JP2003142158A - Method for manufacturing lithium ion secondary battery - Google Patents

Method for manufacturing lithium ion secondary battery

Info

Publication number
JP2003142158A
JP2003142158A JP2001336809A JP2001336809A JP2003142158A JP 2003142158 A JP2003142158 A JP 2003142158A JP 2001336809 A JP2001336809 A JP 2001336809A JP 2001336809 A JP2001336809 A JP 2001336809A JP 2003142158 A JP2003142158 A JP 2003142158A
Authority
JP
Japan
Prior art keywords
polymer gel
separator
gel material
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001336809A
Other languages
Japanese (ja)
Inventor
Sadamu Kuze
定 久世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2001336809A priority Critical patent/JP2003142158A/en
Publication of JP2003142158A publication Critical patent/JP2003142158A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery not generating any shortcircuiting even if its separator is constructed thin, and having a high capac ity and an excellent load characteristic. SOLUTION: The lithium ion secondary battery is manufactured using as separator a porous film having a thickness of 5-16 μm, in which the separator is coated or impregnated with a polymer gel material admitting a chemical bridging process, followed by drying, and the resultant is laminated or wound round together with a positive electrode and negative electrode so that an electrode is formed, and an electrolytic solution in which a hardening agent for the polymer gel material is dissolved and the electrode are accommodated inside an armouring and sealed, and the polymer gel material and hardening agent are put in reaction so that the intended polymer gel electrolyte is completed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、微孔性フィルムを
セパレータとして用いたリチウムイオン二次電池の製造
方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a lithium ion secondary battery using a microporous film as a separator.

【0002】[0002]

【従来の技術】近年、ポータブル電子機器の電源や電気
自動車の電源としてリチウムイオン二次電池が使用さ
れ、又はそれを使用するための研究がなされている。こ
のような状況の中でリチウムイオン二次電池は、より一
層の高容量化及び負荷特性の向上が要求されており、こ
のための研究が数多くなされている。
2. Description of the Related Art In recent years, lithium-ion secondary batteries have been used as a power source for portable electronic devices or power sources for electric vehicles, or studies have been conducted for using the same. Under such circumstances, lithium ion secondary batteries are required to have higher capacity and improved load characteristics, and many studies have been conducted for this purpose.

【0003】その中で、セパレータを薄型化することが
検討されている。セパレータを薄型化すれば、同一電池
体積中に多くの活物質を充填できるため高容量化でき、
また、内部抵抗も減少するため負荷特性も向上する。
Among them, making the separator thinner has been studied. If the separator is made thinner, more active material can be filled in the same battery volume so that the capacity can be increased,
Moreover, since the internal resistance is also reduced, the load characteristics are also improved.

【0004】[0004]

【発明が解決しようとする課題】最近では、一部で、厚
さが16μmより薄い微孔性フィルムをリチウムイオン
二次電池用のセパレータとして用いることも検討されて
いる。しかし、このような薄いセパレータは高容量化が
可能で、負荷特性が向上する反面、短絡が発生しやすい
ため、現実には16μm以下へのセパレータの薄型化は
困難であり、高容量で、負荷特性に優れた電池を得るの
は難しいという問題がある。
Recently, use of a microporous film having a thickness of less than 16 μm as a separator for a lithium ion secondary battery has been studied in some cases. However, while such a thin separator can have a high capacity and have improved load characteristics, it is difficult to reduce the thickness of the separator to 16 μm or less in reality because a short circuit easily occurs. There is a problem that it is difficult to obtain a battery having excellent characteristics.

【0005】また、ポリフッ化ビニリデン(PVDF)
やポリアクリロニトリル(PAN)の高温溶液をセパレ
ータに含浸させた後に冷却してゲル化させる方法(特開
2000−113872号)、ゲル状の電解液をセパレ
ータに含浸させる方法(特開平11−67273号)等
も提案されているが、セパレータに含有されるものがゲ
ル状であるために、セパレータを薄型化するとその強度
が大きく低下し、電池組立て工程で短絡が発生しやすい
という問題があった。
Polyvinylidene fluoride (PVDF)
A method of impregnating a separator with a high-temperature solution of polyacrylonitrile (PAN) or the like and then cooling it to gel (JP-A-2000-113872), a method of impregnating a separator with a gel electrolyte (JP-A-11-67273). ) And the like have also been proposed, but since the separator contains a gel, there is a problem that when the separator is thinned, its strength is significantly reduced, and a short circuit easily occurs in the battery assembly process.

【0006】そこで、本発明は前記従来の問題を解決す
るためになされたものであり、セパレータを薄型化して
も短絡が発生せず、高容量で負荷特性に優れたリチウム
イオン二次電池を提供することを目的とする。
Therefore, the present invention has been made to solve the above-mentioned conventional problems, and provides a lithium-ion secondary battery having a high capacity and excellent load characteristics without causing a short circuit even if the separator is made thin. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するた
め、本発明のリチウムイオン二次電池の製造方法は、5
〜16μmの厚さの微孔性フィルムをセパレータとして
用いたリチウムイオン二次電池の製造方法であって、化
学架橋可能なポリマーゲル材を前記セパレータに塗布又
は含浸させて乾燥して前記セパレータを補強した後、前
記セパレータを正極及び負極とともに積層又は捲回して
電極体を構成し、前記ポリマーゲル材の硬化剤を溶解さ
せた電解液と、前記電極体とを外装体内部に収納して密
閉し、加熱等を行うことにより前記ポリマーゲル材と前
記硬化剤とを反応させてポリマーゲル電解質を形成する
ことを特徴とする。
In order to achieve the above-mentioned object, the method for producing a lithium ion secondary battery of the present invention comprises 5 steps.
A method of manufacturing a lithium ion secondary battery using a microporous film having a thickness of ˜16 μm as a separator, wherein a chemically crosslinkable polymer gel material is applied to or impregnated into the separator and dried to reinforce the separator. After that, the separator is laminated or wound together with the positive electrode and the negative electrode to form an electrode body, and the electrolytic solution in which the curing agent of the polymer gel material is dissolved and the electrode body are housed and sealed in the exterior body. By heating the polymer gel material and the curing agent, a polymer gel electrolyte is formed.

【0008】これにより、5〜16μmと非常に薄い微
孔性フィルムをセパレータとして用いた場合でも、電池
組立て時の短絡を防止することができ、且つ電池の高容
量化及び負荷特性の向上を図ることができる。また、使
用するポリマーゲル電解質が架橋構造タイプのため、従
来の非架橋ポリマーゲル電解質よりもゲル材の濃度を小
さくできるためイオン伝導性を高くすることができ、高
率放電特性や低温特性等の負荷特性がより一層優れたリ
チウムイオン二次電池を提供することができる。
As a result, even when a very thin microporous film having a thickness of 5 to 16 μm is used as a separator, it is possible to prevent a short circuit at the time of assembling the battery, and to improve the capacity and load characteristics of the battery. be able to. In addition, since the polymer gel electrolyte used is a cross-linked structure type, the concentration of the gel material can be made smaller than that of the conventional non-cross-linked polymer gel electrolyte, so that the ionic conductivity can be increased, and high rate discharge characteristics and low temperature characteristics, It is possible to provide a lithium-ion secondary battery having even more excellent load characteristics.

【0009】また、本発明のリチウムイオン二次電池の
製造方法は、前記ポリマーゲル材の重量平均分子量が1
万から20万であることが好ましい。
Further, in the method for producing a lithium ion secondary battery of the present invention, the polymer gel material has a weight average molecular weight of 1
It is preferably from 10,000 to 200,000.

【0010】また、本発明のリチウムイオン二次電池の
製造方法は、前記セパレータに塗布又は含浸させる前記
ポリマーゲル材の割合が電池中の全電解液の質量に対し
て5〜10質量%であることが好ましい。
Further, in the method for manufacturing a lithium ion secondary battery of the present invention, the ratio of the polymer gel material coated or impregnated in the separator is 5 to 10% by mass with respect to the mass of the total electrolytic solution in the battery. It is preferable.

【0011】[0011]

【発明の実施の形態】本発明で用いる化学架橋可能なポ
リマーゲル材としては、従来より公知の化学架橋可能な
官能基を3個以上有するものであればよく、例えばラジ
カル重合又はイオン重合可能な二重結合を有する樹脂
類、エポキシ又はオキセタンのように開環重合可能な多
員環を有する樹脂類、イソシアネート基とウレタン反応
可能なヒドロキシル基を有する樹脂類などが挙げられ
る。上記樹脂類には、電解液との親和性を大きくするた
めに、エーテル基、カーボネート基、エステル基などの
極性基を含有させてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The chemically crosslinkable polymer gel material used in the present invention may be any one which has three or more conventionally known chemically crosslinkable functional groups, for example, radical polymerization or ionic polymerization is possible. Examples thereof include resins having a double bond, resins having a multi-membered ring capable of ring-opening polymerization such as epoxy or oxetane, and resins having a hydroxyl group capable of urethane reaction with an isocyanate group. The above resins may contain a polar group such as an ether group, a carbonate group, or an ester group in order to increase the affinity with the electrolytic solution.

【0012】また、上記樹脂類の分子量としては、重量
平均分子量が1万から20万の範囲内であることが好ま
しい。この範囲内であれば、セパレータの補強効果が大
きく、また、硬化剤を溶解させた電解液を注液した時の
ポリマーゲル材の膨潤、再溶解が容易となり、ゲル化が
均一に行われるため電池性能が安定する。
The weight average molecular weight of the above resins is preferably in the range of 10,000 to 200,000. Within this range, the reinforcing effect of the separator is large, and also the swelling and re-dissolution of the polymer gel material when the electrolytic solution in which the curing agent is injected are injected easily, and the gelation is performed uniformly. Battery performance is stable.

【0013】ラジカル重合又はイオン重合可能な二重結
合を有する樹脂類としては、下記の化学式(1)〜
(3)で示される構造を含む樹脂類が挙げられる。
Resins having a double bond capable of radical polymerization or ion polymerization are represented by the following chemical formulas (1) to (1)
Examples of the resins include the structure represented by (3).

【0014】[0014]

【化1】 [Chemical 1]

【0015】[0015]

【化2】 [Chemical 2]

【0016】[0016]

【化3】 [Chemical 3]

【0017】(式中、R1はH又はCH3、R2はポリエー
テル、ポリエステル、ポリウレタン、ポリカーボネート
から選ばれる少なくとも一つ以上の構造からなる重量平
均分子量が1万から20万の樹脂で二重結合を2個以上
含むものである。)開環重合可能な多員環を有する樹脂
類としては、下記の化学式(4)〜(6)で示される構
造を含む樹脂類が挙げられる。
(In the formula, R 1 is H or CH 3 , and R 2 is a resin having a weight average molecular weight of 10,000 to 200,000 and having at least one structure selected from polyether, polyester, polyurethane, and polycarbonate. (A resin containing two or more heavy bonds.) Examples of the resins having a ring-opening polymerizable multi-membered ring include resins having a structure represented by the following chemical formulas (4) to (6).

【0018】[0018]

【化4】 [Chemical 4]

【0019】[0019]

【化5】 [Chemical 5]

【0020】[0020]

【化6】 [Chemical 6]

【0021】(式中、R3はポリ(メタ)アクリレート、ポ
リエーテル、ポリエステル、ポリウレタン、ポリカーボ
ネートから選ばれる少なくとも一つ以上の構造からなる
重量平均分子量が1万から20万の樹脂で多員環を2個
以上含むものである。) ウレタン反応可能なヒドロキシル基を有する樹脂類とし
ては、下記の化学式(7)で示される構造を含む樹脂類
が挙げられる。
(Wherein R 3 is a resin having at least one structure selected from poly (meth) acrylate, polyether, polyester, polyurethane and polycarbonate and having a weight average molecular weight of 10,000 to 200,000 and a multi-membered ring. Examples of the resin having a hydroxyl group capable of urethane reaction include resins having a structure represented by the following chemical formula (7).

【0022】[0022]

【化7】 [Chemical 7]

【0023】(式中、R4はポリ(メタ)アクリレート、ポ
リエーテル、ポリエステル、ポリウレタン、ポリカーボ
ネートから選ばれる少なくとも一つ以上の構造からなる
重量平均分子量が1万から20万の樹脂でヒドロキシル
基を2個以上含むものである。) また、前記ポリマーゲル材の硬化剤としては、前記化学
式(1)で表されるラジカル重合性の樹脂類に対して
は、通常の熱重合開始剤、例えば、ラウロイルパーオキ
サイド、メチルエチルケトンパーオキサイド等を挙げる
ことができる。前記化学式(2)、(4)、(5)、
(6)で表されるカチオン重合性の樹脂類に対しては、
各種のオニウム塩、例えば、アンモニウム、ホスホニウ
ム、スルホニウム、アルソニウム、スチボニウム、ヨー
ドニウム等のカチオンの、−BF4、−PF6、−SbF
6、−CF3SO3、−ClO4等のアニオン塩等を挙げる
ことができる。前記化学式(3)で表されるアニオン重
合性の樹脂類に対しては、Li、Na、K等のアルカリ
金属、ブチルLi、エチルLi等のアルキルアルカリ、
アミン類、グリニャール試薬、チーグラー試薬等を挙げ
ることができる。前記化学式(7)で表されるウレタン
反応可能な樹脂類に対しては、ヘキサメチレンジイソシ
アネート、イソホロンジイソシアネート及びこれらを多
官能ヒドロキシ化合物と反応させて多官能化したイソシ
アネート化合物等を挙げることができる。
(Wherein R 4 is a resin having at least one structure selected from poly (meth) acrylate, polyether, polyester, polyurethane and polycarbonate and having a weight average molecular weight of 10,000 to 200,000 and a hydroxyl group. Further, as the curing agent for the polymer gel material, for the radical-polymerizable resins represented by the chemical formula (1), an ordinary thermal polymerization initiator such as lauroylper is used. Examples thereof include oxide and methyl ethyl ketone peroxide. The chemical formulas (2), (4), (5),
For the cationically polymerizable resins represented by (6),
Various onium salts, for example, cations such as ammonium, phosphonium, sulfonium, arsonium, stibonium, and iodonium, -BF 4 , -PF 6 , and -SbF.
6, -CF 3 SO 3, and the like can be given anion salts such as -ClO 4. For the anion-polymerizable resins represented by the chemical formula (3), alkali metals such as Li, Na and K, alkyl alkalis such as butyl Li and ethyl Li,
Examples thereof include amines, Grignard reagents, Ziegler reagents and the like. Examples of the urethane-reactive resins represented by the chemical formula (7) include hexamethylene diisocyanate, isophorone diisocyanate, and isocyanate compounds obtained by reacting these with a polyfunctional hydroxy compound to polyfunctionalize them.

【0024】本発明で用いるセパレータとしては、ポリ
エチレン、ポリプロピレン、エチレン−プロピレン共重
合体などのポリオレフィン、ポリエステル、四フッ化エ
チレン−パーフルオロアルコキシエチレン共重合体など
のフッ素樹脂、ポリエーテルエーテルケトン(PEE
K)、ポリブチレンテレフタレート、ポリフェニレンサ
ルファイドなどからなる微孔性フィルムを用いることが
できるが、これらに限定されるものではない。
As the separator used in the present invention, polyolefin such as polyethylene, polypropylene and ethylene-propylene copolymer, polyester, fluororesin such as tetrafluoroethylene-perfluoroalkoxyethylene copolymer and polyether ether ketone (PEE).
A microporous film made of K), polybutylene terephthalate, polyphenylene sulfide, or the like can be used, but is not limited thereto.

【0025】また、上記微孔性フィルムの厚みは、5〜
16μmの範囲内にあることが必要である。厚みが5μ
mを下回ると上記化学架橋可能なポリマーゲル材による
補強を行っても、電池の組立て工程でセパレータの破断
などの問題が生じるほか、電池の温度上昇によりセパレ
ータの収縮が生じて内部短絡が発生しやすくなるため、
本発明では5μm以上の厚みのセパレータを用いる必要
がある。また、厚みが16μmを超えると電池の高容量
化や負荷特性が不充分となるため、本発明では16μ以
下の厚みのセパレータを用いる必要がある。
The thickness of the microporous film is 5 to
It must be in the range of 16 μm. Thickness is 5μ
If it is less than m, even if it is reinforced with the above-mentioned chemically crosslinkable polymer gel material, problems such as breakage of the separator occur during the battery assembly process, and the separator contracts due to the temperature rise of the battery, causing an internal short circuit. Because it ’s easier
In the present invention, it is necessary to use a separator having a thickness of 5 μm or more. If the thickness exceeds 16 μm, the capacity of the battery becomes high and the load characteristics become insufficient. Therefore, in the present invention, it is necessary to use a separator having a thickness of 16 μm or less.

【0026】ポリマーゲル材と硬化剤との反応は、外装
体を密閉した後、例えば、これを40〜80℃程度の温
度で数時間加温することによって行うことができる。
The reaction between the polymer gel material and the curing agent can be carried out, for example, by sealing the outer case and then heating it at a temperature of about 40 to 80 ° C. for several hours.

【0027】[0027]

【実施例】次に、代表的な例を挙げて本発明をより具体
的に説明する。なお、これらは本発明の一実施例であ
り、本発明はこれらに何ら制限されるものではない。
EXAMPLES Next, the present invention will be described more specifically with reference to representative examples. These are only examples of the present invention, and the present invention is not limited to these.

【0028】先ず、以下の製造例1〜3で化学架橋可能
なポリマーゲル材を製造した。
First, chemically crosslinkable polymer gel materials were produced in the following Production Examples 1 to 3.

【0029】(製造例1)メチルメタクリレート90g
及び2−ヒドロキシエチルメタクリレート10gに炭酸
ジエチルを50g加え、乾燥窒素ガス中で攪拌した。更
に、これにN,N’−アゾビスイソブチロニトリルを
0.4g加えて乾燥窒素ガス気流下にて、70℃で攪拌
しながら8時間ラジカル重合を行った。次に、これを4
0℃まで冷却した後、炭酸ジエチルを加えて全量を20
0gにした。得られた重合液をメタノール中で沈殿させ
て精製した後、乾燥して樹脂粉末を得た。
(Production Example 1) 90 g of methyl methacrylate
50 g of diethyl carbonate was added to 10 g of 2-hydroxyethyl methacrylate, and the mixture was stirred in dry nitrogen gas. Further, 0.4 g of N, N′-azobisisobutyronitrile was added thereto, and radical polymerization was carried out for 8 hours while stirring at 70 ° C. under a stream of dry nitrogen gas. Then this is 4
After cooling to 0 ° C, add diethyl carbonate to bring the total volume to 20.
It was set to 0 g. The obtained polymerization liquid was precipitated in methanol for purification, and then dried to obtain a resin powder.

【0030】得られた樹脂粉末を赤外分光分析(I
R)、及びテトラヒドロフラン(THF)に溶解させて
ゲル浸透クロマトグラフィー(GPC)により分析した
結果、水酸基を有する重量平均分子量27000のメタ
クリル樹脂であることが確認された。
The obtained resin powder was analyzed by infrared spectroscopy (I
As a result of being dissolved in R) and tetrahydrofuran (THF) and analyzed by gel permeation chromatography (GPC), it was confirmed to be a methacrylic resin having a hydroxyl group and a weight average molecular weight of 27,000.

【0031】この樹脂粉末50gをN,N’−ジメチル
ホルムアミド50gに溶解し、更にピリジン20gを加
えて40℃で攪拌しつつ、メタクリル酸クロリド20g
を1分間に2gの割合で滴下した。滴下終了後2時間静
置してエステル化反応を行った。得られた反応液をメタ
ノール中で沈殿させて精製した後に乾燥して樹脂粉末を
得た。得られたポリマーゲル材である樹脂粉末をTHF
に溶解させて、紫外可視分光分析、及びGPCにより分
析した結果、二重結合が分子量約1200当たりに1個
導入された重量平均分子量27000のメタクリル樹脂
であることが確認された。
50 g of this resin powder was dissolved in 50 g of N, N'-dimethylformamide, 20 g of pyridine was added, and 20 g of methacrylic acid chloride was added while stirring at 40 ° C.
Was added dropwise at a rate of 2 g per minute. After completion of the dropping, the mixture was left standing for 2 hours to carry out an esterification reaction. The obtained reaction solution was precipitated in methanol for purification and then dried to obtain a resin powder. The resin powder, which is the obtained polymer gel material, is treated with THF.
As a result of UV-visible spectroscopic analysis and GPC analysis, it was confirmed to be a methacrylic resin having a weight average molecular weight of 27,000 in which one double bond was introduced per 1200 molecular weight.

【0032】(製造例2)N,N’−アゾビスイソブチ
ロニトリルを8gにして、重合温度を80℃にしたこと
以外は製造例1と同様にしてポリマーゲル材を製造した
結果、二重結合が分子量約1100当たりに1個導入さ
れた重量平均分子量9400のメタクリル樹脂であるこ
とが確認された。
(Production Example 2) A polymer gel material was produced in the same manner as in Production Example 1 except that 8 g of N, N'-azobisisobutyronitrile was used and the polymerization temperature was 80 ° C. It was confirmed to be a methacrylic resin having a weight average molecular weight of 9400 in which one heavy bond was introduced per 1100 of molecular weight.

【0033】(製造例3)N,N’−アゾビスイソブチ
ロニトリルを0.15gにしたこと以外は製造例1と同
様にしてポリマーゲル材を製造した結果、二重結合が分
子量約1400当たりに1個導入された重量平均分子量
250000のメタクリル樹脂であることが確認され
た。
(Production Example 3) A polymer gel material was produced in the same manner as in Production Example 1 except that N, N'-azobisisobutyronitrile was changed to 0.15 g. As a result, the double bond had a molecular weight of about 1400. It was confirmed that it was a methacrylic resin having a weight average molecular weight of 250,000, which was introduced per unit.

【0034】次に、上記製造例1〜3で製造した化学架
橋可能なポリマーゲル材を含浸させた本発明の実施例の
セパレータと、従来の比較例のセパレータを製造した。
Next, the separator of the example of the present invention impregnated with the chemically crosslinkable polymer gel material produced in the above Production Examples 1 to 3 and the separator of the conventional comparative example were produced.

【0035】(実施例1)製造例1で得られたメタクリ
ル樹脂を炭酸ジエチルに溶解して固形分濃度8質量%の
樹脂溶液を作製した。次に、厚さ15μm、空孔率40
%のポリエチレン製のセパレータをこの樹脂溶液に含浸
し、引き上げて乾燥させ、化学架橋可能なポリマーゲル
材を含浸させたセパレータを得た。
(Example 1) The methacrylic resin obtained in Production Example 1 was dissolved in diethyl carbonate to prepare a resin solution having a solid content concentration of 8% by mass. Next, the thickness is 15 μm and the porosity is 40.
% Polyethylene separator was impregnated with this resin solution, pulled up and dried to obtain a separator impregnated with a chemically crosslinkable polymer gel material.

【0036】(実施例2)メタクリル樹脂の固形分濃度
を10質量%にしたこと以外は、実施例1と同様にし
て、化学架橋可能なポリマーゲル材を含浸させたセパレ
ータを得た。
(Example 2) A separator impregnated with a chemically crosslinkable polymer gel material was obtained in the same manner as in Example 1 except that the solid content concentration of the methacrylic resin was changed to 10% by mass.

【0037】(実施例3)メタクリル樹脂の固形分濃度
を5質量%にしたこと以外は、実施例1と同様にして、
化学架橋可能なポリマーゲル材を含浸させたセパレータ
を得た。
Example 3 The procedure of Example 1 was repeated except that the solid concentration of the methacrylic resin was changed to 5% by mass.
A separator impregnated with a chemically crosslinkable polymer gel material was obtained.

【0038】(実施例4)メタクリル樹脂の固形分濃度
を12質量%にしたこと以外は、実施例1と同様にし
て、化学架橋可能なポリマーゲル材を含浸させたセパレ
ータを得た。
Example 4 A separator impregnated with a chemically crosslinkable polymer gel material was obtained in the same manner as in Example 1 except that the solid content concentration of the methacrylic resin was 12% by mass.

【0039】(実施例5)製造例2で得られたメタクリ
ル樹脂を使用したこと以外は、実施例1と同様にして、
化学架橋可能なポリマーゲル材を含浸させたセパレータ
を得た。
(Example 5) In the same manner as in Example 1 except that the methacrylic resin obtained in Production Example 2 was used,
A separator impregnated with a chemically crosslinkable polymer gel material was obtained.

【0040】(実施例6)製造例3で得られたメタクリ
ル樹脂を使用したこと以外は、実施例1と同様にして、
化学架橋可能なポリマーゲル材を含浸させたセパレータ
を得た。
Example 6 The procedure of Example 1 was repeated except that the methacrylic resin obtained in Production Example 3 was used.
A separator impregnated with a chemically crosslinkable polymer gel material was obtained.

【0041】(比較例1)ポリマーゲル材をまったく含
浸させずに、厚さ15μm、空孔率40%のポリエチレ
ン製のセパレータを準備した。
Comparative Example 1 A polyethylene separator having a thickness of 15 μm and a porosity of 40% was prepared without being impregnated with a polymer gel material.

【0042】次に、上記実施例1〜6及び比較例1のセ
パレータ中のポリマーゲル材の含浸量と耐短絡性を測定
した。
Next, the impregnation amount of the polymer gel material and the short circuit resistance in the separators of Examples 1 to 6 and Comparative Example 1 were measured.

【0043】ポリマーゲル材の含浸量は、含浸前のセパ
レータの質量と含浸・乾燥後のセパレータの質量との差
から求めた。また、セパレータに含浸させるポリマーゲ
ル材の割合であるゲル濃度を下記式から求めた。 ゲル濃度(質量%)=電池内のセパレータの面積
(m2)× ポリマーゲル材の含浸量(g/m2)/電解
液の質量(g)×100 また、耐短絡性は、試料セパレータを挟み込んだ正極、
負極を更に厚さ95μmの三層構造のアルミラミネート
フィルム(外層:ナイロンフィルム、中層:アルミニウ
ム箔、内層:ポリプロピレンフィルム)で両側から挟み
込み、ガラス板上に置いて上から高さ5mm、先端球面
直径0.7mm、底面直径6mmの金属円錐で押し付け
て電極間に100Vの電圧をかけ、抵抗値が1MΩ以下
になったときの荷重を測定した。
The impregnated amount of the polymer gel material was obtained from the difference between the mass of the separator before impregnation and the mass of the separator after impregnation and drying. Further, the gel concentration, which is the ratio of the polymer gel material with which the separator is impregnated, was calculated from the following formula. Gel concentration (mass%) = area of separator in battery (m 2 ) × impregnation amount of polymer gel material (g / m 2 ) / mass of electrolyte solution (g) × 100 Sandwiched positive electrode,
The negative electrode is sandwiched from both sides with a 95 μm thick three-layer aluminum laminate film (outer layer: nylon film, middle layer: aluminum foil, inner layer: polypropylene film), placed on a glass plate, and the height from the top is 5 mm, and the tip spherical diameter. A metal cone having a diameter of 0.7 mm and a bottom diameter of 6 mm was pressed, a voltage of 100 V was applied between the electrodes, and the load when the resistance value became 1 MΩ or less was measured.

【0044】[0044]

【表1】 [Table 1]

【0045】表1から明らかなように、ポリマーゲル材
を含浸しなかった比較例1では耐短絡性が極端に悪いこ
とが分かる。一方、ポリマーゲル材を含浸した実施例1
〜6では比較例1に比べて耐短絡性が向上していること
が分かる。特に、ゲル濃度が5質量%以上であり、ポリ
マーゲル材の重量平均分子量が1万以上の実施例1、実
施例2、実施例4及び実施例6では耐短絡性の向上が大
きい。
As is clear from Table 1, Comparative Example 1 not impregnated with the polymer gel material has extremely poor short circuit resistance. On the other hand, Example 1 impregnated with a polymer gel material
It can be seen that in Examples 6 to 6, short-circuit resistance is improved as compared with Comparative Example 1. In particular, in Example 1, Example 2, Example 4 and Example 6 in which the gel concentration is 5% by mass or more and the weight average molecular weight of the polymer gel material is 10,000 or more, the short circuit resistance is greatly improved.

【0046】次に、上記実施例1〜6のセパレータと、
従来の比較例1のセパレータとを用いてリチウムイオン
二次電池を製造した。
Next, the separators of Examples 1 to 6 above,
A lithium ion secondary battery was manufactured using the conventional separator of Comparative Example 1.

【0047】(実施例7)下記組成のリチウムイオン二
次電池用の正極、負極(対向面積120cm2)を準備
し、これらに実施例1で得られたポリマーゲル材を含浸
させたセパレータを挟み込んで巻回し、電極タブを出し
た後、アルミラミネートフィルムで包み、1方を残して
3方を熱封止した。次に、エチレンカーボネート(E
C)とジエチルカーボネート(DEC)との1:2の混
合溶媒に1.2mol/dm3のLiPF6を溶解させた
電解液に、熱ラジカル重合開始剤であるビス(4−ブチ
ルシクロヘキシル)パーオキシカーボネートを2000
ppm加えた電解液を準備した。この電解液を上記アル
ミラミネート封止体に1.0cm3注液し、最終的に残
りの1方を真空封止して電池を組立てた。 〔正極組成〕 コバルト酸リチウム:90質量部 アセチレンブラック:5質量部 ポリフッ化ビニリデン:5質量部 〔負極組成〕 黒鉛:90質量部 アセチレンブラック:5質量部 ポリフッ化ビニリデン:5質量部 組立てた後の上記電池は80℃で3時間加温し、セパレ
ータに含浸させたポリマーゲル材を膨潤、溶解後、架橋
硬化させてリチウムイオン二次電池を完成した。
Example 7 A positive electrode and a negative electrode (opposing area: 120 cm 2 ) for a lithium ion secondary battery having the following composition were prepared, and the separator impregnated with the polymer gel material obtained in Example 1 was sandwiched between them. After winding, the electrode tab was taken out, and wrapped with an aluminum laminate film, and one side was left and three sides were heat-sealed. Next, ethylene carbonate (E
C) and diethyl carbonate (DEC) in a mixed solvent of 1: 2, 1.2 mol / dm 3 of LiPF 6 was dissolved in an electrolytic solution, and bis (4-butylcyclohexyl) peroxy which was a thermal radical polymerization initiator was added to the electrolytic solution. 2000 carbonate
An electrolyte solution added with ppm was prepared. 1.0 cm 3 of this electrolytic solution was injected into the aluminum laminate sealing body, and finally the remaining one was vacuum-sealed to assemble a battery. [Cathode composition] Lithium cobalt oxide: 90 parts by mass Acetylene black: 5 parts by mass Polyvinylidene fluoride: 5 parts by mass [Negative electrode composition] Graphite: 90 parts by mass Acetylene black: 5 parts by mass Polyvinylidene fluoride: 5 parts by mass After assembly The above battery was heated at 80 ° C. for 3 hours, and the polymer gel material impregnated in the separator was swollen and dissolved, and then crosslinked and cured to complete a lithium ion secondary battery.

【0048】(実施例8)実施例2で得られたポリマー
ゲル材を含浸させたセパレータを使用したこと以外は実
施例7と同様にしてリチウムイオン二次電池を得た。
(Example 8) A lithium ion secondary battery was obtained in the same manner as in Example 7 except that the separator impregnated with the polymer gel material obtained in Example 2 was used.

【0049】(実施例9)実施例3で得られたポリマー
ゲル材を含浸させたセパレータを使用したこと以外は実
施例7と同様にしてリチウムイオン二次電池を得た。
(Example 9) A lithium ion secondary battery was obtained in the same manner as in Example 7 except that the separator impregnated with the polymer gel material obtained in Example 3 was used.

【0050】(実施例10)実施例4で得られたポリマ
ーゲル材を含浸させたセパレータを使用したこと以外は
実施例7と同様にしてリチウムイオン二次電池を得た。
(Example 10) A lithium ion secondary battery was obtained in the same manner as in Example 7 except that the separator impregnated with the polymer gel material obtained in Example 4 was used.

【0051】(実施例11)実施例5で得られたポリマ
ーゲル材を含浸させたセパレータを使用したこと以外は
実施例7と同様にしてリチウムイオン二次電池を得た。
(Example 11) A lithium ion secondary battery was obtained in the same manner as in Example 7, except that the separator impregnated with the polymer gel material obtained in Example 5 was used.

【0052】(実施例12)実施例6で得られたポリマ
ーゲル材を含浸させたセパレータを使用したこと以外は
実施例7と同様にしてリチウムイオン二次電池を得た。
(Example 12) A lithium ion secondary battery was obtained in the same manner as in Example 7 except that the separator impregnated with the polymer gel material obtained in Example 6 was used.

【0053】(比較例2)比較例1で準備したセパレー
タを使用したこと以外は実施例7と同様にしてリチウム
イオン二次電池を得た。
(Comparative Example 2) A lithium ion secondary battery was obtained in the same manner as in Example 7, except that the separator prepared in Comparative Example 1 was used.

【0054】上記実施例7〜12及び比較例2で得られ
た電池を用いて、0.2Cの電流値で定電流・定電圧
(CC−CV)の条件で4.2Vまで8時間充電した。
その後、0.2Cの電流値で定電流(CC)の条件で
3.0Vまで放電した。次に、0.2Cで初期放電容量
を測定し、2Cで高率放電容量を測定した。また、この
2C容量の0.2C容量に対する割合(%)を2C容量
/0.2C容量×100で計算した。最後に、4.2V
まで充電した後、7日間放置して電圧保持率を測定し
た。電圧保持率は、7日放置後の電圧の充電直後の電圧
に対する割合(%)で示した。その結果を表2に示す。
Using the batteries obtained in Examples 7 to 12 and Comparative Example 2 above, the battery was charged to 4.2V for 8 hours under the condition of constant current / constant voltage (CC-CV) at a current value of 0.2C. .
Then, it was discharged to 3.0 V under a constant current (CC) condition with a current value of 0.2 C. Next, the initial discharge capacity was measured at 0.2C, and the high rate discharge capacity was measured at 2C. The ratio (%) of the 2C capacity to the 0.2C capacity was calculated as 2C capacity / 0.2C capacity × 100. Finally, 4.2V
The battery was left for 7 days and the voltage holding ratio was measured. The voltage holding ratio was indicated by the ratio (%) of the voltage after standing for 7 days to the voltage immediately after charging. The results are shown in Table 2.

【0055】[0055]

【表2】 [Table 2]

【0056】表2から明らかなように、ポリマーゲル材
を含浸しなかったセパレータを用いた比較例2では電圧
保持率が極端に悪く、大きな短絡が発生していることが
分かる。一方、ポリマーゲル材を含浸したセパレータを
用いた実施例7〜12では電圧保持率が高いことが分か
る。更に、ゲル濃度が10質量%以下であり、ポリマー
ゲル材の重量平均分子量が20万以下の実施例7、実施
例8、実施例9及び実施例11では、電圧保持率に加え
て負荷特性も優れている。なお、初期放電容量は、実施
例7〜12及び比較例2ともに高容量を示した。
As is clear from Table 2, in Comparative Example 2 in which the separator not impregnated with the polymer gel material was used, the voltage holding ratio was extremely poor and a large short circuit occurred. On the other hand, in Examples 7 to 12 using the separator impregnated with the polymer gel material, the voltage holding ratio is high. Furthermore, in Example 7, Example 8, Example 9, and Example 11 in which the gel concentration is 10% by mass or less and the weight average molecular weight of the polymer gel material is 200,000 or less, the load characteristics are obtained in addition to the voltage holding ratio. Are better. The initial discharge capacity was high in all of Examples 7 to 12 and Comparative Example 2.

【0057】表1及び表2の結果より、前記ポリマーゲ
ル材の重量平均分子量がは1万から20万であることが
好ましく、また、前記セパレータに塗布又は含浸させる
前記ポリマーゲル材の割合は電池中の全電解液の質量に
対して5〜10質量%であることが好ましい。
From the results shown in Tables 1 and 2, it is preferable that the weight average molecular weight of the polymer gel material is 10,000 to 200,000, and the ratio of the polymer gel material coated or impregnated in the separator is the battery. It is preferably 5 to 10 mass% with respect to the mass of the entire electrolytic solution.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H021 AA06 BB12 BB13 BB17 CC02 CC04 CC17 EE01 EE33 HH01 HH03 5H029 AJ03 AJ12 AK03 AL07 AM00 AM03 AM07 AM16 BJ04 BJ14 CJ00 CJ22 CJ23 CJ28 DJ04 EJ00 HJ02 HJ04 HJ11    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H021 AA06 BB12 BB13 BB17 CC02                       CC04 CC17 EE01 EE33 HH01                       HH03                 5H029 AJ03 AJ12 AK03 AL07 AM00                       AM03 AM07 AM16 BJ04 BJ14                       CJ00 CJ22 CJ23 CJ28 DJ04                       EJ00 HJ02 HJ04 HJ11

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 5〜16μmの厚さの微孔性フィルムを
セパレータとして用いたリチウムイオン二次電池の製造
方法であって、化学架橋可能なポリマーゲル材を前記セ
パレータに塗布又は含浸させて乾燥した後、前記セパレ
ータを正極及び負極とともに積層又は捲回して電極体を
構成し、前記ポリマーゲル材の硬化剤を溶解させた電解
液と、前記電極体とを外装体内部に収納して密閉し、前
記ポリマーゲル材と前記硬化剤とを反応させてポリマー
ゲル電解質を形成することを特徴とするリチウムイオン
二次電池の製造方法。
1. A method of manufacturing a lithium ion secondary battery using a microporous film having a thickness of 5 to 16 μm as a separator, wherein a chemically crosslinkable polymer gel material is applied or impregnated on the separator and dried. After that, the separator is laminated or wound together with the positive electrode and the negative electrode to form an electrode body, and the electrolytic solution in which the curing agent of the polymer gel material is dissolved and the electrode body are housed and sealed in the exterior body. A method for producing a lithium ion secondary battery, which comprises reacting the polymer gel material with the curing agent to form a polymer gel electrolyte.
【請求項2】 前記ポリマーゲル材の重量平均分子量
が、1万から20万である請求項1に記載のリチウムイ
オン二次電池の製造方法。
2. The method for producing a lithium ion secondary battery according to claim 1, wherein the polymer gel material has a weight average molecular weight of 10,000 to 200,000.
【請求項3】 前記セパレータに塗布又は含浸させる前
記ポリマーゲル材の割合が、電池中の全電解液の質量に
対して5〜10質量%である請求項1又は2に記載のリ
チウムイオン二次電池の製造方法。
3. The lithium ion secondary according to claim 1 or 2, wherein a proportion of the polymer gel material applied to or impregnated in the separator is 5 to 10% by mass with respect to the mass of the entire electrolytic solution in the battery. Battery manufacturing method.
JP2001336809A 2001-11-01 2001-11-01 Method for manufacturing lithium ion secondary battery Withdrawn JP2003142158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001336809A JP2003142158A (en) 2001-11-01 2001-11-01 Method for manufacturing lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001336809A JP2003142158A (en) 2001-11-01 2001-11-01 Method for manufacturing lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2003142158A true JP2003142158A (en) 2003-05-16

Family

ID=19151571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001336809A Withdrawn JP2003142158A (en) 2001-11-01 2001-11-01 Method for manufacturing lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2003142158A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004185920A (en) * 2002-12-02 2004-07-02 Nitto Denko Corp Cross-linked polymer supporting porous film for separator for battery and manufacturing method of battery using it
WO2004107479A1 (en) * 2003-05-30 2004-12-09 Lg Chem, Ltd. Rechargeable lithium battery using separator partially coated with gel polymer
JP2005158671A (en) * 2003-10-28 2005-06-16 Nitto Denko Corp Battery
JP2005209474A (en) * 2004-01-22 2005-08-04 Nitto Denko Corp Reactive polymer carrying porous film for battery separator and its use
JP2005327663A (en) * 2004-05-17 2005-11-24 Nitto Denko Corp Electrode element and method of manufacturing large-sized rechargeable lithium-ion battery
JP2006012562A (en) * 2004-06-24 2006-01-12 Nitto Denko Corp Positive electrode for battery/reactive polymer carrying porous film/negative electrode laminated body
JP2006092848A (en) * 2004-09-22 2006-04-06 Nitto Denko Corp Porous film carrying reactive polymer for separator for battery, and manufacturing method for battery using the same
WO2006038362A1 (en) * 2004-09-30 2006-04-13 Nitto Denko Corporation Reactive-polymer-carrying porous film and process for producing the same
JP2006278235A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Polymer for lithium ion secondary battery, and lithium ion secondary battery using it
JP2007035557A (en) * 2005-07-29 2007-02-08 Nitto Denko Corp Separator for battery and manufacturing method of battery using same
JP2007035544A (en) * 2005-07-29 2007-02-08 Nitto Denko Corp Separator for battery and manufacturing method of battery using same
JP2007258066A (en) * 2006-03-24 2007-10-04 Sony Corp Battery
JP2011060470A (en) * 2009-09-07 2011-03-24 Nitto Denko Corp Battery separator, and battery using the same
US8062387B2 (en) 2003-08-26 2011-11-22 Nitto Denko Corporation Reactive polymer-supporting porous film for battery separator and use thereof
JP2014135289A (en) * 2014-03-14 2014-07-24 Nitto Denko Corp Separator for battery
US8911648B2 (en) 2004-11-08 2014-12-16 Nitto Denko Corporation Reactive polymer-supported porous film for battery separator, method for producing the porous film, method for producing battery using the porous film, and electrode/porous film assembly
JP2021504905A (en) * 2018-01-18 2021-02-15 エルジー・ケム・リミテッド Separation membrane for lithium secondary battery and lithium secondary battery containing it

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9533475B2 (en) 2002-12-02 2017-01-03 Nitto Denko Corporation Crosslinking polymer-supported porous film for battery separator and method for producing battery using the same
JP4549621B2 (en) * 2002-12-02 2010-09-22 日東電工株式会社 Crosslinkable polymer-supported porous film for battery separator and battery manufacturing method using the same
JP2004185920A (en) * 2002-12-02 2004-07-02 Nitto Denko Corp Cross-linked polymer supporting porous film for separator for battery and manufacturing method of battery using it
JP2006525624A (en) * 2003-05-30 2006-11-09 エルジー・ケム・リミテッド Lithium secondary battery using separator membrane partially coated with gel polymer
WO2004107479A1 (en) * 2003-05-30 2004-12-09 Lg Chem, Ltd. Rechargeable lithium battery using separator partially coated with gel polymer
US8003263B2 (en) 2003-05-30 2011-08-23 Lg Chem, Ltd. Rechargeable lithium battery using separator partially coated with gel polymer
US8277897B2 (en) 2003-08-26 2012-10-02 Nitto Denko Corporation Reactive polymer-supporting porous film for battery separator and use thereof
US8062387B2 (en) 2003-08-26 2011-11-22 Nitto Denko Corporation Reactive polymer-supporting porous film for battery separator and use thereof
JP4537736B2 (en) * 2003-10-28 2010-09-08 日東電工株式会社 battery
JP2005158671A (en) * 2003-10-28 2005-06-16 Nitto Denko Corp Battery
JP2005209474A (en) * 2004-01-22 2005-08-04 Nitto Denko Corp Reactive polymer carrying porous film for battery separator and its use
JP4596784B2 (en) * 2004-01-22 2010-12-15 日東電工株式会社 Reactive polymer-supported porous film for battery separator and its use
JP2005327663A (en) * 2004-05-17 2005-11-24 Nitto Denko Corp Electrode element and method of manufacturing large-sized rechargeable lithium-ion battery
JP4601323B2 (en) * 2004-05-17 2010-12-22 日東電工株式会社 Electrode element for large-sized lithium ion secondary battery and manufacturing method thereof
JP4653425B2 (en) * 2004-06-24 2011-03-16 日東電工株式会社 Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate
JP2006012562A (en) * 2004-06-24 2006-01-12 Nitto Denko Corp Positive electrode for battery/reactive polymer carrying porous film/negative electrode laminated body
JP4718816B2 (en) * 2004-09-22 2011-07-06 日東電工株式会社 Reactive polymer-supported porous film for battery separator and battery manufacturing method using the same
JP2006092848A (en) * 2004-09-22 2006-04-06 Nitto Denko Corp Porous film carrying reactive polymer for separator for battery, and manufacturing method for battery using the same
WO2006038362A1 (en) * 2004-09-30 2006-04-13 Nitto Denko Corporation Reactive-polymer-carrying porous film and process for producing the same
US8092935B2 (en) 2004-09-30 2012-01-10 Nitto Denko Corporation Reactive polymer-carrying porous film and process for producing the same
JP2006128069A (en) * 2004-09-30 2006-05-18 Nitto Denko Corp Porous film carrying reactive polymer and its manufacturing method
US8911648B2 (en) 2004-11-08 2014-12-16 Nitto Denko Corporation Reactive polymer-supported porous film for battery separator, method for producing the porous film, method for producing battery using the porous film, and electrode/porous film assembly
JP2006278235A (en) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd Polymer for lithium ion secondary battery, and lithium ion secondary battery using it
US8354188B2 (en) 2005-03-30 2013-01-15 Sanyo Electric Co., Ltd. Polymer for lithium ion secondary battery and lithium ion secondary battery using same
JP2007035544A (en) * 2005-07-29 2007-02-08 Nitto Denko Corp Separator for battery and manufacturing method of battery using same
JP2007035557A (en) * 2005-07-29 2007-02-08 Nitto Denko Corp Separator for battery and manufacturing method of battery using same
JP2007258066A (en) * 2006-03-24 2007-10-04 Sony Corp Battery
JP2011060470A (en) * 2009-09-07 2011-03-24 Nitto Denko Corp Battery separator, and battery using the same
JP2014135289A (en) * 2014-03-14 2014-07-24 Nitto Denko Corp Separator for battery
JP2021504905A (en) * 2018-01-18 2021-02-15 エルジー・ケム・リミテッド Separation membrane for lithium secondary battery and lithium secondary battery containing it
JP7045560B2 (en) 2018-01-18 2022-04-01 エルジー エナジー ソリューション リミテッド Separation membrane for lithium secondary battery and lithium secondary battery containing it

Similar Documents

Publication Publication Date Title
JP2003142158A (en) Method for manufacturing lithium ion secondary battery
JP5394239B2 (en) Gel polymer electrolyte and electrochemical device provided with the same
US7135254B2 (en) Multi-layered, UV-cured polymer electrolyte and lithium secondary battery comprising the same
JP2020526897A (en) Composite solid electrolyte membrane for all-solid-state battery and all-solid-state battery containing it
US7267910B2 (en) Chemical battery containing gel electrolyte based on crosslinked epoxy compound having an alicyclic structure
Xu et al. Facile and powerful in situ polymerization strategy for sulfur-based all-solid polymer electrolytes in lithium batteries
CN110945702B (en) Solid electrolyte composition, sheet containing solid electrolyte, all-solid secondary battery, and method for producing both
KR100525278B1 (en) Method For Fabricating Lithium-Ion Polymer Battery With Interpenetrating Network Type Gel Polymer Electrolyte
JPH0554914A (en) Secondary battery
KR101190145B1 (en) Polymer electrolyte composite containing the amine acrylate compounds and lithium-polymer secondary battery using the same
CN111095655A (en) Gel electrolyte, hard gel electrolyte and electrochemical device
JPH05314965A (en) Battery positive electrode sheet, manufacture thereof and totally solid secondary battery
JP2003142159A (en) Method for manufacturing lithium ion secondary battery
JPH11171910A (en) Electrochemically polymerizable composition and use thereof
CN108470937A (en) A kind of synthetic method and lithium ion battery of crosslinking nano composite polymer electrolyte
JP2000021406A (en) Electrode binding agent and its use
CN114927754A (en) Polymer solid electrolyte, preparation method thereof and solid battery
JP2023512820A (en) Method for producing gel polymer electrolyte secondary battery, and gel polymer electrolyte secondary battery produced thereby
KR20010037100A (en) Polymer electrolyte, method for preparing the same, and lithium secondary battery employing the same
JPH11171912A (en) Polymerizable composition and use thereof
JP2000003728A (en) Lithium secondary battery and manufacture thereof
JP4288863B2 (en) Lithium secondary battery
WO1994019840A1 (en) Cell and method of its manufacture
JP4054925B2 (en) Lithium battery
JP4156495B2 (en) Gel electrolyte, its production method and its use

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104