], a positive electrode, a negative electrode, and an electrolytic solution.
[6]
[1] to a method for producing a polyolefin microporous membrane according to any one of [3], comprising the following steps (a) to (f):
(A) a step of mixing at least a polyolefin resin, a plasticizer, and an inorganic fine powder;
(B) a step of melt-kneading the mixture obtained in the step (a),
(C) a step of forming the kneaded material obtained in the step (b) into a sheet,
(D) a step of extracting the plasticizer and the inorganic fine powder from the sheet-like molded product,
(E) a step of biaxially stretching a sheet-like molded product,
(F) a step of stretching and relaxing the stretched sheet obtained in the step (e) in the width direction;
In the step (e), the width direction stretching speed is 20 to 100% / second, the width direction stretching ratio is 1.1 to 4.0 times, and the ratio of length direction stretching ratio / width direction stretching ratio is 0.5 to 1. .5,
A method for producing a polyolefin microporous membrane, wherein the stretched sheet in the step (f) has a widthwise relaxation rate of 3% or more.

本発明によれば、ポリオレフィン製微多孔膜の製造ラインや加工ライン等において、スリットを行う工程における不良率を低減することのできるポリオレフィン製微多孔膜が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the polyolefin microporous film which can reduce the defect rate in the process of performing a slit in the manufacturing line of a polyolefin microporous film, a processing line, etc. is provided.

以下、本発明を実施するための形態(以下、「本実施の形態」と略記する。)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, a mode for carrying out the present invention (hereinafter abbreviated as “the present embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.

本実施の形態のポリオレフィン製微多孔膜(以下、単に「微多孔膜」と略記することがある)は、長さ方向弾性率/幅方向弾性率の比が1.0〜2.5であり、最大孔径が0.10μm〜0.25μmであり、120℃熱収縮率が長さ方向及び幅方向で共に5%以下である。   The polyolefin microporous membrane of the present embodiment (hereinafter sometimes simply referred to as “microporous membrane”) has a ratio of the elastic modulus in the length direction / the elastic modulus in the width direction of 1.0 to 2.5. The maximum pore diameter is 0.10 μm to 0.25 μm, and the 120 ° C. heat shrinkage ratio is 5% or less in both the length direction and the width direction.

本実施の形態のポリオレフィン製微多孔膜は、例えば、ポリオレフィン樹脂と無機微粉体とを含むポリオレフィン樹脂組成物から形成される。   The polyolefin microporous membrane of the present embodiment is formed from, for example, a polyolefin resin composition containing a polyolefin resin and an inorganic fine powder.

本実施の形態において使用するポリオレフィン樹脂としては、例えば、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、及び1−オクテン等のモノマーを重合して得られる重合体(ホモ重合体、共重合体及び多段重合体等)が挙げられる。これらの重合体は1種を単独で、又は2種以上を併用して用いることができる。中でも、機械的強度を向上させる観点から、ポリエチレン樹脂が好ましく用いられる。   Examples of the polyolefin resin used in the present embodiment include polymers obtained by polymerizing monomers such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1-octene ( Homopolymers, copolymers and multistage polymers). These polymers can be used alone or in combination of two or more. Among these, a polyethylene resin is preferably used from the viewpoint of improving mechanical strength.

また、前記ポリオレフィン樹脂としては、例えば、密度が0.94g/cm3を超えるような高密度ポリエチレン、密度が0.93〜0.94g/cm3の範囲の中密度ポリエチレン、密度が0.93g/cm3より低い低密度ポリエチレン、直鎖状低密度ポリエチレン等が挙げられる。中でも、微多孔膜の膜強度を高くする観点から、高密度ポリエチレン及び中密度ポリエチレンが好ましく用いられる。それらは単独で、或いは混合物として使用することができる。なお、微多孔膜の透過性や機械的強度を向上させる観点から、ポリエチレンを単独で用いることが好ましい。 As examples of the polyolefin resin, for example, high density polyethylene such as density exceeds 0.94 g / cm 3, density polyethylene in the range density of 0.93~0.94g / cm 3, density of 0.93g Low density polyethylene lower than / cm 3 , linear low density polyethylene and the like. Among these, high-density polyethylene and medium-density polyethylene are preferably used from the viewpoint of increasing the film strength of the microporous film. They can be used alone or as a mixture. In addition, it is preferable to use polyethylene independently from a viewpoint of improving the permeability and mechanical strength of the microporous membrane.

微多孔膜のスリット性を向上させる観点から、微多孔膜は、粘度平均分子量70万以上(好ましくは80万〜300万)の超高分子量ポリエチレンを好ましくは5〜90質量%、より好ましくは10〜90質量%、更に好ましくは20〜80質量%含む。
また、微多孔膜の機械的強度を向上させる観点から、微多孔膜は、粘度平均分子量70万以上(好ましくは80万〜300万)の超高分子量ポリエチレンを好ましくは5質量%以上含む。
更に、微多孔膜の成形性を向上させる観点から、微多孔膜は、粘度平均分子量70万以上(好ましくは80万〜300万)の超高分子量ポリエチレンを好ましくは90質量%以下含む。
From the viewpoint of improving the slit property of the microporous membrane, the microporous membrane is preferably an ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 700,000 or more (preferably 800,000 to 3,000,000), preferably 5 to 90% by mass, more preferably 10%. -90 mass%, More preferably, it contains 20-80 mass%.
Further, from the viewpoint of improving the mechanical strength of the microporous membrane, the microporous membrane preferably contains 5% by mass or more of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 700,000 or more (preferably 800,000 to 3,000,000).
Furthermore, from the viewpoint of improving the moldability of the microporous membrane, the microporous membrane preferably contains 90% by mass or less of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 700,000 or more (preferably 800,000 to 3,000,000).

一方、微多孔膜の耐熱性を向上させる観点から、前記ポリオレフィン樹脂はポリプロピレンを含んでも良い。
そのようなポリプロピレンの具体例としては、例えば、プロピレンホモポリマー、エチレン−プロピレンランダムコポリマー、エチレン−プロピレンブロックコポリマーが挙げられる。中でも、ポリプロピレンホモポリマーが好ましく用いられる。
なお、ポリプロピレンとしてコポリマーを用いる場合には、ポリプロピレンの結晶化度を低下させず、ひいては微多孔膜の透過性を低下させない観点から、コモノマーであるエチレンの含有量が1.0質量%以下であることが好ましい。
また、使用する全ポリプロピレンにおいて、コモノマーであるエチレン含量は1モル%以下とすることが好ましく、全てプロピレンホモポリマーであることが好ましい。
更に、微多孔膜への成形性を向上させる観点から、ポリプロピレンの極限粘度[η]は、1〜25dL/gであることが好ましく、2〜7dL/gであることがより好ましい。ここで、[η]は、ASTM−D4020に基づき、溶剤としてデカリンを用い、測定温度135℃にて測定した値である。
On the other hand, from the viewpoint of improving the heat resistance of the microporous membrane, the polyolefin resin may include polypropylene.
Specific examples of such polypropylene include, for example, propylene homopolymer, ethylene-propylene random copolymer, and ethylene-propylene block copolymer. Among these, polypropylene homopolymer is preferably used.
In the case where a copolymer is used as polypropylene, the content of ethylene as a comonomer is 1.0% by mass or less from the viewpoint of not reducing the crystallinity of polypropylene and thus reducing the permeability of the microporous membrane. It is preferable.
Moreover, in all the polypropylenes used, the ethylene content as a comonomer is preferably 1 mol% or less, and all are preferably propylene homopolymers.
Furthermore, from the viewpoint of improving the moldability to a microporous membrane, the intrinsic viscosity [η] of polypropylene is preferably 1 to 25 dL / g, and more preferably 2 to 7 dL / g. Here, [η] is a value measured at a measurement temperature of 135 ° C. using decalin as a solvent based on ASTM-D4020.

なお、ポリプロピレンが、前記ポリオレフィン樹脂中に占める割合としては、好ましくは10質量%以下、より好ましくは1〜10質量%、更に好ましくは1〜8質量%、特に好ましくは1〜6質量%である。当該割合を1質量%以上とすることは、ポリオレフィン製微多孔膜の耐熱性を向上させる観点から好ましい。一方、当該割合を10質量%以下とすることは、透過性が良好であり、且つ、高突刺強度な微多孔膜を実現する観点から好ましい。   The proportion of polypropylene in the polyolefin resin is preferably 10% by mass or less, more preferably 1 to 10% by mass, still more preferably 1 to 8% by mass, and particularly preferably 1 to 6% by mass. . Setting the ratio to 1% by mass or more is preferable from the viewpoint of improving the heat resistance of the polyolefin microporous membrane. On the other hand, setting the ratio to 10% by mass or less is preferable from the viewpoint of realizing a microporous film having good permeability and high piercing strength.

前記無機微粉体としては、例えば、シリカ、ケイ酸カルシウム、ケイ酸アルミニウム、アルミナ、炭酸カルシウム、炭酸マグネシウム、カオリンクレー、タルク、酸化チタン、カーボンブラック、珪藻土類等が挙げられる。中でも、分散性や抽出の容易さの観点から、シリカを使用することが好ましい。   Examples of the inorganic fine powder include silica, calcium silicate, aluminum silicate, alumina, calcium carbonate, magnesium carbonate, kaolin clay, talc, titanium oxide, carbon black, and diatomaceous earth. Among these, silica is preferably used from the viewpoint of dispersibility and ease of extraction.

ポリオレフィン樹脂組成物には、必要に応じて、フェノール系やリン系やイオウ系等の酸化防止剤;ステアリン酸カルシウムやステアリン酸亜鉛等の金属石鹸類;紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料、滑剤、アンチブロッキング剤等の各種添加剤を混合してもよい。   The polyolefin resin composition includes, as necessary, an antioxidant such as phenol, phosphorus, or sulfur; a metal soap such as calcium stearate or zinc stearate; an ultraviolet absorber, a light stabilizer, an antistatic agent, Various additives such as an antifogging agent, a coloring pigment, a lubricant, and an antiblocking agent may be mixed.

本実施の形態におけるポリオレフィン製微多孔膜の製造方法としては、例えば、下記(a)〜(f)の各工程を含む製造方法を用いることができる。
(a)少なくともポリオレフィン樹脂、可塑剤、無機微粉体を混合する工程、
(b)(a)工程で得られた混合物を、溶融混練する工程、
(c)(b)工程で得た混練物をシート状に成形する工程、
(d)シート状の成形物から可塑剤及び無機微粉体を抽出する工程、
(e)シート状の成形物を二軸延伸する工程、
(f)(e)工程で得た延伸シートを幅方向に延伸緩和させる工程。
As a manufacturing method of the polyolefin microporous film in the present embodiment, for example, a manufacturing method including the following steps (a) to (f) can be used.
(A) a step of mixing at least a polyolefin resin, a plasticizer, and an inorganic fine powder;
(B) a step of melt-kneading the mixture obtained in the step (a),
(C) a step of forming the kneaded material obtained in the step (b) into a sheet,
(D) a step of extracting the plasticizer and the inorganic fine powder from the sheet-like molded product,
(E) a step of biaxially stretching a sheet-like molded product,
(F) A step of stretching and relaxing the stretched sheet obtained in the step (e) in the width direction.

(a)工程は、少なくともポリオレフィン樹脂、可塑剤、無機微粉体を混合する工程である。(a)工程は、例えば、ヘンシェルミキサー、V−ブレンダー、プロシェアミキサー、リボンブレンダー等の配合機を用いた通常の混合法により行うことができる。なお、混合して造粒を行うことも可能である。   Step (a) is a step of mixing at least a polyolefin resin, a plasticizer, and inorganic fine powder. (A) A process can be performed by the normal mixing method using compounding machines, such as a Henschel mixer, a V-blender, a pro shear mixer, a ribbon blender, for example. It is also possible to perform granulation by mixing.

可塑剤としては、ポリオレフィン樹脂と混合した際にポリオレフィン樹脂の融点以上において均一溶液を形成しうる不揮発性溶媒であることが好ましい。また、常温において液体であることが好ましい。   The plasticizer is preferably a non-volatile solvent capable of forming a uniform solution above the melting point of the polyolefin resin when mixed with the polyolefin resin. Moreover, it is preferable that it is a liquid at normal temperature.

前記可塑剤としては、例えば、フタル酸ジオクチル、フタル酸ジヘプチル、フタル酸ジブチルのようなフタル酸エステルや、アジピン酸エステル、グリセリン酸エステル等の有機酸エステル類、リン酸トリオクチル等のリン酸エステル類、流動パラフィン、固形ワックス、ミネラルオイル等が挙げられる。上記の中でも、ポリエチレンとの相溶性、低透気度化及び低バブルポイント化の観点から、フタル酸エステルが好ましい。これらの可塑剤は、単独で使用しても、混合物として使用してもよい。   Examples of the plasticizer include phthalic acid esters such as dioctyl phthalate, diheptyl phthalate and dibutyl phthalate, organic acid esters such as adipic acid ester and glyceric acid ester, and phosphoric acid esters such as trioctyl phosphate. , Liquid paraffin, solid wax, mineral oil and the like. Among these, phthalic acid esters are preferable from the viewpoints of compatibility with polyethylene, low air permeability, and low bubble point. These plasticizers may be used alone or as a mixture.

前記可塑剤が、前記混合物中に占める割合としては、好ましくは30質量%以上、より好ましくは40質量%以上であり、上限としては、好ましくは80質量%以下、より好ましくは70質量%以下である。当該割合を80質量%以下とすることは、溶融成形時のメルトテンションを高く維持し、成形性を確保する観点から好ましい。一方、当該割合を30質量%以上とすることは、成形性を確保する観点、及び、ポリオレフィンの結晶領域におけるラメラ晶を効率よく引き伸ばす観点から好ましい。ここで、ラメラ晶が効率よく引き伸ばされることは、ポリオレフィン鎖の切断が生じずにポリオレフィン鎖が効率よく引き伸ばされることを意味し、均一かつ微細な孔構造の形成や、ポリオレフィン製微多孔膜の強度及び結晶化度の向上に寄与し得る。   The proportion of the plasticizer in the mixture is preferably 30% by mass or more, more preferably 40% by mass or more, and the upper limit is preferably 80% by mass or less, more preferably 70% by mass or less. is there. Setting the ratio to 80% by mass or less is preferable from the viewpoint of maintaining high melt tension during melt molding and ensuring moldability. On the other hand, setting the ratio to 30% by mass or more is preferable from the viewpoint of securing moldability and efficiently extending the lamellar crystal in the polyolefin crystal region. Here, the fact that the lamellar crystal is efficiently stretched means that the polyolefin chain is efficiently stretched without causing the polyolefin chain to be broken, and the formation of a uniform and fine pore structure and the strength of the polyolefin microporous membrane And it can contribute to the improvement of crystallinity.

また、前記ポリオレフィン樹脂と可塑剤と無機微粉体の合計量に対するポリオレフィン樹脂の混合割合は10〜50質量%が好ましく、より好ましくは20〜40質量%である。ポリオレフィン樹脂の割合は、微多孔膜の機械的強度を向上させる観点から、10質量%以上が好ましく、押出成形の際の製膜性、及び微多孔膜の透過性を向上させる観点から、50質量%以下が好ましい。   Moreover, 10-50 mass% is preferable, and, as for the mixing ratio of the polyolefin resin with respect to the total amount of the said polyolefin resin, a plasticizer, and inorganic fine powder, More preferably, it is 20-40 mass%. The proportion of the polyolefin resin is preferably 10% by mass or more from the viewpoint of improving the mechanical strength of the microporous membrane, and 50% by mass from the viewpoint of improving the film forming property during extrusion molding and the permeability of the microporous membrane. % Or less is preferable.

さらに、前記無機微粉体が、前記ポリオレフィン樹脂と可塑剤と無機微粉体の合計量中に占める割合としては、好ましくは3質量%以上、より好ましくは5質量%以上であり、上限として、好ましくは60質量%以下、より好ましくは50質量%以下である。当該割合を3質量%以上とすることは、優れた透過性を付与することや、ポリオレフィン製微多孔膜を安定して成膜する観点から好ましい。一方、当該割合を60質量%以下とすることは、ポリオレフィン製微多孔膜の長さ方向(成形時における樹脂の吐出方向。以下、「MD」と略記することがある。)及び幅方向(MDと略直交する方向。以下、「TD」と略記することがある。)の、120℃における熱収縮率を向上させる観点から好ましい。また、ポリオレフィン製微多孔膜の機械的強度を向上させる観点からも好ましい。   Furthermore, the proportion of the inorganic fine powder in the total amount of the polyolefin resin, the plasticizer, and the inorganic fine powder is preferably 3% by mass or more, more preferably 5% by mass or more, and the upper limit is preferably It is 60 mass% or less, More preferably, it is 50 mass% or less. Setting the ratio to 3% by mass or more is preferable from the viewpoint of imparting excellent permeability and stably forming a polyolefin microporous film. On the other hand, when the ratio is 60% by mass or less, the length direction of the polyolefin microporous membrane (the discharge direction of the resin during molding. Hereinafter, it may be abbreviated as “MD”) and the width direction (MD). In the direction substantially orthogonal to the following, which may be abbreviated as “TD” below). Moreover, it is preferable also from a viewpoint of improving the mechanical strength of the polyolefin microporous film.

(b)工程は、(a)工程で得られた混合物を、溶融混練する工程である。(b)工程は、例えば、ヘンシェルミキサー、リボンブレンダー、タンブラーブレンダー等で混合後、一軸押出機、二軸押出機等のスクリュー押出機、ニーダー、バンバリーミキサー等により行うことができる。溶融混練する方法として、連続運転可能な押出機で溶融混練する方法が好ましい。良好な混練性の観点から、連続運転可能な押出機が二軸押出機であると好ましい。
さらには、溶融混練時の加熱による樹脂の劣化を防止する観点から、溶融混練を窒素等の不活性なガス雰囲気下で行うことができる。
The step (b) is a step of melt kneading the mixture obtained in the step (a). (B) A process can be performed with screw extruders, such as a single screw extruder and a twin screw extruder, a kneader, a Banbury mixer etc., for example after mixing with a Henschel mixer, a ribbon blender, a tumbler blender, etc. As a method of melt kneading, a method of melt kneading with an extruder capable of continuous operation is preferable. From the viewpoint of good kneadability, the extruder capable of continuous operation is preferably a twin screw extruder.
Furthermore, from the viewpoint of preventing deterioration of the resin due to heating during melt-kneading, the melt-kneading can be performed in an inert gas atmosphere such as nitrogen.

(c)工程は、(b)工程で得た混練物をシート状に成形する工程である。(c)工程は、例えば、冷却方法として、冷風や冷却水等の冷却媒体に混練物を直接接触させる方法、冷媒で冷却したロールやプレス機に混練物を接触させることにより行うことができる。これらの中では、冷媒で冷却したロールやプレス機に混練物を接触させる方法が、微多孔膜の厚み制御に優れる点で好ましい。   (C) A process is a process of shape | molding the kneaded material obtained at the (b) process in a sheet form. The step (c) can be performed, for example, as a cooling method by bringing the kneaded material into direct contact with a cooling medium such as cold air or cooling water, or by bringing the kneaded material into contact with a roll or press machine cooled with a refrigerant. Among these, the method in which the kneaded product is brought into contact with a roll or press machine cooled with a refrigerant is preferable in terms of excellent thickness control of the microporous membrane.

(d)工程は、シート状の成形物から可塑剤及び無機微粉体を抽出する工程である。(d)工程においては、シート状の成形物から可塑剤と無機微粉体を溶剤によって抽出する。可塑剤の抽出に用いられる溶剤としては、メタノール、エタノール、メチルエチルケトン、アセトン等の有機溶剤、テトラヒドロフラン等のエーテル類、塩化メチレン、1,1,1−トリクロロエタン等のハロゲン化炭化水素類等を使用することができる。気孔率が高く、電極との密着性、及び透過性に優れた微多孔膜を得る観点から、可塑剤を抽出した後、無機微粉体の抽出を行うことが好ましい。無機微粉体の抽出に用いられる溶剤としては、水酸化ナトリウム、水酸化カリウム等のアルカリ水溶液を使用することができる。なお、無機微粉体を抽出する場合、無機微粉体の一部を成形物中に残してもよい。   (D) A process is a process of extracting a plasticizer and inorganic fine powder from a sheet-like molded product. In step (d), the plasticizer and the inorganic fine powder are extracted from the sheet-like molded product with a solvent. As the solvent used for the extraction of the plasticizer, organic solvents such as methanol, ethanol, methyl ethyl ketone and acetone, ethers such as tetrahydrofuran, halogenated hydrocarbons such as methylene chloride and 1,1,1-trichloroethane, etc. are used. be able to. From the viewpoint of obtaining a microporous membrane having a high porosity, excellent adhesion to the electrode, and excellent permeability, it is preferable to extract the inorganic fine powder after extracting the plasticizer. As the solvent used for the extraction of the inorganic fine powder, an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide can be used. In addition, when extracting inorganic fine powder, you may leave a part of inorganic fine powder in a molding.

(e)工程は、シート状の成形物を二軸延伸する工程である。(e)工程におけるTD延伸速度としては、好ましくは20〜100%/秒である。スリット性向上の観点に加え、表面粗さを均一にして熱プレス時に電池との密着性を向上させる観点から、TD延伸速度は20%以上/秒にすることが好ましく、透過性を向上させる観点から、100%/秒以下にすることが好ましい。一方、MD延伸速度は、好ましくは10〜4000%/秒、より好ましくは100〜3000%/秒である。スリット性向上の観点に加え、機械的強度を向上させる観点から、MD延伸速度は10%/秒以上にすることが好ましく、耐破膜性を向上させる観点から、4000%/秒以下にすることが好ましい。   (E) A process is a process of biaxially stretching a sheet-like molded product. The TD stretching speed in the step (e) is preferably 20 to 100% / second. In addition to improving the slit property, from the viewpoint of improving the adhesion with the battery during hot pressing by making the surface roughness uniform, the TD stretching speed is preferably 20% / second or more, and the viewpoint of improving the permeability Therefore, it is preferable to set it to 100% / second or less. On the other hand, the MD stretching speed is preferably 10 to 4000% / second, more preferably 100 to 3000% / second. MD stretching speed is preferably 10% / second or more from the viewpoint of improving mechanical strength in addition to improving slit property, and 4000% / second or less from the viewpoint of improving film resistance. Is preferred.

また、(e)工程におけるTD延伸倍率としては、好ましくは1.1倍以上、より好ましくは1.2〜4.0倍である。電池捲回性を向上させる観点、スリット性向上の観点、又はスリット後の膜幅方向の収縮性を低減する観点から、TD延伸倍率を1.1倍以上にしてTDにもポリマー配向させることが好ましい。高温での安全性を向上させる観点から、TD倍率は4.0倍以下が好ましい。   Moreover, as TD draw ratio in (e) process, Preferably it is 1.1 times or more, More preferably, it is 1.2 to 4.0 times. From the viewpoint of improving battery winding property, improving slit property, or reducing shrinkage in the film width direction after slitting, the TD stretch ratio may be 1.1 times or more and the polymer may be oriented to TD. preferable. From the viewpoint of improving safety at high temperatures, the TD magnification is preferably 4.0 times or less.

一方、MD延伸倍率は機械的強度と破膜性を向上させる観点から、好ましくは1.5倍〜8.0倍であり、より好ましくは2.0〜7.0倍である。機械的強度を向上させる観点から、MD延伸倍率を1.5倍以上にすることが好ましく、熱プレス時の耐破膜性を向上させる観点から、MD延伸倍率は8.0倍以下にすることが好ましい。   On the other hand, the MD draw ratio is preferably 1.5 times to 8.0 times, more preferably 2.0 to 7.0 times from the viewpoint of improving mechanical strength and film breakability. From the viewpoint of improving the mechanical strength, it is preferable to set the MD stretch ratio to 1.5 times or more, and from the viewpoint of improving the film resistance during hot pressing, the MD stretch ratio should be 8.0 times or less. Is preferred.

MD延伸倍率とTD延伸倍率の比(MD延伸倍率/TD延伸倍率)は、好ましくは0.5〜1.5、より好ましくは0.5〜1.3である。機械的強度、電池捲回性を向上させる観点から、当該延伸倍率の比を0.5以上にすることが好ましく、熱プレス時の耐破膜性を向上させる観点から、当該延伸倍率の比を1.5以下にすることが好ましい。また、ポリオレフィン製微多孔膜の孔が等方性になることから、スリット性の安定化(巻きズレ抑制)の観点からも好ましい。また、孔の形状が等方化することで、リチウム電池におけるイオン透過性が向上され、サイクル特性が良好になる傾向にある。   The ratio of MD stretch ratio and TD stretch ratio (MD stretch ratio / TD stretch ratio) is preferably 0.5 to 1.5, more preferably 0.5 to 1.3. From the viewpoint of improving mechanical strength and battery winding property, the ratio of the draw ratio is preferably 0.5 or more, and from the viewpoint of improving film resistance during hot pressing, the ratio of the draw ratio is It is preferable to make it 1.5 or less. Moreover, since the pores of the polyolefin microporous membrane are isotropic, it is also preferable from the viewpoint of stabilizing the slit property (suppressing winding deviation). Further, the isotropic shape of the holes improves the ion permeability in the lithium battery and tends to improve the cycle characteristics.

なお、前記(e)工程は、前記(d)工程の前後、いずれのタイミングでも適宜実施可能である。   The step (e) can be appropriately performed at any timing before and after the step (d).

(f)工程は、(e)工程で得た延伸シートを幅方向に延伸緩和させる工程である。(f)工程におけるTD緩和率としては、好ましくは3〜50%、より好ましくは5〜40%である。ポリオレフィン製微多孔膜の熱収縮を抑制する観点、及びスリット時の安定性の観点から、TD緩和率は3%以上とすることが好ましい。また、成膜時のシワ発生を低減する観点から、TD緩和率は50%以下とすることが好ましい。なおTD緩和率は、(延伸後の膜幅−緩和後の膜幅)÷(延伸後の膜幅)×100=緩和率(%)により算出する。   Step (f) is a step of stretching and relaxing the stretched sheet obtained in step (e) in the width direction. The TD relaxation rate in the step (f) is preferably 3 to 50%, more preferably 5 to 40%. From the viewpoint of suppressing thermal shrinkage of the polyolefin microporous membrane and the stability at the time of slitting, the TD relaxation rate is preferably 3% or more. From the viewpoint of reducing wrinkling during film formation, the TD relaxation rate is preferably 50% or less. The TD relaxation rate is calculated by (film width after stretching−film width after relaxation) ÷ (film width after stretching) × 100 = relaxation rate (%).

TD延伸速度、TD延伸倍率、MD延伸倍率/TD延伸倍率の比、TD延伸時の緩和率を上記範囲に設定することは、電池捲回性、スリット性、膜の機械的強度、成膜性の向上の観点から好ましい。   Setting the TD stretching speed, the TD stretching ratio, the ratio of MD stretching ratio / TD stretching ratio, and the relaxation rate during TD stretching within the above ranges are battery winding properties, slitting properties, mechanical strength of the film, and film forming properties. It is preferable from the viewpoint of improvement.

また、ポリオレフィン製微多孔膜の熱収縮と透過性の観点から、(f)工程における熱処理温度は、(e)工程において形成される膜の融点よりも−5〜15℃低いことが好ましく、より好ましくは−3〜13℃低い温度であり、更に好ましくは−2℃〜10℃低い温度である。   In addition, from the viewpoint of thermal shrinkage and permeability of the polyolefin microporous membrane, the heat treatment temperature in the step (f) is preferably −5 to 15 ° C. lower than the melting point of the membrane formed in the step (e). The temperature is preferably −3 to 13 ° C., more preferably −2 to 10 ° C.

ポリオレフィン製微多孔膜のMD弾性率とTD弾性率の比(MD弾性率/TD弾性率)は、1.0〜2.5であり、好ましくは1.0〜2.4である。弾性率の比が1.0以上であると、捲回時にMD変形を起こし難くなる。弾性率の比が2.5以下であると、MD配向のみ強くなることが抑えられるため、スリット時の巻きズレが抑制され、スリット性が良好となる。   The ratio of MD elastic modulus to TD elastic modulus (MD elastic modulus / TD elastic modulus) of the microporous membrane made of polyolefin is 1.0 to 2.5, preferably 1.0 to 2.4. When the elastic modulus ratio is 1.0 or more, MD deformation is difficult to occur during winding. When the elastic modulus ratio is 2.5 or less, only the MD orientation can be prevented from becoming strong, so that the winding deviation at the time of slitting is suppressed and the slit property is improved.

ポリオレフィン製微多孔膜の最大孔径は0.10〜0.25μmであり、好ましくは0.12〜0.23μm、更に好ましくは0.12〜0.21μm、特に好ましくは0.12〜0.20μmである。最大孔径が0.10μmより大きいと透過性能に優れ、最大孔径が0.25μmよりも小さいと絶縁性能が高くなる。なお、熱プレスされた際、高温時においても高い絶縁性能を維持するために、微多孔膜には、圧縮された際の耐電圧が高いことが求められる。耐電圧と最大孔径は関係が深く、孔径が大きすぎると微多孔膜の耐電圧が低くなり、圧縮時に充分な絶縁性を保つことが困難となる。そのため、微多孔膜は、スリット性向上の観点に加え、高い透過性と高い絶縁性能を両立する孔径を有することが必要である。   The maximum pore size of the polyolefin microporous membrane is 0.10 to 0.25 μm, preferably 0.12 to 0.23 μm, more preferably 0.12 to 0.21 μm, and particularly preferably 0.12 to 0.20 μm. It is. When the maximum pore diameter is larger than 0.10 μm, the transmission performance is excellent, and when the maximum pore diameter is smaller than 0.25 μm, the insulation performance is improved. In order to maintain high insulation performance even at high temperatures when hot pressed, the microporous membrane is required to have a high withstand voltage when compressed. The withstand voltage and the maximum pore diameter are deeply related. If the pore diameter is too large, the withstand voltage of the microporous membrane is lowered, and it is difficult to maintain sufficient insulation during compression. Therefore, the microporous membrane needs to have a pore diameter that achieves both high permeability and high insulation performance, in addition to the improvement of slit property.

ポリオレフィン製微多孔膜の120℃熱収縮率としては、長さ方向及び幅方向で共に5%以下であり、より好ましくは長さ方向及び幅方向で共に4.5%以下である。下限としては特に限定されないが、好ましくは0.1%以上である。120℃熱収縮率を上記範囲に設定することは、スリット性向上の観点に加え、高温時における電池の安全性の観点からも好適である。   The 120 ° C. heat shrinkage rate of the polyolefin microporous membrane is 5% or less in both the length direction and the width direction, and more preferably 4.5% or less in both the length direction and the width direction. Although it does not specifically limit as a minimum, Preferably it is 0.1% or more. Setting the 120 ° C. heat shrinkage rate within the above range is also suitable from the viewpoint of battery safety at high temperatures in addition to the improvement of slit property.

ポリオレフィン製微多孔膜の気孔率は40〜70%が好ましく、より好ましくは40〜65%、更に好ましくは40〜60%である。気孔率が40%以上の場合、透過性能に優れる傾向にあり、70%以下の場合、機械的強度に優れ、スリット時の捲回性が良好となる傾向にある。   The porosity of the polyolefin microporous membrane is preferably 40 to 70%, more preferably 40 to 65%, still more preferably 40 to 60%. When the porosity is 40% or more, the transmission performance tends to be excellent, and when the porosity is 70% or less, the mechanical strength is excellent and the winding property at the time of slitting tends to be good.

ポリオレフィン製微多孔膜の透気度は、イオン透過性が向上する傾向にあるため、好ましくは10〜220秒/100ccであり、より好ましくは10〜200秒/100ccであり、更に好ましくは10〜180秒/100ccであり、更により好ましくは10〜150秒/100ccであり、特に好ましくは10〜150秒/100ccである。透気度が10秒/100cc以上であると、セパレーターとしての絶縁性能が高くなる傾向にあり、220秒/100cc以下であると、熱プレス時の透過性能が低くなり難く電池寿命が長くなる傾向にある。   Since the air permeability of the polyolefin microporous membrane tends to improve ion permeability, it is preferably 10 to 220 seconds / 100 cc, more preferably 10 to 200 seconds / 100 cc, and even more preferably 10 to 10 seconds. 180 seconds / 100 cc, even more preferably 10-150 seconds / 100 cc, and particularly preferably 10-150 seconds / 100 cc. If the air permeability is 10 seconds / 100 cc or more, the insulation performance as a separator tends to be high, and if it is 220 seconds / 100 cc or less, the permeability performance during hot pressing tends to be low and the battery life tends to be long. It is in.

ポリオレフィン製微多孔膜の長さ方向の引張強度は、好ましくは50〜500MPaであり、より好ましくは80〜400MPaであり、更に好ましくは100〜300MPaである。引張強度が50MPa以上であると、電池捲回性が向上する傾向にあり、500MPa以下であると、スリット性が良好となる傾向にある。   The tensile strength in the length direction of the polyolefin microporous membrane is preferably 50 to 500 MPa, more preferably 80 to 400 MPa, and still more preferably 100 to 300 MPa. When the tensile strength is 50 MPa or more, the battery winding property tends to be improved, and when it is 500 MPa or less, the slit property tends to be good.

ポリオレフィン製微多孔膜の幅方向の引張強度は、好ましくは10〜200MPaであり、より好ましくは15〜150MPaであり、更に好ましくは20〜100MPaである。引張強度が10MPa以上であると、スリット性が良好となる傾向にあり、200MPa以下であると、電池捲回性が良好となる傾向にある。   The tensile strength in the width direction of the polyolefin microporous membrane is preferably 10 to 200 MPa, more preferably 15 to 150 MPa, and still more preferably 20 to 100 MPa. When the tensile strength is 10 MPa or more, the slit property tends to be good, and when it is 200 MPa or less, the battery winding property tends to be good.

ポリオレフィン製微多孔膜の長さ方向の最大収縮応力は0.1N未満であることが好ましく、より好ましくは0.09N以下であり、更に好ましくは0.08N以下である。最大収縮応力を上記範囲に設定することは、電池作製時の電池がよれ難くなる(成形し易くなる)観点から好適である。   The maximum shrinkage stress in the length direction of the polyolefin microporous membrane is preferably less than 0.1 N, more preferably 0.09 N or less, and even more preferably 0.08 N or less. Setting the maximum shrinkage stress within the above range is preferable from the viewpoint of making the battery difficult to scramble (easily formed).

本実施の形態におけるポリオレフィン製微多孔膜は、好ましくは、物質の分離、選択透過等の分離膜、及び非水電解液系二次電池や燃料電池、コンデンサー等電気化学反応装置の隔離材等として用いることができ、より好ましくは、正極と負極と電解液と共に用いた非水電解液系二次電池のセパレーターとして使用される。特に好ましくは、セパレーターと電極の密着性の観点から非水電解液系角型二次電池用のセパレーターとして使用される。   The polyolefin microporous membrane in the present embodiment is preferably used as a separation membrane for separation of substances, selective permeation, etc., and as a separator for electrochemical reaction devices such as non-aqueous electrolyte secondary batteries, fuel cells, capacitors, etc. More preferably, it is used as a separator of a non-aqueous electrolyte secondary battery used together with a positive electrode, a negative electrode, and an electrolytic solution. Particularly preferably, it is used as a separator for a non-aqueous electrolyte-based prismatic secondary battery from the viewpoint of adhesion between the separator and the electrode.

非水電解液系二次電池は、ポリオレフィン製微多孔膜からなるセパレーターと、正極と、負極と、電解液とを備えている。この非水電解液系二次電池は、セパレーターとして上記本実施形態の非水電解液系二次電池用セパレーターを備える他は、公知の非水電解液系二次電池と同様の各部材を備えていればよく、同様の構造を有していればよく、同様の方法により製造され得る。   The non-aqueous electrolyte secondary battery includes a separator made of a polyolefin microporous membrane, a positive electrode, a negative electrode, and an electrolytic solution. This non-aqueous electrolyte secondary battery includes the same members as the known non-aqueous electrolyte secondary battery, except that the separator for the non-aqueous electrolyte secondary battery of the present embodiment is used as a separator. As long as they have the same structure and can be manufactured by the same method.

なお、上述した各種パラメータについては、特に断りの無い限り、後述する実施例における測定法に準じて測定される。   The various parameters described above are measured according to the measurement methods in the examples described later unless otherwise specified.

次に、実施例及び比較例を挙げて本実施の形態をより具体的に説明するが、本実施の形態はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例中の物性は以下の方法により測定した。   Next, the present embodiment will be described more specifically with reference to examples and comparative examples. However, the present embodiment is not limited to the following examples unless it exceeds the gist. In addition, the physical property in an Example was measured with the following method.

(1)粘度平均分子量(Mv)
まず、[η]を測定した。[η]は、ASTM−D4020に基づき、溶剤としてデカリンを用い、測定温度135℃にて測定した。
得られた[η]から次式により、粘度平均分子量を算出した。
[η]=6.77×10-4Mv0.67(Chiangの式)
(1) Viscosity average molecular weight (Mv)
First, [η] was measured. [Η] was measured at a measurement temperature of 135 ° C. using decalin as a solvent based on ASTM-D4020.
The viscosity average molecular weight was calculated from the obtained [η] by the following formula.
[Η] = 6.77 × 10 −4 Mv 0.67 (Chiang's formula)

(2)膜厚(μm)
東洋精機製の微小測厚器、KBM(商標)を用いて室温23℃で測定した。
(2) Film thickness (μm)
The measurement was performed at a room temperature of 23 ° C. using a micro thickness measuring instrument manufactured by Toyo Seiki, KBM (trademark).

(3)気孔率(%)
10cm×10cm角の試料を微多孔膜から切り取り、その体積(cm3)と質量(g)を求め、膜密度を0.95(g/cm3)として次式を用いて計算した。
気孔率=(1−質量/体積/0.95)×100
(3) Porosity (%)
A sample of 10 cm × 10 cm square was cut from the microporous membrane, its volume (cm 3 ) and mass (g) were determined, and the film density was calculated to be 0.95 (g / cm 3 ) using the following formula.
Porosity = (1−mass / volume / 0.95) × 100

(4)透気度(sec/100cc)
JIS P−8117に準拠し、東洋精器(株)製のガーレー式透気度計、G−B2(商標)により測定した。
(4) Air permeability (sec / 100cc)
Based on JIS P-8117, it measured with the Gurley type air permeability meter by the Toyo Seiki Co., Ltd. and G-B2 (trademark).

(5)突刺強度(N)
カトーテック製のハンディー圧縮試験器KES−G5(商標)を用いて、開口部の直径11.3mmの試料ホルダーで微多孔膜を固定した。次に固定された微多孔膜の中央部を、針先端の曲率半径0.5mm、突刺速度2mm/secで、25℃雰囲気下にて突刺試験を行うことにより、最大突刺荷重として生の突刺強度(N)を得た。
(5) Puncture strength (N)
Using a handy compression tester KES-G5 (trademark) manufactured by Kato Tech, the microporous membrane was fixed with a sample holder having a diameter of 11.3 mm at the opening. Next, the center of the fixed microporous membrane is subjected to a piercing test in a 25 ° C. atmosphere at a needle radius of curvature of 0.5 mm and a piercing speed of 2 mm / sec. (N) was obtained.

(6)最大孔径(μm)
ASTM E−128−61に準拠し、エタノール中でのバブルポイント(BP)により算出した。
(6) Maximum pore size (μm)
Based on ASTM E-128-61, it was calculated by bubble point (BP) in ethanol.

(7)MD、TDの引張破断強度(MPa)、引張破断伸び(%)、弾性率(MPa)、弾性率比
JIS K7127に準拠し、島津製作所製の引張試験機、オートグラフAG−A型(商標)を用いて、MD及びTDサンプル(形状;幅10mm×長さ100mm)について測定した。また、サンプルはチャック間距離を50mmとし、サンプルの両端部(各25mm)の片面にセロハンテープ(日東電工包装システム(株)製、商品名:N.29)を貼ったものを用いた。さらに、試験中のサンプル滑りを防止するために、引張試験機のチャック内側に厚み1mmのフッ素ゴムを貼り付けた。
引張破断伸び(%)は、破断に至るまでの伸び量(mm)をチャック間距離(50mm)で除して100を乗じることにより求めた。引張破断強度(MPa)は、破断時の強度を、試験前のサンプル断面積で除すことで求めた。
MD/TD強度比はMD引張破断強度をTD引張破断強度で除して求めた。
引張弾性率は伸びが1〜4%間の傾きで評価した。MD/TD弾性率比はMD弾性率をTD弾性率で除して求めた。
なお、測定は、温度;23±2℃、チャック圧0.30MPa、引張速度;200mm/minで行った。
(7) Tensile breaking strength (MPa), tensile breaking elongation (%), modulus of elasticity (MPa), modulus of elasticity ratio of MD and TD Based on JIS K7127, Shimadzu Corporation tensile tester, Autograph AG-A type (Trademark) was used to measure MD and TD samples (shape; width 10 mm × length 100 mm). Moreover, the sample used the thing which stuck the cellophane tape (Nitto Denko Packaging System Co., Ltd. make, brand name: N.29) on the single side | surface of the both ends (25 mm each) of the sample for the distance between chuck | zippers to 50 mm. Furthermore, in order to prevent sample slippage during the test, a fluororubber having a thickness of 1 mm was attached to the inside of the chuck of the tensile tester.
The tensile elongation at break (%) was determined by dividing the amount of elongation (mm) up to fracture by the distance between chucks (50 mm) and multiplying by 100. The tensile strength at break (MPa) was determined by dividing the strength at break by the cross-sectional area of the sample before the test.
The MD / TD strength ratio was obtained by dividing the MD tensile strength by the TD tensile strength.
The tensile elastic modulus was evaluated with an inclination between 1 to 4% in elongation. The MD / TD elastic modulus ratio was obtained by dividing the MD elastic modulus by the TD elastic modulus.
The measurement was performed at a temperature of 23 ± 2 ° C., a chuck pressure of 0.30 MPa, and a tensile speed of 200 mm / min.

(8)熱収縮率(%)
ポリオレフィン製微多孔膜を各辺がMDとTDに平行となるように100mm四方に切り取り、温度を120℃に温調したオーブン内に1時間放置した後に、MD、TD熱収縮率を測定した。
(8) Thermal shrinkage (%)
A polyolefin microporous membrane was cut into a 100 mm square so that each side was parallel to MD and TD, and allowed to stand in an oven adjusted to a temperature of 120 ° C. for 1 hour, and then the MD and TD thermal contraction rates were measured.

(9)TMA(最大収縮応力(N))
熱機械的分析装置(島津TMA50)にて、サンプル長10mm、サンプル幅3mm、初期荷重1.0g、昇温温度10℃/分の条件にて測定。MD、TDの各方向につき、収縮応力曲線において最大収縮荷重(N)を求めた。
(9) TMA (maximum shrinkage stress (N))
Measured with a thermomechanical analyzer (Shimadzu TMA50) under the conditions of a sample length of 10 mm, a sample width of 3 mm, an initial load of 1.0 g, and a temperature rising temperature of 10 ° C./min. The maximum shrinkage load (N) was determined in the shrinkage stress curve for each direction of MD and TD.

(10)スリット性
スリット性を評価する指標として、西村製作所(株)製スリッターTH4Cを使用し、走行速度100m/分にて巻き直した時の巻きズレの度合いにより評価した。なお、スリット状態において0.3mm以上のズレが生じたものを巻きズレとした。スリット性は、以下の基準に従って評価した。
◎:巻きズレ発生が10巻中0巻以下である。
○:巻きズレ発生が10巻中1巻以下である。
×:巻きズレ発生が10巻中2巻以上である。
(10) Slit property As an index for evaluating the slit property, a slitter TH4C manufactured by Nishimura Seisakusho Co., Ltd. was used, and the evaluation was made based on the degree of winding deviation when rewinding at a running speed of 100 m / min. In addition, the thing which 0.3 mm or more of deviation produced in the slit state was made into winding deviation. The slit property was evaluated according to the following criteria.
A: Winding deviation is 0 or less in 10 volumes.
○: Winding deviation is 1 volume or less in 10 volumes.
X: Winding generation | occurrence | production is 2 or more volumes in 10 volumes.

(11)電池捲回性
(11−1)電極(正極、負極)の作製
正極の作製:活物質としてリチウムコバルト複合酸化物LiCoO2を92.2質量%、導電剤としてリン片状グラファイトとアセチレンブラックをそれぞれ2.3質量%、バインダーとしてポリフッ化ビニリデン(PVDF)3.2質量%をN−メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターで塗付し、130℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、正極の活物質塗付量は250g/m2,活物質嵩密度は3.00g/cm3になるようにした。これを幅約40mm、長さ60cmに切断して帯状にした。
負極の作製:活物質として人造グラファイト96.9質量%、バインダーとしてカルボキシメチルセルロースのアンモニウム塩1.4質量%とスチレン−ブタジエン共重合体ラテックス1.7質量%を精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗付し、120℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、負極の活物質塗付量は106g/m2,活物質嵩密度は1.55g/cm3と高充填密度とした。これを幅約40mm、長さ60cmに切断して帯状にした。
(11) Battery winding property (11-1) Production of electrode (positive electrode, negative electrode) Production of positive electrode: 92.2% by mass of lithium cobalt composite oxide LiCoO 2 as active material, flake graphite and acetylene as conductive agent A slurry was prepared by dispersing 2.3% by mass of black in each case and 3.2% by mass of polyvinylidene fluoride (PVDF) as a binder in N-methylpyrrolidone (NMP). This slurry was applied to one side of a 20 μm thick aluminum foil serving as a positive electrode current collector with a die coater, dried at 130 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material coating amount of the positive electrode was 250 g / m 2 , and the active material bulk density was 3.00 g / cm 3 . This was cut to a width of about 40 mm and a length of 60 cm to form a strip.
Production of negative electrode: 96.9% by mass of artificial graphite as an active material, 1.4% by mass of ammonium salt of carboxymethylcellulose and 1.7% by mass of styrene-butadiene copolymer latex as a binder were dispersed in purified water to prepare a slurry. did. This slurry was applied to one side of a 12 μm thick copper foil serving as a negative electrode current collector with a die coater, dried at 120 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material coating amount of the negative electrode was 106 g / m 2 , and the active material bulk density was 1.55 g / cm 3, which was a high packing density. This was cut to a width of about 40 mm and a length of 60 cm to form a strip.

(11−2)評価
皆藤製作所(株)の捲回機(KMW−2BY)を使用し、捲回性を評価した。電極の長さを60cm、ポリオレフィン製微多孔膜の長さを50cmとし、捲回速度を45mm/秒とした。(電極は正極と負極があり、ポリオレフィン製微多孔膜、正極、ポリオレフィン製微多孔膜、負極の順に、4枚重ね合わせて捲回した)。捲回状態において、微多孔膜にシワが発生しないかどうかの評価を行なった。シワ発生の基準は、捲回方向において1mm以上のシワが1箇所以上生じたものを「シワ発生」と評価した。
◎:シワ発生が10巻中0巻以下である。
○:シワ発生が10巻中1巻以下である。
×:シワ発生が10巻中2巻以上である。
(11-2) Evaluation The winding property was evaluated using a winding machine (KMW-2BY) manufactured by Minato Manufacturing Co., Ltd. The length of the electrode was 60 cm, the length of the polyolefin microporous membrane was 50 cm, and the winding speed was 45 mm / second. (The electrode has a positive electrode and a negative electrode. Four layers of a polyolefin microporous membrane, a positive electrode, a polyolefin microporous membrane, and a negative electrode were stacked and wound in this order). It was evaluated whether or not wrinkles were generated in the microporous membrane in the wound state. The standard for wrinkle generation was evaluated as “wrinkle generation” in which one or more wrinkles of 1 mm or more occurred in the winding direction.
A: Wrinkle generation is 0 or less of 10 volumes.
○: Wrinkle generation is 1 volume or less in 10 volumes.
X: Wrinkle generation is 2 or more of 10 volumes.

(12)電池評価(オーブン試験、捲回体の短絡、サイクル特性)
(12−1)電池の作製
非水電解液の調製:エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPF6を濃度1.0mol/リットルとなるように溶解させて調製した。
電池組立て:ポリオレフィン製微多孔膜、帯状正極及び帯状負極を、帯状負極、微多孔膜、帯状正極、微多孔膜の順に重ねて渦巻状に12回捲回することで電極板積層体を作製した。この電極板積層体を70℃の温度条件下2MPaで30秒間平板状にプレスし、電池捲回体を得た。
作製した電池捲回体は、電池捲回体をアルミニウム製容器に収納し、正極集電体から導出したアルミニウム製リードを容器壁に、負極集電体から導出したニッケル製リードを容器蓋端子部に接続した。こうして作製されたリチウムイオン電池は、縦(厚み)6.3mm,横30mm,高さ48mmの大きさであった。また、リチウムイオン電池の電池容量は600mAhであった。
(12) Battery evaluation (oven test, winding short circuit, cycle characteristics)
(12-1) Preparation of battery Preparation of non-aqueous electrolyte: LiPF 6 as a solute dissolved in a mixed solvent of ethylene carbonate: ethyl methyl carbonate = 1: 2 (volume ratio) to a concentration of 1.0 mol / liter Prepared.
Battery assembly: A microporous membrane made of polyolefin, a strip-like positive electrode, and a strip-like negative electrode were laminated in the order of the strip-like negative electrode, microporous membrane, strip-like positive electrode, and microporous membrane, and wound in a spiral shape 12 times to produce an electrode plate laminate. . This electrode plate laminate was pressed into a flat plate shape at 2 MPa for 30 seconds under a temperature condition of 70 ° C. to obtain a battery wound body.
The produced battery winding body is housed in an aluminum container, the aluminum lead led out from the positive electrode current collector is placed on the container wall, and the nickel lead led out from the negative electrode current collector is placed on the container lid terminal portion. Connected to. The lithium ion battery thus produced was 6.3 mm in length (thickness), 30 mm in width, and 48 mm in height. The battery capacity of the lithium ion battery was 600 mAh.

(12−2)捲回体の短絡
組立てた電池に100Vと120Vの電圧をかけて短絡試験を実施した。以下の基準に基づいて評価を行い、短絡した電池については、解体して原因を確認した。
◎:120Vで短絡しなかった。
○:100Vで短絡しなかった。
×:100Vで短絡した。
(12-2) Short-circuiting of wound body A short-circuit test was performed by applying voltages of 100 V and 120 V to the assembled battery. Evaluation was performed based on the following criteria, and the shorted battery was disassembled to confirm the cause.
(Double-circle): It did not short-circuit at 120V.
○: No short circuit occurred at 100V.
X: Short-circuited at 100V.

(12−3)サイクル特性
サイクル特性(500サイクル):容量維持率(%)として評価した。組立てた電池の初充放電として、先ず1/6Cの電流値で電圧4.2Vまで定電流充電した後に、4.2Vの定電圧を保持するように電流値を絞り始めて合計8時間の初充電を行い、次に1/6Cの電流で2.5Vの終止電圧まで放電を行った。続いてサイクル充放電として、(i)電流量0.5C、上限電圧4.2V、合計8時間の定電流定電圧充電、(ii)10分間の休止、(iii)電流量0.5C、終止電圧2.5Vの定電流放電、(iv)10分間の休止なるサイクル条件で都合50回の充放電を行った。以上の充放電処理は全て20℃及び45℃の雰囲気下にてそれぞれ実施した。その後、上記初充電での放電容量に対する上記500サイクル目の放電容量の比を100倍することで、容量維持率(%)を求めた。
◎:容量維持率 90%以上
○:容量維持率 80%以上
×:容量維持率 80%未満
(12-3) Cycle characteristics Cycle characteristics (500 cycles): Evaluated as capacity retention rate (%). As the initial charge / discharge of the assembled battery, first the constant current is charged to a voltage of 4.2V with a current value of 1 / 6C, and then the current value is started to be reduced so that the constant voltage of 4.2V is maintained. Next, the battery was discharged with a current of 1 / 6C to a final voltage of 2.5V. Subsequently, as cycle charge / discharge, (i) current amount 0.5C, upper limit voltage 4.2V, constant current constant voltage charge for 8 hours in total, (ii) 10 minute rest, (iii) current amount 0.5C, termination Charging / discharging was carried out 50 times for convenience under a constant current discharge with a voltage of 2.5 V and (iv) a cycle condition of 10 minutes of rest. All the above charge / discharge treatments were carried out in an atmosphere of 20 ° C. and 45 ° C., respectively. Thereafter, the ratio of the discharge capacity at the 500th cycle to the discharge capacity at the initial charge was multiplied by 100 to obtain the capacity retention rate (%).
◎: Capacity maintenance ratio 90% or more ○: Capacity maintenance ratio 80% or more ×: Capacity maintenance ratio less than 80%

(12−4)オーブン試験
組立てた電池のオーブン試験をするため、充電後の電池を室温から150℃、あるいは160℃まで5℃/分で昇温し、150℃と160℃で30分間放置した。以下の基準に基づいて評価した。
◎:160℃で発火しなかった。
○:150℃で発火しなかった。
×:150℃で発火した。
(12-4) Oven Test To perform an oven test on the assembled battery, the battery after charging was heated from room temperature to 150 ° C. or 160 ° C. at a rate of 5 ° C./min and left at 150 ° C. and 160 ° C. for 30 minutes. . Evaluation was based on the following criteria.
(Double-circle): It did not ignite at 160 degreeC.
○: No ignition at 150 ° C.
X: Fired at 150 ° C.

以下の実施例及び比較例で用いた材料は以下のとおりである。
(1)ポリマー1
旭化成ケミカルズ社製 商品名「サンファインUH650」
粘度平均分子量100万の超高分子量ポリエチレン
(2)ポリマー2
旭化成ケミカルズ社製 商品名「サンファインSH800」
粘度平均分子量25万の高密度ポリエチレン
(3)無機微粉体
東ソー・シリカ社製 商品名「ニプシルLP」
粉体シリカ
(4)可塑剤
フタル酸ジオクチル
The materials used in the following examples and comparative examples are as follows.
(1) Polymer 1
Product name "Sunfine UH650" manufactured by Asahi Kasei Chemicals
Viscosity average molecular weight 1 million ultra high molecular weight polyethylene (2) polymer 2
Product name "Sunfine SH800" manufactured by Asahi Kasei Chemicals
High-density polyethylene with a viscosity average molecular weight of 250,000 (3) Inorganic fine powder Product name “Nipsil LP” manufactured by Tosoh Silica
Powdered silica (4) Plasticizer Dioctyl phthalate

[実施例1〜12、比較例1〜8]
表1に記載の配合(質量%)にて原料を混合造粒した後、先端にTダイを装着した二軸押出機にて溶融混練した後に押出し、両側から加熱したロールで圧延し、厚さ110μmのシート状に成形した。該成形物から可塑剤、無機微紛体を抽出し、微多孔膜を作製した。その後、表1に記載の延伸条件にてシートを延伸し、ポリオレフィン製微多孔膜を得た。得られた微多孔膜の物性を表2に示す。ここで、表1中の「PC」は、ポリオレフィン樹脂と可塑剤と無機微粉体の合計量に対するポリオレフィン樹脂の混合割合を示す。
[Examples 1-12, Comparative Examples 1-8]
After mixing and granulating the raw materials with the composition shown in Table 1 (% by mass), the mixture was melt-kneaded in a twin-screw extruder equipped with a T-die at the tip, extruded, rolled with rolls heated from both sides, Molded into a 110 μm sheet. A plasticizer and an inorganic fine powder were extracted from the molded product to prepare a microporous film. Thereafter, the sheet was stretched under the stretching conditions described in Table 1 to obtain a polyolefin microporous membrane. Table 2 shows the physical properties of the obtained microporous membrane. Here, “PC” in Table 1 represents the mixing ratio of the polyolefin resin to the total amount of the polyolefin resin, the plasticizer, and the inorganic fine powder.

Figure 0005572334
Figure 0005572334

Figure 0005572334
Figure 0005572334

表2の結果から、本実施の形態のポリオレフィン製微多孔膜は、走行速度100m/分にて巻き直した時の巻きズレの発生がなく、スリット性に優れたものであった。
また、オーブン試験、捲回体の短絡、サイクル特性はいずれも良好であり、非水電解液系二次電池用のセパレーターとして優れた特性を有していた。
From the results shown in Table 2, the polyolefin microporous membrane of the present embodiment was excellent in slitting properties with no occurrence of winding deviation when rewinding at a running speed of 100 m / min.
In addition, the oven test, the short circuit of the wound body, and the cycle characteristics were all good, and they had excellent characteristics as a separator for a non-aqueous electrolyte secondary battery.

本発明により、ポリオレフィン製微多孔膜の製造ライン中でスリットを行う工程における不良率を低減し得るポリオレフィン製微多孔膜が提供される。   According to the present invention, there is provided a polyolefin microporous membrane capable of reducing a defect rate in a process of slitting in a polyolefin microporous membrane production line.

Claims (6)

長さ方向弾性率/幅方向弾性率の比が1.0〜2.5であり、
最大孔径が0.10μm〜0.25μmであり、
120℃熱収縮率が、長さ方向及び幅方向で共に5%以下である
ポリオレフィン製微多孔膜。
The ratio of the elastic modulus in the length direction / the elastic modulus in the width direction is 1.0 to 2.5,
The maximum pore size is 0.10 μm to 0.25 μm,
A polyolefin microporous membrane having a heat shrinkage of 120 ° C. of 5% or less in both the length direction and the width direction.
長さ方向の最大収縮応力が0.1N未満である請求項1記載のポリオレフィン製微多孔膜。   2. The polyolefin microporous membrane according to claim 1, wherein the maximum shrinkage stress in the length direction is less than 0.1N. 粘度平均分子量が70万以上の超高分子量ポリエチレンを5〜90質量%含む請求項1又は2記載のポリオレフィン製微多孔膜。   The polyolefin microporous film according to claim 1 or 2, comprising 5 to 90 mass% of ultrahigh molecular weight polyethylene having a viscosity average molecular weight of 700,000 or more. 請求項1〜3のいずれか1項記載のポリオレフィン製微多孔膜からなる非水電解液系二次電池用セパレーター。   A separator for a non-aqueous electrolyte secondary battery comprising the polyolefin microporous membrane according to any one of claims 1 to 3. 請求項4記載のセパレーターと、正極と、負極と、電解液とを備える非水電解液系二次電池。   A non-aqueous electrolyte secondary battery comprising the separator according to claim 4, a positive electrode, a negative electrode, and an electrolytic solution. 請求項1〜3のいずれか1項記載のポリオレフィン製微多孔膜の製造方法であって、下記(a)〜(f)の各工程を含み
(a)少なくともポリオレフィン樹脂、可塑剤、無機微粉体を混合造粒する工程、
(b)(a)工程で得られた混合物を、溶融混練する工程、
(c)(b)工程で得られた混練物をシート状に成形する工程、
(d)シート状の成形物から可塑剤及び無機微粉体を抽出する工程、
(e)シート状の成形物を二軸延伸する工程、
(f)(e)工程で得られた延伸シートを幅方向に延伸緩和させる工程、
前記(e)工程における幅方向延伸速度が20〜100%/秒、幅方向延伸倍率が1.1〜4.0倍、長さ方向延伸倍率/幅方向延伸倍率の比が0.5〜1.5であり、
前記(f)工程における延伸シートの幅方向緩和率が3%以上である
ポリオレフィン製微多孔膜の製造方法。
A method for producing a polyolefin microporous membrane according to any one of claims 1 to 3, comprising the following steps (a) to (f): (a) at least a polyolefin resin, a plasticizer, and an inorganic fine powder A process of mixing and granulating,
(B) a step of melt-kneading the mixture obtained in the step (a),
(C) a step of forming the kneaded material obtained in the step (b) into a sheet,
(D) a step of extracting the plasticizer and the inorganic fine powder from the sheet-like molded product,
(E) a step of biaxially stretching a sheet-like molded product,
(F) a step of stretching and relaxing the stretched sheet obtained in the step (e) in the width direction;
In the step (e), the width direction stretching speed is 20 to 100% / second, the width direction stretching ratio is 1.1 to 4.0 times, and the ratio of length direction stretching ratio / width direction stretching ratio is 0.5 to 1. .5,
A method for producing a polyolefin microporous membrane, wherein the stretched sheet in the step (f) has a widthwise relaxation rate of 3% or more.
JP2009120685A 2008-05-30 2009-05-19 Polyolefin microporous membrane Active JP5572334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009120685A JP5572334B2 (en) 2008-05-30 2009-05-19 Polyolefin microporous membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008142011 2008-05-30
JP2008142011 2008-05-30
JP2009120685A JP5572334B2 (en) 2008-05-30 2009-05-19 Polyolefin microporous membrane

Publications (2)

Publication Number Publication Date
JP2010007053A JP2010007053A (en) 2010-01-14
JP5572334B2 true JP5572334B2 (en) 2014-08-13

Family

ID=41587890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009120685A Active JP5572334B2 (en) 2008-05-30 2009-05-19 Polyolefin microporous membrane

Country Status (2)

Country Link
JP (1) JP5572334B2 (en)
KR (1) KR101103163B1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093572A1 (en) 2007-01-30 2008-08-07 Asahi Kasei E-Materials Corporation Polyolefin microporous membrane
JP5575537B2 (en) * 2010-05-10 2014-08-20 日立マクセル株式会社 Non-aqueous electrolyte battery
JP2013166804A (en) * 2010-06-04 2013-08-29 Toray Battery Separator Film Co Ltd Polyolefin microporous membrane, separator for battery and battery
WO2012029881A1 (en) * 2010-08-31 2012-03-08 国立大学法人群馬大学 Method for producing ultra-high-molecular-weight polyethylene porous membrane, method for producing ultra-high-molecular-weight polyethylene film, and porous membrane and film produced by said methods
WO2012137847A1 (en) * 2011-04-05 2012-10-11 ダブル・スコープ株式会社 Porous membrane and method for producing same
US10099419B2 (en) 2012-08-29 2018-10-16 National University Corporation Gunma University Process for producing polyethylene porous film and polyethylene porous film
KR20140062690A (en) * 2012-11-14 2014-05-26 류수선 Method of manufacturing polyolefin microporous membrane
JP6100022B2 (en) * 2013-02-25 2017-03-22 旭化成株式会社 Method for producing polyolefin microporous membrane
KR101611236B1 (en) * 2013-11-29 2016-04-11 제일모직 주식회사 Separator, manufacturing thereof and battery using the separator
CN106103561B (en) * 2014-03-24 2020-04-14 东丽株式会社 Polyolefin microporous membrane and substrate for coating using the same
HUE053383T2 (en) 2014-08-12 2021-06-28 Toray Industries Polyolefin microporous membrane and method for manufacturing same, separator for nonaqueous-electrolyte secondary cell, and nonaqueous-electrolyte secondary cell
CN115764170A (en) * 2015-04-10 2023-03-07 赛尔格有限责任公司 Chemically improved microporous separator, rechargeable lithium ion battery, and related methods
JP6014743B1 (en) 2015-11-30 2016-10-25 住友化学株式会社 Nonaqueous electrolyte secondary battery separator and use thereof
EP3604414A4 (en) 2017-03-22 2020-12-23 Toray Industries, Inc. Microporous polyolefin membrane and battery including same
EP3587481B1 (en) 2017-03-27 2021-09-08 Asahi Kasei Kabushiki Kaisha Polyolefin microporous membrane and production method thereof
CN112542653B (en) * 2019-09-05 2023-03-14 深圳市拓邦锂电池有限公司 Anti-wrinkle diaphragm of lithium battery and preparation method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3305006B2 (en) * 1991-07-05 2002-07-22 旭化成株式会社 Battery separator using organic electrolyte and method for producing the same
JP4030142B2 (en) * 1996-12-24 2008-01-09 旭化成ケミカルズ株式会社 Thin film electrolyte for lithium ion battery
WO2000049073A1 (en) * 1999-02-19 2000-08-24 Tonen Chemical Corporation Polyolefin microporous film and method for preparing the same
JP4927243B2 (en) 2000-01-13 2012-05-09 東レバッテリーセパレータフィルム合同会社 Polyolefin microporous membrane
JP2001300275A (en) 2000-04-20 2001-10-30 Asahi Kasei Corp Polyolefin hollow-fiber type porous membrane
JP4573284B2 (en) * 2000-09-18 2010-11-04 旭化成イーマテリアルズ株式会社 Polyethylene microporous membrane
JP4794099B2 (en) 2001-09-28 2011-10-12 東レ東燃機能膜合同会社 Method for producing polyolefin microporous membrane
JP4492917B2 (en) * 2003-05-07 2010-06-30 旭化成イーマテリアルズ株式会社 Method for producing polyolefin microporous membrane
JP4799179B2 (en) 2003-10-27 2011-10-26 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
WO2005061599A1 (en) * 2003-12-24 2005-07-07 Asahi Kasei Chemicals Corporation Microporous membrane made from polyolefin
WO2005113657A1 (en) * 2004-05-20 2005-12-01 Asahi Kasei Chemicals Corporation Microporous membrane made of polyolefins
CN101535386B (en) * 2006-10-30 2012-07-04 旭化成电子材料株式会社 Polyolefin microporous membrane
JP5256773B2 (en) * 2007-03-06 2013-08-07 東レ株式会社 Porous polypropylene film

Also Published As

Publication number Publication date
KR101103163B1 (en) 2012-01-04
JP2010007053A (en) 2010-01-14
KR20090125007A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP5572334B2 (en) Polyolefin microporous membrane
JP4753446B2 (en) Polyolefin microporous membrane
JP5586152B2 (en) Polyolefin microporous membrane
JP5216327B2 (en) Polyolefin microporous membrane
JP5325405B2 (en) Polyolefin microporous membrane
JP5546144B2 (en) Polyolefin microporous membrane
JP5942145B2 (en) Polyolefin microporous membrane and method for producing the same
JPWO2009136648A1 (en) High power density lithium ion secondary battery separator
JPWO2010073707A1 (en) Polyolefin microporous membrane
KR102290094B1 (en) Polyolefin microporous membrane, separator for power storage device, and power storage device
JPWO2018164056A1 (en) Polyolefin microporous membrane
JP4964565B2 (en) Polyethylene microporous membrane
WO2020137336A1 (en) Microporous polyolefin membrane and method for producing microporous polyolefin membrane
JP5235324B2 (en) Polyolefin microporous membrane
JP5295857B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP4979252B2 (en) Polyolefin microporous membrane
JP2019102126A (en) Battery separator and non-aqueous electrolyte secondary battery
JP2012072263A (en) Polyolefin microporous film
EP3960813A1 (en) Heat-resistant polyolefin-based microporous film and method for producing same
JP2009138159A (en) Microporous membrane
JP2016121327A (en) Method of producing polyolefin microporous film
JPWO2018164055A1 (en) Polyolefin microporous membrane
KR101103125B1 (en) Polyolefin microporous membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130821

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R150 Certificate of patent or registration of utility model

Ref document number: 5572334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350