JP4653425B2 - Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate - Google Patents

Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate Download PDF

Info

Publication number
JP4653425B2
JP4653425B2 JP2004186923A JP2004186923A JP4653425B2 JP 4653425 B2 JP4653425 B2 JP 4653425B2 JP 2004186923 A JP2004186923 A JP 2004186923A JP 2004186923 A JP2004186923 A JP 2004186923A JP 4653425 B2 JP4653425 B2 JP 4653425B2
Authority
JP
Japan
Prior art keywords
porous film
reactive polymer
acid
battery
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004186923A
Other languages
Japanese (ja)
Other versions
JP2006012562A (en
Inventor
智昭 市川
慶裕 植谷
敬介 喜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2004186923A priority Critical patent/JP4653425B2/en
Publication of JP2006012562A publication Critical patent/JP2006012562A/en
Application granted granted Critical
Publication of JP4653425B2 publication Critical patent/JP4653425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、電池の製造に有用であると共に、そのように製造した電池の使用時の安全に寄与することができる正極/反応性ポリマー担持多孔質フィルム/負極積層体とこれを利用する電池の製造方法に関する。   INDUSTRIAL APPLICABILITY The present invention is useful for manufacturing a battery, and can contribute to safety during use of the battery thus manufactured, and a positive electrode / reactive polymer-supported porous film / negative electrode laminate and a battery using the same It relates to a manufacturing method.

従来、電池の製造方法として、正極と負極との間にこれら電極間の短絡を防止するためのセパレータを挟んで積層し、又は正(負)極、セパレータ、負(正)極及びセパレータをこの順序に積層し、捲回して、電極/セパレータ積層体とし、この電極/セパレータ積層体を電池容器内に仕込んだ後、この電池容器内に電解液を注入して、封口する方法が知られている(例えば、特許文献1及び2参照)。   Conventionally, as a method of manufacturing a battery, a positive electrode and a negative electrode are laminated with a separator for preventing a short circuit between the electrodes, or a positive (negative) electrode, a separator, a negative (positive) electrode, and a separator are laminated. It is known that the electrode / separator laminate is stacked in order and wound into an electrode / separator laminate, and after the electrode / separator laminate is charged into the battery container, an electrolytic solution is injected into the battery container and sealed. (For example, see Patent Documents 1 and 2).

しかし、このようにして得られる電池における問題として、長時間にわたって電池を高温環境下に置いたり、過充電した場合や、また、電池の内部又は外部で電極間に短絡が生じた場合、電池が異常に発熱して、急激に温度が上昇し、電池内部の電解液が外部に噴出し、場合によっては、破壊するおそれさえあった。   However, as a problem with the battery thus obtained, if the battery is left in a high temperature environment for a long time, overcharged, or if a short circuit occurs between the electrodes inside or outside the battery, the battery Abnormal heat generation caused the temperature to rise suddenly, and the electrolyte inside the battery was ejected to the outside, and in some cases, it could even be destroyed.

他方、特に、積層型の電池の製造においては、多くの場合、ポリフッ化ビニリデン樹脂溶液を接着剤として用いて、電極とセパレータとを接着した後、減圧下に上記樹脂溶液に用いた溶剤を除去する方法が採用されている。しかし、このような方法によれば、工程が煩雑であるうえに、得られる製品の品質が安定し難く、更に、電極とセパレータとの接着が十分ではないという問題もあった(例えば、特許文献3参照)。   On the other hand, especially in the production of stacked batteries, in many cases, the polyvinylidene fluoride resin solution is used as an adhesive, the electrode and the separator are bonded, and then the solvent used in the resin solution is removed under reduced pressure. The method to do is adopted. However, according to such a method, there are problems that the process is complicated, the quality of the obtained product is difficult to stabilize, and the adhesion between the electrode and the separator is not sufficient (for example, patent document) 3).

また、電池用セパレータのための多孔質フィルムは、従来、種々の製造方法が知られている。一つの方法として、例えば、ポリオレフィン樹脂からなるシートを製造し、これを高倍率延伸する方法が知られている(例えば、特許文献4参照)。しかし、このように高倍率延伸して得られる多孔質膜からなる電池用セパレータは、電池が内部短絡等によって異常昇温した場合のような高温環境下においては、著しく収縮し、場合によっては、電極間の隔壁として機能しなくなるという問題がある。   In addition, various manufacturing methods are conventionally known for porous films for battery separators. As one method, for example, a method of manufacturing a sheet made of a polyolefin resin and stretching the sheet at a high magnification is known (for example, see Patent Document 4). However, the battery separator made of a porous membrane obtained by stretching at a high magnification in this way is significantly shrunk under a high temperature environment such as when the battery is abnormally heated due to an internal short circuit or the like. There is a problem that it does not function as a partition between electrodes.

そこで、電池の安全性を向上させるために、このような高温環境下での電池用セパレータの熱収縮率の低減が重要な課題とされている。この点に関して、高温環境下での電池用セパレータの熱収縮を抑制するために、例えば、超高分子量ポリエチレンと可塑剤を溶融混練し、ダイスからシート状に押し出した後、可塑剤を抽出、除去して、電池用セパレータに用いる多孔質膜を製造する方法も知られている(特許文献5参照)。しかし、この方法によれば、上記の方法と反対に、得られる多孔質膜は、延伸を経ていないので、強度において十分でない問題がある。
特開平09−161814号公報 特開平11−329439号公報 特開平10−172606号公報 特開平09−012756号公報 特開平05−310989号公報
Therefore, in order to improve the safety of the battery, reduction of the thermal contraction rate of the battery separator under such a high temperature environment is an important issue. In this regard, for example, in order to suppress thermal contraction of the battery separator in a high temperature environment, for example, melt and knead ultra high molecular weight polyethylene and a plasticizer, and extrude the plasticizer from a die, and then extract and remove the plasticizer. And the method of manufacturing the porous film | membrane used for a battery separator is also known (refer patent document 5). However, according to this method, contrary to the above method, the obtained porous film has not been stretched, and thus there is a problem that the strength is not sufficient.
JP 09-161814 A JP 11-329439 A JP-A-10-172606 Japanese Patent Application Laid-Open No. 09-012756 Japanese Patent Laid-Open No. 05-310989

本発明は、セパレータに電極を接着してなる電池の製造における上述した問題を解決するためになされたものであって、電極/セパレータ間に十分な接着性を有すると共に、内部抵抗が低く、高レート特性にすぐれた電池を製造するために好適に用いることができ、しかも、電池の製造後は、それ自体、高温の環境下に置かれても、溶融や破膜することなく、熱収縮の小さいセパレータとして機能する多孔質フィルムを含む電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体と、そのような正極/反応性ポリマー担持多孔質フィルム/負極積層体を用いる電池の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems in the production of a battery in which an electrode is bonded to a separator, and has sufficient adhesion between the electrode / separator and has a low internal resistance and a high level. It can be suitably used to manufacture a battery with excellent rate characteristics, and after the battery is manufactured, it does not melt or break even if it is placed in a high-temperature environment. A battery positive electrode / reactive polymer-supported porous film / negative electrode laminate including a porous film functioning as a small separator, and a battery manufacturing method using such a positive electrode / reactive polymer-supported porous film / negative electrode laminate The purpose is to provide.

本発明によれば、分子中に3−オキセタニル基とエポキシ基とから選ばれる少なくとも1種の反応性基を有する架橋性ポリマーを用意し、この架橋性ポリマーをポリカルボン酸と反応させて、一部、架橋させてなる反応性ポリマーを多孔質フィルムに担持させて反応性ポリマー担持多孔質フィルムとし、この反応性ポリマー担持多孔質フィルムにこれを挟んで正極と負極を積層してなる正極/反応性ポリマー担持多孔質フィルム/負極積層体において、上記反応性ポリマー担持多孔質フィルムの片面当たりの反応性ポリマーの担持量が0.3〜5.0g/m2 の範囲にあると共に、正極側の多孔質フィルム上の反応性ポリマーの担持量/負極側の多孔質フィルム上の反応性ポリマーの担持量の比が0.1〜1.0の範囲にあることを特徴とする電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体が提供される。 According to the present invention, a crosslinkable polymer having at least one reactive group selected from a 3-oxetanyl group and an epoxy group in a molecule is prepared, and this crosslinkable polymer is reacted with a polycarboxylic acid, A positive electrode / reaction in which a reactive polymer formed by crosslinking is supported on a porous film to form a reactive polymer-supported porous film, and a positive electrode and a negative electrode are laminated with the reactive polymer-supported porous film sandwiched therebetween. In the porous polymer-supported porous film / negative electrode laminate, the amount of the reactive polymer supported on one side of the reactive polymer-supported porous film is in the range of 0.3 to 5.0 g / m 2 , The ratio of the loading amount of the reactive polymer on the porous film / the loading amount of the reactive polymer on the porous film on the negative electrode side is in the range of 0.1 to 1.0. Positive electrode / reactive polymer-supported porous film / negative electrode laminate for battery is provided.

更に、本発明によれば、上記正極/反応性ポリマー担持多孔質フィルム/負極接合体を電池容器内に仕込んだ後、カチオン重合触媒を含む電解液を上記電池容器内に注入して、少なくとも多孔質フィルムと電極との界面の近傍にて、上記反応性ポリマーの少なくとも一部を電解液中で膨潤させ、又は電解液中に溶出させ、カチオン重合させて、電解液の少なくとも一部をゲル化させて、多孔質フィルムと電極を接着することを特徴とする電池の製造方法が提供される。   Furthermore, according to the present invention, after the positive electrode / reactive polymer-supported porous film / negative electrode assembly is charged into the battery container, an electrolytic solution containing a cationic polymerization catalyst is injected into the battery container, and at least porous In the vicinity of the interface between the porous film and the electrode, at least a part of the reactive polymer is swollen in the electrolytic solution, or eluted into the electrolytic solution, and cationically polymerized to gel at least a part of the electrolytic solution. Thus, there is provided a battery manufacturing method characterized in that a porous film and an electrode are adhered.

本発明による電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体においては、その反応性ポリマーがポリカルボン酸によって一部、架橋されているが、更に、その未反応の反応性基によって、カチオン重合性を有している。   In the positive electrode / reactive polymer-supported porous film / negative electrode laminate according to the present invention, the reactive polymer is partially cross-linked by polycarboxylic acid, and further, by the unreacted reactive group, It has cationic polymerizability.

従って、このような正極/反応性ポリマー担持多孔質フィルム/負極積層体を電池容器内に仕込んだ後、カチオン重合触媒を含む電解液を上記電池容器内に注入して、少なくとも多孔質フィルムと電極との界面の近傍にて、上記反応性ポリマーの少なくとも一部を電解液中で膨潤させ、又は電解液中に溶出させ、反応性ポリマーの有する反応性基をカチオン重合させ、反応性ポリマーを更に架橋させて、電解液の少なくとも一部をゲル化させることによって、多孔質フィルムと電極が強固に接着された電極/多孔質フィルム接合体を有する電池を得ることができる。   Therefore, after preparing such a positive electrode / reactive polymer-supported porous film / negative electrode laminate in a battery container, an electrolytic solution containing a cationic polymerization catalyst is injected into the battery container, and at least the porous film and electrode In the vicinity of the interface, at least a part of the reactive polymer is swollen in the electrolytic solution or eluted into the electrolytic solution, the reactive group of the reactive polymer is cationically polymerized, and the reactive polymer is further A battery having an electrode / porous film assembly in which the porous film and the electrode are firmly bonded can be obtained by crosslinking and gelling at least a part of the electrolytic solution.

ここに、上記正極/反応性ポリマー担持多孔質フィルム/負極積層体においては、反応性ポリマーが予め、一部、架橋されているので、正極/反応性ポリマー担持多孔質フィルム/負極積層体を電解液に浸漬したとき、反応性ポリマーは、電極/反応性ポリマー担持多孔質フィルム積層体からの電解液中への溶出、拡散が抑制されつつ、膨潤するので、その結果、少量の反応性ポリマーを用いることによって、電極を多孔質フィルム(セパレータ)に接着することができると共に、多孔質フィルムがイオン透過性にすぐれているので、セパレータとしてよく機能する。また、反応性ポリマーが電解液に過度に溶出、拡散して、電解液に有害な影響を与えることもない。   Here, in the positive electrode / reactive polymer-supported porous film / negative electrode laminate, since the reactive polymer is partially crosslinked in advance, the positive electrode / reactive polymer-supported porous film / negative electrode laminate is electrolyzed. When immersed in the solution, the reactive polymer swells while suppressing elution and diffusion from the electrode / reactive polymer-supported porous film laminate into the electrolyte, and as a result, a small amount of the reactive polymer is added. By using it, the electrode can be adhered to the porous film (separator), and the porous film is excellent in ion permeability, so that it functions well as a separator. Further, the reactive polymer is not excessively eluted and diffused in the electrolytic solution, and does not adversely affect the electrolytic solution.

更に、本発明によれば、正極/反応性ポリマー担持多孔質フィルム/負極積層体において、多孔質フィルムの片面当たりの反応性ポリマーの担持量と共に、正極側の多孔質フィルム上の反応性ポリマーの担持量/負極側の多孔質フィルム上の反応性ポリマーの担持量の比とをそれぞれ所定の範囲にすることによって、得られる電池において、その特性と電極と多孔質フィルム(セパレータ)との間の接着特性との間に適切なバランスを有せしめることができ、更に、セパレータとして機能する多孔質フィルムと電極とを強固に接着することができるので、高温の環境下に置かれても、セパレータは溶融、破膜せず、熱収縮か小さいので、安全性にすぐれる電池を得ることができる。   Furthermore, according to the present invention, in the positive electrode / reactive polymer-supported porous film / negative electrode laminate, the amount of the reactive polymer supported on one side of the porous film and the reactive polymer on the porous film on the positive electrode side are By setting the ratio of the supported amount / the supported amount of the reactive polymer on the negative electrode side porous film to a predetermined range, in the obtained battery, the characteristics and the relationship between the electrode and the porous film (separator) It is possible to have an appropriate balance between the adhesive properties and furthermore, the porous film functioning as a separator and the electrode can be firmly bonded, so that the separator can be used even in a high temperature environment. Since it does not melt and break, and heat shrinkage is small, a battery with excellent safety can be obtained.

かくして、本発明の正極/反応性ポリマー担持多孔質フィルム/負極積層体を用いることによって、電極/セパレータ間に強固な接着を有する電極/セパレータ接合体を電池の製造過程においてその場で形成しつつ、多孔質フィルムと電極との間の接着性と電池特性との間にバランスがとれており、更に、安全性にすぐれる電池を容易に得ることができる。   Thus, by using the positive electrode / reactive polymer-supported porous film / negative electrode laminate of the present invention, an electrode / separator assembly having strong adhesion between the electrode / separator is formed in situ in the battery manufacturing process. In addition, a balance is achieved between the adhesion between the porous film and the electrode and the battery characteristics, and a battery with excellent safety can be easily obtained.

本発明は、分子中に3−オキセタニル基とエポキシ基とから選ばれる少なくとも1種の反応性基を有する架橋性ポリマーを用意し、この架橋性ポリマーをポリカルボン酸と反応させて、一部、架橋させてなる反応性ポリマーを多孔質フィルムに担持させて反応性ポリマー担持多孔質フィルムとし、この反応性ポリマー担持多孔質フィルムにこれを挟んで正極と負極を積層してなる正極/反応性ポリマー担持多孔質フィルム/負極積層体において、上記反応性ポリマー担持多孔質フィルムの片面当たりの反応性ポリマーの担持量が0.3〜5.0g/m2 の範囲にあると共に、正極側の多孔質フィルム上の反応性ポリマーの担持量/負極側の多孔質フィルム上の反応性ポリマーの担持量の比が0.1〜1.0の範囲にあるものである。 The present invention provides a crosslinkable polymer having at least one reactive group selected from a 3-oxetanyl group and an epoxy group in the molecule, and reacting the crosslinkable polymer with a polycarboxylic acid, in part, A positive electrode / reactive polymer in which a reactive polymer formed by crosslinking is supported on a porous film to form a reactive polymer-supported porous film, and a positive electrode and a negative electrode are laminated with the reactive polymer-supported porous film sandwiched therebetween. In the supported porous film / negative electrode laminate, the amount of the reactive polymer supported on one side of the reactive polymer-supported porous film is in the range of 0.3 to 5.0 g / m 2 and the positive-side porous The ratio of the loading amount of the reactive polymer on the film / the loading amount of the reactive polymer on the porous film on the negative electrode side is in the range of 0.1 to 1.0.

本発明において、多孔質フィルムは、電池の製造後にはセパレータとして機能するものであるので、膜厚3〜100μmの範囲のものがよい。膜厚が3μmよりも薄いときは、強度が不十分であって、電池においてセパレータとして用いた場合に内部短絡を起こすおそれがあり、他方、100μmを越えるときは、電極間距離が大きすぎて、電池の内部抵抗が過大となる。特に、好ましくは、基材多孔膜フィルムは、膜厚5〜50μmの範囲のものがよい。また、多孔質フィルムは、平均孔径0.01〜5μmの細孔を有し、空孔率が20〜80%、好ましくは、25〜75%の範囲のものが用いられる。多孔質フィルムの空孔率が余りに低いときは、電池のセパレータとして用いた場合に、イオン伝導経路が少なくなり、十分な電池特性を得ることができない。他方、空孔率が余りに高いときは、電池のセパレータとして用いた場合に、強度が不十分であり、所要の強度を得るためには、多孔質フィルムとして厚いものを用いざるを得ず、そうすれば、電池の内部抵抗が高くなるので好ましくない。   In this invention, since a porous film functions as a separator after manufacture of a battery, the thing of the film thickness of 3-100 micrometers is good. When the film thickness is less than 3 μm, the strength is insufficient and there is a possibility of causing an internal short circuit when used as a separator in a battery. On the other hand, when it exceeds 100 μm, the distance between the electrodes is too large, The internal resistance of the battery becomes excessive. Particularly preferably, the substrate porous film has a film thickness in the range of 5 to 50 μm. The porous film has pores having an average pore diameter of 0.01 to 5 μm and a porosity of 20 to 80%, preferably 25 to 75%. When the porosity of the porous film is too low, when used as a battery separator, the ion conduction path is reduced and sufficient battery characteristics cannot be obtained. On the other hand, when the porosity is too high, when used as a battery separator, the strength is insufficient, and in order to obtain the required strength, a thick porous film must be used. This is not preferable because the internal resistance of the battery increases.

本発明によれば、多孔質フィルムは、上述したような特性を有すれば、特に、限定されるものではないが、耐溶剤性や耐酸化還元性を考慮すれば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂からなる多孔質フィルムが好適である。しかし、なかでも、加熱されたとき、樹脂が溶融して、細孔が閉塞する性質を有し、従って、電池に所謂シャットダウン機能を有せしめることができるところから、多孔質フィルムとしては、ポリエチレンが特に好適である。ここに、ポリエチレンには、エチレンのホモポリマーのみならず、プロピレン、ブテン、ヘキセン等のα−オレフィンとエチレンとのコポリマーを含むものとする。しかし、本発明によれば、ポリテトラフルオロエチレンやポリイミド等の多孔質膜と上記ポリオレフィン樹脂多孔質フィルムとの積層フィルムも、耐熱性にすぐれるところから、多孔質フィルムとして、好適に用いられる。   According to the present invention, the porous film is not particularly limited as long as it has the above-described characteristics, but if considering solvent resistance and oxidation-reduction resistance, polyolefin such as polyethylene and polypropylene is used. A porous film made of a resin is preferred. However, among them, polyethylene has a property that when heated, the resin melts and the pores are blocked, so that the battery can have a so-called shutdown function. Particularly preferred. Here, the polyethylene includes not only a homopolymer of ethylene but also a copolymer of ethylene with an α-olefin such as propylene, butene, and hexene. However, according to the present invention, a laminated film of a porous film such as polytetrafluoroethylene or polyimide and the polyolefin resin porous film is also suitably used as a porous film because of its excellent heat resistance.

本発明において、架橋性ポリマーは、分子中に3−オキセタニル基とエポキシ基とから選ばれる少なくとも1種の反応性基を有するポリマーをいい、好ましくは、3−オキセタニル基を有するラジカル重合性モノマーとエポキシ基を有するラジカル重合性モノマーとから選ばれる少なくとも1種の第1のラジカル重合性モノマーとこれ以外の第2のラジカル重合性モノマーとのラジカル共重合体である。   In the present invention, the crosslinkable polymer means a polymer having at least one reactive group selected from a 3-oxetanyl group and an epoxy group in the molecule, and preferably a radical polymerizable monomer having a 3-oxetanyl group A radical copolymer of at least one first radical polymerizable monomer selected from radical polymerizable monomers having an epoxy group and a second radical polymerizable monomer other than the first radical polymerizable monomer.

特に、好ましくは、本発明において、架橋性ポリマーは、分子中に3−オキセタニル基とエポキシ基とを有するポリマーか、又は分子中にエポキシ基を有するポリマーをいい、従って、このような架橋性ポリマーは、好ましくは、3−オキセタニル基を有するラジカル重合性モノマーとエポキシ基を有するラジカル重合性モノマーと他のラジカル重合性モノマーとのラジカル共重合か、又はエポキシ基を有するラジカル重合性モノマーと他のラジカル重合性モノマーとのラジカル共重合によって得ることができる。   Particularly preferably, in the present invention, the crosslinkable polymer refers to a polymer having a 3-oxetanyl group and an epoxy group in the molecule, or a polymer having an epoxy group in the molecule. Is preferably a radical copolymerization of a radical polymerizable monomer having a 3-oxetanyl group with a radical polymerizable monomer having an epoxy group and another radical polymerizable monomer, or a radical polymerizable monomer having an epoxy group and another radical polymerizable monomer. It can be obtained by radical copolymerization with a radical polymerizable monomer.

既に知られているように、3−オキセタニル基やエポキシ基はカルボキシル基と反応し得ると共に、カチオン重合し得る。本発明によれば、架橋性ポリマーの有する3−オキセタニル基とエポキシ基のこのような反応性を利用して、架橋性ポリマーを先ず、ポリカルボン酸と反応させ、一部、架橋させてなるポリマーを反応性ポリマーといい、これを基材多孔質フィルムに担持させて、反応性ポリマー担持多孔質フィルムとする。   As already known, 3-oxetanyl groups and epoxy groups can react with carboxyl groups and can be cationically polymerized. According to the present invention, by utilizing such reactivity of the 3-oxetanyl group and the epoxy group possessed by the crosslinkable polymer, the crosslinkable polymer is first reacted with a polycarboxylic acid and partially crosslinked. Is called a reactive polymer, and this is supported on a porous substrate film to form a reactive polymer-supported porous film.

このように、本発明によれば、反応性ポリマーは、架橋性ポリマーとポリカルボン酸とを反応させ、架橋性ポリマーを一部、架橋させてなるものであるので、反応性ポリマーの重量とは、便宜上、架橋性ポリマーとポリカルボン酸との合計の重量をいうものとする。   Thus, according to the present invention, the reactive polymer is obtained by reacting a crosslinkable polymer with a polycarboxylic acid and partially crosslinking the crosslinkable polymer. For convenience, the total weight of the crosslinkable polymer and the polycarboxylic acid is used.

また、本発明において、正極/反応性ポリマー担持多孔質フィルム/負極積層体(以下、電極/多孔質フィルム積層体ということがある。)とは、このように、架橋性ポリマーを一部、架橋させてなる反応性ポリマーを担持させた多孔質フィルムに、これを挟んで正極と負極を圧着し、好ましくは、仮接着して貼り合わせたものをいう。   In the present invention, the positive electrode / reactive polymer-supported porous film / negative electrode laminate (hereinafter sometimes referred to as an electrode / porous film laminate) is a part of the crosslinkable polymer. A positive electrode and a negative electrode are pressure-bonded to a porous film carrying a reactive polymer, and are preferably bonded by temporary adhesion.

正極/反応性ポリマー担持多孔質フィルム/負極接合体(以下、電極/多孔質フィルム接合体ということがある。)とは、上述したような電極/多孔質フィルム積層体において、反応性ポリマーを更に反応させ、架橋させることによって、電極と多孔質フィルムとを相互に接着したものをいう。   The positive electrode / reactive polymer-supported porous film / negative electrode assembly (hereinafter sometimes referred to as an electrode / porous film assembly) refers to the reactive polymer in the electrode / porous film laminate as described above. It refers to a structure in which an electrode and a porous film are bonded to each other by reacting and crosslinking.

本発明によれば、電極/多孔質フィルム積層体において、反応性ポリマー担持多孔質フィルムの片面当たりの反応性ポリマーの担持量は0.3〜5.0g/m2 の範囲にあり、正極側の多孔質フィルム上の反応性ポリマーの担持量/負極側の多孔質フィルム上の反応性ポリマーの担持量の比は0.1〜1.0の範囲にある。 According to the present invention, in the electrode / porous film laminate, the amount of the reactive polymer supported on one side of the reactive polymer-supported porous film is in the range of 0.3 to 5.0 g / m 2 , and the positive electrode side The ratio of the amount of the reactive polymer supported on the porous film / the amount of the reactive polymer supported on the negative electrode porous film is in the range of 0.1 to 1.0.

以下にこのような本発明による電池用電極/反応性ポリマー担持多孔質フィルム積層体とこれを用いる電池の製造について詳細に説明する。   The battery electrode / reactive polymer-supported porous film laminate according to the present invention and the production of a battery using the same will be described in detail below.

本発明において、架橋性ポリマーは、分子中に3−オキセタニル基とエポキシ基とから選ばれる少なくとも1種の反応性基を有する第1のラジカル重合性モノマーとこれ以外の第2のラジカル重合性モノマーとを常法に従ってラジカル共重合させることによって得ることができる。   In the present invention, the crosslinkable polymer includes a first radical polymerizable monomer having at least one reactive group selected from a 3-oxetanyl group and an epoxy group in the molecule, and a second radical polymerizable monomer other than this. Can be obtained by radical copolymerization according to a conventional method.

本発明によれば、分子中に3−オキセタニル基とエポキシ基とから選ばれる少なくとも1種の反応性基を有する第1のラジカル重合性モノマーとこれ以外の第2のラジカル重合性モノマーを共重合させて、架橋性ポリマーを得る際に、第1のラジカル重合性モノマーは、全モノマー量の5〜50重量%、好ましくは、10〜30重量%の範囲となるように用いられる。従って、反応性基として、3−オキセタニル基を含有する架橋性ポリマーを得る場合であれば、3−オキセタニル基含有ラジカル重合性モノマーは、全モノマー量の5〜50重量%、好ましくは、10〜30重量%の範囲で用いられる。同様に、反応性基として、エポキシ基を含有する架橋性ポリマーを得る場合であれば、エポキシ基含有ラジカル重合性モノマーは、全モノマー量の5〜50重量%、好ましくは、10〜30重量%の範囲で用いられる。   According to the present invention, a first radical polymerizable monomer having at least one reactive group selected from a 3-oxetanyl group and an epoxy group in the molecule is copolymerized with another second radical polymerizable monomer. Thus, when the crosslinkable polymer is obtained, the first radical polymerizable monomer is used in a range of 5 to 50% by weight, preferably 10 to 30% by weight of the total amount of monomers. Therefore, if a crosslinkable polymer containing a 3-oxetanyl group is obtained as a reactive group, the 3-oxetanyl group-containing radical polymerizable monomer is 5 to 50% by weight of the total monomer amount, preferably 10 to 10%. It is used in the range of 30% by weight. Similarly, in the case of obtaining a crosslinkable polymer containing an epoxy group as a reactive group, the epoxy group-containing radical polymerizable monomer is 5 to 50% by weight, preferably 10 to 30% by weight of the total monomer amount. It is used in the range.

また、3−オキセタニル基含有ラジカル重合性モノマーとエポキシ基含有ラジカル重合性モノマーを併用して、反応性基として、3−オキセタニル基とエポキシ基とを共に有する架橋性ポリマーを得る場合にも、3−オキセタニル基含有ラジカル重合性モノマーとエポキシ基含有ラジカル重合性モノマーの合計量が全モノマー量の5〜50重量%、好ましくは、10〜30重量%の範囲であり、更に好ましくは、3−オキセタニル基含有ラジカル重合性モノマーとエポキシ基含有ラジカル重合性モノマーのうち、エポキシ基含有ラジカル重合性モノマーが90重量%以下であるように用いられる。   In addition, when a 3-oxetanyl group-containing radical polymerizable monomer and an epoxy group-containing radical polymerizable monomer are used in combination to obtain a crosslinkable polymer having both a 3-oxetanyl group and an epoxy group as reactive groups, 3 The total amount of the oxetanyl group-containing radical polymerizable monomer and the epoxy group-containing radical polymerizable monomer is in the range of 5 to 50% by weight, preferably 10 to 30% by weight, more preferably 3-oxetanyl. Of the group-containing radical polymerizable monomer and the epoxy group-containing radical polymerizable monomer, the epoxy group-containing radical polymerizable monomer is used so as to be 90% by weight or less.

架橋性ポリマーを得る際に、全モノマー量中、第1のラジカル重合性モノマーが5重量%よりも少ないときは、後述するように、電解液のゲル化に要する反応性ポリマー量の増大を招くので、得られる電池の性能が低下する。他方、50重量%よりも多いときは、形成されたゲルの電解液の保持性が低下して、得られる電池における電極/多孔質フィルム(セパレータ)間の接着性が低下する。   When the crosslinkable polymer is obtained, if the amount of the first radical polymerizable monomer is less than 5% by weight in the total monomer amount, as will be described later, the amount of the reactive polymer required for gelation of the electrolytic solution is increased. Therefore, the performance of the obtained battery is lowered. On the other hand, when it is more than 50% by weight, the retention property of the electrolyte solution of the formed gel is lowered, and the adhesion between the electrode / porous film (separator) in the obtained battery is lowered.

本発明によれば、3−オキセタニル基含有ラジカル重合性モノマーとして、好ましくは、一般式(I)   According to the present invention, the 3-oxetanyl group-containing radical polymerizable monomer is preferably represented by the general formula (I)

Figure 0004653425
Figure 0004653425

(式中、R1 は水素原子又はメチル基を示し、R2 は水素原子又は炭素原子数1〜6のアルキル基を示す。)
で表される3−オキセタニル基含有(メタ)アクリレートが用いられる。
(In the formula, R 1 represents a hydrogen atom or a methyl group, and R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
The 3-oxetanyl group containing (meth) acrylate represented by these is used.

このような3−オキセタニル基含有(メタ)アクリレートの具体例として、例えば、3−オキセタニルメチル(メタ)アクリレート、3−メチル−3−オキセタニルメチル(メタ)アクリレート、3−エチル−3−オキセタニルメチル(メタ)アクリレート、3−ブチル−3−オキセタニルメチル(メタ)アクリレート、3−へキシル−3−オキセタニルメチル(メタ)アクリレート等を挙げることができる。これらの(メタ)アクリレートは単独で用いられ、又は2種以上が併用される。   Specific examples of such a 3-oxetanyl group-containing (meth) acrylate include, for example, 3-oxetanylmethyl (meth) acrylate, 3-methyl-3-oxetanylmethyl (meth) acrylate, 3-ethyl-3-oxetanylmethyl ( Examples include meth) acrylate, 3-butyl-3-oxetanylmethyl (meth) acrylate, and 3-hexyl-3-oxetanylmethyl (meth) acrylate. These (meth) acrylates are used alone or in combination of two or more.

また、本発明によれば、エポキシ基含有ラジカル重合性モノマーとして、好ましくは、一般式(II)   Further, according to the present invention, the epoxy group-containing radical polymerizable monomer is preferably represented by the general formula (II)

Figure 0004653425
Figure 0004653425

(式中、R3 は水素原子又はメチル基を示し、R4 は式(1) (In the formula, R 3 represents a hydrogen atom or a methyl group, and R 4 represents the formula (1)

Figure 0004653425
Figure 0004653425

又は式(2) Or formula (2)

Figure 0004653425
Figure 0004653425

で表されるエポキシ基含有基を示す。)
で表されるエポキシ基含有(メタ)アクリレートが用いられる。
The epoxy group containing group represented by these is shown. )
The epoxy group containing (meth) acrylate represented by these is used.

このようなエポキシ基含有(メタ)アクリレートの具体例としては、例えば、具体的には、3,4−エポキシシクロヘキシルメチル(メタ)アクリレート、グリシジル(メタ)アクリレート等を挙げることができる。これらの(メタ)アクリレートは単独で用いられ、又は2種以上が併用される。   Specific examples of such an epoxy group-containing (meth) acrylate include, specifically, 3,4-epoxycyclohexylmethyl (meth) acrylate, glycidyl (meth) acrylate, and the like. These (meth) acrylates are used alone or in combination of two or more.

上述した第1のラジカル重合性モノマーとの共重合に用いる第2のラジカル重合性モノマーは、好ましくは、一般式(III)   The second radical polymerizable monomer used for copolymerization with the first radical polymerizable monomer described above is preferably represented by the general formula (III)

Figure 0004653425
Figure 0004653425

(式中、R5 は水素原子又はメチル基を示し、Aは炭素原子数2又は3のオキシアルキレン基(好ましくは、オキシエチレン基又はオキシプロピレン基)を示し、R6 は炭素原子数1〜6のアルキル基又は炭素原子数1〜6のフッ化アルキル基を示し、nは0〜3の整数を示す。)
で表される(メタ)アクリレートと一般式(IV)
(In the formula, R 5 represents a hydrogen atom or a methyl group, A represents an oxyalkylene group having 2 or 3 carbon atoms (preferably an oxyethylene group or an oxypropylene group), and R 6 represents 1 to 1 carbon atoms. 6 represents an alkyl group or a fluorinated alkyl group having 1 to 6 carbon atoms, and n represents an integer of 0 to 3.)
(Meth) acrylate represented by the general formula (IV)

Figure 0004653425
Figure 0004653425

(式中、R7 はメチル基又はエチル基を示し、R8 は水素原子又はメチル基を示す。)
で表されるビニルエステルから選ばれる少なくとも1種である。
(In the formula, R 7 represents a methyl group or an ethyl group, and R 8 represents a hydrogen atom or a methyl group.)
It is at least 1 sort (s) chosen from vinyl ester represented by these.

上記一般式(III) で表される(メタ)アクリレートの具体例として、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2,2,2−トリフルオロエチル(メタ)アクリレート、2,2,3,3−テトラフルオロプロピル(メタ)アクリレート等を挙げることができる。これら以外にも、例えば、   Specific examples of the (meth) acrylate represented by the general formula (III) include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2,2,2 -Trifluoroethyl (meth) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, etc. can be mentioned. Besides these, for example,

Figure 0004653425
Figure 0004653425

等を挙げることができる。式中、nは0〜3の整数である。 Etc. In formula, n is an integer of 0-3.

また、上記一般式(IV)で表されるビニルエステルの具体例として、例えば、酢酸ビニル、プロピオン酸ビニル等を挙げることができる。   Specific examples of the vinyl ester represented by the general formula (IV) include vinyl acetate and vinyl propionate.

本発明において、架橋性ポリマーは、上述した第1と第2のラジカル重合性モノマーをラジカル重合開始剤を用いてラジカル共重合させることによって、共重合体として得ることができる。このようなラジカル共重合は、溶液重合、塊状重合、懸濁重合、乳化重合等、いずれの重合法によってもよいが、重合の容易さ、分子量の調整、後処理等の点から溶液重合や懸濁重合によるのが好ましい。   In the present invention, the crosslinkable polymer can be obtained as a copolymer by radically copolymerizing the first and second radical polymerizable monomers described above using a radical polymerization initiator. Such radical copolymerization may be carried out by any polymerization method such as solution polymerization, bulk polymerization, suspension polymerization, emulsion polymerization, etc., but from the viewpoint of ease of polymerization, adjustment of molecular weight, post-treatment, etc. Preference is given to suspension polymerization.

上記ラジカル重合開始剤は、特に、限定されるものではないが、例えば、N,N’−アゾビスイソブチロニトリル、ジメチルN,N’−アゾビス(2−メチルプロピオネート)、ベンゾイルパーオキサイド、ラウロイルパーオキサイド等が用いられる。また、このラジカル共重合において、必要に応じて、メルカプタン等のような分子量調整剤を用いることができる。   The radical polymerization initiator is not particularly limited, and examples thereof include N, N′-azobisisobutyronitrile, dimethyl N, N′-azobis (2-methylpropionate), and benzoyl peroxide. Lauroyl peroxide is used. In this radical copolymerization, a molecular weight modifier such as mercaptan can be used as necessary.

本発明において、架橋性ポリマーは、その重量平均分子量が10000以上であることが好ましい。架橋性ポリマーの重量平均分子量が10000よりも小さいときは、電解液をゲル化するために、これより得られる反応生成物ポリマーを多量に必要とするので、得られる電池の特性が低下する。他方、架橋性ポリマーの重量平均分子量の上限は、特に制限されるものではないが、これより得られる反応性ポリマーが電解液をゲルとして保持し得るように、300万程度であり、好ましくは、250万程度である。特に、本発明によれば、架橋性ポリマーは、重量平均分子量が100000〜2000000の範囲にあるのが好ましい。   In the present invention, the crosslinkable polymer preferably has a weight average molecular weight of 10,000 or more. When the weight average molecular weight of the crosslinkable polymer is smaller than 10,000, since a large amount of the reaction product polymer obtained from the electrolyte solution is required for gelling the electrolytic solution, the characteristics of the obtained battery are deteriorated. On the other hand, the upper limit of the weight average molecular weight of the crosslinkable polymer is not particularly limited, but is about 3 million so that the reactive polymer obtained therefrom can hold the electrolyte as a gel, preferably, It is about 2.5 million. In particular, according to the present invention, the crosslinkable polymer preferably has a weight average molecular weight in the range of 100,000 to 2,000,000.

このように、本発明によれば、架橋性ポリマーは、3−オキセタニル基とエポキシ基とから選ばれる少なくとも1種の反応性基を有し、この反応性基をポリカルボン酸と反応させ、架橋性ポリマーを一部、架橋させて、反応性ポリマーを得る。   Thus, according to the present invention, the crosslinkable polymer has at least one reactive group selected from a 3-oxetanyl group and an epoxy group, and this reactive group is reacted with a polycarboxylic acid to crosslink. The reactive polymer is partially crosslinked to obtain a reactive polymer.

上述したような分子中に3−オキセタニル基とエポキシ基とから選ばれる少なくとも1種の反応性基を有する架橋性ポリマーは、特開2001−176555号公報や特開2002−110245号公報に記載されているように、既に、知られているものである。   Crosslinkable polymers having at least one reactive group selected from a 3-oxetanyl group and an epoxy group in the molecule as described above are described in JP-A Nos. 2001-176555 and 2002-110245. As is already known.

本発明による電池用セパレータのための反応性ポリマー担持多孔質フィルムは、上述したような架橋性ポリマーをポリカルボン酸と反応させ、一部、架橋させてなる反応性ポリマーとして、基材多孔質フィルムに担持させたものである。このような架橋性ポリマーのポリカルボン酸による架橋は、例えば、特開平11−43540号公報や特開平11−116663号公報に記載されているように、架橋性ポリマーの有する3−オキセタニル基やエポキシとポリカルボン酸(即ち、カルボキシル基)との反応によるものである。本発明によれば、3−オキセタニル基やエポキシ基の有するこの反応性を利用して、架橋性ポリマーをポリカルボキシルと反応させ、一部、架橋させて、反応性ポリマーとする。   The reactive polymer-supported porous film for a battery separator according to the present invention is obtained by reacting a crosslinkable polymer as described above with a polycarboxylic acid, and partially crosslinking the substrate as a reactive polymer. It is carried on. Crosslinking of such a crosslinkable polymer with a polycarboxylic acid is, for example, as described in Japanese Patent Application Laid-Open No. 11-43540 and Japanese Patent Application Laid-Open No. 11-116663, and 3-oxetanyl group or epoxy which the crosslinkable polymer has. And a polycarboxylic acid (that is, a carboxyl group). According to the present invention, by utilizing this reactivity of a 3-oxetanyl group or an epoxy group, a crosslinkable polymer is reacted with polycarboxyl and partially crosslinked to obtain a reactive polymer.

本発明において、架橋性ポリマーを部分架橋させるためのポリカルボン酸は、分子中に2個以上のカルボキシル基を有し、好ましくは、分子中に2〜6個、特に、好ましくは、分子中に2〜4個のカルボキシル基を有する有機化合物である。   In the present invention, the polycarboxylic acid for partially crosslinking the crosslinkable polymer has 2 or more carboxyl groups in the molecule, preferably 2 to 6 in the molecule, particularly preferably in the molecule. It is an organic compound having 2 to 4 carboxyl groups.

分子中に2個のカルボキシル基を有するジカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカン二酸、オクタデカン二酸、ノナデカン二酸、エイコサン二酸等の炭素原子数2〜20の直鎖脂肪族飽和ジカルボン酸、メチルマロン酸、エチルマロン酸、n−プロピルマロン酸、n−ブチルマロン酸、メチルコハク酸、エチルコハク酸、1,1,3,5−テトラメチルオクチルコハク酸等の炭素原子数3〜20の分岐鎖脂肪族飽和ジカルボン酸、マレイン酸、フマル酸、シトラコン酸、γ−メチルシトラコン酸、メサコン酸、γ−メチルメサコン酸、イタコン酸、グルタコン酸等の直鎖又は分岐鎖脂肪族不飽和ジカルボン酸、ヘキサヒドロフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸、メチルヘキサヒドロキシフタル酸、メチルヘキサイソフタル酸、メチルヘキサヒドロテレフタル酸、シクロヘキセン−1,2−ジカルボン酸、シクロヘキセン−1,6−ジカルボン酸、シクロヘキセン−3,4−ジカルボン酸、シクロヘキセン−4,5−ジカルボン酸等のテトラヒドロフタル酸、シクロヘキセン−1,3−ジカルボン酸、シクロヘキセン−1,5−ジカルボン酸、シクロヘキセン−3,5−ジカルボン酸等のテトラヒドロイソフタル酸、シクロヘキセン−1,4−ジカルボン酸、シクロヘキセン−3,6−ジカルボン酸等のテトラヒドロテレフタル酸、1,3−シクロヘキサジエン−1,2−ジカルボン酸、1,3−シクロヘキサジエン−1,6−ジカルボン酸、1,3−シクロヘキサジエン−2,3−ジカルボン酸、1,3−シクロヘキサジエン−5,6−ジカルボン酸、1,4−シクロヘキサジエン−1,2−ジカルボン酸、1,4−シクロヘキサジエン−1,6−ジカルボン酸等のジヒドロフタル酸、1,3−シクロヘキサジエン−1,3−ジカルボン酸、1,3−シクロヘキサジエン−3,5−ジカルボン酸等のジヒドロイソフタル酸、1,3−シクロヘキサジエン−1,4−ジカルボン酸、1,3−シクロヘキサジエン−2,5−ジカルボン酸、1,4−シクロヘキサジエン−1,4−ジカルボン酸、1,4−シクロヘキサジエン−3,6−ジカルボン酸等のジヒドロテレフタル酸、メチルテトラヒドロフタル酸、エンドメチレンテトラヒドロフタル酸、エンドシス−ビシクロ〔2.2.1〕ヘプト−5−エン−2,3−ジカルボン酸、メチル−エンドシス−ビシクロ〔2.2.1〕ヘプト−5−エン−2,3−ジカルボン酸等の飽和又は不飽和カルボン酸、クロレンディック酸、フタル酸、テレフタル酸、イソフタル酸、3−メチルフタル酸、3−エチルフタル酸、3−n−プロピルフタル酸、3−イソプロピルフタル酸、3−n−ブチルフタル酸、3−イソブチルフタル酸、3−s−ブチルフタル酸、3−t−ブチルフタル酸等の3−アルキルフタル酸、2−メチルフタル酸、4−エチルフタル酸、4−n−プロピルフタル酸、4−イソピロピルフタル酸、4−n−ブチルフタル酸、4−イソブチルフタル酸、4−s−ブチルフタル酸、4−t−ブチルフタル酸等の4−アルキルフタル酸、2−メチルイソフタル酸、2−エチルイソフタル酸、2−n−プロピルフタル酸、2−イソピロピルフタル酸、2−n−ブチルフタル酸、2−イソブチルフタル酸、2−s−ブチルフタル酸、2−t−ブチルフタル酸等の2−アルキルフタル酸、4−メチルイソフタル酸、4−エチルイソフタル酸、4−n−プロピルイソフタル酸、4−イソピロピルイソフタル酸、4−n−ブチルイソフタル酸、4−イソブチルイソフタル酸、4−s−ブチルイソフタル酸、4−t−ブチルイソフタル酸等の4−アルキルイソフタル酸、5−メチルイソフタル酸、5−エチルイソフタル酸、5−n−プロピルイソフタル酸、5−イソピロピルイソフタル酸、5−n−ブチルイソフタル酸、5−イソブチルイソフタル酸、5−s−ブチルイソフタル酸、5−t−ブチルイソフタル酸等の5−アルキルイソフタル酸、メチルテレフタル酸、エチルテレフタル酸、n−プロピルテレフタル酸、イソピロピルテレフタル酸、n−ブチルテレフタル酸、イソブチルテレフタル酸、s−ブチルテレフタル酸、t−ブチルテレフタル酸等のアルキルテレフタル酸、ナフタリン−1,2−ジカルボン酸、ナフタリン−1,3−ジカルボン酸、ナフタリン−1,4−ジカルボン酸、ナフタリン−1,5−ジカルボン酸、ナフタリン−1,6−ジカルボン酸、ナフタリン−1,7−ジカルボン酸、ナフタリン−1,8−ジカルボン酸、ナフタリン−2,3−ジカルボン酸、ナフタリン−2,6−ジカルボン酸、ナフタリン−2,7−ジカルボン酸、アントラセン−1,3−ジカルボン酸、アントラセン−1,4−ジカルボン酸、アントラセン−1,5−ジカルボン酸、アントラセン−1,9−ジカルボン酸、アントラセン−2,3−ジカルボン酸、アントラセン−9,10−ジカルボン酸等の芳香族ジカルボン酸、2,2’−ビス(カルボキシキフェニル)ヘキサフルオロプロパン等を具体例として挙げることができる。   Examples of the dicarboxylic acid having two carboxyl groups in the molecule include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid. C2-C20 straight chain aliphatic saturated dicarboxylic acid such as acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, eicosanedioic acid, methylmalonic acid, Branched aliphatic saturated dicarboxylic acids having 3 to 20 carbon atoms such as ethylmalonic acid, n-propylmalonic acid, n-butylmalonic acid, methylsuccinic acid, ethylsuccinic acid, 1,1,3,5-tetramethyloctylsuccinic acid Acid, maleic acid, fumaric acid, citraconic acid, γ-methylcitraconic acid, mesaconic acid, γ-methylmesaconic acid, Linear or branched aliphatic unsaturated dicarboxylic acids such as itaconic acid and glutaconic acid, hexahydrophthalic acid, hexahydroisophthalic acid, hexahydroterephthalic acid, methylhexahydroxyphthalic acid, methylhexaisophthalic acid, methylhexahydroterephthalic acid , Cyclohexene-1,2-dicarboxylic acid, cyclohexene-1,6-dicarboxylic acid, cyclohexene-3,4-dicarboxylic acid, cyclohexene-4,5-dicarboxylic acid, etc. tetrahydrophthalic acid, cyclohexene-1,3-dicarboxylic acid Tetrahydroisophthalic acid such as cyclohexene-1,5-dicarboxylic acid and cyclohexene-3,5-dicarboxylic acid, tetrahydroterephthalic acid such as cyclohexene-1,4-dicarboxylic acid and cyclohexene-3,6-dicarboxylic acid, 1,3 -Siku Hexadiene-1,2-dicarboxylic acid, 1,3-cyclohexadiene-1,6-dicarboxylic acid, 1,3-cyclohexadiene-2,3-dicarboxylic acid, 1,3-cyclohexadiene-5,6-dicarboxylic acid 1,4-cyclohexadiene-1,2-dicarboxylic acid, dihydrophthalic acid such as 1,4-cyclohexadiene-1,6-dicarboxylic acid, 1,3-cyclohexadiene-1,3-dicarboxylic acid, Dihydroisophthalic acid such as 3-cyclohexadiene-3,5-dicarboxylic acid, 1,3-cyclohexadiene-1,4-dicarboxylic acid, 1,3-cyclohexadiene-2,5-dicarboxylic acid, 1,4-cyclo Dihydroterephthalic acid such as hexadiene-1,4-dicarboxylic acid, 1,4-cyclohexadiene-3,6-dicarboxylic acid, methyl tet Hydrophthalic acid, endomethylenetetrahydrophthalic acid, endocis-bicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid, methyl-endocis-bicyclo [2.2.1] hept-5-ene- Saturated or unsaturated carboxylic acid such as 2,3-dicarboxylic acid, chlorendic acid, phthalic acid, terephthalic acid, isophthalic acid, 3-methylphthalic acid, 3-ethylphthalic acid, 3-n-propylphthalic acid, 3-isopropyl 3-alkylphthalic acid such as phthalic acid, 3-n-butylphthalic acid, 3-isobutylphthalic acid, 3-s-butylphthalic acid, 3-t-butylphthalic acid, 2-methylphthalic acid, 4-ethylphthalic acid, 4-n -Propylphthalic acid, 4-isopropylpyrphthalic acid, 4-n-butylphthalic acid, 4-isobutylphthalic acid, 4-s-butylphthalic acid Acid, 4-alkylphthalic acid such as 4-t-butylphthalic acid, 2-methylisophthalic acid, 2-ethylisophthalic acid, 2-n-propylphthalic acid, 2-isopropylpropylphthalic acid, 2-n-butylphthalic acid 2-alkylphthalic acid such as 2-isobutylphthalic acid, 2-s-butylphthalic acid, 2-t-butylphthalic acid, 4-methylisophthalic acid, 4-ethylisophthalic acid, 4-n-propylisophthalic acid, 4- 4-alkylisophthalic acid such as isopropylpyrophthalic acid, 4-n-butylisophthalic acid, 4-isobutylisophthalic acid, 4-s-butylisophthalic acid, 4-t-butylisophthalic acid, 5-methylisophthalic acid, 5 -Ethylisophthalic acid, 5-n-propylisophthalic acid, 5-isopropyl-isophthalic acid, 5-n-butylisophthalic acid, 5-isobu 5-alkylisophthalic acid such as ruisophthalic acid, 5-s-butylisophthalic acid, 5-t-butylisophthalic acid, methyl terephthalic acid, ethyl terephthalic acid, n-propyl terephthalic acid, isopropyl terephthalic acid, n-butyl terephthalic acid Acid, isobutyl terephthalic acid, s-butyl terephthalic acid, alkyl terephthalic acid such as t-butyl terephthalic acid, naphthalene-1,2-dicarboxylic acid, naphthalene-1,3-dicarboxylic acid, naphthalene-1,4-dicarboxylic acid, Naphthalene-1,5-dicarboxylic acid, naphthalene-1,6-dicarboxylic acid, naphthalene-1,7-dicarboxylic acid, naphthalene-1,8-dicarboxylic acid, naphthalene-2,3-dicarboxylic acid, naphthalene-2,6 -Dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, anthracene 1,3-dicarboxylic acid, anthracene-1,4-dicarboxylic acid, anthracene-1,5-dicarboxylic acid, anthracene-1,9-dicarboxylic acid, anthracene-2,3-dicarboxylic acid, anthracene-9,10-dicarboxylic acid Specific examples include aromatic dicarboxylic acids such as acids, 2,2′-bis (carboxychiphenyl) hexafluoropropane, and the like.

分子中に3個以上のカルボキシル基を有するポリカルボン酸としては、トリカルバリル酸、クエン酸、イソクエン酸、アコニット酸等の脂肪族トリカルボン酸、ヘミメリト酸、トリメリト酸等の芳香族トリカルボン酸、1,2,3,4−ブタンテトラカルボン酸等の炭素原子数4〜13の脂肪族テトラカルボン酸、マレイン化メチルシクロヘキセンテトラカルボン酸等の脂環式テトラカルボン酸、メロファン酸、プレーニト酸、ピロメリト酸、ベンゾフェノンテトラカルボン酸等の芳香族テトラカルボン酸、ヘキサヒドロメリト酸、ベンゼンペンタカルボン酸、メリト酸等を具体例として挙げることができる。   Examples of the polycarboxylic acid having three or more carboxyl groups in the molecule include aliphatic tricarboxylic acids such as tricarballylic acid, citric acid, isocitric acid and aconitic acid, aromatic tricarboxylic acids such as hemimellitic acid and trimellitic acid, C4-C13 aliphatic tetracarboxylic acid such as 2,3,4-butanetetracarboxylic acid, alicyclic tetracarboxylic acid such as maleated methylcyclohexene tetracarboxylic acid, merophanic acid, planitic acid, pyromellitic acid, Specific examples include aromatic tetracarboxylic acids such as benzophenone tetracarboxylic acid, hexahydromellitic acid, benzenepentacarboxylic acid, and mellitic acid.

また、本発明においては、上述したようなポリカルボン酸とポリオールとのポリオールエステル、好ましくは、ジカルボン酸とジオール、特に、(ポリ)アルキレングリコールやポリメチレンジオールとのジオールエステルもポリカルボン酸として用いることができる。このようなジオールエステルとして、例えば、エチレングリコールジアジペート等を挙げることができる。   In the present invention, a polyol ester of a polycarboxylic acid and a polyol as described above, preferably a diol ester of a dicarboxylic acid and a diol, particularly a (poly) alkylene glycol or polymethylene diol, is also used as the polycarboxylic acid. be able to. Examples of such diol esters include ethylene glycol didipate.

更に、本発明において、ポリカルボン酸は、分子中の複数のカルボキシル基を有するポリマーカルボン酸であってもよい。このようなポリマーカルボン酸としては、例えば、(メタ)アクリル酸と(メタ)アクリル酸エステルとの共重合体を挙げることができる。   Furthermore, in the present invention, the polycarboxylic acid may be a polymer carboxylic acid having a plurality of carboxyl groups in the molecule. Examples of such a polymer carboxylic acid include a copolymer of (meth) acrylic acid and (meth) acrylic acid ester.

本発明による反応性ポリマー担持多孔質フィルムは、前記架橋性ポリマーを上述したようなポリカルボン酸と反応させ、一部、架橋させて、反応性ポリマーとし、これを多孔質フィルムに担持させたものである。このように、反応性ポリマーを多孔質フィルムに担持させるには、特に、限定されるものではないが、例えば、架橋性ポリマーをアセトン、酢酸エチル、酢酸ブチル等の適宜の溶剤にポリカルボン酸と共に溶解させ、この溶液を基材多孔質フィルムにキャスティング、スプレー塗布等、適宜の手段にて塗布、含浸させた後、乾燥して、用いた溶剤を除去し、次いで、このようにして、架橋性ポリマーとポリカルボン酸とを担持させた多孔質フィルムを適宜の温度に加熱して、上記架橋性ポリマーを上記ポリカルボン酸と反応させ、前述したようにして、架橋性ポリマーを一部、架橋させればよく、このようにして、本発明による電池用セパレータのための反応性ポリマー担持多孔質フィルムを得る。   The reactive polymer-supported porous film according to the present invention is obtained by reacting the cross-linkable polymer with the polycarboxylic acid as described above, and partially crosslinking it to obtain a reactive polymer, which is supported on the porous film. It is. Thus, in order to carry the reactive polymer on the porous film, it is not particularly limited. For example, the crosslinkable polymer is mixed with a polycarboxylic acid in an appropriate solvent such as acetone, ethyl acetate, or butyl acetate. Dissolve and apply this solution to the substrate porous film by casting, spray coating, etc. and impregnate it, and then dry it to remove the solvent used. A porous film carrying a polymer and a polycarboxylic acid is heated to an appropriate temperature to cause the crosslinkable polymer to react with the polycarboxylic acid, and partially crosslink the crosslinkable polymer as described above. In this way, a reactive polymer-supported porous film for a battery separator according to the present invention is obtained.

本発明において、架橋性ポリマーをポリカルボン酸にて部分架橋させた反応性ポリマーを基材多孔質フィルムに担持させる手段、方法は、上記例示に限定されるものではなく、例えば、架橋性ポリマーの溶液を多孔質フィルムに塗布し、乾燥させた後、このような多孔質フィルムにポリカルボン酸の溶液を塗布、含浸し、乾燥させた後、適宜の温度に加熱してもよい。また、架橋性ポリマーとポリカルボン酸とを含む溶液を剥離性シートに塗布し、乾燥させ、これを基材多孔質フィルムに転写した後、適宜の温度に加熱してもよい。   In the present invention, the means and method for supporting the reactive polymer obtained by partially crosslinking the crosslinkable polymer with the polycarboxylic acid on the substrate porous film are not limited to the above examples. The solution may be applied to a porous film and dried, and then the polycarboxylic acid solution may be applied to and impregnated into such a porous film, dried, and then heated to an appropriate temperature. Moreover, after apply | coating the solution containing a crosslinkable polymer and polycarboxylic acid to a peelable sheet, drying and transferring this to a base material porous film, you may heat to appropriate temperature.

本発明によれば、このようにして、架橋性ポリマーを部分架橋させてなる反応性ポリマーは、5〜90%の範囲のゲル分率、好ましくは、3〜60%の範囲の不溶分率を有することが望ましい。ここに、上記ゲル分率とは、多孔質フィルムに架橋性ポリマーA重量部とポリカルボン酸B重量部とを担持させ、架橋性ポリマーとポリカルボン酸とを反応させ、架橋性ポリマーを一部、架橋させて、反応性ポリマーとした後、この多孔質フィルムを酢酸エチルに温度23℃で7日間浸漬し、次いで、乾燥させた後、多孔質フィルム上に残存する反応性ポリマーをC重量部とするとき、(C/(A+B))×100(%)として定義される値である。   According to the present invention, the reactive polymer obtained by partially crosslinking the crosslinkable polymer in this way has a gel fraction in the range of 5 to 90%, preferably an insoluble fraction in the range of 3 to 60%. It is desirable to have. Here, the gel fraction means that a porous film is loaded with a crosslinkable polymer A part by weight and a polycarboxylic acid B part by weight, the crosslinkable polymer and the polycarboxylic acid are reacted, and a part of the crosslinkable polymer is obtained. After crosslinking to make a reactive polymer, this porous film was immersed in ethyl acetate at a temperature of 23 ° C. for 7 days and then dried, and then the reactive polymer remaining on the porous film was added by C parts by weight. Is a value defined as (C / (A + B)) × 100 (%).

このように、架橋性ポリマーをポリカルボン酸と反応させ、一部、架橋させて、5〜90%の範囲のゲル分率を有する反応性ポリマーを得るには、限定されるものではないが、通常、架橋性ポリマーの有する反応性基1モル部に対して、ポリカルボン酸の有するカルボキシル基が0.01〜5.0モル部、好ましくは、0.05〜3.0モル部となるように用いると共に、架橋性ポリマーとポリカルボン酸との加熱反応条件を調節すればよく、このようにして、所望のゲル分率を有する反応性ポリマーを得ることができる。   Thus, in order to obtain a reactive polymer having a gel fraction in the range of 5 to 90% by reacting a crosslinkable polymer with a polycarboxylic acid and partially crosslinking the polymer, it is not limited. Usually, the carboxyl group of the polycarboxylic acid is 0.01 to 5.0 mole parts, preferably 0.05 to 3.0 mole parts with respect to 1 mole part of the reactive group of the crosslinkable polymer. And the heating reaction conditions between the crosslinkable polymer and the polycarboxylic acid may be adjusted, and thus a reactive polymer having a desired gel fraction can be obtained.

一例として、架橋性ポリマーの有する反応性基1モル部に対して、ポリカルボン酸の有するカルボキシル基が0.5〜2.0モル部となるように用いると共に、架橋性ポリマーとポリカルボン酸とを50℃で12時間から7日間、加熱反応させることによって、ゲル分率5〜90%の反応性ポリマーを得ることができる。   As an example, while using so that the carboxyl group which polycarboxylic acid has may be 0.5-2.0 mol part with respect to 1 mol part of reactive groups which a crosslinkable polymer has, crosslinkable polymer, polycarboxylic acid, Can be reacted at 50 ° C. for 12 hours to 7 days to obtain a reactive polymer having a gel fraction of 5 to 90%.

反応性ポリマーのゲル分率が5%よりも少ないときは、後述するように、このような反応性ポリマーを担持させた多孔質フィルムに電極を圧着して、電極/多孔質フィルム積層体とし、これを電解液に浸漬したとき、反応性ポリマーの多くが電解液中に溶出、拡散して、反応性ポリマーを更にカチオン重合させ、架橋させても、電極と多孔質フィルムとの間に有効な接着を得ることができない。他方、反応性ポリマーの不溶分率が90%よりも多いときは、電極/多孔質フィルム積層体とし、これを電解液に浸漬したとき、反応性ポリマーの膨潤性が低く、得られる電極/多孔質フィルム接合体を有する電池が高い内部抵抗を有することとなり、電池特性に好ましくない。   When the gel fraction of the reactive polymer is less than 5%, as will be described later, an electrode is pressure-bonded to a porous film carrying such a reactive polymer to form an electrode / porous film laminate, When this is immersed in the electrolytic solution, most of the reactive polymer is eluted and diffused in the electrolytic solution, and even if the reactive polymer is further cationically polymerized and crosslinked, it is effective between the electrode and the porous film. Adhesion cannot be obtained. On the other hand, when the insoluble fraction of the reactive polymer is more than 90%, an electrode / porous film laminate is obtained, and when this is immersed in an electrolyte, the reactive polymer has low swelling and the resulting electrode / porous A battery having a quality film assembly has a high internal resistance, which is not preferable for battery characteristics.

本発明において、多孔質フィルムがその表面に反応性ポリマーを担持している割合を反応性ポリマー担持率ということとすれば、例えば、多孔質フィルムがその一表面の全面に反応性ポリマーを担持しているとき、その一表面における担持率は100%であり、例えば、多孔質フィルムがその表裏両面に筋状や点状に反応性ポリマーを担持しており、反応性ポリマーを担持している割合が各表面においてその面積の50%であるとき、担持率は表裏両面においてそれぞれ50%である。   In the present invention, if the ratio of the porous film carrying the reactive polymer on its surface is called the reactive polymer carrying ratio, for example, the porous film carries the reactive polymer on the entire surface of one surface. The loading rate on one surface is 100%. For example, the porous film carries the reactive polymer in the form of streaks or dots on both the front and back surfaces, and the proportion of the loading of the reactive polymer. Is 50% of the area on each surface, the loading is 50% on both the front and back surfaces.

本発明によれば、反応性ポリマーの担持率は、5〜100%の範囲が好ましく、特に、10〜90%の範囲が好ましい。例えば、多孔質フィルムに反応性ポリマーを担持させる際に、部分的に、即ち、例えば、筋状、斑点状、格子目状、縞状、亀甲模様状等に部分的に担持させて、担持率を10〜90%の範囲とすることが好ましい。このように、反応性ポリマーを多孔質フィルムに部分的に担持せることによって、電極と多孔質フィルム(従って、セパレータ)との間に強固な接着を得るのみならず、多孔質フィルム(セパレータ)にイオン透過性を確保せしめることによって、すぐれた特性を有する電池を得ることができる。   According to the present invention, the loading ratio of the reactive polymer is preferably in the range of 5 to 100%, particularly preferably in the range of 10 to 90%. For example, when the reactive polymer is supported on the porous film, it is supported partially, that is, for example, in the form of stripes, spots, lattices, stripes, turtle shells, etc. Is preferably in the range of 10 to 90%. In this way, by partially supporting the reactive polymer on the porous film, not only a strong adhesion is obtained between the electrode and the porous film (and thus the separator), but also the porous film (separator). By ensuring ion permeability, a battery having excellent characteristics can be obtained.

本発明による電極/多孔質フィルム積層体は、このように、反応性ポリマーを担持させてなる多孔質フィルムにこれを挟んで正極と負極を積層し、好ましくは、加熱下に加圧し、圧着して、正極と負極を反応性ポリマー担持多孔質フィルムに仮接着し、貼り合わせることによって得ることができる。   In the electrode / porous film laminate according to the present invention, the positive electrode and the negative electrode are laminated with the porous film formed by supporting the reactive polymer in this manner, and preferably pressurized and heated under pressure. Then, the positive electrode and the negative electrode can be obtained by temporarily adhering and bonding the reactive polymer-supported porous film.

本発明において、負極と正極は、電池によって相違するが、一般に、導電性基材に活物質と、必要に応じて、導電剤とを樹脂バインダーを用いて、担持させてなるシート状のものが用いられる。   In the present invention, the negative electrode and the positive electrode differ depending on the battery, but in general, a sheet-like material in which an active material and, if necessary, a conductive agent are supported on a conductive base material using a resin binder is used. Used.

本発明において、電極/多孔質フィルム積層体は、反応性ポリマー担持多孔質フィルムに電極が積層されておればよい。従って、電池の構造や形態に応じて、電極/多孔質フィルム積層体として、例えば、負極/多孔質フィルム/正極、負極/多孔質フィルム/正極/多孔質フィルム等が用いられる。また、電極/多孔質フィルム積層体は、シート状でもよく、また、捲回されていてもよい。   In the present invention, the electrode / porous film laminate may have an electrode laminated on a reactive polymer-supported porous film. Therefore, for example, a negative electrode / porous film / positive electrode, a negative electrode / porous film / positive electrode / porous film, etc. are used as the electrode / porous film laminate according to the structure and form of the battery. The electrode / porous film laminate may be in the form of a sheet or may be wound.

本発明によれば、正極/反応性ポリマー担持多孔質フィルム/負極積層体において、上記反応性ポリマー担持多孔質フィルムの片面当たりの反応性ポリマーの担持量は0.3〜5.0g/m2 の範囲にあると共に、正極側の多孔質フィルム上の反応性ポリマーの担持量/負極側の多孔質フィルム上の反応性ポリマーの担持量の比(以下、反応性ポリマー担持量比という。)が0.1〜1.0の範囲にある。 According to the present invention, in the positive electrode / reactive polymer-supported porous film / negative electrode laminate, the amount of the reactive polymer supported per side of the reactive polymer-supported porous film is 0.3 to 5.0 g / m 2. And the ratio of the amount of the reactive polymer supported on the positive electrode porous film / the amount of the reactive polymer supported on the negative porous film (hereinafter referred to as the ratio of the reactive polymer supported amount). It is in the range of 0.1 to 1.0.

多孔質フィルムの片面当たりの反応性ポリマーの担持量が0.3g/m2 よりも少ないときは、最終的に得られる電池において、電極と多孔質フィルム(セパレータ)との間の接着が十分でない。他方、多孔質フィルムの片面当たりの反応性ポリマーの担持量が5.0g/m2 よりも多いときは、最終的に得られる電池において、電極と多孔質フィルム(セパレータ)との間の内部抵抗が大きくなって、電池特性が著しく低下する。 When the loading amount of the reactive polymer per side of the porous film is less than 0.3 g / m 2 , the adhesion between the electrode and the porous film (separator) is not sufficient in the finally obtained battery. . On the other hand, when the loading amount of the reactive polymer per side of the porous film is more than 5.0 g / m 2 , the internal resistance between the electrode and the porous film (separator) in the battery finally obtained is Becomes large, and the battery characteristics are remarkably deteriorated.

また、多孔質フィルム上の反応性ポリマーの担持量の比が0.1よりも小さいときは、正極側の多孔質フィルム上の反応性ポリマーの担持量が少なすぎて、正極と多孔質フィルム(セパレータ)との間の接着が不十分である。しかし、多孔質フィルム上の反応性ポリマーの担持量の比が1.0よりも大きいときは、電極と多孔質フィルム(セパレータ)との間の接着性と電池特性の間にバランスが失われる。   Further, when the ratio of the amount of the reactive polymer supported on the porous film is smaller than 0.1, the amount of the reactive polymer supported on the positive electrode-side porous film is too small, and the positive electrode and the porous film ( Adhesion with the separator) is insufficient. However, when the ratio of the amount of the reactive polymer supported on the porous film is larger than 1.0, a balance is lost between the adhesion between the electrode and the porous film (separator) and the battery characteristics.

このような正極/反応性ポリマー担持多孔質フィルム/負極積層体の調製に際して、多孔質フィルムの正極を積層する側(正極側)と負極を積層する側(負極側)とに反応性ポリマーを同じ割合で担持させるとき、このような積層体を用いて得られるリチウムイオン二次電池においては、正極活物質として用いられる粒状物質と負極活物質として用いられる粒状物質の粒子径の相違に起因して、反応性ポリマー担持多孔質フィルムと負極との間の接着性が反応性ポリマー担持多孔質フィルムと正極との間の接着性よりも低い。   In preparing such a positive electrode / reactive polymer-supported porous film / negative electrode laminate, the reactive polymer is the same on the positive electrode side (positive electrode side) and negative electrode side (negative electrode side) of the porous film. In a lithium ion secondary battery obtained using such a laminate when supported at a ratio, due to the difference in particle diameter between the granular material used as the positive electrode active material and the granular material used as the negative electrode active material The adhesiveness between the reactive polymer-supported porous film and the negative electrode is lower than the adhesiveness between the reactive polymer-supporting porous film and the positive electrode.

即ち、リチウムイオン二次電池においては、代表的には、正極活物質としてコバルト酸リチウムが用いられ、負極活物質として種々の炭素質材料が用いられるが、ここに、正極活物質として用いられるコバルト酸リチウムは、平均粒子径が1〜10μm、好ましくは、3〜5μm程度の粒状物質であり、他方、負極活物質として用いられる炭素質材料は、平均粒子径が15〜100μm程度、好ましくは、20〜50μm程度の粒状物質であり、このように、負極活物質として用いられる炭素質材料は、正極活物質として用いられるコバルト酸リチウムに比べて、平均粒子径が大きい。   That is, in lithium ion secondary batteries, lithium cobaltate is typically used as the positive electrode active material, and various carbonaceous materials are used as the negative electrode active material. Here, cobalt used as the positive electrode active material is used. Lithium acid is a granular material having an average particle size of 1 to 10 μm, preferably about 3 to 5 μm. On the other hand, the carbonaceous material used as the negative electrode active material has an average particle size of about 15 to 100 μm, preferably The carbonaceous material used as the negative electrode active material has a larger average particle diameter than the lithium cobaltate used as the positive electrode active material.

リチウムイオンの拡散速度が炭素におけるよりもコバルト酸リチウムにおいて著しく小さいことや、また、最初に充電されたリチウムイオンの一部が負極活物質である炭素質材料の表面で被膜を形成して、放電に用いられず、不可逆容量が生じる等の理由から、従来、リチウムイオン二次電池においては、正極活物質として用いるコバルト酸リチウムとしては、平均粒子径が小さいものを用いて、リチウムイオンの拡散を促進すると共に、負極活物質である炭素質材料は、平均粒子径の大きいものを用いることによって、リチウムイオンによって形成される被膜の表面積をできるだけ小さくするような対策が講じられている。   Lithium ion diffusion rate is significantly lower in lithium cobaltate than in carbon, and some of the initially charged lithium ions form a film on the surface of the carbonaceous material that is the negative electrode active material and discharge Conventionally, in lithium ion secondary batteries, lithium cobaltate used as a positive electrode active material has a small average particle diameter, and lithium ions are diffused. While promoting, the carbonaceous material which is a negative electrode active material has taken the countermeasure which makes the surface area of the film formed by lithium ion as small as possible by using a thing with a large average particle diameter.

他方、本発明によれば、得られた電池において、多孔質フィルム(セパレータ)に担持させた反応性ポリマーは、正極又は負極と多孔質フィルム(セパレータ)の界面の付近においてのみ、ゲル状態の層をなしており、この反応性ポリマーの層は、リチウムイオンの拡散に対して抵抗層を形成している。前述したように、リチウムイオンの拡散速度は、炭素におけるよりもコバルト酸リチウムにおいて小さいので、正極側にある反応性ポリマーの層はリチウムイオンの拡散を阻害して、電池特性の低下を招く。しかし、負極側にある反応性ポリマーの層は、炭素質材料中へのリチウムイオンの拡散が速いので、電池特性に大幅な影響を与えない。   On the other hand, according to the present invention, in the obtained battery, the reactive polymer supported on the porous film (separator) is a gel layer only in the vicinity of the interface between the positive electrode or the negative electrode and the porous film (separator). The reactive polymer layer forms a resistance layer against lithium ion diffusion. As described above, since the diffusion rate of lithium ions is smaller in lithium cobaltate than in carbon, the reactive polymer layer on the positive electrode side inhibits the diffusion of lithium ions, leading to deterioration of battery characteristics. However, the reactive polymer layer on the negative electrode side does not significantly affect the battery characteristics because the diffusion of lithium ions into the carbonaceous material is fast.

そこで、本発明によれば、電極の多孔質フィルム(セパレータ)への反応性ポリマーによる接着は、ゲル状態の反応性ポリマーの電極の細孔中へのアンカー効果によることを考慮して、上記正極活物質と負極活物質の平均粒子径の相違に基づいて、負極側での反応性ポリマーの担持量を正極側での反応性ポリマーの担持量よりも所定の範囲で大きくすると共に、反応性ポリマー担持多孔質フィルムの片面当たりの反応性ポリマーの担持量を所定の範囲とすることによって、得られる電池の特性の低下を招くことなく、正極と多孔質フィルムとの間と負極と多孔質フィルムとの間に同じ程度の接着力を与えることができるのである。   Therefore, according to the present invention, considering that the adhesion of the electrode to the porous film (separator) by the reactive polymer is due to the anchor effect of the reactive polymer in the gel state into the pores of the electrode, the positive electrode Based on the difference in the average particle size of the active material and the negative electrode active material, the amount of the reactive polymer supported on the negative electrode side is made larger than the amount of the reactive polymer supported on the positive electrode side within a predetermined range, and the reactive polymer By setting the loading amount of the reactive polymer per one side of the supported porous film within a predetermined range, the negative electrode and the porous film are formed between the positive electrode and the porous film without causing deterioration of the characteristics of the obtained battery. The same degree of adhesive strength can be given during the period.

即ち、本発明によれば、正極/反応性ポリマー担持多孔質フィルム/負極積層体において、多孔質フィルムの片面当たりの反応性ポリマーの担持量と共に、反応性ポリマー担持量比をそれぞれ所定の範囲とすることによって、得られる電池において、その特性と電極と多孔質フィルム(セパレータ)との間の接着特性との間に適切なバランスを有せしめることができる。   That is, according to the present invention, in the positive electrode / reactive polymer-supported porous film / negative electrode laminate, the reactive polymer support amount per one side of the porous film and the reactive polymer support ratio are set within a predetermined range, respectively. By doing so, the obtained battery can have an appropriate balance between the characteristics and the adhesive characteristics between the electrode and the porous film (separator).

特に、本発明によれば、多孔質フィルム(セパレータ)との間の接着性と得られる電池の特性との間のバランスがすぐれるように、電極/多孔質フィルム積層体において、多孔質フィルム上の反応性ポリマーの担持量比を0.3〜0.9の範囲とすると共に、反応性ポリマー担持多孔質フィルムの片面当たりの反応性ポリマーの担持量を0.5〜3.0g/m2 の範囲にすることが好ましい。 In particular, according to the present invention, in the electrode / porous film laminate, the adhesion between the porous film (separator) and the characteristics of the obtained battery is excellent. The amount of the reactive polymer supported is within the range of 0.3 to 0.9, and the amount of the reactive polymer supported per side of the reactive polymer-supported porous film is 0.5 to 3.0 g / m 2. It is preferable to be in the range.

本発明において、正極活物質の具体例として、例えば、コバルト酸リチウムのほか、コバルト、ニッケル及びマンガンから選ばれる少なくとも1種とリチウムの複合酸化物を挙げることができ、更に、このような複合酸化物は、種々の遷移金属等を含むものであってもよい。また、負極活物質である炭素質材料の具体例として、例えば、コークス、黒鉛、メソカーボンマイクロビーズ等を挙げることができる。しかし、本発明において、リチウムイオン二次電池の正極活物質及び負極活物質は、上記例示に限定されるものではなく、従来、知られているものであれば、いずれでもそれぞれ適宜に用いることができる。   In the present invention, specific examples of the positive electrode active material can include, for example, lithium cobalt oxide, lithium complex oxide of at least one selected from cobalt, nickel and manganese, and such complex oxidation. The product may contain various transition metals and the like. Specific examples of the carbonaceous material that is the negative electrode active material include coke, graphite, and mesocarbon microbeads. However, in the present invention, the positive electrode active material and the negative electrode active material of the lithium ion secondary battery are not limited to the above examples, and any known materials can be used as appropriate. it can.

このように、本発明による電極/多孔質フィルム積層体は、特に、リチウムイオン二次電池を製造するための電極/多孔質フィルム積層体として好適に用いることができる。   Thus, the electrode / porous film laminate according to the present invention can be suitably used particularly as an electrode / porous film laminate for producing a lithium ion secondary battery.

既に知られているように、反応性ポリマーの有する反応性基である3−オキセタニル基やエポキシ基はポリカルボン酸との反応性を有すると共に、カチオン重合性を有する。そこで、本発明によれば、電池の製造に際して、このような電極/多孔質フィルム積層体をカチオン重合触媒を含む電解液、好ましくは、カチオン重合触媒を兼ねる電解質を含む電解液中に浸漬して、上記電極/多孔質フィルム積層体中の多孔質フィルムが担持している反応性ポリマーの少なくとも一部を電解液中で膨潤させ、又は電解液中に溶出、拡散させて、反応性ポリマーの有する残存反応性基のカチオン重合によって反応性ポリマーを更に架橋させ、多孔質フィルムと電極との界面の近傍で電解液をゲル化させることによって、電極と多孔質フィルムを接着し、かくして、電極/多孔質フィルム接合体を得る。即ち、電極を多孔質フィルムにいわば本接着させる。従って、このような電極/多孔質フィルム接合体においては、多孔質フィルムと電極が強固に接着されている。   As already known, the 3-oxetanyl group and epoxy group, which are reactive groups of the reactive polymer, have reactivity with polycarboxylic acids and have cationic polymerizability. Therefore, according to the present invention, when manufacturing a battery, such an electrode / porous film laminate is immersed in an electrolytic solution containing a cationic polymerization catalyst, preferably an electrolytic solution containing an electrolyte that also serves as a cationic polymerization catalyst. The reactive polymer has at least a part of the reactive polymer carried by the porous film in the electrode / porous film laminate in the electrolytic solution, or is eluted and diffused in the electrolytic solution. The reactive polymer is further cross-linked by cationic polymerization of the remaining reactive groups, and the electrolyte is gelled in the vicinity of the interface between the porous film and the electrode, thereby bonding the electrode and the porous film, and thus the electrode / porous A quality film assembly is obtained. That is, the electrode is actually bonded to the porous film. Therefore, in such an electrode / porous film assembly, the porous film and the electrode are firmly bonded.

しかも、本発明によれば、部分架橋させた反応性ポリマーは、上記範囲のゲル分率を有し、従って、電解液中に浸漬されても、電解液中への溶出、拡散が防止され、又は低減されて、電極と多孔質フィルムとの接着に有効に用いられるので、比較的少量の反応性ポリマーの使用によって、電極と多孔質フィルムとを安定して、しかも、より強固に接着することができる。   Moreover, according to the present invention, the partially crosslinked reactive polymer has a gel fraction in the above range, and therefore, even when immersed in the electrolytic solution, elution and diffusion into the electrolytic solution are prevented, Or it can be reduced and effectively used for adhesion between the electrode and the porous film, so that the electrode and the porous film can be bonded stably and more firmly by using a relatively small amount of the reactive polymer. Can do.

このように、本発明においては、反応性ポリマーは、その反応性基のカチオン重合による架橋によって、少なくとも多孔質フィルムと電極との界面の近傍にて電解液をゲル化させて、電極と多孔質フィルムとを接着するように機能する。   As described above, in the present invention, the reactive polymer is obtained by gelling the electrolytic solution at least in the vicinity of the interface between the porous film and the electrode by crosslinking the reactive group by cationic polymerization. Functions to adhere to the film.

本発明において、反応性ポリマーは、その構造や多孔質フィルムへの担持量、カチオン重合触媒の種類や量にもよるが、常温においてもカチオン重合させ、架橋させることもできる。しかし、反応性ポリマーのカチオン重合は、加熱することによって促進することができる。この場合、電池を構成する材料の耐熱性や生産性との兼ね合いにもよるが、通常、40〜100℃程度の温度で0.5〜24時間程度加熱すればよい。また、電極を多孔質フィルムに接着させるに足る量のポリマーを膨潤させ、又は溶出、拡散させるために、電池容器内に電解液を注入した後、常温で数時間程度、放置してもよい。   In the present invention, the reactive polymer can be cationically polymerized and crosslinked even at room temperature, depending on its structure, the amount supported on the porous film, and the type and amount of the cationic polymerization catalyst. However, cationic polymerization of reactive polymers can be promoted by heating. In this case, although it depends on the heat resistance and productivity of the material constituting the battery, the heating is usually performed at a temperature of about 40 to 100 ° C. for about 0.5 to 24 hours. In addition, in order to swell, elute or diffuse an amount of polymer sufficient to adhere the electrode to the porous film, the electrolyte may be poured into the battery container and then left at room temperature for several hours.

このようにして得られる電極/多孔質フィルム接合体における多孔質フィルムは、電池に組み込まれた後は、セパレータとして機能する。ここに、本発明によるこのような電極/多孔質フィルム接合体においては、多孔質フィルム(即ち、セパレータ)は、高温下においても面積熱収縮率が小さく、通常、20%以下であり、好ましくは、15%以下である。   The porous film in the electrode / porous film assembly thus obtained functions as a separator after being incorporated into a battery. Here, in such an electrode / porous film assembly according to the present invention, the porous film (that is, the separator) has a small area heat shrinkage even at high temperatures, and is usually 20% or less, preferably 15% or less.

上記電解液は、電解質塩を適宜の溶媒に溶解してなる溶液である。上記電解質塩としては、水素、リチウム、ナトリウム、カリウム等アルカリ金属、カルシウム、ストロンチウム等のアルカリ土類金属、第三級又は第四級アンモニウム塩等をカチオン成分とし、塩酸、硝酸、リン酸、硫酸、ホウフッ化水素酸、フッ化水素酸、ヘキサフルオロリン酸、過塩素酸等の無機酸、カルボン酸、有機スルホン酸又はフッ素置換有機スルホン酸等の有機酸をアニオン成分とする塩を用いることができる。これらのなかでは、特に、アルカリ金属イオンをカチオン成分とする電解質塩が好ましく用いられる。   The electrolytic solution is a solution obtained by dissolving an electrolyte salt in an appropriate solvent. Examples of the electrolyte salt include alkali metals such as hydrogen, lithium, sodium, and potassium, alkaline earth metals such as calcium and strontium, tertiary or quaternary ammonium salts, and the like as cationic components, hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid A salt containing an anionic component of an inorganic acid such as borohydrofluoric acid, hydrofluoric acid, hexafluorophosphoric acid or perchloric acid, or an organic acid such as carboxylic acid, organic sulfonic acid or fluorine-substituted organic sulfonic acid. it can. Among these, an electrolyte salt containing an alkali metal ion as a cation component is particularly preferably used.

このようなアルカリ金属イオンをカチオン成分とする電解質塩の具体例としては、例えば、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カリウム等の過塩素酸アルカリ金属、テトラフルオロホウ酸リチウム、テトラフルオロホウ酸ナトリウム、テトラフルオロホウ酸カリウム等のテトラフルオロホウ酸アルカリ金属、ヘキサフルオロリン酸リチウム、ヘキサフルオロリン酸カリウム等のへキサフルオロリン酸アルカリ金属、トリフルオロ酢酸リチウム等のトリフルオロ酢酸アルカリ金属、トリフルオロメタンスルホン酸リチウム等のトリフルオロメタンスルホン酸アルカリ金属を挙げることができる。   Specific examples of the electrolyte salt having such an alkali metal ion as a cation component include, for example, alkali perchlorate such as lithium perchlorate, sodium perchlorate, potassium perchlorate, lithium tetrafluoroborate, tetra Alkali metal tetrafluoroborate such as sodium fluoroborate and potassium tetrafluoroborate, alkali metal hexafluorophosphate such as lithium hexafluorophosphate and potassium hexafluorophosphate, alkali trifluoroacetate such as lithium trifluoroacetate Mention may be made of metals and alkali metals of trifluoromethane sulfonate such as lithium trifluoromethane sulfonate.

特に、本発明に従って、リチウムイオン二次電池を得る場合には、電解質塩としては、例えば、ヘキサフルオロリン酸リチウム、テトラフルオロホウ酸リチウム、過塩素酸リチウム等が好適に用いられる。   In particular, when obtaining a lithium ion secondary battery according to the present invention, as the electrolyte salt, for example, lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate and the like are preferably used.

更に、本発明において用いる上記電解質塩のための溶媒としては、上記電解質塩を溶解するものであればどのようなものでも用いることができるが、非水系の溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン等の環状エステル類や、テトラヒドロフラン、ジメトキシエタン等のエーテル類や、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状エステル類を単独で、又は2種以上の混合物として用いることができる。   Furthermore, as the solvent for the electrolyte salt used in the present invention, any solvent can be used as long as it dissolves the electrolyte salt. Examples of the non-aqueous solvent include ethylene carbonate, propylene carbonate, Use cyclic esters such as butylene carbonate and γ-butyrolactone, ethers such as tetrahydrofuran and dimethoxyethane, and chain esters such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate alone or as a mixture of two or more. be able to.

また、上記電解質塩は、用いる溶媒の種類や量に応じて適宜に決定されるが、通常、得られるゲル電解質において、1〜50重量%の濃度となる量が用いられる。   Moreover, although the said electrolyte salt is suitably determined according to the kind and quantity of the solvent to be used, normally the quantity used as the density | concentration of 1 to 50 weight% is used in the gel electrolyte obtained.

本発明において、カチオン重合触媒としては、オニウム塩が好ましく用いられる。そのようなオニウム塩として、例えば、アンモニウム塩、ホスホニウム塩、アルソニウム塩、スチボニウム塩、ヨードニウム塩等のカチオン成分と、テトラフルオロホウ酸塩、ヘキサフルオロリン酸塩、トリフルオロメタンスルホン酸塩、過塩素酸塩等のアニオン成分とからなるオニウム塩を挙げることができる。   In the present invention, an onium salt is preferably used as the cationic polymerization catalyst. Examples of such onium salts include ammonium salts, phosphonium salts, arsonium salts, stibonium salts, iodonium salts, and other cationic components, tetrafluoroborate, hexafluorophosphate, trifluoromethanesulfonate, and perchloric acid. An onium salt comprising an anionic component such as a salt can be mentioned.

しかし、本発明によれば、上述した電解質塩のなかでも、特に、テトラフルオロホウ酸リチウムとへキサフルオロリン酸リチウムは、それ自体、カチオン重合触媒としても機能するので、電解質塩を兼ねるものとして好ましく用いられる。この場合、テトラフルオロホウ酸リチウムとへキサフルオロリン酸リチウムは、いずれかを単独で用いてもよく、また、両方を併用してもよい。   However, according to the present invention, among the above-described electrolyte salts, in particular, lithium tetrafluoroborate and lithium hexafluorophosphate also function as a cationic polymerization catalyst. Preferably used. In this case, either lithium tetrafluoroborate or lithium hexafluorophosphate may be used alone, or both may be used in combination.

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。以下において、基材多孔質フィルムの物性と電池特性は以下のようにして評価した。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In the following, the physical properties and battery characteristics of the substrate porous film were evaluated as follows.

(多孔質フィルムの厚み)
1/10000mmシックネスゲージによる測定と多孔質フィルムの断面の10000倍走査型電子頭微鏡写真に基づいて求めた。
(Thickness of porous film)
It was determined based on a measurement with a 1/10000 mm thickness gauge and a 10,000 times scanning electronic microscopic photograph of the cross section of the porous film.

(多孔質フィルムの空孔率)
多孔質フィルムの単位面積S(cm2)当たりの重量W(g)、平均厚みt(cm)及び多孔質フィルムを構成する樹脂の密度d(g/cm3)から下式にて算出した。
(Porosity of porous film)
The weight was calculated from the weight W (g) per unit area S (cm 2 ) of the porous film, the average thickness t (cm), and the density d (g / cm 3 ) of the resin constituting the porous film by the following equation.

空孔率(%)=(1−(W/S/t/d))×100   Porosity (%) = (1− (W / S / t / d)) × 100

(反応性ポリマーのゲル分率)
多孔質フィルムに架橋性ポリマーA重量部とポリカルボン酸B重量部を担持させ、反応させて、架橋性ポリマーを一部、架橋させて、反応性ポリマーとした後、この多孔質フィルムを温度23℃にて酢酸エチルに7日間浸漬し、次いで、乾燥させた後、多孔質フィルム上に残存する反応性ポリマーをC重量部とするとき、反応性ポリマーのゲル分率を(C/(A+B))×100(%)として求めた。
(Reaction polymer gel fraction)
The porous film is loaded with a crosslinkable polymer A part by weight and a polycarboxylic acid B part by weight and reacted to partially crosslink the crosslinkable polymer to form a reactive polymer. When the reactive polymer remaining on the porous film is C parts by weight after being immersed in ethyl acetate at 7 ° C. for 7 days and then dried, the gel fraction of the reactive polymer is (C / (A + B) ) × 100 (%).

(多孔質フィルム上の反応性ポリマーの担持量と正極側と負極側での反応性ポリマーの担持量の比)
多孔質フィルムに担持させた架橋性ポリマーとポリカルボン酸の合計量を反応性ポリマーの担持量とし、多孔質フィルムに架橋性ポリマーとポリカルボン酸を担持させた後、その重量から多孔質フィルムの重量を減じて、担持量を求めた。また、多孔質フィルムの正極側と負極側において、それぞれ上述したようにして担持量を求め、これより担持量の比を求めた。
(Ratio of the amount of the reactive polymer supported on the porous film and the amount of the reactive polymer supported on the positive electrode side and the negative electrode side)
The total amount of the crosslinkable polymer and polycarboxylic acid supported on the porous film is defined as the amount of the reactive polymer supported. After the crosslinkable polymer and polycarboxylic acid are supported on the porous film, the weight of the porous film The load was determined by reducing the weight. In addition, on the positive electrode side and the negative electrode side of the porous film, the carrying amount was obtained as described above, and the carrying amount ratio was obtained from this.

参考例1
(電極シートの調製)
正極活物質であるコバルト酸リチウム(日本化学工業(株)製セルシードC−5H、平均粒径5μm)85重量部と導電助剤であるアセチレンブラック(電気化学工業(株)製デンカブラック)10重量部とバインダーであるフッ化ビニリデン樹脂(呉羽化学工業(株)製KFポリマーL#1120)5重量部を混合し、これを固形分濃度15重量%となるように、N−メチル−2−ピロリドンを用いてスラリーとした。このスラリーを厚み20μmのアルミニウム箔(集電体)上に厚み200μmに塗布し、80℃で1時間、120℃で2時間真空乾燥した後、ロールプレスにて加圧して、活物質層の厚みが100μmの正極シートを調製した。
Reference example 1
(Preparation of electrode sheet)
85 parts by weight of lithium cobalt oxide (Nippon Chemical Industry Co., Ltd., Cellseed C-5H, average particle size 5 μm) and acetylene black (Denka Black, Denki Kagaku Kogyo Co., Ltd.) as a conductive additive Part and 5 parts by weight of vinylidene fluoride resin (KF Polymer L # 1120 manufactured by Kureha Chemical Industry Co., Ltd.) as a binder are mixed, and this is mixed with N-methyl-2-pyrrolidone so as to have a solid content concentration of 15% by weight. To make a slurry. The slurry was applied to an aluminum foil (current collector) having a thickness of 20 μm to a thickness of 200 μm, vacuum-dried at 80 ° C. for 1 hour, and 120 ° C. for 2 hours, and then pressed by a roll press to obtain the thickness of the active material layer A positive electrode sheet having a thickness of 100 μm was prepared.

また、負極活物質であるメソカーボンマイクロビーズ(大阪ガスケミカル(株)製MCMB25−28、平均粒径25μm)80重量部と導電助剤であるアセチレンブラック(電気化学工業(株)製デンカブラック)10重量部とバインダーであるフッ化ビニリデン樹脂(呉羽化学工業(株)製KFポリマーL#1120)10重量部を混合し、これを固形分濃度15重量%となるように、N−メチル−2−ピロリドンを用いてスラリーとした。このスラリーを厚み20μmの銅箔(集電体)上に厚み200μmに塗布し、80℃で1時間乾燥し、120℃で2時間乾燥した後、ロールプレスにて加圧して、活物質層の厚みが100μmの負極シートを調製した。   Also, 80 parts by weight of mesocarbon microbeads (MCMB25-28 manufactured by Osaka Gas Chemical Co., Ltd., average particle size 25 μm) as negative electrode active material and acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent. 10 parts by weight and 10 parts by weight of a vinylidene fluoride resin (KF Polymer L # 1120 manufactured by Kureha Chemical Industry Co., Ltd.) as a binder are mixed, and this is mixed with N-methyl-2 so that the solid content concentration becomes 15% by weight. -It was made into a slurry using pyrrolidone. This slurry was applied to a copper foil (current collector) having a thickness of 20 μm to a thickness of 200 μm, dried at 80 ° C. for 1 hour, dried at 120 ° C. for 2 hours, and then pressed by a roll press to form an active material layer. A negative electrode sheet having a thickness of 100 μm was prepared.

参考例2
(架橋性ポリマーの調製)
還流冷却管を取り付けた500mL容量の三つ口フラスコにメチルメタクリレート60.0g、3−エチル−3−オキセタニルメチルメタクリレート16.0g、3,4−エポキシシクロヘキシルメチルメタクリレート4.0g、エチレンカーボネート226.6g及びN,N’−アゾビスイソブチロニトリル0.15gを仕込み、窒素ガスを導入しながら、30分間攪拌混合した後、70℃に加熱して、ラジカル共重合を8時間行った。この後、得られた反応混合物を40℃まで冷却した。この反応混合物にジエチルカーボネート226.6gとN,N’−アゾビスイソブチロニトリル0.15gを加え、再度、70℃に加熱して、ラジカル共重合を更に8時間行った。この後、得られた反応混合物を40℃まで冷却し、エチレンカーボネート/ジエチルカーボネート(容量比1/1)混合物を溶媒とする反応性ポリマーの溶液(濃度15重量%)を得た。
Reference example 2
(Preparation of crosslinkable polymer)
In a 500 mL three-necked flask equipped with a reflux condenser, 60.0 g of methyl methacrylate, 16.0 g of 3-ethyl-3-oxetanylmethyl methacrylate, 4.0 g of 3,4-epoxycyclohexylmethyl methacrylate, 226.6 g of ethylene carbonate Then, 0.15 g of N, N′-azobisisobutyronitrile was charged, and the mixture was stirred and mixed for 30 minutes while introducing nitrogen gas, and then heated to 70 ° C. to carry out radical copolymerization for 8 hours. After this, the resulting reaction mixture was cooled to 40 ° C. To this reaction mixture, 226.6 g of diethyl carbonate and 0.15 g of N, N′-azobisisobutyronitrile were added, and the mixture was heated again to 70 ° C. to further carry out radical copolymerization for 8 hours. Thereafter, the obtained reaction mixture was cooled to 40 ° C. to obtain a reactive polymer solution (concentration: 15% by weight) using an ethylene carbonate / diethyl carbonate (volume ratio 1/1) mixture as a solvent.

次に、この架橋性ポリマー溶液100gを高速ミキサーで攪拌しながら、600mLメタノール中に投入して、ポリマーを沈殿させた。このポリマーを濾別し、メタノールにて数回洗浄した後、乾燥管に入れ、これに液体窒素を気化させた乾燥窒素ガス(露点温度−150℃以下)を流通させて乾燥した後、更に、デシケータ中で6時間真空乾燥して、架橋性ポリマーを得た。この架橋性ポリマーは純白の粉末であって、GPCによる分子量測定の結果、重量平均分子量は344000、数平均分子量は175000であった。   Next, 100 g of this crosslinkable polymer solution was added to 600 mL methanol while stirring with a high-speed mixer to precipitate the polymer. The polymer was filtered off, washed several times with methanol, put in a drying tube, dried by circulating dry nitrogen gas (dew point temperature of −150 ° C. or lower) in which liquid nitrogen was vaporized, A crosslinkable polymer was obtained by vacuum drying in a desiccator for 6 hours. This crosslinkable polymer was a pure white powder. As a result of molecular weight measurement by GPC, the weight average molecular weight was 344000, and the number average molecular weight was 175000.

実施例1
参考例2で得た架橋性ポリマーを酢酸エチルに溶解させて、10重量%濃度の架橋性ポリマーの溶液を得た。別に、10重量%濃度のアジピン酸のエタノール溶液を調製した。上記架橋性ポリマー溶液を攪拌しながら、これに上記アジピン酸のエタノール溶液を滴下して、上記架橋性ポリマーとアジピン酸を含む溶液を調製した。架橋性ポリマーの有する反応性基のモル数に対するアジピン酸の有するカルボキシル基のモル数の比率は0.5であった。
Example 1
The crosslinkable polymer obtained in Reference Example 2 was dissolved in ethyl acetate to obtain a 10% by weight crosslinkable polymer solution. Separately, an ethanolic solution of adipic acid having a concentration of 10% by weight was prepared. While stirring the crosslinkable polymer solution, the ethanol solution of the adipic acid was dropped into the solution to prepare a solution containing the crosslinkable polymer and adipic acid. The ratio of the number of moles of carboxyl groups of adipic acid to the number of moles of reactive groups of the crosslinkable polymer was 0.5.

この架橋性ポリマーとアジピン酸とを含む溶液をポリエチレン樹脂多孔質フィルム(膜厚17μm、空孔率42%)の正極を積層する側にワイヤーバーにて0.76g/m2 の割合で塗布すると共に、負極を積層する側に同じワイヤーバーにて1.3g/m2 の割合で塗布した後、50℃で加熱し、用いた溶媒酢酸エチルとエタノールを揮散させて、架橋性ポリマーを担持させた多孔質フィルムを得た。 A solution containing this crosslinkable polymer and adipic acid is applied at a rate of 0.76 g / m 2 with a wire bar on the side where the positive electrode of a polyethylene resin porous film (film thickness 17 μm, porosity 42%) is laminated. In addition, after coating at the rate of 1.3 g / m 2 with the same wire bar on the side where the negative electrode is laminated, it is heated at 50 ° C., and the solvent ethyl acetate and ethanol are volatilized to support the crosslinkable polymer. A porous film was obtained.

次いで、この架橋性ポリマー担持多孔質フィルムを50℃の恒温器に96時間投入して、多孔質フィルムに担持させた上記架橋性ポリマーをアジピン酸と反応させ、上記架橋性ポリマーを一部、架橋させて、かくして、反応性ポリマー担持多孔質フィルムを得た。この反応性ポリマー担持多孔質フィルムにおいて、反応性ポリマーのゲル分率は55%であり、また、多孔質フィルム上の反応性ポリマーの担持量の比は0.58であった。   Next, the crosslinkable polymer-supported porous film is put into a thermostat at 50 ° C. for 96 hours, the crosslinkable polymer supported on the porous film is reacted with adipic acid, and a part of the crosslinkable polymer is crosslinked. Thus, a reactive polymer-supported porous film was obtained. In this reactive polymer-supported porous film, the gel fraction of the reactive polymer was 55%, and the ratio of the amount of the reactive polymer supported on the porous film was 0.58.

前記参考例1で得た負極シート、上記反応性ポリマー担持多孔質フィルム及び前記参考例1で得た正極シートをこの順序に積層して、温度80℃、圧力10kg/cm2 にて1分間プレス圧着して、正極/反応性ポリマー担持多孔質フィルム/負極積層体とし、これを正負極板を兼ねる2016サイズのコイン型電池用缶に仕込んだ。次いで、この電池用缶中に1.2モル/L濃度でヘキサフルオロリン酸リチウムを溶解させたエチレンカーボネート/ジエチルカーボネート(重量比1/2)混合溶媒からなる電解液を注入した後、電池缶を封口した。この後、50℃で24時間加熱して、上記反応性ポリマーをカチオン重合させ、架橋させて、電極シートを多孔質フィルム(セパレータ)に接着すると共に、電解液を一部、ゲル化させて、コイン型電池を得た。 The negative electrode sheet obtained in Reference Example 1, the reactive polymer-supported porous film, and the positive electrode sheet obtained in Reference Example 1 were laminated in this order and pressed at a temperature of 80 ° C. and a pressure of 10 kg / cm 2 for 1 minute. A positive electrode / reactive polymer-supported porous film / negative electrode laminate was formed by pressure bonding, and this was charged into a 2016 size coin-type battery can that also serves as a positive / negative electrode plate. Then, after injecting an electrolyte solution composed of a mixed solvent of ethylene carbonate / diethyl carbonate (weight ratio 1/2) in which lithium hexafluorophosphate was dissolved at a concentration of 1.2 mol / L into the battery can, the battery can Was sealed. Thereafter, the reactive polymer is cationically polymerized and crosslinked at 50 ° C. for 24 hours, and the electrode sheet is adhered to the porous film (separator), and the electrolytic solution is partially gelled, A coin-type battery was obtained.

この電池について、0.2CmAのレートにて3回充放電を行って、この3回目の放電において放電容量を求めた後に、0.2CmAのレートにて充電し、この後、1.0CmAのレートにて放電して、1.0CmAのレートでの放電容量を求め、1.0CmAのレートでの放電容量/0.2CmAのレートでの放電容量の比にて放電容量維持率を評価したところ、96%であった。   This battery was charged and discharged three times at a rate of 0.2 CmA, and after determining the discharge capacity in the third discharge, it was charged at a rate of 0.2 CmA, and thereafter, a rate of 1.0 CmA. The discharge capacity at a rate of 1.0 CmA was obtained, and the discharge capacity retention rate was evaluated by the ratio of the discharge capacity at a rate of 1.0 CmA / the discharge capacity at a rate of 0.2 CmA. It was 96%.

また、この電池を分解して、電極シートとセパレータとの間の接着力を測定したところ、正極では0.12N/cm、負極では0.11N/cmであった。   Moreover, when this battery was disassembled and the adhesive force between the electrode sheet and the separator was measured, it was 0.12 N / cm for the positive electrode and 0.11 N / cm for the negative electrode.

更に、上で得た正極/反応性ポリマー担持多孔質フィルム/負極積層体に前記電解液を含浸させた後、ガラス板の缶に挟み、電解液の揮発を抑制するために、この積層体をフッ素樹脂シートで包んだ。このようにフッ素樹脂シートで包んだ正極/反応性ポリマー担持多孔質フィルム/負極積層体の上に100gの錘を載せて、温度50℃の恒温室内に24時間投入して、正極/反応性ポリマー担持多孔質フィルム/負極積層体中の多孔質フィルムの担持する反応性ポリマーをカチオン重合、架橋させ、正負の電極を多孔質フィルムに接着させて、正極/多孔質フィルム/負極接合体を得た。   Further, the positive electrode / reactive polymer-supported porous film / negative electrode laminate obtained above was impregnated with the electrolyte solution, and then sandwiched between glass plate cans. Wrapped with a fluororesin sheet. The positive electrode / reactive polymer-supported porous film / negative electrode laminate thus wrapped with 100 g of weight is placed on the positive electrode / reactive polymer-supported porous film / negative electrode laminate in this manner and placed in a temperature-controlled room at 50 ° C. for 24 hours. The reactive polymer carried by the porous film in the carried porous film / negative electrode laminate was subjected to cationic polymerization and crosslinking, and positive and negative electrodes were adhered to the porous film to obtain a positive electrode / porous film / negative electrode assembly. .

この後、この正極/多孔質フィルム/負極接合体をガラス板の間に挟んだまま、温度150℃の乾燥機中に1時間投入した。次いで、この正極/多孔質フィルム/負極接合体をガラス板の間から取り出した後、この接合体の正負の電極から多孔質フィルムを剥がし、これをスキャナで読み込んで、最初に電極/多孔質フィルム積層体の調製に用いた多孔質フィルムの面積と比較して、面積熱収縮率を求めたところ、14%であった。   Thereafter, the positive electrode / porous film / negative electrode assembly was sandwiched between glass plates and placed in a dryer at a temperature of 150 ° C. for 1 hour. Next, after this positive electrode / porous film / negative electrode assembly was taken out from between the glass plates, the porous film was peeled off from the positive and negative electrodes of this assembly, and this was read with a scanner. The area heat shrinkage rate was found to be 14% as compared with the area of the porous film used for the preparation.

実施例2
実施例1において、多孔質フィルムへの反応性ポリマーの担持量を正極側0.90g/m2 、負極側1.1g/m2 、反応性ポリマー担持量比0.82とした以外は、実施例1と同様にして、反応性ポリマー担持多孔質フィルムを得た。この反応性ポリマー担持多孔質フィルムを用いて、実施例1と同様にして、コイン型電池を得、1.0CmA/0.2CmA放電容量維持率を求めたところ、94%であった。また、この電池を分解して、電極シートとセパレータとの間の接着力を測定したところ、正極では0.15N/cm、負極では0.09N/cmであった。また、実施例1と同様にして求めた多孔質フィルムの面積熱収縮率は4%であった。
Example 2
In Example 1, the porous positive electrode side 0.90 g / m 2 the supporting amount of the reactive polymer to the film, the negative 1.1 g / m 2, except that the reactive polymer-supported amount ratio 0.82, performed In the same manner as in Example 1, a reactive polymer-supported porous film was obtained. Using this reactive polymer-supported porous film, a coin-type battery was obtained in the same manner as in Example 1, and the 1.0 CmA / 0.2 CmA discharge capacity retention rate was determined to be 94%. Moreover, when this battery was disassembled and the adhesive force between the electrode sheet and the separator was measured, it was 0.15 N / cm for the positive electrode and 0.09 N / cm for the negative electrode. The area heat shrinkage rate of the porous film obtained in the same manner as in Example 1 was 4%.

実施例3
実施例1において、多孔質フィルムへの反応性ポリマーの担持量を正極側0.53g/m2 、負極側2.2g/m2 、反応性ポリマー担持量比0.24とした以外は、実施例1と同様にして、反応性ポリマー担持多孔質フィルムを得た。この反応性ポリマー担持多孔質フィルムを用いて、実施例1と同様にして、コイン型電池を得、1.0CmA/0.2CmA放電容量維持率を求めたところ、91%であった。また、この電池を分解して、電極シートとセパレータとの間の接着力を測定したところ、正極では0.10N/cm、負極では0.20N/cmであった。また、実施例1と同様にして求めた多孔質フィルムの面積熱収縮率は0%であった。
Example 3
In Example 1, the porous positive electrode side 0.53 g / m 2 the supporting amount of the reactive polymer to the film, the negative 2.2 g / m 2, except that the reactive polymer-supported amount ratio 0.24, performed In the same manner as in Example 1, a reactive polymer-supported porous film was obtained. Using this reactive polymer-supported porous film, a coin-type battery was obtained in the same manner as in Example 1, and the 1.0 CmA / 0.2 CmA discharge capacity retention rate was determined to be 91%. Moreover, when this battery was disassembled and the adhesive force between the electrode sheet and the separator was measured, it was 0.10 N / cm for the positive electrode and 0.20 N / cm for the negative electrode. The area heat shrinkage rate of the porous film obtained in the same manner as in Example 1 was 0%.

比較例1
実施例1において、多孔質フィルムに架橋性ポリマーを担持させることなく、そのままを用いて、実施例1と同様にして、コイン型電池を得た。この電池の1.0CmA/0.2CmA放電容量維持率は97%であった。また、実施例1と同様にして求めた多孔質フィルムの面積熱収縮率は81%であった。
Comparative Example 1
In Example 1, a coin-type battery was obtained in the same manner as in Example 1 using the porous film as it was without supporting the crosslinkable polymer. The 1.0 CmA / 0.2 CmA discharge capacity retention rate of this battery was 97%. The area heat shrinkage rate of the porous film obtained in the same manner as in Example 1 was 81%.

比較例2
実施例1において、多孔質フィルムへの反応性ポリマーの担持量を正極側2.5g/m2 、負極側0.70g/m2 、反応性ポリマー担持量比3.57とした以外は、実施例1と同様にして、反応性ポリマー担持多孔質フィルムを得た。この反応性ポリマー担持多孔質フィルムを用いて、実施例1と同様にして、コイン型電池を得、1.0CmA/0.2CmA放電容量維持率を求めたところ、74%であった。また、この電池を分解して、電極シートとセパレータとの間の接着力を測定したところ、正極では0.33N/cm、負極では0.05N/cmであった。また、実施例1と同様にして求めた多孔質フィルムの面積熱収縮率は2%であった。

Comparative Example 2
In Example 1, the porous positive electrode side 2.5 g / m 2 the supporting amount of the reactive polymer to the film, the negative 0.70 g / m 2, except that the reactive polymer-supported amount ratio 3.57 is carried out In the same manner as in Example 1, a reactive polymer-supported porous film was obtained. Using this reactive polymer-supported porous film, a coin-type battery was obtained in the same manner as in Example 1, and the 1.0 CmA / 0.2 CmA discharge capacity retention rate was found to be 74%. Moreover, when this battery was disassembled and the adhesive force between the electrode sheet and the separator was measured, it was 0.33 N / cm for the positive electrode and 0.05 N / cm for the negative electrode. The area heat shrinkage rate of the porous film obtained in the same manner as in Example 1 was 2%.

Claims (9)

正極活物質としてリチウムの複合酸化物からなる粒状物質を用いると共に、負極活物質として炭素質材料からなる粒状物質を用いるリチウムイオン二次電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体であって、分子中に3−オキセタニル基とエポキシ基とから選ばれる少なくとも1種の反応性基を有する架橋性ポリマーを用意し、この架橋性ポリマーをポリカルボン酸と反応させ、一部、架橋させて、反応性ポリマーとして、多孔質フィルムに担持させてなる反応性ポリマー担持多孔質フィルムとなし、この反応性ポリマー担持多孔質フィルムにこれを挟んで正極と負極を積層してなる正極/反応性ポリマー担持多孔質フィルム/負極積層体において、上記反応性ポリマー担持多孔質フィルムの片面当たりの反応性ポリマーの担持量が0.3〜5.0g/m2 の範囲にあると共に、正極側の多孔質フィルム上の反応性ポリマーの担持量/負極側の多孔質フィルム上の反応性ポリマーの担持量の比が0.240.9の範囲にあることを特徴とする電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体。 Positive electrode for lithium ion secondary battery / reactive polymer-supported porous film / negative electrode laminate using a granular material composed of a lithium composite oxide as a positive electrode active material and a granular material composed of a carbonaceous material as a negative electrode active material A crosslinkable polymer having at least one reactive group selected from 3-oxetanyl group and epoxy group in the molecule is prepared, and this crosslinkable polymer is reacted with a polycarboxylic acid to be partially crosslinked. As a reactive polymer, a reactive polymer-supported porous film supported on a porous film is formed, and a positive electrode / reactive property obtained by laminating a positive electrode and a negative electrode with the reactive polymer-supported porous film sandwiched therebetween. In the polymer-supported porous film / negative electrode laminate, the reactive polymer per one side of the reactive polymer-supported porous film With the amount of lifting is in the range of 0.3 to 5.0 g / m 2, the ratio of the porous support amount of the film on the reactive polymer / negative electrode side of the porous supporting amount of the reactive polymer on the film of the positive side Is in the range of 0.24 to 0.9. Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate. 正極側の多孔質フィルム上の反応性ポリマーの担持量/負極側の多孔質フィルム上の反応性ポリマーの担持量の比が0.3〜0.9の範囲にある請求項1に記載の電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体。2. The battery according to claim 1, wherein the ratio of the amount of the reactive polymer supported on the positive electrode side porous film / the amount of the reactive polymer supported on the negative electrode side porous film is in the range of 0.3 to 0.9. Positive electrode / reactive polymer-supported porous film / negative electrode laminate. 反応性ポリマー担持多孔質フィルムの片面当たりの反応性ポリマーの担持量が0.5〜3.0g/mThe amount of the reactive polymer supported per one side of the reactive polymer-supported porous film is 0.5 to 3.0 g / m. 2 2 の範囲にある請求項1又は2に記載の電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体。The battery positive electrode / reactive polymer-supported porous film / negative electrode laminate according to claim 1 or 2, wherein the battery positive electrode / reactive polymer-supported porous film / negative electrode laminate is present. 反応性ポリマーがゲル分率5〜90%を有するものである請求項1から3のいずれかに記載の電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体。 The positive electrode for a battery / reactive polymer-supported porous film / negative electrode laminate according to any one of claims 1 to 3, wherein the reactive polymer has a gel fraction of 5 to 90%. 請求項1からのいずれかに記載の電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体中の反応性ポリマーをカチオン重合させ、反応性ポリマーを更に架橋させて、電極と多孔質フィルムとを接着させてなる電池用正極/反応性ポリマー担持多孔質フィルム/負極接合体。 The positive electrode for a battery / reactive polymer-supported porous film / negative electrode laminate according to any one of claims 1 to 4 is cationically polymerized, and the reactive polymer is further cross-linked to form an electrode and a porous film. A positive electrode for a battery / reactive polymer-supported porous film / negative electrode assembly. 多孔質フィルムが150℃で1時間加熱した後の面積熱収縮率が20%以下である請求項に記載の電池用正極/反応性ポリマー担持多孔質フィルム/負極接合体。 The battery positive electrode / reactive polymer-supported porous film / negative electrode assembly according to claim 5 , wherein the area heat shrinkage ratio after the porous film is heated at 150 ° C. for 1 hour is 20% or less. 請求項1からのいずれかに記載の電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体を電池容器内に仕込んだ後、カチオン重合触媒を含む電解液を上記電池容器内に注入して、少なくとも多孔質フィルムと電極との界面の近傍にて、上記反応性ポリマーの少なくとも一部を電解液中で膨潤させ、又は電解液中に溶出させ、カチオン重合させて、電解液の少なくとも一部をゲル化させて、多孔質フィルムと電極を接着することを特徴とする電池の製造方法。 They were charged positive electrode / reactive polymer-supported porous film / negative electrode laminate for battery according to any one of claims 1 to 4 in the battery container, the electrolyte solution containing a cationic polymerization catalyst is injected into the battery container Then, at least in the vicinity of the interface between the porous film and the electrode, at least a part of the reactive polymer is swollen in the electrolytic solution, or is eluted into the electrolytic solution, and is cationically polymerized, so that at least one of the electrolytic solutions is obtained. A method for producing a battery, comprising gelling a part and bonding a porous film and an electrode. カチオン重合触媒がオニウム塩である請求項に記載の電池の製造方法。 The method for producing a battery according to claim 7 , wherein the cationic polymerization catalyst is an onium salt. 電解液がカチオン重合触媒を兼ねる電解質塩としてヘキサフルオロリン酸リチウム及びテトラフルオロホウ酸リチウムから選ばれる少なくとも1種を含むものである請求項に記載の電池の製造方法。
The method for producing a battery according to claim 8 , wherein the electrolytic solution contains at least one selected from lithium hexafluorophosphate and lithium tetrafluoroborate as an electrolyte salt that also serves as a cationic polymerization catalyst.
JP2004186923A 2004-06-24 2004-06-24 Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate Expired - Fee Related JP4653425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004186923A JP4653425B2 (en) 2004-06-24 2004-06-24 Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004186923A JP4653425B2 (en) 2004-06-24 2004-06-24 Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate

Publications (2)

Publication Number Publication Date
JP2006012562A JP2006012562A (en) 2006-01-12
JP4653425B2 true JP4653425B2 (en) 2011-03-16

Family

ID=35779569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004186923A Expired - Fee Related JP4653425B2 (en) 2004-06-24 2004-06-24 Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate

Country Status (1)

Country Link
JP (1) JP4653425B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11631845B2 (en) 2020-09-17 2023-04-18 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4791044B2 (en) 2005-01-11 2011-10-12 日東電工株式会社 Reactive polymer-supported porous film for battery separator and battery manufacturing method using the same
JP5298815B2 (en) * 2008-01-30 2013-09-25 Tdk株式会社 Lithium ion secondary battery manufacturing method, electrolytic solution, and lithium ion secondary battery
JP5670626B2 (en) * 2009-07-15 2015-02-18 日立マクセル株式会社 Electrochemical element separator, electrochemical element and method for producing the same
WO2015129408A1 (en) * 2014-02-27 2015-09-03 日本ゼオン株式会社 Binder composition for secondary battery porous membrane, slurry for secondary battery porous membrane, porous membrane for secondary battery, and secondary battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143540A (en) * 1997-07-29 1999-02-16 Ube Ind Ltd Thermosetting oxetane composition
JPH11116663A (en) * 1997-10-17 1999-04-27 Ube Ind Ltd Thermosetting composition and cured product therefrom and production of the cured product
JP2002279826A (en) * 2001-03-19 2002-09-27 Toyobo Co Ltd Polymer electrolyte gel and manufacturing method of the same
JP2003045226A (en) * 2001-07-26 2003-02-14 Ube Ind Ltd Polymer electrolyte and its manufacturing method
JP2003096232A (en) * 2001-09-26 2003-04-03 Nitto Denko Corp Adhesive and porous film and polymer-gel electrolyte obtained from the same and their use
JP2003142158A (en) * 2001-11-01 2003-05-16 Hitachi Maxell Ltd Method for manufacturing lithium ion secondary battery
JP2004146289A (en) * 2002-10-28 2004-05-20 Nitto Denko Corp Adhesive/gelatinizer carrying porous film and its use
WO2004088671A1 (en) * 2003-03-31 2004-10-14 Trekion Co., Ltd. Composite polymer electrolyte composition
JP2005100951A (en) * 2003-08-26 2005-04-14 Nitto Denko Corp Porous film carrying reactive polymer for battery separator, and manufacturing method of battery using the same
JP2005209474A (en) * 2004-01-22 2005-08-04 Nitto Denko Corp Reactive polymer carrying porous film for battery separator and its use

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143540A (en) * 1997-07-29 1999-02-16 Ube Ind Ltd Thermosetting oxetane composition
JPH11116663A (en) * 1997-10-17 1999-04-27 Ube Ind Ltd Thermosetting composition and cured product therefrom and production of the cured product
JP2002279826A (en) * 2001-03-19 2002-09-27 Toyobo Co Ltd Polymer electrolyte gel and manufacturing method of the same
JP2003045226A (en) * 2001-07-26 2003-02-14 Ube Ind Ltd Polymer electrolyte and its manufacturing method
JP2003096232A (en) * 2001-09-26 2003-04-03 Nitto Denko Corp Adhesive and porous film and polymer-gel electrolyte obtained from the same and their use
JP2003142158A (en) * 2001-11-01 2003-05-16 Hitachi Maxell Ltd Method for manufacturing lithium ion secondary battery
JP2004146289A (en) * 2002-10-28 2004-05-20 Nitto Denko Corp Adhesive/gelatinizer carrying porous film and its use
WO2004088671A1 (en) * 2003-03-31 2004-10-14 Trekion Co., Ltd. Composite polymer electrolyte composition
JP2005100951A (en) * 2003-08-26 2005-04-14 Nitto Denko Corp Porous film carrying reactive polymer for battery separator, and manufacturing method of battery using the same
JP2005209474A (en) * 2004-01-22 2005-08-04 Nitto Denko Corp Reactive polymer carrying porous film for battery separator and its use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11631845B2 (en) 2020-09-17 2023-04-18 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle

Also Published As

Publication number Publication date
JP2006012562A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
JP4662533B2 (en) Reactive polymer-supported porous film for battery separator and battery manufacturing method using the same
US9533475B2 (en) Crosslinking polymer-supported porous film for battery separator and method for producing battery using the same
KR100984925B1 (en) Reactive polymer-supported porous film for battery separator, and method for producing the porous film
JP5337549B2 (en) Battery separator and battery using the same
JP2007157570A (en) Manufacturing method of reactant polymer-carrying porous film for battery separator and battery using the same
JP2007123254A (en) Reactive polymer carrying porous film for separator for battery and method of manufacturing battery using it
JP5260075B2 (en) Reactive polymer-supported porous film for battery separator and electrode / separator assembly obtained therefrom
JP5124178B2 (en) Crosslinkable polymer-supported porous film for battery separator and its use
JP2007157569A (en) Manufacturing method of reactant polymer carrying porous film for battery separator and battery using the same
JP5260074B2 (en) Battery separator and electrode / separator assembly obtained therefrom
JP4653425B2 (en) Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate
JP4564240B2 (en) Reactive polymer-supported porous film for battery separator and battery manufacturing method using the same
JP4596784B2 (en) Reactive polymer-supported porous film for battery separator and its use
JP4456422B2 (en) Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate
JP2009193761A (en) Reactive polymer-supporting porous film for battery separator, and electrode/separator assembly obtained therefrom
JP5680241B2 (en) Battery separator
JP2011192565A (en) Separator for battery
JP2014135288A (en) Separator for battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101217

R150 Certificate of patent or registration of utility model

Ref document number: 4653425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20161224

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees