JP2009193755A - Reactive polymer supporting porous film for separator for battery and electrode/separator assembly obtained therefrom - Google Patents

Reactive polymer supporting porous film for separator for battery and electrode/separator assembly obtained therefrom Download PDF

Info

Publication number
JP2009193755A
JP2009193755A JP2008031451A JP2008031451A JP2009193755A JP 2009193755 A JP2009193755 A JP 2009193755A JP 2008031451 A JP2008031451 A JP 2008031451A JP 2008031451 A JP2008031451 A JP 2008031451A JP 2009193755 A JP2009193755 A JP 2009193755A
Authority
JP
Japan
Prior art keywords
porous film
reactive polymer
electrode
separator
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008031451A
Other languages
Japanese (ja)
Other versions
JP5260074B2 (en
Inventor
Yoshihiro Uetani
慶裕 植谷
Tomoaki Ichikawa
智昭 市川
Shuhei Murata
修平 村田
Azusa Yuya
梓 油谷
Keisuke Yoshii
敬介 喜井
Kyoko Nishiguchi
恭子 西口
Kinko Sho
錦煌 庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2008031451A priority Critical patent/JP5260074B2/en
Publication of JP2009193755A publication Critical patent/JP2009193755A/en
Application granted granted Critical
Publication of JP5260074B2 publication Critical patent/JP5260074B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reactive polymer supporting porous film for a battery separator, providing the battery excellent in safety at high temperature because of sufficient adhesiveness to an electrode and excellent heat resistance and to provide an electrode/separator assembly obtained using such a reactive polymer supporting porous film. <P>SOLUTION: The reactive polymer supporting porous film for a battery separator includes a reactive polymeric layer supported on a porous film that includes a cross-linked body of a resin composition containing polyolefin and a styrene-butadiene copolymer, has a gel fraction of ≥5%, and has the reactivity polymer having a cation polymerizable functional group in a molecule. An electrode is stacked thereon to provide a layered product with the electrode, an electrolyte including a cation polymerizable catalyst is contacted therewith, and reactive polymers are cross-linked to provide the electrode/separator assembly having the porous film adhesively bonded to the electrode. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電池用セパレータのための反応性ポリマー担持多孔質フィルムとそれより得られる電極/セパレータ接合体に関する。   The present invention relates to a reactive polymer-supported porous film for a battery separator and an electrode / separator assembly obtained therefrom.

近年、携帯電話やノート型パーソナルコンピュータ等の小型乃至携帯電子機器のための電源として、高エネルギー密度を有するリチウムイオン二次電池が広く用いられている。このようなリチウムイオン二次電池は、シート状の正、負極と、例えば、ポリオレフィン樹脂多孔質フィルムとを積層し、又は捲回して、例えば、金属缶からなる電池容器に仕込んだ後、この電池容器に電解液を注入し、密封、封口するという工程を経て製造される。   In recent years, lithium ion secondary batteries having a high energy density have been widely used as power sources for small to portable electronic devices such as mobile phones and notebook personal computers. Such a lithium ion secondary battery is obtained by laminating or winding sheet-like positive and negative electrodes and, for example, a polyolefin resin porous film, and charging the battery into a battery container made of, for example, a metal can. It is manufactured through a process of injecting an electrolytic solution into a container, sealing, and sealing.

しかし、近年、上記のような小型乃至携帯電子機器の一層の小型化、軽量化への要望が非常に強く、そこで、リチウムイオン二次電池についても、更なる薄型化と軽量化が求められており、従来の金属缶容器に代えて、ラミネートシール型の電池容器も用いられるようになっている。   However, in recent years, there has been a strong demand for further downsizing and weight reduction of the above-described small or portable electronic devices. Therefore, further thinning and weight reduction of lithium ion secondary batteries are also required. In place of the conventional metal can container, a laminate seal type battery container is also used.

このようなラミネートシール型の電池容器によれば、従来の金属缶容器に比べて、セパレータと電極の電気的接続を維持するための面圧を電極面に十分に加えることができないので、電池の充放電時の電極活物質の膨張収縮によって、電極間距離が経時により部分的に大きくなり、電池の内部抵抗が増大して、電池特性が低下するほか、電池内部で抵抗のばらつきが生じることによっても、電池特性が低下するという問題が生じる。   According to such a laminated seal type battery container, since the surface pressure for maintaining the electrical connection between the separator and the electrode cannot be sufficiently applied to the electrode surface as compared with the conventional metal can container, Due to the expansion and contraction of the electrode active material during charging and discharging, the distance between the electrodes partially increases with time, the internal resistance of the battery increases, the battery characteristics deteriorate, and the resistance varies within the battery. However, there arises a problem that the battery characteristics are deteriorated.

また、大面積のシート状電池を製造する場合には、電極間距離を一定に保つことができず、電池内部の抵抗のばらつきによって、電池特性が十分に得られないという問題もあった。   Further, when manufacturing a sheet battery having a large area, the distance between the electrodes cannot be kept constant, and there is a problem that battery characteristics cannot be sufficiently obtained due to variations in resistance inside the battery.

そこで、従来、このような問題点を解決するために、電解液相、電解液を含有する高分子ゲル層及び高分子固層からなる接着性樹脂層によって電極とセパレータを接合することが提案されている(例えば、特許文献1参照)。また、ポリフッ化ビニリデン樹脂を主成分とするバインダー樹脂溶液をセパレータに塗布した後、これに電極を重ね合わせ、乾燥して電池積層体を形成し、この電池積層体を電池容器に仕込んだ後、電池容器に電解液を注入して、セパレータに電極を接着した電池を得ることも提案されている(例えば、特許文献2参照)。   Therefore, conventionally, in order to solve such problems, it has been proposed to join an electrode and a separator by an adhesive resin layer comprising an electrolyte phase, a polymer gel layer containing an electrolyte solution, and a polymer solid layer. (For example, refer to Patent Document 1). In addition, after applying a binder resin solution containing polyvinylidene fluoride resin as a main component to the separator, an electrode is superimposed on the separator and dried to form a battery laminate, and after charging the battery laminate into a battery container, It has also been proposed to obtain a battery in which an electrolyte is injected into a battery container and an electrode is bonded to a separator (see, for example, Patent Document 2).

更に、電解液を含浸させたセパレータと正、負の電極を多孔性の接着性樹脂層で接合して、密着させると共に、上記接着性樹脂層中の貫通孔に電解液を保持させて、セパレータに電極を接着した電池とすることも提案されている(例えば、特許文献3参照)。   Further, the separator impregnated with the electrolytic solution and the positive and negative electrodes are joined and adhered by the porous adhesive resin layer, and the electrolytic solution is held in the through-hole in the adhesive resin layer, thereby separating the separator. It has also been proposed to use a battery in which an electrode is bonded to the battery (see, for example, Patent Document 3).

しかし、このような方法によれば、セパレータと電極との間に十分な接着力を得るためには、接着性樹脂層の厚さを厚くしなければならず、また、接着性樹脂に対する電解液量を多くできないので、得られる電池においては、内部抵抗が高くなり、サイクル特性や高レート放電特性が十分に得られない問題があった。
特開平10−177865号公報 特開平10−189054号公報 特開平10−172606号公報
However, according to such a method, in order to obtain a sufficient adhesive force between the separator and the electrode, the thickness of the adhesive resin layer must be increased, and the electrolytic solution for the adhesive resin Since the amount cannot be increased, the resulting battery has a problem that the internal resistance becomes high and the cycle characteristics and the high rate discharge characteristics cannot be sufficiently obtained.
JP-A-10-177865 Japanese Patent Laid-Open No. 10-189054 JP-A-10-172606

本発明は、セパレータに電極を接着してなる電池の製造における上述した問題を解決するためになされたものであって、電極との間に十分な接着性を有すると共に、耐熱性にすぐれるために、高温での安全性にすぐれた電池を与える電池用セパレータを提供することを目的とする。更に、本発明は、そのような電池用セパレータより得られる電極/セパレータ接合体を提供することを目的とする。   The present invention has been made to solve the above-described problems in the production of a battery in which an electrode is bonded to a separator, and has sufficient adhesiveness with the electrode and is excellent in heat resistance. Another object of the present invention is to provide a battery separator that provides a battery with excellent safety at high temperatures. Furthermore, an object of the present invention is to provide an electrode / separator assembly obtained from such a battery separator.

本発明によれば、多孔質フィルム上に反応性ポリマーの層を担持させてなる電池用セパレータであって、上記多孔質フィルムがポリオレフィンとスチレン−ブタジエン共重合体を含む樹脂組成物の架橋体からなり、5%以上のゲル分率を有し、上記反応性ポリマーが分子中にカチオン重合性官能基を有することを特徴とする電池用セパレータのための反応性ポリマー担持多孔質フィルムが提供される。   According to the present invention, there is provided a battery separator having a reactive polymer layer supported on a porous film, wherein the porous film is formed from a crosslinked resin composition containing a polyolefin and a styrene-butadiene copolymer. A reactive polymer-supported porous film for a battery separator is provided, which has a gel fraction of 5% or more, and wherein the reactive polymer has a cationic polymerizable functional group in the molecule .

上記反応性ポリマーは、好ましくは、カチオン重合性官能基を有するラジカル重合性モノマーと他のラジカル重合性モノマーとのラジカル共重合体である。   The reactive polymer is preferably a radical copolymer of a radical polymerizable monomer having a cationic polymerizable functional group and another radical polymerizable monomer.

本発明によれば、上記カチオン重合性官能基は、好ましくは、3−オキセタニル基とエポキシ基から選ばれる少なくとも1種である。   According to the present invention, the cationically polymerizable functional group is preferably at least one selected from a 3-oxetanyl group and an epoxy group.

更に、本発明によれば、上記反応性ポリマー担持多孔質フィルムに電極を積層して、電極/反応性ポリマー担持多孔質フィルム積層体を得、この積層体の有する反応性ポリマーをカチオン重合性触媒を含む電解液に接触させて、上記多孔質フィルムを上記反応性ポリマーを介して接着して得られる電極/セパレータ接合体が提供される。   Further, according to the present invention, an electrode is laminated on the reactive polymer-supported porous film to obtain an electrode / reactive polymer-supported porous film laminate, and the reactive polymer contained in the laminate is converted into a cationic polymerizable catalyst. There is provided an electrode / separator assembly obtained by bringing the porous film into contact with an electrolytic solution containing the above-mentioned reactive polymer via the reactive polymer.

本発明において、上記カチオン重合触媒は、好ましくは、オニウム塩であり、また、電解液は、好ましくは、カチオン重合触媒を兼ねる電解質塩として、ヘキサフルオロリン酸リチウムとテトラフルオロホウ酸リチウムから選ばれる少なくとも1種を含む。   In the present invention, the cationic polymerization catalyst is preferably an onium salt, and the electrolytic solution is preferably selected from lithium hexafluorophosphate and lithium tetrafluoroborate as an electrolyte salt that also serves as the cationic polymerization catalyst. Contains at least one species.

本発明による電池用セパレータのための反応性ポリマー担持多孔質フィルムは、その間の接着にすぐれる電極/セパレータ接合体を与えると共に、そのような電極/セパレータ接合体を用いることによって、耐熱性にすぐれ、従って、高温での安全性にすぐれる電池を得ることができる。   The reactive polymer-supported porous film for a battery separator according to the present invention provides an electrode / separator assembly excellent in adhesion therebetween, and is excellent in heat resistance by using such an electrode / separator assembly. Therefore, a battery excellent in safety at a high temperature can be obtained.

本発明による電池用セパレータのための反応性ポリマー担持多孔質フィルムは、多孔質フィルム上に反応性ポリマーの層を担持させてなる電池用セパレータであって、上記多孔質フィルムがポリオレフィンとスチレン−ブタジエン共重合体を含む樹脂組成物の架橋体からなり、5%以上のゲル分率を有し、上記反応性ポリマーが分子中にカチオン重合性官能基を有するものである。   A reactive polymer-supported porous film for a battery separator according to the present invention is a battery separator having a reactive polymer layer supported on a porous film, wherein the porous film comprises polyolefin and styrene-butadiene. It consists of a crosslinked product of a resin composition containing a copolymer, has a gel fraction of 5% or more, and the reactive polymer has a cationic polymerizable functional group in the molecule.

本発明による電池用セパレータのための反応性ポリマー担持多孔質フィルムにおいて、基材多孔質フィルムは、ポリオレフィン樹脂とスチレン−ブタジエン共重合体を含む樹脂組成物の架橋体からなる、5%以上のゲル分率を有する多孔質フィルムである。このような多孔質フィルムは、例えば、ポリオレフィン樹脂とスチレン−ブタジエン共重合体を含む樹脂組成物から多孔質フィルム作製し、これを熱処理し、又は電子線や紫外線を照射して、上記二重結合を反応させ、架橋構造を有せしめることによって得ることができる。   In the reactive polymer-supported porous film for battery separator according to the present invention, the base porous film is a gel of 5% or more comprising a cross-linked product of a resin composition containing a polyolefin resin and a styrene-butadiene copolymer. It is a porous film having a fraction. Such a porous film is prepared by, for example, producing a porous film from a resin composition containing a polyolefin resin and a styrene-butadiene copolymer, heat-treating the film, or irradiating with an electron beam or an ultraviolet ray to form the double bond. Can be obtained by reacting to give a cross-linked structure.

上記ポリオレフィン樹脂は、好ましくは、ポリエチレン樹脂であり、例えば、高密度ポリエチレン樹脂、超高分子量ポリエチレン樹脂又はこれらの混合物が好ましく用いられる。上記スチレン−ブタジエン共重合体は、ランダム共重合体でもよいが、好ましくは、ブロック共重合体である。このようなポリオレフィン樹脂とスチレン−ブタジエン共重合体を含む樹脂組成物は、その成形加工性や接着性を高めるために、必要に応じて、その他の樹脂を含んでいてもよい。そのような樹脂として、例えば、無水マレイン酸をポリエチレンやポリプロピレンにグラフト重合してなる変性ポリオレフィン樹脂を挙げることができる。   The polyolefin resin is preferably a polyethylene resin. For example, a high density polyethylene resin, an ultrahigh molecular weight polyethylene resin, or a mixture thereof is preferably used. The styrene-butadiene copolymer may be a random copolymer, but is preferably a block copolymer. The resin composition containing such a polyolefin resin and a styrene-butadiene copolymer may contain other resins as necessary in order to improve the molding processability and adhesion. An example of such a resin is a modified polyolefin resin obtained by graft polymerization of maleic anhydride onto polyethylene or polypropylene.

本発明において、このような多孔質フィルムは、5%以上のゲル分率を有する。ゲル分率が5%よりも少ないときは、高温での耐破膜性が不十分であり、電池が高温に曝された際にセパレータが破膜して、電極の短絡を招く虞がある。本発明においては、多孔質フィルムのゲル分率は、5〜90%の範囲にあり、好ましくは、5〜70%の範囲にある。   In the present invention, such a porous film has a gel fraction of 5% or more. When the gel fraction is less than 5%, the film resistance at high temperatures is insufficient, and when the battery is exposed to high temperatures, the separator may be broken, leading to a short circuit of the electrodes. In the present invention, the gel fraction of the porous film is in the range of 5 to 90%, preferably in the range of 5 to 70%.

また、本発明によれば、多孔質フィルムは、通常、平均孔径が0.01〜5μmの細孔を有し、空孔率が20〜95%の範囲にある。多孔質フィルムの空孔率は、好ましくは、30〜90%の範囲であり、最も好ましくは、40〜85%の範囲である。多孔質フィルム空孔率が余りに低いときは、電池のセパレータとして用いたときに、イオン伝導経路が少なくなり、十分な電池特性を得ることができない。他方、空孔率が余りに高いときは、電池のセパレータとして用いた場合に、強度が不十分であり、所要の強度を得るためには、基材多孔質フィルムとして厚いものを用いざるを得ず、そうすれば、電池の内部抵抗が高くなるので好ましくない。   According to the present invention, the porous film usually has pores having an average pore diameter of 0.01 to 5 μm and a porosity in the range of 20 to 95%. The porosity of the porous film is preferably in the range of 30 to 90%, and most preferably in the range of 40 to 85%. When the porosity of the porous film is too low, when used as a battery separator, the ion conduction path is reduced and sufficient battery characteristics cannot be obtained. On the other hand, when the porosity is too high, when used as a battery separator, the strength is insufficient, and in order to obtain the required strength, a thick substrate porous film must be used. This is not preferable because the internal resistance of the battery increases.

更に、本発明によれば、多孔質フィルムは、通常、通気度が1500秒/100cc以下であり、好ましくは、1000秒/100cc以下である。通気度が高すぎるときは、電池のセパレータとして用いたときに、イオン伝導性が低く、十分な電池特性を得ることができない。   Further, according to the present invention, the porous film usually has an air permeability of 1500 seconds / 100 cc or less, preferably 1000 seconds / 100 cc or less. When the air permeability is too high, ion conductivity is low when used as a battery separator, and sufficient battery characteristics cannot be obtained.

また、多孔質フィルムの強度は、突刺し強度にて1N以上であることが好ましい。突刺し強度が1Nよりも小さいときは,電極間に面圧がかかった際に基材が破断し、内部短絡を引き起こすおそれがあるからである。   The strength of the porous film is preferably 1 N or more in terms of piercing strength. This is because when the piercing strength is less than 1N, the base material may be broken when a surface pressure is applied between the electrodes, thereby causing an internal short circuit.

本発明による電池用セパレータのための反応性ポリマー担持多孔質フィルムは、上述したような基材多孔質フィルム上に反応性ポリマーを担持しており、この反応性ポリマーは、分子中にカチオン重合性官能基を複数有し、このカチオン重合性官能基は、好ましくは、3−オキセタニル基とエポキシ基(2−オキシラニル基)とから選ばれる少なくとも1種である。即ち、本発明によれば、反応性ポリマーは、分子中に3−オキセタニル基とエポキシ基とから選ばれる少なくとも1種のカチオン重合性官能基を複数有するポリマーである。このように分子中に複数の3−オキセタニル基を有する反応性ポリマー(以下、3−オキセタニル基含有反応性ポリマーという。)や、分子中に複数のエポキシ基を有する反応性ポリマー(以下、エポキシ基含有反応性ポリマーという。)は、例えば、特開2002−110245号公報や特開2001−176555号公報に記載されているように、既に、知られている。   The reactive polymer-supported porous film for a battery separator according to the present invention has a reactive polymer supported on the substrate porous film as described above, and this reactive polymer is cationically polymerizable in the molecule. The cation polymerizable functional group having a plurality of functional groups is preferably at least one selected from a 3-oxetanyl group and an epoxy group (2-oxiranyl group). That is, according to the present invention, the reactive polymer is a polymer having a plurality of at least one cationically polymerizable functional group selected from a 3-oxetanyl group and an epoxy group in the molecule. In this way, a reactive polymer having a plurality of 3-oxetanyl groups in the molecule (hereinafter referred to as a 3-oxetanyl group-containing reactive polymer) or a reactive polymer having a plurality of epoxy groups in the molecule (hereinafter referred to as an epoxy group). For example, as described in JP-A No. 2002-110245 and JP-A No. 2001-176555, it is already known.

本発明によれば、3−オキセタニル基含有反応性ポリマーは、好ましくは、3−オキセタニル基を有するラジカル重合性モノマー(以下、3−オキセタニル基含有ラジカル重合性モノマーという。)と他のラジカル重合性モノマーとのラジカル共重合体であり、また、エポキシ基含有反応性ポリマーも、同様に、好ましくは、エポキシ基を有するラジカル重合性モノマー(以下、エポキシ基含有ラジカル重合性モノマーという。)と他のラジカル重合性モノマーとのラジカル共重合体である。   According to the present invention, the 3-oxetanyl group-containing reactive polymer is preferably a radical polymerizable monomer having a 3-oxetanyl group (hereinafter referred to as a 3-oxetanyl group-containing radical polymerizable monomer) and another radical polymerizable. It is a radical copolymer with a monomer, and the epoxy group-containing reactive polymer is preferably also preferably a radical polymerizable monomer having an epoxy group (hereinafter referred to as an epoxy group-containing radical polymerizable monomer) and the other. It is a radical copolymer with a radically polymerizable monomer.

特に、本発明によれば、3−オキセタニル基含有ラジカル重合性モノマーとして、好ましくは、一般式(I)   In particular, according to the present invention, the 3-oxetanyl group-containing radical polymerizable monomer is preferably represented by the general formula (I)

Figure 2009193755
Figure 2009193755

(式中、R1は水素原子又はメチル基を示し、R2 は水素原子又は炭素原子数1〜6のアルキル基を示す。)
で表される3−オキセタニル基含有(メタ)アクリレートが用いられる。
(In the formula, R 1 represents a hydrogen atom or a methyl group, and R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
The 3-oxetanyl group containing (meth) acrylate represented by these is used.

このような3−オキセタニル基含有(メタ)アクリレートの具体例として、例えば、3−オキセタニルメチル(メタ)アクリレート、3−メチル−3−オキセタニルメチル(メタ)アクリレート、3−エチル−3−オキセタニルメチル(メタ)アクリレート、3−ブチル−3−オキセタニルメチル(メタ)アクリレート、3−ヘキシル−3−オキセタニルメチル(メタ)アクリレート等を挙げることができる。これらの(メタ)アクリレートは単独で用いられ、又は2種以上が併用される。   Specific examples of such a 3-oxetanyl group-containing (meth) acrylate include, for example, 3-oxetanylmethyl (meth) acrylate, 3-methyl-3-oxetanylmethyl (meth) acrylate, 3-ethyl-3-oxetanylmethyl ( Mention may be made of (meth) acrylate, 3-butyl-3-oxetanylmethyl (meth) acrylate, 3-hexyl-3-oxetanylmethyl (meth) acrylate and the like. These (meth) acrylates are used alone or in combination of two or more.

尚、本発明において、(メタ)アクリレートとは、アクリレート又はメタクリレートを意味する。   In the present invention, (meth) acrylate means acrylate or methacrylate.

また、本発明によれば、エポキシ基含有ラジカル重合性モノマーとして、好ましくは、一般式(II)   Further, according to the present invention, the epoxy group-containing radical polymerizable monomer is preferably represented by the general formula (II)

Figure 2009193755
Figure 2009193755

(式中、R3 は水素原子又はメチル基を示し、R4 は式(1) (In the formula, R 3 represents a hydrogen atom or a methyl group, and R 4 represents the formula (1)

Figure 2009193755
Figure 2009193755

又は式(2) Or formula (2)

Figure 2009193755
Figure 2009193755

で表されるエポキシ基含有基を示す。)
で表されるエポキシ基含有(メタ)アクリレートが用いられる。
The epoxy group containing group represented by these is shown. )
The epoxy group containing (meth) acrylate represented by these is used.

このようなエポキシ基含有(メタ)アクリレートの具体例としては、例えば、3,4−エポキシシクロヘキシルメチル(メタ)アクリレート、グリシジル(メタ)アクリレート等を挙げることができる。これらの(メタ)アクリレートは単独で用いられ、又は2種以上が併用される。   Specific examples of such an epoxy group-containing (meth) acrylate include 3,4-epoxycyclohexylmethyl (meth) acrylate and glycidyl (meth) acrylate. These (meth) acrylates are used alone or in combination of two or more.

このような3−オキセタニル基含有ラジカル重合性モノマーやエポキシ基含有ラジカル重合性モノマーと共重合させる前記他のラジカル重合性モノマーは、好ましくは、一般式(III)   The other radical polymerizable monomer copolymerized with such a 3-oxetanyl group-containing radical polymerizable monomer or an epoxy group-containing radical polymerizable monomer is preferably represented by the general formula (III)

Figure 2009193755
Figure 2009193755

(式中、R5 は水素原子又はメチル基を示し、Aは炭素原子数2又は3のオキシアルキレン基(好ましくは、オキシエチレン基又はオキシプロピレン基)を示し、R6 は炭素原子数1〜6のアルキル基又は炭素原子数1〜6のフッ化アルキル基を示し、nは0〜12の整数を示す。)
で表される(メタ)アクリレートと一般式(IV)
(In the formula, R 5 represents a hydrogen atom or a methyl group, A represents an oxyalkylene group having 2 or 3 carbon atoms (preferably an oxyethylene group or an oxypropylene group), and R 6 represents 1 to 1 carbon atoms. 6 represents an alkyl group or a fluorinated alkyl group having 1 to 6 carbon atoms, and n represents an integer of 0 to 12.)
(Meth) acrylate represented by the general formula (IV)

Figure 2009193755
Figure 2009193755

(式中、R7 はメチル基又はエチル基を示し、R8 は水素原子又はメチル基を示す。)
で表されるビニルエステルから選ばれる少なくとも1種である。
(In the formula, R 7 represents a methyl group or an ethyl group, and R 8 represents a hydrogen atom or a methyl group.)
It is at least 1 sort (s) chosen from vinyl ester represented by these.

上記一般式(III)で表される(メタ)アクリレートの具体例として、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2,2,2−トリフルオロエチル(メタ)アクリレート、2,2,3,3−テトラフルオロプロピル(メタ)アクリレート等を挙げることができる。
これら以外にも、例えば、
Specific examples of the (meth) acrylate represented by the general formula (III) include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2,2,2 -Trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, etc. can be mentioned.
Besides these, for example,

Figure 2009193755
Figure 2009193755

(各式中、R5 は水素原子又はメチル基を示し、nは0〜12の整数を示す。)
等を挙げることができる。
(In each formula, R 5 represents a hydrogen atom or a methyl group, and n represents an integer of 0 to 12.)
Etc.

また、上記一般式(IV)で表されるビニルエステルの具体例として、例えば、酢酸ビニル、プロピオン酸ビニル等を挙げることができる。   Specific examples of the vinyl ester represented by the general formula (IV) include vinyl acetate and vinyl propionate.

3−オキセタニル基含有反応性ポリマーやエポキシ基含有反応性ポリマーは、上述したように、好ましくは、3−オキセタニル基含有ラジカル重合性モノマーやエポキシ基含有ラジカル重合性モノマーと他のラジカル重合性モノマーとをラジカル重合開始剤を用いてラジカル共重合させることによって、ラジカル共重合体として得ることができる。   As described above, the 3-oxetanyl group-containing reactive polymer or the epoxy group-containing reactive polymer is preferably a 3-oxetanyl group-containing radical polymerizable monomer, an epoxy group-containing radical polymerizable monomer, and another radical polymerizable monomer. Can be obtained as a radical copolymer by radical copolymerization using a radical polymerization initiator.

このラジカル共重合は、溶液重合、塊状重合、懸濁重合、乳化重合等、いずれの重合法によってもよいが、重合の容易さ、分子量の調整、後処理等の点から溶液重合や懸濁重合によるのが好ましい。   This radical copolymerization may be carried out by any polymerization method such as solution polymerization, bulk polymerization, suspension polymerization, emulsion polymerization, etc., but solution polymerization or suspension polymerization in terms of ease of polymerization, adjustment of molecular weight, post-treatment, etc. Is preferred.

上記ラジカル重合開始剤は、特に、限定されるものではないが、例えば、N,N’−アゾビスイソブチロニトリル、ジメチルN,N’−アゾビス(2−メチルプロピオネート)、ベンゾイルパーオキサイド、ラウロイルパーオキサイド等が用いられる。   The radical polymerization initiator is not particularly limited, and examples thereof include N, N′-azobisisobutyronitrile, dimethyl N, N′-azobis (2-methylpropionate), and benzoyl peroxide. Lauroyl peroxide is used.

また、このラジカル共重合において、必要に応じて、メルカプタン等のような分子量調整剤を用いることができる。   In this radical copolymerization, a molecular weight modifier such as mercaptan can be used as necessary.

本発明によれば、後述するように、反応性ポリマー担持多孔質フィルムの有する反応性ポリマーをカチオン重合触媒を含む電解液に接触させて、少なくとも多孔質フィルムと電極との界面の近傍にて一部を電解液中で膨潤させ、又は電解液中に溶出させて、カチオン重合によって架橋させ、多孔質フィルムと電極との界面の近傍で電解液をゲル化させることによって、電極を多孔質フィルムと接着させる。従って、上記反応性ポリマーが電解液と共に形成するゲルは、多孔質フィルムと電極とを接着することができるものである必要がある。   According to the present invention, as will be described later, the reactive polymer having the reactive polymer-supported porous film is brought into contact with the electrolytic solution containing the cationic polymerization catalyst, and at least near the interface between the porous film and the electrode. Part is swollen in the electrolytic solution or eluted into the electrolytic solution, crosslinked by cationic polymerization, and the electrolytic solution is gelled in the vicinity of the interface between the porous film and the electrode. Adhere. Therefore, the gel formed by the reactive polymer together with the electrolytic solution needs to be able to bond the porous film and the electrode.

そこで、本発明によれば、3−オキセタニル基含有反応性ポリマーやエポキシ基含有反応性ポリマーを得る際に、3−オキセタニル基含有ラジカル重合性モノマーとエポキシ基含有ラジカル重合性モノマーは、その合計量が全モノマー量の5〜50重量%、好ましくは、10〜30重量%の範囲となるように用いられる。従って、3−オキセタニル基含有反応性ポリマーを得る場合であれば、3−オキセタニル基含有ラジカル重合性モノマーは、全モノマー量の5〜50重量%、好ましくは、10〜30重量%の範囲で用いられ、同様に、エポキシ基含有反応性ポリマーを得る場合であれば、エポキシ基含有ラジカル重合性モノマーは、全モノマー量の5〜50重量%、好ましくは、10〜30重量%の範囲で用いられる。   Therefore, according to the present invention, when the 3-oxetanyl group-containing reactive polymer or the epoxy group-containing reactive polymer is obtained, the total amount of the 3-oxetanyl group-containing radical polymerizable monomer and the epoxy group-containing radical polymerizable monomer is the same. Is used in a range of 5 to 50% by weight, preferably 10 to 30% by weight of the total amount of monomers. Therefore, in the case of obtaining a 3-oxetanyl group-containing reactive polymer, the 3-oxetanyl group-containing radical polymerizable monomer is used in the range of 5 to 50% by weight, preferably 10 to 30% by weight of the total monomer amount. Similarly, in the case of obtaining an epoxy group-containing reactive polymer, the epoxy group-containing radical polymerizable monomer is used in the range of 5 to 50% by weight, preferably 10 to 30% by weight of the total monomer amount. .

また、3−オキセタニル基含有ラジカル重合性モノマーとエポキシ基含有ラジカル重合性モノマーを併用し、これらを他のラジカル重合性モノマーと共重合させて、3−オキセタニル基とエポキシ基とを有する反応性ポリマーを得る場合には、3−オキセタニル基含有ラジカル重合性モノマーとエポキシ基含有ラジカル重合性モノマーの合計量のうち、エポキシ基含有ラジカル重合性モノマーの割合が90重量%以下であるように用いられる。   Further, a reactive polymer having a 3-oxetanyl group and an epoxy group by using a 3-oxetanyl group-containing radical polymerizable monomer and an epoxy group-containing radical polymerizable monomer together and copolymerizing them with other radical polymerizable monomers Is used such that the proportion of the epoxy group-containing radical polymerizable monomer in the total amount of the 3-oxetanyl group-containing radical polymerizable monomer and the epoxy group-containing radical polymerizable monomer is 90% by weight or less.

3−オキセタニル基含有反応性ポリマーやエポキシ基含有反応性ポリマーを得る際に、3−オキセタニル基含有ラジカル重合性モノマーとエポキシ基含有ラジカル重合性モノマーの合計量が全モノマー量の5重量%よりも少ないときは、上述したように、電解液のゲル化に要する反応性ポリマー量の増大を招くので、得られる電池の性能が低下する。他方、50重量%よりも多いときは、形成されたゲルの電解液の保持性が低下して、得られる電池における電極/セパレータ間の接着性が低下する。   In obtaining a 3-oxetanyl group-containing reactive polymer or an epoxy group-containing reactive polymer, the total amount of the 3-oxetanyl group-containing radical polymerizable monomer and the epoxy group-containing radical polymerizable monomer is more than 5% by weight of the total monomer amount. When the amount is small, as described above, the amount of the reactive polymer required for gelation of the electrolytic solution is increased, so that the performance of the obtained battery is deteriorated. On the other hand, when it is more than 50% by weight, the retention property of the electrolyte solution of the formed gel is lowered, and the adhesion between the electrode / separator in the obtained battery is lowered.

本発明において、3−オキセタニル基とエポキシ基から選ばれる少なくとも1種を複数、有する反応性ポリマーは、その重量平均分子量が10000以上であることが好ましい。反応性ポリマーの重量平均分子量が10000よりも小さいときは、電解液をゲル化するために多量の反応性ポリマーを必要とするので、得られる電池の特性を低下させる。他方、反応性ポリマーの重量平均分子量の上限は、特に制限されるものではないが、電解液をゲルとして保持し得るように、300万程度であり、好ましくは、250万程度である。特に、本発明によれば、反応性ポリマーは、重量平均分子量が100000〜2000000の範囲にあるのが好ましい。   In the present invention, the reactive polymer having a plurality of at least one selected from a 3-oxetanyl group and an epoxy group preferably has a weight average molecular weight of 10,000 or more. When the weight average molecular weight of the reactive polymer is smaller than 10,000, a large amount of the reactive polymer is required to gel the electrolytic solution, so that the characteristics of the obtained battery are deteriorated. On the other hand, the upper limit of the weight average molecular weight of the reactive polymer is not particularly limited, but is about 3 million, preferably about 2.5 million so that the electrolytic solution can be held as a gel. In particular, according to the present invention, the reactive polymer preferably has a weight average molecular weight in the range of 100,000 to 2,000,000.

本発明による電池用セパレータのための反応性ポリマー担持多孔質フィルムは、上述したような反応性ポリマーを前述したような基材多孔質フィルムに担持させてなるもので
あり、ここに、反応性ポリマーを基材多孔質フィルムに担持させるには、特に限定されないが、例えば、反応性ポリマーをアセトン、酢酸エチル、酢酸ブチル等の適宜の有機溶剤に溶解させて反応性ポリマー溶液を調製し、この反応性ポリマー溶液を、例えば、基材多孔質フィルムの表面にキャスティングやスプレー等、適宜の手段。方法にて塗布した後、又は反応性ポリマー溶液中に基材多孔質フィルムを含浸させた後、乾燥して、用いた有機溶剤を除去すればよい。
A reactive polymer-supported porous film for a battery separator according to the present invention is formed by supporting a reactive polymer as described above on a substrate porous film as described above. Is not particularly limited, for example, a reactive polymer solution is dissolved in an appropriate organic solvent such as acetone, ethyl acetate, butyl acetate to prepare a reactive polymer solution. Appropriate means such as casting or spraying the functional polymer solution on the surface of the porous substrate film. After applying by the method or impregnating the base material porous film in the reactive polymer solution, the organic solvent used may be removed by drying.

また、別の方法として、上記反応性ポリマーを溶融押出によってフィルムに成形し、このフィルムを基材多孔質フィルムに熱ラミネート等によって貼り合わせてもよい。   As another method, the reactive polymer may be formed into a film by melt extrusion, and this film may be bonded to a porous substrate film by thermal lamination or the like.

次に、このようにして得られる反応性ポリマー担持多孔質フィルムを用いる電池の製造について説明する。   Next, production of a battery using the reactive polymer-supported porous film thus obtained will be described.

先ず、電極を上記反応性ポリマー担持多孔質フィルムに積層し、又は捲回し、好ましくは、電極と上記反応性ポリマー担持多孔質フィルムとを加熱圧着して、電極/反応性ポリマー担持多孔質フィルム積層体を得、次いで、この積層体を金属缶やラミネートフィルム等からなる電池容器内に仕込み、端子の溶接等が必要な場合にはこれを行った後、この電池容器内にカチオン重合触媒を溶解させた電解液を所定量注入し、上記電極/反応性ポリマー担持多孔質フィルム積層体の有する反応性ポリマーに上記電解液を接触させ、次いで、電池容器を密封、封口して、上記反応性ポリマーの一部を少なくとも多孔質フィルムと電極との界面の近傍にて電解液中で膨潤させ、又は電解液中に溶出させて、カチオン重合によって架橋させ、電解液を少なくとも一部、ゲル化させて、電極を反応性ポリマーを介して多孔質フィルムと接着し、かくして、多孔質フィルムをセパレータとする電極/セパレータ接合体を有する電池を得ることができる。   First, the electrode is laminated or wound on the reactive polymer-supported porous film, and preferably the electrode and the reactive polymer-supported porous film are thermocompression-bonded to form an electrode / reactive polymer-supported porous film laminate. Then, this laminate is placed in a battery container made of a metal can, a laminate film, etc., and if necessary, welding of the terminal is performed, and then the cationic polymerization catalyst is dissolved in the battery container. A predetermined amount of the electrolyte solution is injected, the electrolyte solution is brought into contact with the reactive polymer of the electrode / reactive polymer-supported porous film laminate, and then the battery container is sealed and sealed. A portion of the electrolyte film is swollen in the electrolyte solution at least in the vicinity of the interface between the porous film and the electrode, or eluted in the electrolyte solution and crosslinked by cationic polymerization to reduce the electrolyte solution. Ku and also partially, by gelling, an electrode through a reactive polymer adhered to the porous film, thus, it is possible to obtain a battery having an electrode / separator junction body a porous film as the separator.

本発明においては、反応性ポリマーは、そのカチオン重合による架橋によって、電極と多孔質フィルムとを接着するように機能すれば十分であり、従って、電解液をすべてゲル化させる必要はない。   In the present invention, it is sufficient for the reactive polymer to function so as to adhere the electrode and the porous film by cross-linking by cationic polymerization. Therefore, it is not necessary to gel all of the electrolytic solution.

本発明において、反応性ポリマーは、その構造や多孔質フィルムヘの担持量、カチオン重合触媒の種類や量にもよるが、常温においてもカチオン重合させ、架橋させることがで
きるが、しかし、加熱することによって、カチオン重合を促進することができる。この場合、電池を構成する材料の耐熱性や生産性との兼ね合いにもよるが、通常、40〜100℃程度の温度で0.5〜48時間程度加熱すればよい。また、電極を多孔質フィルムに接着させるに足る量のポリマーを膨潤させ、又は溶出させるために、電池容器内に電解液を注入した後、常温で数時間程度、放置してもよい。
In the present invention, the reactive polymer can be cationically polymerized and crosslinked even at room temperature, although it depends on its structure, the amount supported on the porous film, and the type and amount of the cationic polymerization catalyst. Thus, cationic polymerization can be promoted. In this case, although it depends on the heat resistance and productivity of the material constituting the battery, the heating is usually performed at a temperature of about 40 to 100 ° C. for about 0.5 to 48 hours. Further, in order to swell or elute an amount of polymer sufficient to adhere the electrode to the porous film, the electrolyte may be poured into the battery container and then left at room temperature for several hours.

本発明において、電極/反応性ポリマー担持多孔質フィルム積層体は、反応性ポリマー担持多孔質フィルムに電極が積層されておればよく、従って、電池の構造や形態に応じて、電極/反応性ポリマー担持多孔質フィルム積層体として、例えば、負極/多孔質フィルム/正極、負極/多孔質フィルム/正極/多孔質フィルム等が用いられる。   In the present invention, the electrode / reactive polymer-supported porous film laminate only needs to have an electrode laminated on the reactive polymer-supported porous film. Therefore, depending on the structure and form of the battery, the electrode / reactive polymer Examples of the supported porous film laminate include negative electrode / porous film / positive electrode, negative electrode / porous film / positive electrode / porous film, and the like.

上記電解液は、電解質塩を適宜の有機溶媒に溶解してなる溶液である。上記電解質塩としては、水素、リチウム、ナトリウム、カリウム等アルカリ金属、カルシウム、ストロンチウム等のアルカリ士類金属、第三級又は第四級アンモニウム塩等をカチオン成分とし、塩酸、硝酸、リン酸、硫酸、ホウフッ化水素酸、フッ化水素酸、ヘキサフルオロリン酸、過塩素酸等の無機酸、カルボン酸、有機スルホン酸又はフッ素置換有機スルホン酸等の有機酸をアニオン成分とする塩を用いることができる。これらのなかでは、特に、アルカリ金属イオンをカチオン成分とする電解質塩が好ましく用いられる。   The electrolytic solution is a solution obtained by dissolving an electrolyte salt in an appropriate organic solvent. Examples of the electrolyte salt include alkali metals such as hydrogen, lithium, sodium and potassium, alkali metals such as calcium and strontium, tertiary or quaternary ammonium salts, etc. as cation components, hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid A salt containing an anionic component of an inorganic acid such as borohydrofluoric acid, hydrofluoric acid, hexafluorophosphoric acid or perchloric acid, or an organic acid such as carboxylic acid, organic sulfonic acid or fluorine-substituted organic sulfonic acid. it can. Among these, an electrolyte salt containing an alkali metal ion as a cation component is particularly preferably used.

このようなアルカリ金属イオンをカチオン成分とする電解質塩の具体例としては、例えば、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カリウム等の過塩素酸アルカリ金属、テトラフルオロホウ酸リチウム、テトラフルオロホウ酸ナトリウム、テトラフルオロホウ酸カリウム等のテトラフルオロホウ酸アルカリ金属、ヘキサフルオロリン酸リチウム、ヘキサフルオロリン酸カリウム等のヘキサフルオロリン酸アルカリ金属、トリフルオロ酢酸リチウム等のトリフルオロ酢酸アルカリ金属、トリフルオロメタンスルホン酸リチウム等のトリフルオロメタンスルホン酸アルカリ金属を挙げることができる。   Specific examples of the electrolyte salt having such an alkali metal ion as a cation component include, for example, alkali perchlorate such as lithium perchlorate, sodium perchlorate, potassium perchlorate, lithium tetrafluoroborate, tetra Alkali metal tetrafluoroborate such as sodium fluoroborate and potassium tetrafluoroborate, alkali metal hexafluorophosphate such as lithium hexafluorophosphate and potassium hexafluorophosphate, alkali metal trifluoroacetate such as lithium trifluoroacetate And alkali metal trifluoromethanesulfonates such as lithium trifluoromethanesulfonate.

特に、本発明に従って、リチウムイオン二次電池を得る場合には、電解質塩としては、例えば、ヘキサフルオロリン酸リチウム、テトラフルオロホウ酸リチウム、過塩素酸リチウム等が好適に用いられる。   In particular, when obtaining a lithium ion secondary battery according to the present invention, as the electrolyte salt, for example, lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate and the like are preferably used.

更に、本発明において用いる上記電解質塩のための溶媒としては、上記電解質塩を溶解するものであればどのようなものでも用いることができるが、非水系の溶媒としては、エチレンカーポネート、プロピレンカーボネート、ブチレンカーボネート、γ一プチロラクトン等の環状エステル類や、テトラヒドロフラン、ジメトキシエタン等の工一テル類や、ジメチルカーボネート、ジエチルカーポネート、エチルメチルカーボネート等の鎖状エステル類を単独で、又は2種以上の混合物として用いることができる。   Furthermore, any solvent can be used as the solvent for the electrolyte salt used in the present invention as long as it dissolves the electrolyte salt. Examples of the non-aqueous solvent include ethylene carbonate and propylene carbonate. , Cyclic esters such as butylene carbonate and γ-Iptylolactone, industrial esters such as tetrahydrofuran and dimethoxyethane, and chain esters such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate alone or in combination of two or more Can be used as a mixture.

また、上記電解質塩は、用いる溶媒の種類や量に応じて適宜に決定されるが、通常、得られる電解液において、1〜50重量%の濃度となる量が用いられる。   Moreover, although the said electrolyte salt is suitably determined according to the kind and quantity of the solvent to be used, normally the quantity used as the density | concentration of 1 to 50 weight% is used in the obtained electrolyte solution.

本発明において、カチオン重合触媒としては、オニウム塩が好ましく用いられる。そのようなオニウム塩として、例えば、アンモニウム塩、ホスホニウム塩、アルソニウム塩、スチボニウム塩、ヨードニウム塩等のカチオン成分と、テトラフルオロホウ酸塩、ヘキサフルオロリン酸塩、トリフルオロメタンスルホン酸塩、過塩素酸塩等のアニオン成分とからなるオニウム塩を挙げることができる。   In the present invention, an onium salt is preferably used as the cationic polymerization catalyst. Examples of such onium salts include ammonium salts, phosphonium salts, arsonium salts, stibonium salts, iodonium salts, and other cationic components, tetrafluoroborate, hexafluorophosphate, trifluoromethanesulfonate, and perchloric acid. An onium salt comprising an anionic component such as a salt can be mentioned.

しかし、本発明によれば、上述した電解質塩のなかでも、特に、テトラフルオロホウ酸リチウムとヘキサフルオロリン酸リチウムは、それ自体、カチオン重合触媒しても機能するので、電解質塩とカチオン重合開始剤とを兼ねるものとして好ましく用いられる。この場合、テトラフルオロホウ酸リチウムとヘキサフルオロリン酸リチウムは、いずれかを単独で用いてもよく、また、両方を併用してもよい。   However, according to the present invention, among the electrolyte salts described above, in particular, lithium tetrafluoroborate and lithium hexafluorophosphate also function as a cationic polymerization catalyst. It is preferably used as an agent. In this case, either lithium tetrafluoroborate or lithium hexafluorophosphate may be used alone, or both may be used in combination.

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例によって何ら限定されるものではない。多孔質フィルムの特性と得られた電池の特性については以下のようにして評価した。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. The characteristics of the porous film and the characteristics of the obtained battery were evaluated as follows.

(多孔質フィルムの厚み)
1/10000mmシックネスゲージによる測定と多孔質フィルムの断面の10000倍走査型電子頭微鏡写真に基づいて求めた。
(多孔質フィルムの空孔率)
多孔質フィルムの単位面積S(cm2)当たりの重量W(g)、平均厚みt(cm)及び多孔質フィルムを構成する樹脂の密度d(g/cm3)から下式にて算出した。
(Thickness of porous film)
It was determined based on a measurement with a 1/10000 mm thickness gauge and a 10,000 times scanning electronic microscopic photograph of the cross section of the porous film.
(Porosity of porous film)
The weight was calculated from the weight W (g) per unit area S (cm 2 ) of the porous film, the average thickness t (cm), and the density d (g / cm 3 ) of the resin constituting the porous film by the following equation.

空孔率(%)=(1−(100W/S/t/d))×100
(多孔質フィルムの通気度)
JIS P 8117に準拠して求めた。
(突き刺し強度)
カトーテック(株)製圧縮試験磯KES−G5を用いて突き刺し試験を行った。測定により得られた荷重変位曲線から最大荷重を読みとり、突き刺し強度とした。針は直径1.0mm、先端の曲率半径0.5mmのものを用いて、2cm/秒の速度で行った。
Porosity (%) = (1− (100 W / S / t / d)) × 100
(Air permeability of porous film)
It calculated | required based on JISP8117.
(Puncture strength)
A piercing test was performed using a compression test kit KES-G5 manufactured by Kato Tech Co., Ltd. The maximum load was read from the load displacement curve obtained by the measurement, and the puncture strength was obtained. A needle having a diameter of 1.0 mm and a radius of curvature of the tip of 0.5 mm was used at a speed of 2 cm / second.

(多孔質フィルムのゲル分率)
10cm四方に切り出した多孔質フィルムを折り畳んで、5cm×10cmの金属メッシュに挟み込み、5cm四方の試料とした。この試料の初期重量P0 を測定した。次いで、この試料をm−キシレン100mL (沸点139℃)中に浸漬した後、加熱し、キシレンを5時間、沸騰させた。この後、試料を取り出し、乾燥させて、このように、沸騰キシレン処理した後の重量Pを測定し、これらから次式によってゲル分率Rを測定した。
(Gel fraction of porous film)
A porous film cut out in a 10 cm square was folded and sandwiched between 5 cm × 10 cm metal meshes to prepare a 5 cm square sample. The initial weight P 0 of this sample was measured. Subsequently, this sample was immersed in 100 mL of m-xylene (boiling point 139 ° C.) and then heated to boil xylene for 5 hours. Thereafter, the sample was taken out and dried, and the weight P after the boiling xylene treatment was measured in this way, and the gel fraction R was measured from the following equation.

R(%)=(P/P0 )×100
〈電極/セパレータ接着力の測定〉
実施例及び比較例で得られたそれぞれの電池について、充放電試験を行なう前に分解して、電極シート/セパレータ間の接着力を測定した。即ち、電池を分解して、電極シート/セパレータ接合体を取り出し、次に、この電極シート/セパレータ接合体の界面を端部から5mm剥がし、電極シートとセパレータの端部を相互に180°方向に引っ張って、その際の荷重を測定した。この荷重を電極シート/セパレータの幅にて除して、電極シート/セパレータ間の接着力とした。
R (%) = (P / P 0 ) × 100
<Measurement of electrode / separator adhesion>
About each battery obtained by the Example and the comparative example, it decomposed | disassembled before performing a charging / discharging test, and measured the adhesive force between an electrode sheet / separator. That is, the battery is disassembled and the electrode sheet / separator assembly is taken out. Next, the interface of the electrode sheet / separator assembly is peeled off 5 mm from the end, and the end of the electrode sheet and the separator are mutually oriented at 180 °. The load at that time was measured by pulling. This load was divided by the width of the electrode sheet / separator to obtain the adhesive force between the electrode sheet / separator.

(電池の高温保存試験)
実施例及び比較例で得られたそれぞれの電池を電池ホルダーに固定し、一定の面圧をかけて、160℃の恒温器中に放置した。電池の正負端子を抵抗計に接続し、抵抗計の示す抵抗が急激に低下した時間を測定して、これを短絡時間とした。試験は60分までとした。60分後に電池を恒温器から取り出し、放冷した後、電池を解体し、セパレータの面積を測定して、収縮率を測定した。但し、通常、セパレータは電極シートよりも面積が大きいので、セパレータは電極シートの周縁から外側にはみ出している。そこで、電池を解体したとき、セパレータの面積が電極シートの面積と等しい状態のときを収縮率0%とした。従って、例えば、セパレータの面積が電極シートの面積の80%まで収縮しておれば、この場合のセパレータの収縮率は20%である。
(Battery high temperature storage test)
Each battery obtained in Examples and Comparative Examples was fixed to a battery holder, applied with a certain surface pressure, and left in a thermostat at 160 ° C. The positive and negative terminals of the battery were connected to an ohmmeter, and the time when the resistance indicated by the ohmmeter suddenly decreased was measured. The test was up to 60 minutes. After 60 minutes, the battery was taken out of the incubator and allowed to cool, then the battery was disassembled, the area of the separator was measured, and the shrinkage was measured. However, since the separator usually has a larger area than the electrode sheet, the separator protrudes outward from the periphery of the electrode sheet. Therefore, when the battery was disassembled, the shrinkage rate was set to 0% when the area of the separator was equal to the area of the electrode sheet. Therefore, for example, if the area of the separator contracts to 80% of the area of the electrode sheet, the contraction rate of the separator in this case is 20%.

参考例1
(電極シートの調製)
正極活物質であるコバルト酸リチウム(日本化学工業(株)製セルシードC−10)85重量部と導電助剤であるアセチレンブラック(電気化学工業(株)製デンカブラック)10重量部とバインダーであるフッ化ビニリデン樹脂(呉羽化学工業(株)製KFポリマーL#1120)5重量部を混合し、これを固形分濃度15重量%となるようにN−メチル−2−ピロリドンを用いてスラリーとした。
Reference example 1
(Preparation of electrode sheet)
85 parts by weight of lithium cobaltate (Nippon Chemical Industry Co., Ltd., Cellseed C-10) as a positive electrode active material and 10 parts by weight of acetylene black (Denka Black from Denki Kagaku Kogyo Co., Ltd.) as a conductive additive and a binder. 5 parts by weight of vinylidene fluoride resin (KF Polymer L # 1120 manufactured by Kureha Chemical Industry Co., Ltd.) was mixed, and this was made into a slurry using N-methyl-2-pyrrolidone so as to have a solid concentration of 15% by weight. .

このスラリーを厚み20μmのアルミニウム箔(集電体)上に厚み200μmに塗布し、80℃で1時間、120℃で2時間乾燥した後、ロールプレスにて加圧して、活物質層の厚みが100μmの正極シートを調製した。   This slurry was applied to an aluminum foil (current collector) having a thickness of 20 μm to a thickness of 200 μm, dried at 80 ° C. for 1 hour, and then at 120 ° C. for 2 hours, and then pressed by a roll press, so that the thickness of the active material layer was A 100 μm positive electrode sheet was prepared.

また、負極活物質であるメソカーボンマイクロビーズ(大阪ガスケミカル(株)製MCMB6−28)80重量部と導電助剤であるアセチレンブラック(電気化学工業(株)製デンカブラック)10重量部とバインダーであるフッ化ビニリデン樹脂(呉羽化学工業(株)製KFポリマーL#1120)10重量部を混合し、これを固形分濃度15重量%となるようにN−メチル−2−ピロリドンを用いてスラリーとした。   In addition, 80 parts by weight of mesocarbon microbeads (MCMB6-28 manufactured by Osaka Gas Chemical Co., Ltd.) as a negative electrode active material, 10 parts by weight of acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent, and a binder 10 parts by weight of vinylidene fluoride resin (KF Polymer L # 1120 manufactured by Kureha Chemical Industry Co., Ltd.) is mixed, and this is slurried with N-methyl-2-pyrrolidone so as to have a solid concentration of 15% by weight. It was.

このスラリーを厚み20μmの銅箔(集電体)上に厚み200μmに塗布し、80℃で1時間乾燥し、120℃で2時間乾燥した後、ロールプレスにて加圧して、活物質層の厚みが100μmの負極シートを調製した。   This slurry was applied to a copper foil (current collector) having a thickness of 20 μm to a thickness of 200 μm, dried at 80 ° C. for 1 hour, dried at 120 ° C. for 2 hours, and then pressed by a roll press to form an active material layer. A negative electrode sheet having a thickness of 100 μm was prepared.

製造例1
(3−オキセタニル基含有反応性ポリマーAの製造、3−オキセタニル基含有モノマー成分25重量%)
還流冷却管を備えた500mL容量三つ口フラスコにメチルメククリレート60.0g、3−エチル−3−オキセタニルメチルメタクリレート20.0g、酢酸エチル158.0g及びN,N’−アゾビスイソブチロニトリル0.16gを投人し、窒素ガスを導入しながら、30分間攪拌混合した後、60℃に加熱した。
Production Example 1
(Production of 3-oxetanyl group-containing reactive polymer A, 3-oxetanyl group-containing monomer component 25% by weight)
In a 500 mL three-necked flask equipped with a reflux condenser, 60.0 g of methyl methacrylate, 20.0 g of 3-ethyl-3-oxetanylmethyl methacrylate, 158.0 g of ethyl acetate and N, N′-azobisisobutyro The nitrile 0.16g was thrown in, stirred and mixed for 30 minutes while introducing nitrogen gas, and then heated to 60 ° C.

約2時間経過したとき、反応混合物の粘度が上昇し始め、更に、その後、8時間重合を続けた。この後、約10℃まで冷却し、再び、N,N’−アゾビスイソブチロニトリル0.16gを加えた。70℃まで再加熱した後、8時間重合を行った。   When about 2 hours had elapsed, the viscosity of the reaction mixture began to rise, and then polymerization was continued for 8 hours. Thereafter, the mixture was cooled to about 10 ° C., and 0.16 g of N, N′-azobisisobutyronitrile was added again. After reheating to 70 ° C., polymerization was carried out for 8 hours.

反応終了後、反応混合物を約40℃まで冷却し、酢酸エチル295gを加え、全体が均一になるまで攪拌混合して、オキセタニル基含有反応性ポリマーAの酢酸エチル溶液(15重量%濃度)を得た。   After completion of the reaction, the reaction mixture is cooled to about 40 ° C., 295 g of ethyl acetate is added, and the mixture is stirred and mixed until the whole becomes uniform to obtain an ethyl acetate solution (15 wt% concentration) of the oxetanyl group-containing reactive polymer A. It was.

次に、このポリマー溶液100gを高速ミキサーで攪拌しながら、メタノール600mL中に投入して、ポリマーを析出させた。このポリマーを濾別し、メタノールによる洗浄を数回繰り返した後、乾燥管内に置き、これに液体窒素を気化させた乾燥窒素ガス(露点温度−150℃以下)を乾燥管中に通して、ポリマーを乾燥させた後、更に、デシケータ中で6時間、真空乾燥して、3−オキセタニル基含有反応性ボリマーAを白色粉末として得た。この反応性ポリマーは、GPCによる分子量測定の結果、重量平均分子量は518000、数平均分子量は231000であった。   Next, 100 g of this polymer solution was added to 600 mL of methanol while stirring with a high-speed mixer to precipitate a polymer. The polymer was filtered off and washed several times with methanol, then placed in a drying tube, and a dry nitrogen gas (dew point temperature of −150 ° C. or lower) in which liquid nitrogen was vaporized was passed through the drying tube. Was dried in a desiccator for 6 hours under vacuum to obtain 3-oxetanyl group-containing reactive polymer A as a white powder. As a result of molecular weight measurement by GPC, this reactive polymer had a weight average molecular weight of 518,000 and a number average molecular weight of 231,000.

製造例2
(3−オキセタニル基含有反応性ポリマーBの製造、3−オキセタニル基含有モノマー成分15重量%)
製造例1と同様に、還流冷却管を備えた500mL容量の三つ口フラスコにメチルメタクリレート68.0g、3−エチル−3−オキセタニルメチルメタクリレート12.0g、酢酸エチル158.0g及びN,N’−アゾビスイソブチロニトリル0.15gを投入し、窒素ガスを導入しながら、30分間攪拌混合た後、70℃に加熱した。
Production Example 2
(Production of 3-oxetanyl group-containing reactive polymer B, 3-oxetanyl group-containing monomer component 15% by weight)
In the same manner as in Production Example 1, a 500 mL three-necked flask equipped with a reflux condenser was charged with 68.0 g of methyl methacrylate, 12.0 g of 3-ethyl-3-oxetanylmethyl methacrylate, 158.0 g of ethyl acetate, and N, N ′. -0.15 g of azobisisobutyronitrile was added, mixed with stirring for 30 minutes while introducing nitrogen gas, and then heated to 70 ° C.

約1.5時間経過したとき、反応混合物の粘度が上昇し始め、更に、その後、8時間重合を続けた。この後、約40℃まで冷却し、再び、N,N’−アゾビスイソブチロニトリル0.15gを加えた後、70℃まで再加熱して、8時間、重合を行った。   When about 1.5 hours had elapsed, the viscosity of the reaction mixture began to rise, and then polymerization was continued for 8 hours. Thereafter, the mixture was cooled to about 40 ° C., 0.15 g of N, N′-azobisisobutyronitrile was added again, and then the mixture was reheated to 70 ° C., and polymerization was carried out for 8 hours.

反応終了後、反応混合物を約40℃まで冷却し、酢酸エチル162gを加え、全体が均一になるまで攪拌混合して、オキセタニル基含有反応性ボリマーBの酢酸エチル溶液(20重量%濃度)を得た。この後、製造例1と同様に処理して、3−オキセタニル基含有架橋性ボリマーBを白色粉末として得た。この反応性ポリマーは、GPCによる分子量測定の結果、重量平均分子量は253000、数平均分子量は147000であった。   After completion of the reaction, the reaction mixture was cooled to about 40 ° C., 162 g of ethyl acetate was added, and the mixture was stirred and mixed until the whole became uniform to obtain an ethyl acetate solution (20 wt% concentration) of the oxetanyl group-containing reactive polymer B. It was. Then, it processed like the manufacture example 1 and obtained 3-oxetanyl group containing crosslinkable polymer B as white powder. As a result of molecular weight measurement by GPC, this reactive polymer had a weight average molecular weight of 253,000 and a number average molecular weight of 147,000.

製造例3
(3−オキセタニル基含有反応性ポリマーCの製造、3−オキセタニル基含有モノマー成分40重量%)
製造例1と同様に、還流冷却管を備えた500mL容量の三つ口フラスコにメチルメタクリレート48.0g、3−エチル−3−オキセタニルメチルメタクリレート32.0g、酢酸エチル58.0g及びN,N’−アゾビスイソブチロニトリル0.36gを投入し、窒素ガスを導入しながら、30分間攪拌混合した後、70℃に加熱した。
Production Example 3
(Production of 3-oxetanyl group-containing reactive polymer C, 40% by weight of 3-oxetanyl group-containing monomer component)
In the same manner as in Production Example 1, a 500 mL three-necked flask equipped with a reflux condenser was charged with 48.0 g of methyl methacrylate, 32.0 g of 3-ethyl-3-oxetanylmethyl methacrylate, 58.0 g of ethyl acetate, and N, N ′. -0.36 g of azobisisobutyronitrile was added, mixed with stirring for 30 minutes while introducing nitrogen gas, and then heated to 70 ° C.

約1.5時間経過したとき、反応混合物の粘度が上昇し始め、更に、その後、8時間、重合を続けた。この後、約40℃まで冷却し、再び、N,N’−アゾビスイソブチロニトリル0.36gを加えた後、70℃まで再加熱して、8時間、重合を行った。   When about 1.5 hours had elapsed, the viscosity of the reaction mixture began to increase, and then polymerization was continued for 8 hours. Thereafter, the mixture was cooled to about 40 ° C., 0.36 g of N, N′-azobisisobutyronitrile was added again, and then the mixture was reheated to 70 ° C., and polymerization was carried out for 8 hours.

反応終了後、反応混合物を約40℃まで冷却し、酢酸エチル82gを加え、全体が均一になるまで、攪拌混合して、オキセタニル基含有反応性ポリマーCの酢酸エチル溶液(25重量%濃度)を得た。この後、製造例1と同様に処理して、3−オキセタニル基含有反応性ポリマーCを白色粉末として得た。この反応性ポリマーは、GPCによる分子量測定の結果、重量平均分子量は167000、数平均分子量は80000であった。   After completion of the reaction, the reaction mixture was cooled to about 40 ° C., 82 g of ethyl acetate was added, and the mixture was stirred and mixed until the whole became homogeneous, and an ethyl acetate solution of oxetanyl group-containing reactive polymer C (25% by weight concentration) Obtained. Then, it processed similarly to manufacture example 1 and obtained 3-oxetanyl group containing reactive polymer C as white powder. As a result of molecular weight measurement by GPC, this reactive polymer had a weight average molecular weight of 167,000 and a number average molecular weight of 80000.

製造例4
(エポキシ基含有反応性ポリマーDの製造、エポキシ基含有モノマー成分25重量%)
製造例1と同様に、還流冷却管を備えた500mL容量の三つ口フラスコにメチルメタクリレート60.0g、3,4−エポキシシクロヘキシルメチルアクリレート20.0g、酢酸エチル158.0g及びN,N’−アゾビスイソブチロニトリル0.32gを投入し、窒素ガスを導入しながら、30分間攪拌混合した後、70℃に加熱した。
Production Example 4
(Production of epoxy group-containing reactive polymer D, epoxy group-containing monomer component 25% by weight)
In the same manner as in Production Example 1, 60.0 g of methyl methacrylate, 20.0 g of 3,4-epoxycyclohexylmethyl acrylate, 158.0 g of ethyl acetate and N, N′— were added to a 500 mL three-necked flask equipped with a reflux condenser. Azobisisobutyronitrile (0.32 g) was added, and the mixture was stirred and mixed for 30 minutes while introducing nitrogen gas, and then heated to 70 ° C.

約1時間経過したとき、反応混合物の粘度が上昇し始め、更に、その後、8時間重合を続けた。この後、約40℃まで冷却し、再び、N,N’−アゾビスイソブチロニトリル0.32gを加えた後、70℃まで再加熱して、8時間、重合を行った。   When about 1 hour had elapsed, the viscosity of the reaction mixture began to rise, and then polymerization was continued for 8 hours. Thereafter, the mixture was cooled to about 40 ° C., 0.32 g of N, N′-azobisisobutyronitrile was added again, and then the mixture was reheated to 70 ° C. to carry out polymerization for 8 hours.

反応終了後、反応混合物を約40℃まで冷却し、酢酸エチル162gを加え、全体が均一になるまで攪拌混合して、エポキシ基含有反応性ポリマーDの酢酸エチル溶液(15重量%濃度)を得た。この後、実施例1と同様に処理して、エポキシ基含有反応性ポリマーDを白色粉末として得た。この反応性ポリマーは、GPCによる分子量測定の結果、重量平均分子量は466000、数平均分子量は228000であった。   After completion of the reaction, the reaction mixture is cooled to about 40 ° C., 162 g of ethyl acetate is added, and the mixture is stirred and mixed until the whole becomes uniform to obtain an ethyl acetate solution (15 wt% concentration) of the epoxy group-containing reactive polymer D. It was. Thereafter, the same treatment as in Example 1 was performed to obtain an epoxy group-containing reactive polymer D as a white powder. As a result of molecular weight measurement by GPC, this reactive polymer had a weight average molecular weight of 466,000 and a number average molecular weight of 228,000.

製造例5
(3−オキセタニル基含有反応性ポリマーEの製造、3−オキセタニル基含有モノマー成分25重量%)
還流冷却管を備えた500mL容量の三つ口フラスコに完全ケン化ポリビニルアルコール(重量平均分子量2000、ケン化度99モル%)2.0g、部分ケン化ポリビニルアルコール(重量平均分子量2000、ケン化度80モル%)0.05g及び純水210gを投入し、90℃で15分間攪拌して、上記ポリビニルアルコールを溶解させた後、この溶液を40℃まで冷却した。
Production Example 5
(Production of 3-oxetanyl group-containing reactive polymer E, 25% by weight of 3-oxetanyl group-containing monomer component)
In a 500 mL three-necked flask equipped with a reflux condenser, 2.0 g of completely saponified polyvinyl alcohol (weight average molecular weight 2000, saponification degree 99 mol%), partially saponified polyvinyl alcohol (weight average molecular weight 2000, saponification degree) (80 mol%) 0.05 g and 210 g of pure water were added and stirred at 90 ° C. for 15 minutes to dissolve the polyvinyl alcohol, and then the solution was cooled to 40 ° C.

別途調製したメチルメタクリレート60.0g、3−エチル−3−オキセタニルメチルメククリレート20.0g、1−ドデカンチオールの10%酢酸エチル溶液0.15g及びN,N’−アゾビスイソブチロニトリル0.8gからなる混合物を上記ポリビニルアルコール溶液中に加え、窒素ガスを導入しながら、30分間攪拌混合した後、強めの攪拌を続けながら、そのまま70℃で8時間ラジカル重合を行った。   Separately prepared 60.0 g of methyl methacrylate, 20.0 g of 3-ethyl-3-oxetanyl methyl methacrylate, 0.15 g of a 10% ethyl acetate solution of 1-dodecanethiol and N, N′-azobisisobutyronitrile 0 A mixture consisting of .8 g was added to the polyvinyl alcohol solution, stirred and mixed for 30 minutes while introducing nitrogen gas, and then subjected to radical polymerization at 70 ° C. for 8 hours while continuing strong stirring.

反応終了後、約40℃まで冷却して、吸引濾過し、水洗して、球状微粒子状ポリマーを得た。次に、このポリマーに付着しているポリビニルアルコールを洗浄して除去した。即ち、ポリマーを新たな500mL容量のフラスコに仕込み、これに純水400mLを加え、90℃まで加熱し、この温度で約15分間攪拌した後、約40℃に冷却し、吸引濾過し、純水で洗浄した。この洗浄操作を3回繰り返した後、吸引濾過、純水洗浄し、最後にメタノール洗浄を数回行った。この後、乾燥管中にポリマーを置き、これに液体窒素を気化させた乾燥窒素ガス(露点温度−150℃以下)を乾燥管中に通して、ポリマーを乾燥させた後、更に、デシケータ中で6時間真空乾燥して、3−オキセタニル基含有反応性ポリマーEを白色球状微粒子として得た。この反応性ポリマーは、GPCによる分子量測定の結果、重量平均分子量は821400、数平均分子量は292400であった。   After completion of the reaction, the mixture was cooled to about 40 ° C., filtered with suction, and washed with water to obtain a spherical fine particle polymer. Next, the polyvinyl alcohol adhering to the polymer was removed by washing. That is, the polymer is charged into a new 500 mL volumetric flask, 400 mL of pure water is added thereto, heated to 90 ° C., stirred at this temperature for about 15 minutes, cooled to about 40 ° C., suction filtered, purified water Washed with. This washing operation was repeated three times, followed by suction filtration, pure water washing, and finally methanol washing several times. Thereafter, a polymer is placed in a drying tube, and a dry nitrogen gas (dew point temperature of −150 ° C. or lower) in which liquid nitrogen is vaporized is passed through the drying tube to dry the polymer, and further in a desiccator. By vacuum drying for 6 hours, 3-oxetanyl group-containing reactive polymer E was obtained as white spherical fine particles. As a result of molecular weight measurement by GPC, this reactive polymer had a weight average molecular weight of 821400 and a number average molecular weight of 292400.

製造例6
(多孔質フィルムAの作製)
スチレン−ブタジエンブロック共重合体(JSR(株)製JSR−TR2601K、スチレン含有量30重量%)5重量%、変性ポリオレフィン樹脂(日本ポリエチレン(株)製アドテックスDH0200、融点135℃)28.5重量%、重量平均分子量200万の超高分子量ポリエチレン66.5重量%からなる樹脂組成物15重量部と流動パラフィン85重量部とをスラリー状に均一に混合し、160℃で小型ニーダーを用いて、60分間溶解混練した。その後、この混練物を0℃に冷却された金属板に挟み込み、急冷して、樹脂シートを得た。次いで、この樹脂シートを115℃で厚み0.4mmになるまでヒートプレスし、更に、上記厚みを維持したまま、20℃でプレス成形した。
Production Example 6
(Preparation of porous film A)
Styrene-butadiene block copolymer (JSR Co., Ltd. JSR-TR2601K, styrene content 30 wt%) 5 wt%, modified polyolefin resin (Nippon Polyethylene Co., Ltd. Adtex DH0200, melting point 135 ° C.) 28.5 wt% %, A resin composition consisting of 66.5% by weight of ultra high molecular weight polyethylene having a weight average molecular weight of 2 million and 85 parts by weight of liquid paraffin are uniformly mixed in a slurry state, and at 160 ° C. using a small kneader, Dissolved and kneaded for 60 minutes. Thereafter, the kneaded product was sandwiched between metal plates cooled to 0 ° C. and rapidly cooled to obtain a resin sheet. Subsequently, this resin sheet was heat-pressed at 115 ° C. until the thickness became 0.4 mm, and further press-molded at 20 ° C. while maintaining the above thickness.

次に、得られた樹脂シートを温度120℃、速度10mm/秒の速度で同時に縦横4.0×4.0倍に二軸延伸した後、ヘプタンにて脱溶媒して、多孔質フィルムを得た。この多孔質フィルムを空気中、85℃で12時間熱処理し、次いで、126℃で3時間熱処理して、多孔質フィルムAを得た。この多孔質フィルムは膜厚21μm、空孔率44%、通気度186秒/dL、突き刺し強度239gf、ゲル分率12.4%であった。   Next, the obtained resin sheet was biaxially stretched 4.0 × 4.0 times in length and width simultaneously at a temperature of 120 ° C. and a speed of 10 mm / second, and then desolvated with heptane to obtain a porous film. It was. This porous film was heat-treated in air at 85 ° C. for 12 hours, and then heat-treated at 126 ° C. for 3 hours to obtain a porous film A. This porous film had a film thickness of 21 μm, a porosity of 44%, an air permeability of 186 seconds / dL, a puncture strength of 239 gf, and a gel fraction of 12.4%.

製造例7
(多孔質フィルムBの作製)
製造例6におけると同じスチレン−ブタジエンブロック共重合体2.5重量%、高密度ポリエチレン(融点135℃)29.3重量%、重量平均分子量200万の超高分子量ポリエチレン68.2重量%からなる樹脂組成物15重量部と流動パラフィン85重量部をスラリー状に均一に混合し、160℃で小型ニーダーを用いて、60分間溶解混練した。その後、この混練物を0℃に冷却された金属板に挟み込み、急冷して、樹脂シートを得た。この樹脂シートを115℃で厚み0.4mmになるまでヒートプレスし、更に、上記厚みを維持したまま、20℃でプレス成形した。
Production Example 7
(Preparation of porous film B)
The same styrene-butadiene block copolymer 2.5% by weight as in Production Example 6, high-density polyethylene (melting point 135 ° C.) 29.3% by weight, and ultrahigh molecular weight polyethylene having a weight average molecular weight of 2 million 68.2% by weight. 15 parts by weight of the resin composition and 85 parts by weight of liquid paraffin were uniformly mixed in a slurry state, and dissolved and kneaded for 60 minutes at 160 ° C. using a small kneader. Thereafter, the kneaded product was sandwiched between metal plates cooled to 0 ° C. and rapidly cooled to obtain a resin sheet. The resin sheet was heat-pressed at 115 ° C. until the thickness became 0.4 mm, and further press-molded at 20 ° C. while maintaining the thickness.

次に、得られた樹脂シートを温度120℃、速度10mm/秒の速度で同時に縦横4.0×4.0倍に二軸延伸した後、ヘプタンにて脱溶媒して、多孔質フィルムを得た。この多孔質フィルムを空気中、85℃で12時間熱処理し、次いで、126℃で3時間熱処理して、多孔質フィルムBを得た。この多孔質フィルムは膜厚19μm、空孔率50%、通気度167秒/dL、突き刺し強度311gf、ゲル分率5.3%であった。   Next, the obtained resin sheet was biaxially stretched 4.0 × 4.0 times in length and width simultaneously at a temperature of 120 ° C. and a speed of 10 mm / second, and then desolvated with heptane to obtain a porous film. It was. This porous film was heat-treated in air at 85 ° C. for 12 hours, and then heat-treated at 126 ° C. for 3 hours to obtain a porous film B. This porous film had a film thickness of 19 μm, a porosity of 50%, an air permeability of 167 seconds / dL, a piercing strength of 311 gf, and a gel fraction of 5.3%.

製造例8
(多孔質フィルムCの作製)
製造例6におけると同じスチレン−ブタジエンブロック共重合体5重量%、製造例6におけると同じ変性ポリオレフィン樹脂28.5重量%、重量平均分子量200万の超高分子量ポリエチレン66.5重量%からなる樹脂組成物15重量部と流動パラフィン85重量部をスラリー状に均一に混合し、160℃で小型ニーダーを用いて、60分間溶解混練した。その後、この混練物を0℃に冷却された金属板に挟み込み、急冷して、樹脂シートを得た。この樹脂シートを115℃で厚み0.4mmになるまでヒートプレスし、更に、上記厚みを維持したまま、20℃でプレス成形した。
Production Example 8
(Preparation of porous film C)
Resin comprising 5% by weight of the same styrene-butadiene block copolymer as in Production Example 6, 28.5% by weight of the same modified polyolefin resin as in Production Example 6, and 66.5% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 2 million. 15 parts by weight of the composition and 85 parts by weight of liquid paraffin were uniformly mixed in a slurry state and dissolved and kneaded at 160 ° C. using a small kneader for 60 minutes. Thereafter, the kneaded product was sandwiched between metal plates cooled to 0 ° C. and rapidly cooled to obtain a resin sheet. The resin sheet was heat-pressed at 115 ° C. until the thickness became 0.4 mm, and further press-molded at 20 ° C. while maintaining the thickness.

次に、得られた樹脂シートを温度120℃、速度10mm/秒の速度で同時に縦横4.0×4.0倍に二軸延伸した後、ヘプタンにて脱溶媒して、多孔質フィルムを得た。この多孔質フィルムを空気中、85℃で12時間熱処理し、次いで、126℃で1時間熱処理した。更に、この多孔質フィルムを0.1重量%濃度にてベンゾフェノン/メタノール溶液に浸漬した後、0.2J/cm2 の照射量で紫外線を照射して、多孔質フィルムCを得た。この多孔質フィルムは膜厚20μm、空孔率50%、通気度175秒/dL、突き刺し強度229gf、ゲル分率62%であった。 Next, the obtained resin sheet was biaxially stretched 4.0 × 4.0 times in length and width simultaneously at a temperature of 120 ° C. and a speed of 10 mm / second, and then desolvated with heptane to obtain a porous film. It was. This porous film was heat-treated in air at 85 ° C. for 12 hours, and then heat-treated at 126 ° C. for 1 hour. Furthermore, this porous film was immersed in a benzophenone / methanol solution at a concentration of 0.1% by weight, and then irradiated with ultraviolet rays at a dose of 0.2 J / cm 2 to obtain a porous film C. This porous film had a thickness of 20 μm, a porosity of 50%, an air permeability of 175 seconds / dL, a puncture strength of 229 gf, and a gel fraction of 62%.

製造例9
(多孔質フィルムDの作製)
製造例6におけると同じスチレン−ブタジエンブロック共重合体10重量%、製造例6におけると同じ変性ポリオレフィン樹脂27重量%、重量平均分子量200万の超高分子量ポリエチレン63重量%からなる樹脂組成物15重量部と流動パラフィン85重量部をスラリー状に均一に混合し、160℃で小型ニーダーを用いて、60分間溶解混練した。その後、この混練物を0℃に冷却された金属板に挟み込み、急冷して、樹脂シートを得た。この樹脂シートを115℃で厚み0.4mmになるまでヒートプレスし、更に、上記厚みを維持したまま、20℃でプレス成形した。
Production Example 9
(Preparation of porous film D)
15% by weight of a resin composition comprising 10% by weight of the same styrene-butadiene block copolymer as in Production Example 6, 27% by weight of the same modified polyolefin resin as in Production Example 6, and 63% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 2 million. And 85 parts by weight of liquid paraffin were uniformly mixed in a slurry state and dissolved and kneaded for 60 minutes at 160 ° C. using a small kneader. Thereafter, the kneaded product was sandwiched between metal plates cooled to 0 ° C. and rapidly cooled to obtain a resin sheet. The resin sheet was heat-pressed at 115 ° C. until the thickness became 0.4 mm, and further press-molded at 20 ° C. while maintaining the thickness.

次に、得られた樹脂シートを温度120℃、速度10mm/秒の速度で同時に縦横4.0×4.0倍に二軸延伸した後、ヘプタンにて脱溶媒して、多孔質フィルムを得た。この多孔質フィルムを空気中、85℃で12時間熱処理し、次いで、126℃で3時間熱処理して、多孔質フィルムDを得た。この多孔質フィルムは膜厚23μm、空孔率46%、通気度275秒/dL、突き刺し強度273gf、ゲル分率23%であった。   Next, the obtained resin sheet was biaxially stretched 4.0 × 4.0 times in length and width simultaneously at a temperature of 120 ° C. and a speed of 10 mm / second, and then desolvated with heptane to obtain a porous film. It was. This porous film was heat-treated in air at 85 ° C. for 12 hours, and then heat-treated at 126 ° C. for 3 hours to obtain a porous film D. This porous film had a film thickness of 23 μm, a porosity of 46%, an air permeability of 275 seconds / dL, a puncture strength of 273 gf, and a gel fraction of 23%.

製造例10
(多孔質フィルムXの作製)
製造例6と同じ変性ポリオレフィン樹脂30.0重量%、重量平均分子量200万の超高分子量ポリエチレン70.0重量%からなる樹脂組成物15重量部と流動パラフィン85重量部をスラリー状に均一に混合し、160℃で小型ニーダーを用いて、60分間溶解混練した。その後、この混練物を0℃に冷却された金属板に挟み込み、急冷して、樹脂シートを得た。この樹脂シートを115℃で厚み0.4mmになるまでヒートプレスし、更に、上記厚みを維持したまま、20℃でプレス成形した。
Production Example 10
(Preparation of porous film X)
15 parts by weight of a resin composition comprising 30.0% by weight of the same modified polyolefin resin as in Production Example 6 and 70.0% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 2 million and 85 parts by weight of liquid paraffin are uniformly mixed in a slurry form. Then, the mixture was dissolved and kneaded at 160 ° C. for 60 minutes using a small kneader. Thereafter, the kneaded product was sandwiched between metal plates cooled to 0 ° C. and rapidly cooled to obtain a resin sheet. The resin sheet was heat-pressed at 115 ° C. until the thickness became 0.4 mm, and further press-molded at 20 ° C. while maintaining the thickness.

次に、得られた樹脂シートを温度120℃、速度10mm/秒の速度で同時に縦横4.0×4.0倍に二軸延伸した後、ヘプタンにて脱溶媒して、多孔質フィルムを得た。この多孔質フィルムを空気中、85℃で12時間熱処理し、次いで、126℃で3時間熱処理して、多孔質フィルムXを得た。この多孔質フィルムは膜厚20μm、空孔率41%、通気度200秒/dL、突き刺し強度225gf、ゲル分率3%であった。   Next, the obtained resin sheet was biaxially stretched 4.0 × 4.0 times in length and width simultaneously at a temperature of 120 ° C. and a speed of 10 mm / second, and then desolvated with heptane to obtain a porous film. It was. This porous film was heat-treated in air at 85 ° C. for 12 hours, and then heat-treated at 126 ° C. for 3 hours to obtain a porous film X. This porous film had a film thickness of 20 μm, a porosity of 41%, an air permeability of 200 seconds / dL, a puncture strength of 225 gf, and a gel fraction of 3%.

製造例11
(多孔質フィルムYの作製)
高密度ポリエチレン樹脂(三井化学(株)製3000B、融点135℃)30重量%と重量平均分子量200万の超高分子量ポリエチレン70重量%からなる樹脂組成物15重量部と流動パラフィン85重量部をスラリー状に均一に混合し、160℃で小型ニーダーを用いて、60分間溶解混練した。その後、この混練物を0℃に冷却された金属板に挟み込み、急冷して、樹脂シートを得た。この樹脂シートを115℃で厚み0.4mmになるまでヒートプレスし、更に、上記厚みを維持したまま、20℃でプレス成形した。
Production Example 11
(Preparation of porous film Y)
A slurry of 15 parts by weight of a resin composition comprising 30% by weight of a high-density polyethylene resin (3000B, Mitsui Chemicals Co., Ltd., melting point 135 ° C.) and 70% by weight of ultrahigh molecular weight polyethylene having a weight average molecular weight of 2 million and 85 parts by weight of liquid paraffin The mixture was uniformly mixed and dissolved and kneaded at 160 ° C. using a small kneader for 60 minutes. Thereafter, the kneaded product was sandwiched between metal plates cooled to 0 ° C. and rapidly cooled to obtain a resin sheet. The resin sheet was heat-pressed at 115 ° C. until the thickness became 0.4 mm, and further press-molded at 20 ° C. while maintaining the thickness.

次に、得られた樹脂シートを温度120℃、速度10mm/秒の速度で同時に縦横4.0×4.0倍に二軸延伸した後、ヘプタンにて脱溶媒して、多孔質フィルムを得た。この多孔質フィルムを空気中、85℃で12時間熱処理し、次いで、126℃で3時間熱処理して、多孔質フィルムYを得た。この多孔質フィルムは膜厚20μm、空孔率41%、通気度200秒/dL、突き刺し強度225gf、ゲル分率0%であった。   Next, the obtained resin sheet was biaxially stretched 4.0 × 4.0 times in length and width simultaneously at a temperature of 120 ° C. and a speed of 10 mm / second, and then desolvated with heptane to obtain a porous film. It was. This porous film was heat-treated in air at 85 ° C. for 12 hours, and then heat-treated at 126 ° C. for 3 hours to obtain a porous film Y. This porous film had a thickness of 20 μm, a porosity of 41%, an air permeability of 200 seconds / dL, a puncture strength of 225 gf, and a gel fraction of 0%.

実施例1〜9
(反応性ポリマー担持多孔質フィルムA〜Eの製造)
製造例1〜5で得られた反応性ポリマーA〜Eをそれぞれ酢酸エチルに溶解して、10重量%濃度の反応性ポリマー溶液を調製した。製造例6〜9で得られた多孔質フィルムA〜Dに、表1に示すように、上記反応性ポリマー溶液を塗付して、それぞれ反応性ポリマー担持多孔質フィルムA〜Eを得た。ここに、多孔質フィルムの両面に反応性ポリマーを塗付し、担持させる場合は、先ず、多孔質フィルムの片面に塗付した後に、裏面にも同様にして、塗付した。このようにして得られた反応性ポリマー担持多孔質フィルムの名称とその構成を表1に示す。
Examples 1-9
(Production of reactive polymer-supported porous films A to E)
Reactive polymers A to E obtained in Production Examples 1 to 5 were each dissolved in ethyl acetate to prepare a 10 wt% concentration of a reactive polymer solution. As shown in Table 1, the reactive polymer solution was applied to the porous films A to D obtained in Production Examples 6 to 9, and reactive polymer-supported porous films A to E were obtained, respectively. Here, when the reactive polymer was applied to both sides of the porous film and supported, it was first applied to one side of the porous film and then applied to the back side in the same manner. Table 1 shows the names and structures of the reactive polymer-supported porous films thus obtained.

Figure 2009193755
Figure 2009193755

比較例1〜5
(反応性ポリマー担持多孔質フィルムX及びYの製造)
ポリマーA、D又はEをそれぞれ酢酸エチルに溶解して、10重量%濃度のポリマー溶液を調製した。製造例10又は11で得られた多孔質フィルムX又はYに、表2に示すように、上記ポリマー溶液を塗付して、それぞれ反応性ポリマー担持多孔質フィルムX又はYを得た。このようにして得られた反応性ポリマー担持多孔質フィルムの名称とその構成を表2に示す。
Comparative Examples 1-5
(Production of reactive polymer-supported porous films X and Y)
Polymer A, D or E was dissolved in ethyl acetate to prepare a 10 wt% polymer solution. As shown in Table 2, the polymer solution was applied to the porous film X or Y obtained in Production Example 10 or 11, to obtain a reactive polymer-supported porous film X or Y, respectively. Table 2 shows the names of the reactive polymer-supported porous films thus obtained and their structures.

Figure 2009193755
Figure 2009193755

実施例10〜18
(電池の組み立て)
製造例1〜9で得られた反応性ポリマー担持多孔質フィルムA〜Eをそれぞれ参考例1で得られた正極と負極の間に挟み、温度80℃の熱プレスを用いて、反応性ポリマー担持多孔質フィルムを正負両電極に圧着して、それぞれ電極/セパレータ積層体を製作した。電池セパレータの大きさは電極からはみ出る部分が1mmとなるようにした。
Examples 10-18
(Battery assembly)
Reactive polymer-supported porous films A to E obtained in Production Examples 1 to 9 were sandwiched between the positive electrode and the negative electrode obtained in Reference Example 1, respectively, and a reactive polymer was supported using a hot press at a temperature of 80 ° C. The porous film was pressure-bonded to both the positive and negative electrodes to produce electrode / separator laminates, respectively. The size of the battery separator was set to 1 mm at the portion protruding from the electrode.

これらの電極/セパレータ積層体をそれぞれアルミラミネートパッケージに仕込んだ後、パッケージ内に電解液を注入した。電解液はエチレンカーボネート/ジエチルカーボネート(容量比1:1)混合溶媒に1.0モル/L濃度でヘキサフルオロリン酸リチウムを溶解させたものを用いた。次いで、アルミラミネートパッケージを封口し、室温で12時間放置した後、50℃で24時間加熱して、セパレータ中の反応性ポリマーをそれが有するカチオン重合性官能基によってカチオン重合させ、架橋させ、かくして、セパレータに電極を接着して、電極/セパレータ接合体を有する電池を作製した。これらの電池における電極/セパレータ接着力と電池の高温保存試験の結果を表3に示す。   After each of these electrode / separator laminates was loaded into an aluminum laminate package, an electrolytic solution was injected into the package. The electrolytic solution used was a solution of lithium hexafluorophosphate dissolved in a mixed solvent of ethylene carbonate / diethyl carbonate (volume ratio 1: 1) at a concentration of 1.0 mol / L. Next, the aluminum laminate package is sealed, left at room temperature for 12 hours, and then heated at 50 ° C. for 24 hours to cause the reactive polymer in the separator to be cationically polymerized by the cationically polymerizable functional group that it has, to be crosslinked, thus Then, an electrode was bonded to the separator to produce a battery having an electrode / separator assembly. Table 3 shows the electrode / separator adhesion in these batteries and the results of the battery high-temperature storage test.

Figure 2009193755
Figure 2009193755

本発明による反応性ポリマー担持多孔質フィルムは、その間の接着力が高い電極/セパレータ接合体を与え、しかも、得られる電池は、高温保存性にすぐれており、セパレータには収縮がなく、短絡時間も長い。   The reactive polymer-supported porous film according to the present invention provides an electrode / separator assembly having a high adhesive force therebetween, and the resulting battery is excellent in high-temperature storage, the separator does not shrink, and the short circuit time is short. Also long.

比較例6〜10
上記実施例において、反応性ポリマー担持多孔質フィルムとして、反応性ポリマー担持多孔質フィルムX又はYを用いた以外は、同様にして、それぞれ電池を作製した。これらの電池における電極/セパレータ接着力と電池の高温保存試験の結果を表4に示す。
Comparative Examples 6-10
In the above examples, batteries were produced in the same manner except that the reactive polymer-supported porous film X or Y was used as the reactive polymer-supported porous film. Table 4 shows the electrode / separator adhesive strength of these batteries and the results of the battery high-temperature storage test.

比較例によるセパレータを用いて得られる電池は、電極/セパレータ接合体については高い接着力を有するが、高温保存性に劣っており、短絡時間も短い。   The battery obtained using the separator according to the comparative example has a high adhesive strength with respect to the electrode / separator assembly, but is inferior in high-temperature storage and has a short-circuit time.

比較例11〜14
上記実施例において、反応性ポリマー担持多孔質フィルムに代えて、製造例6〜9で得られた多孔質フィルムA〜Dを用いた以外は、同様にして、それぞれ電池を作製した。これらの電池における電極/セパレータ接着力と電池の高温保存試験の結果を表4に示す。
Comparative Examples 11-14
In the said Example, it replaced with the reactive polymer carrying | support porous film, and produced the battery respectively similarly except having used porous film AD obtained by manufacture examples 6-9. Table 4 shows the electrode / separator adhesion in these batteries and the results of the battery high-temperature storage test.

セパレータとして、多孔質フィルムを用いて得られる電池は、電極とセパレータ間に接着がなく、そのうえ、高温保存性に劣っており、セパレータは収縮が著しく、また、短絡時間も短い。   A battery obtained by using a porous film as a separator has no adhesion between the electrode and the separator, and is inferior in high-temperature storage stability. The separator is significantly contracted, and the short-circuit time is short.

Figure 2009193755
Figure 2009193755

Claims (7)

多孔質フィルム上に反応性ポリマーの層を担持させてなる電池用セパレータであって、上記多孔質フィルムがポリオレフィンとスチレン−ブタジエン共重合体を含む樹脂組成物の架橋体からなり、5%以上のゲル分率を有し、上記反応性ポリマーが分子中にカチオン重合性官能基を有することを特徴とする電池用セパレータのための反応性ポリマー担持多孔質フィルム。   A battery separator having a reactive polymer layer supported on a porous film, wherein the porous film is a crosslinked product of a resin composition containing a polyolefin and a styrene-butadiene copolymer, and is 5% or more. A reactive polymer-supported porous film for a battery separator, having a gel fraction, wherein the reactive polymer has a cationic polymerizable functional group in a molecule. 反応性ポリマーがカチオン重合性官能基を有するラジカル重合性モノマーと他のラジカル重合性モノマーとのラジカル共重合体である請求項1に記載の電池用セパレータのための反応性ポリマー担持多孔質フィルム。   The reactive polymer-supported porous film for a battery separator according to claim 1, wherein the reactive polymer is a radical copolymer of a radical polymerizable monomer having a cationic polymerizable functional group and another radical polymerizable monomer. カチオン重合性官能基3−オキセタニル基とエポキシ基から選ばれる少なくとも1種である請求項1又は2に記載の電池用セパレータのための反応性ポリマー担持多孔質フィルム。   The reactive polymer-supported porous film for battery separator according to claim 1 or 2, which is at least one selected from a cationically polymerizable functional group 3-oxetanyl group and an epoxy group. 請求項1から3のいずれかに記載の反応性ポリマー担持多孔質フィルムに電極を積層して、電極/反応性ポリマー担持多孔質フィルム積層体を得、この積層体の有する反応性ポリマーをカチオン重合性触媒を含む電解液に接触させて、多孔質フィルムを反応性ポリマーを介して接着して得られる電極/セパレータ接合体。   An electrode is laminated on the reactive polymer-supported porous film according to claim 1 to obtain an electrode / reactive polymer-supported porous film laminate, and the reactive polymer included in the laminate is subjected to cationic polymerization. Electrode / separator assembly obtained by bringing a porous film into contact with an electrolytic solution containing a reactive catalyst and bonding the porous film via a reactive polymer. カチオン重合触媒がオニウム塩である請求項4に記載の電極/セパレータ接合体。   The electrode / separator assembly according to claim 4, wherein the cationic polymerization catalyst is an onium salt. 電解液がカチオン重合触媒を兼ねる電解質塩として、ヘキサフルオロリン酸リチウムとテトラフルオロホウ酸リチウムから選ばれる少なくとも1種を含むものである請求項5に記載の電極/セパレータ接合体。   6. The electrode / separator assembly according to claim 5, wherein the electrolytic solution contains at least one selected from lithium hexafluorophosphate and lithium tetrafluoroborate as an electrolyte salt serving also as a cationic polymerization catalyst. 請求項4から6のいずれかに記載の電極/セパレータ接合体を有する電池。   A battery comprising the electrode / separator assembly according to any one of claims 4 to 6.
JP2008031451A 2008-02-13 2008-02-13 Battery separator and electrode / separator assembly obtained therefrom Expired - Fee Related JP5260074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008031451A JP5260074B2 (en) 2008-02-13 2008-02-13 Battery separator and electrode / separator assembly obtained therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008031451A JP5260074B2 (en) 2008-02-13 2008-02-13 Battery separator and electrode / separator assembly obtained therefrom

Publications (2)

Publication Number Publication Date
JP2009193755A true JP2009193755A (en) 2009-08-27
JP5260074B2 JP5260074B2 (en) 2013-08-14

Family

ID=41075610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008031451A Expired - Fee Related JP5260074B2 (en) 2008-02-13 2008-02-13 Battery separator and electrode / separator assembly obtained therefrom

Country Status (1)

Country Link
JP (1) JP5260074B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166949A1 (en) * 2014-05-01 2015-11-05 積水化学工業株式会社 Heat-resistant synthetic resin microporous film, method for manufacturing same, separator for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
KR20170008165A (en) * 2015-07-13 2017-01-23 제네럴 일렉트릭 컴퍼니 Electrochemical cells including a conductive matrix
KR101903376B1 (en) 2010-09-30 2018-10-02 제온 코포레이션 Secondary-battery porous-membrane slurry, secondary-battery porous membrane, secondary-battery electrode, secondary-battery separator, and secondary battery
JP7462461B2 (en) 2019-04-15 2024-04-05 旭化成株式会社 Polyolefin laminated microporous membrane

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176484A (en) * 1999-12-15 2001-06-29 Nitto Denko Corp Porous film
JP2004189918A (en) * 2002-12-12 2004-07-08 Nitto Denko Corp Porous film
JP2004263012A (en) * 2003-02-28 2004-09-24 Nitto Denko Corp Porous film and separator for electric battery
JP2005209474A (en) * 2004-01-22 2005-08-04 Nitto Denko Corp Reactive polymer carrying porous film for battery separator and its use
JP2006012560A (en) * 2004-06-24 2006-01-12 Nitto Denko Corp Positive electrode for battery/reactive polymer carrying porous film/negative electrode laminated body
JP2006128069A (en) * 2004-09-30 2006-05-18 Nitto Denko Corp Porous film carrying reactive polymer and its manufacturing method
JP2006196199A (en) * 2005-01-11 2006-07-27 Nitto Denko Corp Reactive polymer carrying porous film for separator for battery and manufacturing method of battery using it
JP2007123254A (en) * 2005-09-29 2007-05-17 Nitto Denko Corp Reactive polymer carrying porous film for separator for battery and method of manufacturing battery using it

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176484A (en) * 1999-12-15 2001-06-29 Nitto Denko Corp Porous film
JP2004189918A (en) * 2002-12-12 2004-07-08 Nitto Denko Corp Porous film
JP2004263012A (en) * 2003-02-28 2004-09-24 Nitto Denko Corp Porous film and separator for electric battery
JP2005209474A (en) * 2004-01-22 2005-08-04 Nitto Denko Corp Reactive polymer carrying porous film for battery separator and its use
JP2006012560A (en) * 2004-06-24 2006-01-12 Nitto Denko Corp Positive electrode for battery/reactive polymer carrying porous film/negative electrode laminated body
JP2006128069A (en) * 2004-09-30 2006-05-18 Nitto Denko Corp Porous film carrying reactive polymer and its manufacturing method
JP2006196199A (en) * 2005-01-11 2006-07-27 Nitto Denko Corp Reactive polymer carrying porous film for separator for battery and manufacturing method of battery using it
JP2007123254A (en) * 2005-09-29 2007-05-17 Nitto Denko Corp Reactive polymer carrying porous film for separator for battery and method of manufacturing battery using it

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101903376B1 (en) 2010-09-30 2018-10-02 제온 코포레이션 Secondary-battery porous-membrane slurry, secondary-battery porous membrane, secondary-battery electrode, secondary-battery separator, and secondary battery
WO2015166949A1 (en) * 2014-05-01 2015-11-05 積水化学工業株式会社 Heat-resistant synthetic resin microporous film, method for manufacturing same, separator for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
KR20170008165A (en) * 2015-07-13 2017-01-23 제네럴 일렉트릭 컴퍼니 Electrochemical cells including a conductive matrix
KR101941655B1 (en) 2015-07-13 2019-01-24 제네럴 일렉트릭 컴퍼니 Electrochemical cells including a conductive matrix
JP7462461B2 (en) 2019-04-15 2024-04-05 旭化成株式会社 Polyolefin laminated microporous membrane

Also Published As

Publication number Publication date
JP5260074B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
US9533475B2 (en) Crosslinking polymer-supported porous film for battery separator and method for producing battery using the same
US8277897B2 (en) Reactive polymer-supporting porous film for battery separator and use thereof
KR100960779B1 (en) Polymer for Lithium Ion Secondary Battery and Lithium Ion Secondary Battery Using Same
US8911648B2 (en) Reactive polymer-supported porous film for battery separator, method for producing the porous film, method for producing battery using the porous film, and electrode/porous film assembly
JP2006196199A (en) Reactive polymer carrying porous film for separator for battery and manufacturing method of battery using it
JP5260075B2 (en) Reactive polymer-supported porous film for battery separator and electrode / separator assembly obtained therefrom
JP2009110683A (en) Porous film having reactive polymer layer thereon for use in battery separator, and use of it
JP2007157570A (en) Manufacturing method of reactant polymer-carrying porous film for battery separator and battery using the same
JP5124178B2 (en) Crosslinkable polymer-supported porous film for battery separator and its use
JP5260074B2 (en) Battery separator and electrode / separator assembly obtained therefrom
JP2007157569A (en) Manufacturing method of reactant polymer carrying porous film for battery separator and battery using the same
JP2004162019A (en) Electrolyte composition
JP2004335210A (en) Manufacturing method of reactive polymer-carrying porous film for separator for battery and battery using it
JP2009193761A (en) Reactive polymer-supporting porous film for battery separator, and electrode/separator assembly obtained therefrom
JP4653425B2 (en) Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate
JP2006092847A (en) Reactive polymer carrying porous film of separator for battery, and manufacturing method of battery using the same
JP2009193743A (en) Cross-linked polymer supporting porous film for separator for battery and separator for battery and electrode/separator assembly obtained therefrom
JP5260073B2 (en) Battery separator and electrode / separator assembly obtained therefrom
JP2011192565A (en) Separator for battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees