JP4537736B2 - battery - Google Patents

battery Download PDF

Info

Publication number
JP4537736B2
JP4537736B2 JP2004069448A JP2004069448A JP4537736B2 JP 4537736 B2 JP4537736 B2 JP 4537736B2 JP 2004069448 A JP2004069448 A JP 2004069448A JP 2004069448 A JP2004069448 A JP 2004069448A JP 4537736 B2 JP4537736 B2 JP 4537736B2
Authority
JP
Japan
Prior art keywords
porous film
battery
electrode
reactive polymer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004069448A
Other languages
Japanese (ja)
Other versions
JP2005158671A (en
Inventor
智昭 市川
道夫 薩摩
敬介 喜井
慶裕 植谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2004069448A priority Critical patent/JP4537736B2/en
Publication of JP2005158671A publication Critical patent/JP2005158671A/en
Application granted granted Critical
Publication of JP4537736B2 publication Critical patent/JP4537736B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、高温下にも高い安全性を有する電池に関し、詳しくは、高温環境下に多孔質フィルムからなるセパレータが電極と強固に接着して熱収縮しないので、かくして、高温下に高い安全性を有する電池に関する。   The present invention relates to a battery having high safety even at high temperatures, and more specifically, since a separator made of a porous film adheres firmly to an electrode and does not thermally shrink in a high temperature environment, thus, high safety at high temperatures. The present invention relates to a battery having

従来、電池の製造方法として、正極と負極との間にこれら電極間の短絡を防止するためのセパレータを挟んで積層し、又は正(負)極、セパレータ、負(正)極及びセパレータをこの順序に積層し、捲回して、電極/セパレータ積層体とし、この電極/セパレータ積層体を電池容器内に仕込んだ後、この電池容器内に電解液を注入して、封口する方法が知られている(例えば、特許文献1及び2参照)。   Conventionally, as a method of manufacturing a battery, a positive electrode and a negative electrode are laminated with a separator for preventing a short circuit between the electrodes, or a positive (negative) electrode, a separator, a negative (positive) electrode, and a separator are laminated. It is known that the electrode / separator laminate is stacked in order and wound into an electrode / separator laminate, and after the electrode / separator laminate is charged into the battery container, an electrolytic solution is injected into the battery container and sealed. (For example, see Patent Documents 1 and 2).

このようにして得られた電池の問題点として、電池を異常な高温環境下に放置したり、過充電したり、また、電池の内部、外部で電極間の短絡が生じたような場合、電池が異常に発熱し、その急激な温度上昇によって、電池内部の電解液が電池外に噴出し、場合によっては、破壊するおそれがあった。   Problems with the battery obtained in this way are that if the battery is left in an abnormally high temperature environment, overcharged, or if a short circuit occurs between electrodes inside or outside the battery, Generated abnormally, and the rapid rise in temperature caused the electrolyte inside the battery to be ejected outside the battery, possibly resulting in destruction.

また、従来、電池用セパレータのための多孔質フィルムは、例えば、成形した樹脂シートを高倍率延伸する方法にて製造されている。従って、そのような多孔質フィルムからなる電池用セパレータは、例えば、電池が内部短絡によって異常昇温したような高温環境下では、著しく収縮し、場合によっては、セパレータ自身が融解、破膜し、電極間の隔壁として機能しなくなるという問題がある。かくして、電池の安全性を向上させるために、このような高温環境下での電池用セパレータの熱収縮率の低減が重要な課題とされている(特許文献3参照)。   Conventionally, a porous film for a battery separator is produced, for example, by a method of stretching a molded resin sheet at a high magnification. Therefore, a battery separator made of such a porous film, for example, contracts significantly in a high temperature environment where the battery is abnormally heated due to an internal short circuit, and in some cases, the separator itself melts and breaks, There is a problem that it does not function as a partition between electrodes. Thus, in order to improve the safety of the battery, reduction of the thermal contraction rate of the battery separator under such a high temperature environment is an important issue (see Patent Document 3).

この点に関し、高温環境下での電池用セパレータの熱収縮を抑制するために、製造工程中に延伸処理を含まない方法によって、多孔質フィルムを製造する方法が提案されている。しかしながら、この方法では、延伸処理を含まないので、得られるフィルムが十分な強度をもたないという問題がある(特許文献4参照)。
特開平09−161814号公報 特開平11−329439号公報 特開平09−12756号公報 特開平05−310989号公報
In this regard, in order to suppress thermal shrinkage of the battery separator in a high temperature environment, a method of manufacturing a porous film by a method that does not include a stretching process in the manufacturing process has been proposed. However, since this method does not include a stretching treatment, there is a problem that the resulting film does not have sufficient strength (see Patent Document 4).
JP 09-161814 A JP 11-329439 A JP 09-12756 A Japanese Patent Laid-Open No. 05-310989

本発明は、従来の電池における上述したような問題を解決するためになされたものであって、電池が高温環境下に置かれた場合には、セパレータが電極と強固に接着して、(殆ど)熱収縮せず、かくして、高温環境下での安全性にすぐれた電池を提供することを目的とする。   The present invention has been made in order to solve the above-described problems in the conventional battery. When the battery is placed in a high temperature environment, the separator is firmly bonded to the electrode, and (almost) ) It is an object to provide a battery which does not shrink by heat and thus has excellent safety in a high temperature environment.

本発明によれば、ガラス転移温度が0〜100℃の範囲にあり、加熱下にイソシアネート基と反応し得る官能基を有する反応性ポリマーを多孔質フィルムに担持させ、この多孔質フィルムを挟んで、これに接触して正極と負極とを重ねて、電極/多孔質フィルム積層体とし、この電極/多孔質フィルム積層体を多官能イソシアネートを含む電解液と共に電池容器内に仕込んでなる電池であって、常温において、上記電解液の存在下に上記多孔質フィルムと電極との間の上記反応性ポリマーによる接着力が0.05N/10mm以下であることを特徴とする電池が提供される。   According to the present invention, the glass transition temperature is in the range of 0 to 100 ° C., and the reactive polymer having a functional group capable of reacting with an isocyanate group under heating is supported on the porous film, and the porous film is sandwiched between the porous films. In this battery, a positive electrode and a negative electrode are stacked in contact with each other to form an electrode / porous film laminate, and this electrode / porous film laminate is charged into a battery container together with an electrolyte containing polyfunctional isocyanate. Thus, there is provided a battery characterized in that the adhesive force by the reactive polymer between the porous film and the electrode is 0.05 N / 10 mm or less at room temperature in the presence of the electrolytic solution.

本発明の電池においては、セパレータ(多孔質フィルム)上に担持された反応性ポリマーは、常温においては、電池特性に殆ど影響を及ぼさないが、電池が高温環境下に置かれたとき、反応性ポリマーは、電解液中の多官能イソシアネートと反応し、架橋して、セパレータは電極と強固に接着して、セパレータが(殆ど)収縮しないので、電池の安全性が保たれる。   In the battery of the present invention, the reactive polymer supported on the separator (porous film) has little effect on the battery characteristics at room temperature, but is reactive when the battery is placed in a high temperature environment. The polymer reacts with the polyfunctional isocyanate in the electrolytic solution, crosslinks, the separator adheres firmly to the electrode, and the separator does not shrink (almost), so that the safety of the battery is maintained.

本発明において、多孔質フィルムは、適宜の樹脂からなり、例えば、ポリエチレン、ポリプロピレン、ポリブチレン等のポリオレフィン樹脂、所謂熱可塑性エラストマー、ナイロン、セルロースアセテート、ポリアクリロニトリル、ポリノルボルネン等や、また、これらの適宜の混合物を用いて、既に知られているように、乾式成膜法や湿式成膜法等の方法によって得ることができる。例えば、上記樹脂を溶媒と混合し、加熱し、溶融混練しながら、シートに成形し、次いで、圧延し、延伸し、この後、用いた溶媒を抽出除去すれば、得ることができる。必要に応じて、樹脂に架橋性ゴムを含有させて、これを上述したようにして多孔質フィルムとした後、熱、紫外線、電子線等によって架橋させて、耐熱性を付与することもできる。   In the present invention, the porous film is made of an appropriate resin, for example, a polyolefin resin such as polyethylene, polypropylene, and polybutylene, a so-called thermoplastic elastomer, nylon, cellulose acetate, polyacrylonitrile, polynorbornene, and the like. Can be obtained by a method such as a dry film forming method or a wet film forming method, as already known. For example, it can be obtained by mixing the resin with a solvent, heating, melting and kneading into a sheet, then rolling and stretching, and then extracting and removing the solvent used. If necessary, the resin can contain a cross-linkable rubber to form a porous film as described above, and then cross-linked with heat, ultraviolet light, electron beam or the like to impart heat resistance.

本発明においては、ガラス転移温度が0〜100℃の範囲にあって、常温(25℃)において非接着性であり、加熱下にイソシアネート基と反応し得る官能基を有する反応性ポリマーを多孔質フィルムに担持させて、反応性ポリマー担持多孔質フィルムとする。ここに、反応性ポリマーが常温において非接着性であるとは、後述するように、この反応性ポリマーを多孔質フィルムに担持させ、この多孔質フィルムを挟んで、これに接触して正極と負極とを重ねて、電極/多孔質フィルム積層体とし、この積層体における多孔質フィルムと電極との間の接着力を多官能イソシアネートを含む電解液の存在下に測定するとき、例えば、積層体にこの電解液を含浸させて、多孔質フィルムと電極との間の接着力を測定するとき、この接着力が0.05N/10mm以下であることをいう。   In the present invention, a reactive polymer having a glass transition temperature in the range of 0 to 100 ° C. and having non-adhesive properties at room temperature (25 ° C.) and capable of reacting with an isocyanate group under heating is porous. The film is supported on a film to form a reactive polymer-supported porous film. Here, the reactive polymer is non-adhesive at room temperature, as described later, this reactive polymer is supported on a porous film, and the porous film is sandwiched between and in contact with the positive electrode and the negative electrode. Are stacked to form an electrode / porous film laminate, and the adhesive force between the porous film and the electrode in this laminate is measured in the presence of an electrolyte containing polyfunctional isocyanate, for example, When this adhesive solution is impregnated and the adhesive force between the porous film and the electrode is measured, it means that the adhesive force is 0.05 N / 10 mm or less.

本発明によれば、このように、反応性ポリマーを多孔質フィルムに担持させるに際しては、反応性ポリマーを担持させる多孔質フィルムの表面の表面積の5〜95%の範囲で部分的に担持させることが好ましく、特に、10〜80%の範囲で担持させることが好ましい。   According to the present invention, when the reactive polymer is thus supported on the porous film, the reactive polymer is partially supported within a range of 5 to 95% of the surface area of the surface of the porous film on which the reactive polymer is supported. In particular, it is preferably supported in the range of 10 to 80%.

本発明において、反応性ポリマーは、このように、ガラス転移温度が0〜100℃、好ましくは、30〜80℃の範囲にあって、常温において非接着性であるが、加熱下においては、イソシアネート基と反応し得る官能基を有するポリマーである。上記官能基としては、例えば、カルボキシル基やヒドロキシル基を挙げることができる。   In the present invention, the reactive polymer has a glass transition temperature in the range of 0 to 100 ° C., preferably 30 to 80 ° C., and is non-adhesive at normal temperature. A polymer having a functional group capable of reacting with a group. Examples of the functional group include a carboxyl group and a hydroxyl group.

上記反応性ポリマーは、通常、上記官能基を有する重合性モノマーをそのような官能基をもたない重合性モノマーと共重合、好ましくは、ラジカル共重合させることによって得ることができる。上記官能基としてカルボキシル基を有する重合性モノマーとしては、例えば、(メタ)アクリル酸、イタコン酸、マレイン酸等を挙げることができる。また、上記官能基としてヒドロキシル基を有する重合性モノマーとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート等を挙げることができる。他方、上記官能基をもたないモノマーとしては、例えば、(メタ)アクリル酸エステルを好ましい具体例として挙げることができる。   The reactive polymer can be usually obtained by copolymerizing a polymerizable monomer having the functional group with a polymerizable monomer having no such functional group, preferably by radical copolymerization. Examples of the polymerizable monomer having a carboxyl group as the functional group include (meth) acrylic acid, itaconic acid, maleic acid and the like. Moreover, as a polymerizable monomer which has a hydroxyl group as said functional group, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate etc. can be mentioned, for example. . On the other hand, as a monomer which does not have the said functional group, (meth) acrylic acid ester can be mentioned as a preferable specific example, for example.

この(メタ)アクリル酸エステルとしては、例えば、エチル(メタ)アクリレート、プチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート等のように、アルキル基における炭素原子数が1〜12のアルキルエステルが好ましく用いられる。   Examples of the (meth) acrylic acid ester include ethyl (meth) acrylate, butyl (meth) acrylate, propyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dodecyl (meth) acrylate, and the like. As described above, alkyl esters having 1 to 12 carbon atoms in the alkyl group are preferably used.

特に、本発明においては、反応性ポリマーは、一例として、上述したようなイソシアネート基と反応し得る官能基を有するモノマー成分0.1〜20重量%と上記(メタ)アクリル酸エステルと、必要に応じて、これ以外のモノマー、例えば、ニトリル基を有する共重合性モノマー成分、好ましくは、(メタ)アクリロニトリルや、スチレン、α−メチルスチレン、酢酸ビニルのようなビニルモノマーとの共重合によって得ることができる。   In particular, in the present invention, the reactive polymer includes, as an example, 0.1 to 20% by weight of a monomer component having a functional group capable of reacting with an isocyanate group as described above, and the (meth) acrylic acid ester as necessary. Depending on the monomer, for example, a copolymerizable monomer component having a nitrile group, preferably obtained by copolymerization with a vinyl monomer such as (meth) acrylonitrile, styrene, α-methylstyrene or vinyl acetate. Can do.

特に、本発明においては、ニトリル基を有する共重合性モノマー成分、好ましくは、(メタ)アクリロニトリル成分を80重量%まで、好ましくは、5〜70重量%の範囲にて有する反応性ポリマーは、耐熱性と耐溶剤性にすぐれるので、好ましい反応性ポリマーの一例である。   In particular, in the present invention, a reactive polymer having a copolymerizable monomer component having a nitrile group, preferably a (meth) acrylonitrile component up to 80% by weight, preferably in the range of 5 to 70% by weight, This is an example of a preferred reactive polymer because of its excellent properties and solvent resistance.

しかし、本発明において、反応性ポリマーは、上記の例示に限られるものではなく、イソシアネート基と反応し得る官能基、例えば、前述したようなカルボキシル基やヒドロキシル基のような官能基を有するポリマーであればよく、例えば、そのような官能基を有するポリオレフィン系ポリマー、ゴム系ポリマー、ポリエステル系ポリマー等も用いることができる。   However, in the present invention, the reactive polymer is not limited to the above examples, and is a polymer having a functional group capable of reacting with an isocyanate group, for example, a functional group such as a carboxyl group or a hydroxyl group as described above. For example, a polyolefin polymer, a rubber polymer, a polyester polymer or the like having such a functional group can also be used.

上述したような反応性ポリマーは、例えば、ベンゼン、トルエン、キシレン、酢酸エチル、酢酸ブチルのような溶剤中で前述したようなモノマーを共重合させることによって、ポリマー溶液として得ることができる。他方、エマルジョン重合によれば、反応性ポリマーの水分散液を得ることができるので、これよりポリマーを分離、乾燥した後、上述したような溶剤に溶解させて、ポリマー溶液として用いる。尚、エマルジョン法によるときは、前述したモノマーに加えて、ジビニルベンゼン、トリメチロールプロパントリアクリレート等のような多官能性架橋性モノマーを全モノマー量の1重量%以下の割合で用いてもよい。   The reactive polymer as described above can be obtained as a polymer solution by copolymerizing the above-described monomers in a solvent such as benzene, toluene, xylene, ethyl acetate and butyl acetate. On the other hand, by emulsion polymerization, an aqueous dispersion of a reactive polymer can be obtained. Thus, after the polymer is separated and dried from this, it is dissolved in a solvent as described above and used as a polymer solution. In addition, when using the emulsion method, in addition to the above-described monomers, a polyfunctional crosslinking monomer such as divinylbenzene or trimethylolpropane triacrylate may be used in a proportion of 1% by weight or less of the total monomer amount.

上述したような反応性ポリマーを多孔質フイルムに担持させて、反応性ポリマー担持多孔質フィルムを得るには、例えば、上記反応性ポリマーを多孔フィルム上に直接、塗布し、乾燥させてもよく、また、適宜の剥離性シートに塗布し、乾燥させた後、多孔質フィルム上に転写してもよい。また、反応性ポリマーの多孔質フィルムヘの塗工性を向上させるために、メチルエチルケトン、メチルイソブチルケトンのような有機溶剤や、重質炭酸カルシウム、ケイ砂微粉末等のような無機質微粉末を流動性改質剤として50重量%以下の割合で反応性ポリマーに配合してもよい。   In order to obtain a reactive polymer-supported porous film by supporting the reactive polymer as described above on a porous film, for example, the reactive polymer may be applied directly on the porous film and dried. Moreover, after apply | coating to an appropriate peelable sheet and making it dry, you may transfer on a porous film. In addition, in order to improve the coating properties of reactive polymers on porous films, organic solvents such as methyl ethyl ketone and methyl isobutyl ketone, and inorganic fine powders such as heavy calcium carbonate and silica sand fine powder are fluid. You may mix | blend with a reactive polymer in the ratio of 50 weight% or less as a modifier.

更に、本発明によれば、多孔質フィルムに反応性ポリマーを担持させる際に、前述したように、部分的に担持させるのが好ましく、具体的には、例えば、線状、斑点状、格子状、縞状、亀甲模様状等に部分的に担持させるのが好ましい。特に、本発明によれば、反応性ポリマーを塗布する多孔質フィルムの表面の面積の5〜95%の範囲に担持させることが好ましい。   Furthermore, according to the present invention, when the reactive polymer is supported on the porous film, it is preferably supported partially as described above, specifically, for example, linear, speckled, lattice-shaped, for example. It is preferable to partially carry it in a stripe shape, a turtle shell pattern shape, or the like. In particular, according to the present invention, it is preferable to support the reactive polymer in the range of 5 to 95% of the surface area of the porous film to which the reactive polymer is applied.

本発明において、正極と負極は、電池によって相違するが、一般に、導電性基材に活物質と、必要に応じて、導電剤とを樹脂バインダーを用いて、担持させてなるシート状のものが用いられる。   In the present invention, the positive electrode and the negative electrode differ depending on the battery, but in general, a sheet-like material in which an active material and, if necessary, a conductive agent are supported on a conductive base material using a resin binder is used. Used.

本発明によれば、このようにして、多孔質フィルムの表裏両面又は片面に反応性ポリマーを担持させ、その表裏両面に電極、即ち、負極と正極をそれぞれ接触するように重ねて、積層し、電極/多孔質フィルム積層体として用いる。勿論、正(負)極/多孔質フィルム/負(正)極/多孔質フィルムの構成を有する積層体とすることもできる。必要に応じて、反応性ポリマー担持多孔質フィルムに電極を圧着するように接触させて、積層してもよい。   According to the present invention, in this way, the reactive polymer is supported on both the front and back sides or one side of the porous film, and the electrodes, that is, the negative electrode and the positive electrode are stacked so as to be in contact with each other. Used as an electrode / porous film laminate. Of course, it can also be set as the laminated body which has the structure of a positive (negative) pole / porous film / negative (positive) pole / porous film. If necessary, the electrode may be brought into contact with the reactive polymer-supported porous film so as to be laminated.

本発明による電池は、上記電極/多孔質フィルム積層体を電池容器内に仕込んだ後、多官能性イソシアネートを含む電解液を上記電池容器内に注入し、封止することによって得ることができる。即ち、本発明による電池は、上記電極/多孔質フィルム積層体と多官能イソシアネートとを含む電解液を電池容器内に有するものであり、ここに、本発明によれば、常温(25℃)で上記電解液の存在下の電極と多孔質フィルムとの間の接着力が0.05N/10mm以下であると共に、上記電極/多孔質フィルム積層体を電解液の存在下に150℃で1時間加熱したときの多孔質フィルムの面積収縮率が20%以下である。   The battery according to the present invention can be obtained by charging the electrode / porous film laminate into a battery container, and then injecting an electrolyte containing polyfunctional isocyanate into the battery container and sealing the battery. That is, the battery according to the present invention has an electrolytic solution containing the electrode / porous film laminate and the polyfunctional isocyanate in a battery container, and according to the present invention, at room temperature (25 ° C.). The adhesive force between the electrode in the presence of the electrolytic solution and the porous film is 0.05 N / 10 mm or less, and the electrode / porous film laminate is heated at 150 ° C. for 1 hour in the presence of the electrolytic solution. The area shrinkage ratio of the porous film is 20% or less.

このような電池によれば、多孔質フィルムに担持された反応性ポリマーは、常温(25℃)においては、非接着性であるので、セパレータとして機能する多孔質フィルムは、電極と接触していても、多孔質フィルムと電極との間には殆ど接着がなく、従って、反応性ポリマーは、電池反応に対して抵抗とならないので、電池は、セパレータ上に反応性ポリマーを担持していないと同様の特性を有する。しかし、電池が内部短絡等によって異常昇温し、100℃以上の温度を有するようになる高温環境下では、電解液を形成する有機溶媒が一部揮発して、電池の内部において圧力が発生し、セパレータが電極に密着せしめられると共に、多孔質フイルムに担持されている反応性ポリマーが少なくとも一部、融解して、電解液中の多官能イソシアネートによって架橋反応を起こして、多孔質フィルムに密着している電極との間に強固な接着が生じるので、多孔質フィルムは高温環境下における熱収縮が抑制される。かくして、本発明の電池によれば、常温域における電池特性が維持されると共に、電池が高温環境下に置かれた場合にも、その安全性が確保される。   According to such a battery, since the reactive polymer supported on the porous film is non-adhesive at room temperature (25 ° C.), the porous film functioning as a separator is in contact with the electrode. However, since there is almost no adhesion between the porous film and the electrode, and therefore the reactive polymer is not resistant to the battery reaction, the battery is similar to not carrying the reactive polymer on the separator. It has the characteristic of. However, in a high temperature environment where the battery is abnormally heated due to an internal short circuit or the like and has a temperature of 100 ° C. or higher, the organic solvent forming the electrolytic solution partially volatilizes and pressure is generated inside the battery. The separator is brought into intimate contact with the electrode, and at least a part of the reactive polymer supported on the porous film is melted to cause a cross-linking reaction with the polyfunctional isocyanate in the electrolytic solution, thereby adhering to the porous film. Since strong adhesion occurs between the electrodes and the porous film, thermal contraction of the porous film in a high temperature environment is suppressed. Thus, according to the battery of the present invention, the battery characteristics in the normal temperature range are maintained, and the safety is ensured even when the battery is placed in a high temperature environment.

後述するように、本発明において、電解液を形成するための有機溶媒は、特に限定されるものではないが、例えば、電解液によく用いられる溶媒の沸点は、ジメトキシエタンが83℃、ジメチルカーボネートが90℃、エチルメチルカーボネートが107℃、ジエチルカーボネートが126℃等であり、電池が100〜150℃のような高温環境下に置かれた場合、電池内で少なくとも一部が揮発して、上述したように、セパレータが電極に密着せしめられる。   As will be described later, in the present invention, the organic solvent for forming the electrolytic solution is not particularly limited. For example, the boiling point of the solvent often used in the electrolytic solution is 83 ° C. for dimethoxyethane, dimethyl carbonate. Is 90 ° C., ethyl methyl carbonate is 107 ° C., diethyl carbonate is 126 ° C., etc., and when the battery is placed in a high temperature environment such as 100 to 150 ° C., at least a part of the battery volatilizes, As described above, the separator is brought into close contact with the electrode.

本発明において、上記多官能イソシアネートとしては、特に、限定されるものではないが、例えば、フェニレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ジフェニルエーテルジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート等の芳香族、芳香脂肪族、脂環族、脂肪族のジイソシアネートのほか、これらのジイソシアネートをトリメチロールプロパンのようなポリオールに付加させてなる所謂イソシアネートアダクト体も好ましく用いられる。   In the present invention, the polyfunctional isocyanate is not particularly limited. For example, aromatic, araliphatic such as phenylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, diphenyl ether diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, etc. In addition to alicyclic and aliphatic diisocyanates, so-called isocyanate adducts obtained by adding these diisocyanates to polyols such as trimethylolpropane are also preferably used.

電解液中の多官能イソシアネートの割合は、多孔質フィルムに担持させた反応性ポリマー100重量部に対して、通常、0.1〜20重量部の範囲である。多官能イソシアネートの割合が多孔質フィルムに担持させた反応性ポリマー100重量部に対して、0.1重量部よりも少ないときは、高温環境下において、セパレータ(多孔質フィルム)に担持させた反応性ポリマーの多官能性イソシアネートによる架橋反応が不十分であって、電極とセパレータとの間に強固な接着を得ることはできない。しかし、多官能性イソシアネートの割合が反応性ポリマー100重量部に対して20重量部よりも多いときは、架橋後の反応性ポリマーが硬すぎるので、セパレータと電極間の密着性が阻害されて、電池特性に有害な影響を与えるおそれがある。   The proportion of the polyfunctional isocyanate in the electrolytic solution is usually in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight of the reactive polymer supported on the porous film. When the proportion of the polyfunctional isocyanate is less than 0.1 parts by weight with respect to 100 parts by weight of the reactive polymer supported on the porous film, the reaction supported on the separator (porous film) in a high temperature environment The crosslinking reaction of the functional polymer with the polyfunctional isocyanate is insufficient, and a strong adhesion cannot be obtained between the electrode and the separator. However, when the proportion of the polyfunctional isocyanate is more than 20 parts by weight with respect to 100 parts by weight of the reactive polymer, the reactive polymer after crosslinking is too hard, so that the adhesion between the separator and the electrode is inhibited, May adversely affect battery characteristics.

電解液は、電解質塩を溶剤に溶解してなる溶液である。電解質塩としては、例えば、水素、リチウム、ナトリウム、カリウム等のアルカリ金属、カルシウム、ストロンチウム等のアルカリ土類金属、第三級又は第四級アンモニウム塩等をカチオン成分とし、塩酸、硝酸、リン酸、硫酸、ホウフッ化水素酸、フツ化水素酸、六フツ化リン酸、過塩素酸等の無機酸、有機酸をアニオン成分とする塩を用いることができる。しかし、これらのなかでは、特に、アルカリ金属イオンをカチオン成分とする電解質塩が好ましく用いられる。   The electrolytic solution is a solution obtained by dissolving an electrolyte salt in a solvent. Examples of the electrolyte salt include alkali metals such as hydrogen, lithium, sodium, and potassium, alkaline earth metals such as calcium and strontium, tertiary or quaternary ammonium salts, and the like as a cation component, hydrochloric acid, nitric acid, and phosphoric acid. Further, a salt containing an inorganic acid such as sulfuric acid, borohydrofluoric acid, hydrofluoric acid, hexafluorophosphoric acid, perchloric acid, or an organic acid as an anionic component can be used. However, among these, an electrolyte salt containing an alkali metal ion as a cation component is particularly preferably used.

電解液のための溶媒としては、上記電解質塩を溶解するものであれば、どのようなものも用いることができるが、非水系の溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン等の環状エステル類、テトラヒドロフラン、ジメトキシエタン等のエーテル類、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状エステル類が用いられる。これらの溶媒は、単独で、又は2種以上の混合物として用いられる。   Any solvent can be used as the solvent for the electrolyte solution as long as it dissolves the above electrolyte salt. Examples of non-aqueous solvents include ethylene carbonate, propylene carbonate, butylene carbonate, and γ-butyrolactone. Cyclic esters such as tetrahydrofuran, ethers such as dimethoxyethane, and chain esters such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. These solvents are used alone or as a mixture of two or more.

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。以下において、多孔質フィルムの物性は以下のようにして評価した。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In the following, the physical properties of the porous film were evaluated as follows.

(多孔質フィルムの厚み)
1/10000mmシックネスゲージによる測定と多孔質フィルムの断面の10000倍走査型電子頭微鏡写真に基づいて求めた。
(多孔質フィルムの空孔率)
多孔質フィルムの単位面積S(cm2)当たりの重量W(g)、平均厚みt(cm)及び多孔質フィルムを構成する樹脂の密度d(g/cm3)から下式にて算出した。
空孔率(%)=(1−(W/S/t/d))×100
(Thickness of porous film)
It was determined based on a measurement with a 1/10000 mm thickness gauge and a 10,000 times scanning electronic microscopic photograph of the cross section of the porous film.
(Porosity of porous film)
The weight was calculated from the weight W (g) per unit area S (cm 2 ) of the porous film, the average thickness t (cm), and the density d (g / cm 3 ) of the resin constituting the porous film by the following equation.
Porosity (%) = (1− (W / S / t / d)) × 100

実施例1
(多孔質フィルムの調製)
ノルボルネンの開環重合体の粉末(日本ゼオン(株)製ノーソレックスNB、重量平均分子量200万以上)8重量%と熱可塑性エラストマー(住友化学工業(株)製TPE824)12重量%と重量平均分子量350万の超高分子量ポリエチレン80重量%からなる重合体組成物16重量部と流動パラフイン84重量部とをスラリー状に均一に混合し、160℃の温度で小型ニーダーを用いて、約60分間、溶融混練した後、このようにして得られた混練物を0℃に冷却された金属板に挟み込み、急冷して、シートを得た。次いで、このシートを115℃で厚み0.5mmまでヒートプレスし、次いで、115℃で縦横4.5×4.5倍に同時二軸延伸した後、ヘプタンにて脱溶媒処理を行った。その後、このようにして得られたフィルムを空気中、85℃で6時間熱処理した後、118℃で1.5時間熱処理して、目的とする多孔質フィルムを得た。この多孔質フィルムは、厚さ25μm、空孔率50%、平均孔径0.1μmを有するものであった。
Example 1
(Preparation of porous film)
Norbornene ring-opening polymer powder (Neonsolex NB manufactured by Nippon Zeon Co., Ltd., weight average molecular weight 2 million or more) 8% by weight, thermoplastic elastomer (TPE824 manufactured by Sumitomo Chemical Co., Ltd.) 12% by weight, and weight average molecular weight 16 parts by weight of a polymer composition consisting of 80% by weight of 3.5 million ultra high molecular weight polyethylene and 84 parts by weight of fluid paraffin were mixed uniformly in a slurry state, using a small kneader at a temperature of 160 ° C. for about 60 minutes, After melt-kneading, the kneaded product thus obtained was sandwiched between metal plates cooled to 0 ° C. and rapidly cooled to obtain a sheet. Next, this sheet was heat-pressed at 115 ° C. to a thickness of 0.5 mm, and then simultaneously biaxially stretched 4.5 × 4.5 times in length and width at 115 ° C., and then the solvent was removed with heptane. Thereafter, the film thus obtained was heat-treated in air at 85 ° C. for 6 hours, and then heat-treated at 118 ° C. for 1.5 hours to obtain a target porous film. This porous film had a thickness of 25 μm, a porosity of 50%, and an average pore diameter of 0.1 μm.

(反応性ポリマーの調製)
アクリロニトリル40重量部、2−ヒドロキシエチルアクリレート3重量部、メチルメタクリレート15重量部、2−エチルヘキシルアクリレート45重量部、アゾビスイソブチルニトリル0.3重量部及びトルエン300重量部を常法に従って溶液重合に付して、反応性ポリマーのトルエン溶液を得た。この反応性ポリマーの重量平均分子量は約35万であり、ガラス転移温度は8℃であった。
(Preparation of reactive polymer)
40 parts by weight of acrylonitrile, 3 parts by weight of 2-hydroxyethyl acrylate, 15 parts by weight of methyl methacrylate, 45 parts by weight of 2-ethylhexyl acrylate, 0.3 parts by weight of azobisisobutylnitrile and 300 parts by weight of toluene are subjected to solution polymerization according to a conventional method. Thus, a toluene solution of the reactive polymer was obtained. The weight average molecular weight of this reactive polymer was about 350,000, and the glass transition temperature was 8 ° C.

(熱収縮抑制多孔質フィルムの調製)
上記反応性ポリマーのトルエン溶液をワイヤーバー(ワイヤー径0.2mm)を用いて、剥離性延伸ポリプロピレン樹脂フィルム上に複数の平行な線状に塗布し、乾燥させた後、これを上記多孔質フィルムの表裏両面に転写して、反応性ポリマー担持多孔質フィルムを得た。
(Preparation of heat shrinkage suppression porous film)
After applying the toluene solution of the above-mentioned reactive polymer in a plurality of parallel lines on a peelable stretched polypropylene resin film using a wire bar (wire diameter: 0.2 mm) and drying it, the porous film is coated with the porous film. The product was transferred to both front and back surfaces to obtain a reactive polymer-supported porous film.

(電極の調製)
平均粒径15μmのコバルト酸リチウム(LiCoO2)と黒鉛粉末とポリフッ化ビニリデン樹脂を重量比85:10:5で混合し、これをN−メチル−2−ピロリドンに加えて、固形分濃度15重量%のスラリーを調製した。塗工機を用いてこのスラリーを厚さ20μmのアルミニウム箔の表面に厚み200μmに塗布した後、80℃で1時問乾燥させた。次いで、このアルミニウム箔の裏面にも同様に上記スラリーを厚み200μmに塗布し、120℃で2時間乾燥させた後、ロールプレスを通して、厚み200μmの正極シートを調製した。
(Preparation of electrode)
Lithium cobalt oxide (LiCoO 2) having an average particle size of 15 μm, graphite powder and polyvinylidene fluoride resin were mixed at a weight ratio of 85: 10: 5, and this was added to N-methyl-2-pyrrolidone to obtain a solid concentration of 15% by weight. % Slurry was prepared. This slurry was applied to the surface of an aluminum foil having a thickness of 20 μm using a coating machine to a thickness of 200 μm, and then dried at 80 ° C. for 1 hour. Next, the slurry was similarly applied to the back surface of the aluminum foil to a thickness of 200 μm, dried at 120 ° C. for 2 hours, and then passed through a roll press to prepare a positive electrode sheet having a thickness of 200 μm.

黒鉛粉末とポリフッ化ビニリデン樹脂を重量比95:5で混合し、これをN−メチル−2−ピロリドンに加えて、固形分濃度15重量%のスラリーを調製した。塗工機を用いて、このスラリーを厚さ20μmの銅箔の表面に厚み20μmに塗布した後、80℃で1時間乾燥させた。次いで、この銅箔の裏面にも同様に上記スラリーを厚み200μmに塗布し、120℃で2時間乾燥させた後、ロールプレスを通して、厚み200μmの負極シートを調製した。   Graphite powder and polyvinylidene fluoride resin were mixed at a weight ratio of 95: 5 and added to N-methyl-2-pyrrolidone to prepare a slurry having a solid content concentration of 15% by weight. This slurry was applied to the surface of a 20 μm thick copper foil using a coating machine to a thickness of 20 μm, and then dried at 80 ° C. for 1 hour. Next, the slurry was similarly applied to the back surface of the copper foil to a thickness of 200 μm, dried at 120 ° C. for 2 hours, and then passed through a roll press to prepare a negative electrode sheet having a thickness of 200 μm.

(負極/多孔質フイルム/正極積層体の調製)
上記反応性ポリマー担持多孔質フィルムの表面に上記正極シートを接触して重ねると共に、裏面に上記負極シートを接触して重ねて、負極/多孔質フィルム/正極積層体を得た。
(Preparation of negative electrode / porous film / positive electrode laminate)
The positive electrode sheet was brought into contact with and superposed on the surface of the reactive polymer-supported porous film, and the negative electrode sheet was brought into contact with and superposed on the back surface to obtain a negative electrode / porous film / positive electrode laminate.

(電池の組み立てと得られた電池の特性評価)
アルゴン置換したグローブボックス中、エチレンカーボネート/エチルメチルカーボネート混合溶媒(容量比1/2)に1.2モル/L濃度となるように電解質塩六フッ化リン酸リチウム(LiPF6) を溶解させて、電解液を調製した。更に、トリメチロールプロパン1モル部にヘキサメチレンジイソシアネート3モル部を付加させてなる3官能イソシアネート3重量部を上記電解液100重量部に溶解させた。
(Assembly of the battery and evaluation of the characteristics of the obtained battery)
In an argon-substituted glove box, electrolyte salt lithium hexafluorophosphate (LiPF 6 ) was dissolved in an ethylene carbonate / ethyl methyl carbonate mixed solvent (volume ratio 1/2) to a concentration of 1.2 mol / L. An electrolyte solution was prepared. Further, 3 parts by weight of trifunctional isocyanate obtained by adding 3 parts by mole of hexamethylene diisocyanate to 1 part by mole of trimethylolpropane was dissolved in 100 parts by weight of the electrolytic solution.

上記負極/多孔質フィルム/正極積層体を2016サイズのコイン電池用缶に仕込み、上記3官能イソシアネートを溶解させた電解液をこのコイン型電池の缶内に注入した後、電池用缶を封口して、コイン型リチウムイオン二次電池を得た。   The negative electrode / porous film / positive electrode laminate is charged into a 2016-size coin battery can, and an electrolytic solution in which the trifunctional isocyanate is dissolved is poured into the coin-type battery can, and then the battery can is sealed. Thus, a coin-type lithium ion secondary battery was obtained.

この電池について、0.2CmAのレートにて5回充放電を行った後、0.2CmAのレートで充電し、更にその後、2.0CmAのレートで放電を行って、2.0CmAのレートでの放電容量/0.2CmAのレートでの放電容量の比にて評価した放電負荷特性は90%であった。   The battery was charged and discharged five times at a rate of 0.2 CmA, then charged at a rate of 0.2 CmA, and then discharged at a rate of 2.0 CmA, at a rate of 2.0 CmA. The discharge load characteristic evaluated by the ratio of discharge capacity / discharge capacity at a rate of 0.2 CmA was 90%.

(電極/多孔質フィルム間の常温での接着力の測定)
上記組み立てたコイン電池を分解し、電解液で湿った状態で常温(25℃)で正極/多孔質フィルム/負極積層体の正極から多孔質フィルムを180゜に引き剥がす際に必要な応力値から接着力を求めた。その結果、本実施例において、正極/多孔質フィルム間の常温での接着力は0.02N/10mmであった。
(Measurement of adhesion force between electrode / porous film at room temperature)
Disassembling the assembled coin battery, and from the stress value required to peel the porous film from the positive electrode of the positive electrode / porous film / negative electrode laminate at 180 ° at room temperature (25 ° C.) with the electrolyte moistened. The adhesive strength was determined. As a result, in this example, the adhesive force at normal temperature between the positive electrode / porous film was 0.02 N / 10 mm.

(150℃で加熱処理したときの電極/多孔質フィルム積層体における多孔質フィルムの熱収縮率の測定)
前述したと同様にして、正極/多孔質フィルム/負極積層体を調製し、これを所定の寸法に打ち抜いて試料とした。この試料に前記3官能イソシアネートを溶解させた電解液を含浸させた後、ガラス板の間に挟み込み、フッ素樹脂シートで包んで、150℃の乾燥機に1時間投入した。その後、上記負極/多孔質フィルム/正極積層体をガラス板の間から取り出し、多孔質フィルムを正極と負極から剥がして、スキャナーで読み込み、収縮前の寸法に対する面積収縮率を求めた。その結果、本実施例の多孔質フィルムの熱収縮率は、3%であった。
(Measurement of heat shrinkage rate of porous film in electrode / porous film laminate when heat-treated at 150 ° C.)
In the same manner as described above, a positive electrode / porous film / negative electrode laminate was prepared and punched into a predetermined size to obtain a sample. The sample was impregnated with an electrolytic solution in which the trifunctional isocyanate was dissolved, and then sandwiched between glass plates, wrapped with a fluororesin sheet, and placed in a dryer at 150 ° C. for 1 hour. Thereafter, the negative electrode / porous film / positive electrode laminate was taken out from between the glass plates, the porous film was peeled off from the positive electrode and the negative electrode, read with a scanner, and the area shrinkage ratio with respect to the dimensions before shrinkage was determined. As a result, the heat shrinkage rate of the porous film of this example was 3%.

(150℃で加熱処理したときの電極/多孔質フィルム間の接着力の測定)
上記「電池の組立て」において得た電池を150℃の乾燥機に1時間投入して、加熱処理を行った。この後、この電池を分解し、電解液で湿った状態で常温(25℃)で正極/多孔質フィルム/負極積層体の正極から多孔質フィルムを180゜に引き剥がす際に必要な応力値から接着力を求めた。その結果、本実施例において、150℃で加熱処理した後の正極/多孔質フィルム間の常温での接着力は0.37N/10mmであった。
(Measurement of adhesion between electrode / porous film when heat-treated at 150 ° C.)
The battery obtained in “Assembly of battery” was put into a dryer at 150 ° C. for 1 hour and subjected to heat treatment. Thereafter, the battery is disassembled, and the stress value required for peeling the porous film from the positive electrode of the positive electrode / porous film / negative electrode laminate at 180 ° at room temperature (25 ° C.) in a state moistened with an electrolytic solution. The adhesive strength was determined. As a result, in this example, the adhesive strength at normal temperature between the positive electrode / porous film after heat treatment at 150 ° C. was 0.37 N / 10 mm.

実施例2
実施例1と同じ反応性ポリマーを剥離性延伸ポリプロピレン樹脂フィルム上にその表面積の50%に斑点状に塗布し、乾燥させた後、これを実施例1と同様の多孔質フィルムの表裏両面に転写して、反応性ポリマー担持多孔質フィルムを得た。
Example 2
The same reactive polymer as in Example 1 was applied to a peelable stretched polypropylene resin film in the form of spots on 50% of its surface area, dried, and then transferred to both the front and back surfaces of the same porous film as in Example 1. Thus, a reactive polymer-supported porous film was obtained.

この反応性ポリマー担持多孔質フィルムを用いた以外は、実施例1と同様にして、電池を組立て、その放電負荷特性を評価したところ、92%であった。また、実施例1と同様にして、この電池を分解して、正極/多孔質フィルム間の常温での接着力を求めたところ、0.01N/10mmであり、150℃で加熱処理した後の正極/多孔質フィルム間の常温での接着力は0.28N/10mmであった。更に、実施例1と同様にして、上記多孔質フィルムの熱収縮率を求めたところ、7%であった。   A battery was assembled and its discharge load characteristics were evaluated in the same manner as in Example 1 except that this reactive polymer-supported porous film was used. The result was 92%. In addition, the battery was disassembled in the same manner as in Example 1 to determine the adhesive strength at normal temperature between the positive electrode and the porous film. The result was 0.01 N / 10 mm, and after heat treatment at 150 ° C. The adhesive force at normal temperature between the positive electrode / porous film was 0.28 N / 10 mm. Furthermore, when the heat shrinkage rate of the porous film was determined in the same manner as in Example 1, it was 7%.

実施例3
無水マレイン酸変性したエチレン−アクリル酸エチル共重合物(三井デュポンポリケミカル(株)製AR201)をトルエンに溶解させて、反応性ポリマーの10重量%濃度の溶液を調製した。これを剥離性延伸ポリプロピレン樹脂フィルム上にその表面積の30%に斑点状に塗布し、これを実施例1と同様の多孔質フィルムの表裏両面に転写して、反応性ポリマー担持多孔質フィルムを得た。
Example 3
A maleic anhydride-modified ethylene-ethyl acrylate copolymer (AR201 manufactured by Mitsui Dupont Polychemical Co., Ltd.) was dissolved in toluene to prepare a 10 wt% concentration solution of the reactive polymer. This was applied to a peelable stretched polypropylene resin film in the form of spots on 30% of its surface area, and this was transferred to both the front and back surfaces of the same porous film as in Example 1 to obtain a reactive polymer-supported porous film. It was.

この反応性ポリマー担持多孔質フィルムを用いた以外は、実施例1と同様にして、電池を組立て、その放電負荷特性を評価したところ、94%であり、また、実施例1と同様にして、この電池を分解して、正極/多孔質フィルム間の常温での接着力を求めたところ、0.01N/10mmであり、150℃で加熱処理した後の正極/多孔質フィルム間の常温での接着力は0.35N/10mmであった。更に、実施例1と同様にして、上記多孔質フィルムの熱収縮率を求めたところ、3%であった。   A battery was assembled in the same manner as in Example 1 except that this reactive polymer-supported porous film was used, and its discharge load characteristics were evaluated. As a result, it was 94%. When this battery was disassembled and the adhesive strength at normal temperature between the positive electrode and porous film was determined, it was 0.01 N / 10 mm, and the heat treatment at 150 ° C. was performed at normal temperature between the positive electrode and porous film. The adhesive force was 0.35 N / 10 mm. Furthermore, when the heat shrinkage rate of the porous film was determined in the same manner as in Example 1, it was 3%.

実施例4
重量平均分子量20万のポリエチレン60重量%と重量平均分子量150万の超高分子量ポリエチレン40重量%との混合物15重量部と流動パラフィン85重量部をスラリー状にに均一に混合し、160℃の温度で小型ニーダーを用いて、約60分間、溶融混練した後、このようにして得られた混練物を0℃に冷却された金属板に挟み込み、急冷して、シートを得た。次いで、このシートを115℃で厚み0.5mmまでヒートプレスし、次いで、115℃で縦横4×4倍に同時二軸延伸した後、ヘプタンにて脱溶媒処理を行った。その後、このようにして得られたフィルムを空気中、85℃で1時間熱処理した後、116℃で1時間熱処理して、目的とする多孔質フィルムを得た。この多孔質フィルムは、厚さ23μm、空孔率43%、平均孔径0.1μmを有するものであった。
Example 4
15 parts by weight of a mixture of 60% by weight of polyethylene having a weight average molecular weight of 200,000 and 40% by weight of ultra high molecular weight polyethylene having a weight average molecular weight of 1,500,000 and 85 parts by weight of liquid paraffin are uniformly mixed in a slurry state at a temperature of 160 ° C. Then, the mixture was melt-kneaded for about 60 minutes using a small kneader, and the kneaded product thus obtained was sandwiched between metal plates cooled to 0 ° C. and rapidly cooled to obtain a sheet. Next, the sheet was heat-pressed at 115 ° C. to a thickness of 0.5 mm, and then simultaneously biaxially stretched 4 × 4 times in length and width at 115 ° C., and then the solvent was removed with heptane. Thereafter, the film thus obtained was heat-treated in air at 85 ° C. for 1 hour, and then heat-treated at 116 ° C. for 1 hour to obtain a target porous film. This porous film had a thickness of 23 μm, a porosity of 43%, and an average pore diameter of 0.1 μm.

実施例1において、上記多孔質フィルムを用いた以外は、同様にして、反応性ポリマー担持多孔質フィルムを得、これを用いて、実施例1と同様にして、電池を組立て、その放電負荷特性を評価したところ、91%であり、また、実施例1と同様にして、この電池を分解して、正極/多孔質フィルム間の常温での接着力を求めたところ、0.02N/10mmであり、150℃で加熱処理した後の正極/多孔質フィルム間の常温での接着力は0.35N/10mmであった。更に、実施例1と同様にして、上記多孔質フィルムの熱収縮率を求めたところ、4%であった。   A reactive polymer-supported porous film was obtained in the same manner as in Example 1 except that the porous film was used. Using this, a battery was assembled in the same manner as in Example 1 and its discharge load characteristics were obtained. Was found to be 91%, and the battery was disassembled in the same manner as in Example 1 to determine the adhesive strength between the positive electrode and the porous film at room temperature, and it was 0.02 N / 10 mm. Yes, the adhesive strength at normal temperature between the positive electrode / porous film after heat treatment at 150 ° C. was 0.35 N / 10 mm. Furthermore, when the heat shrinkage rate of the porous film was determined in the same manner as in Example 1, it was 4%.

実施例5
アクリル酸ブチル41重量部、メタクリル酸メチル41重量部、アクリロニトリル15重量部、アクリル酸4−ヒドロキシブチル3重量部、ラウリルメルカプタン0.1重量部及びノニオン界面活性剤3重量部からなる配合物を水中で常法に従ってエマルジョン重合に付した。得られた反応性ポリマーを固形分として分離、精製、乾燥し、これを酢酸エチルに溶解させて、10%酢酸エチル溶液を得た。この反応性ポリマーの重量平均分子量は約230万であり、ガラス転移温度は34℃であった。この反応性ポリマーを用いた以外は、実施例1と同様にして、反応性ポリマーを両面に担持させた多孔質フィルムを得た。
Example 5
A formulation comprising 41 parts by weight of butyl acrylate, 41 parts by weight of methyl methacrylate, 15 parts by weight of acrylonitrile, 3 parts by weight of 4-hydroxybutyl acrylate, 0.1 part by weight of lauryl mercaptan and 3 parts by weight of a nonionic surfactant was added in water. And then subjected to emulsion polymerization according to a conventional method. The obtained reactive polymer was separated, purified and dried as a solid content, and dissolved in ethyl acetate to obtain a 10% ethyl acetate solution. The weight average molecular weight of this reactive polymer was about 2.3 million, and the glass transition temperature was 34 ° C. A porous film carrying the reactive polymer on both sides was obtained in the same manner as in Example 1 except that this reactive polymer was used.

この反応性ポリマー担持多孔質フィルムを用いた以外は、実施例1と同様にして、電池を組立て、その放電負荷特性を評価したところ、91%であり、また、実施例1と同様にして、この電池を分解して、正極/多孔質フィルム間の常温での接着力を求めたところ、0.02N/10mmであり、150℃で加熱処理した後の正極/多孔質フィルム間の常温での接着力は0.43N/10mmであった。更に、実施例1と同様にして、上記多孔質フィルムの熱収縮率を求めたところ、2%であった。   A battery was assembled in the same manner as in Example 1 except that this reactive polymer-supported porous film was used, and its discharge load characteristics were evaluated. As a result, it was 91%. When this battery was disassembled and the adhesive strength at normal temperature between the positive electrode / porous film was determined, it was 0.02 N / 10 mm, and it was heated at 150 ° C. at normal temperature between the positive electrode / porous film. The adhesive force was 0.43 N / 10 mm. Furthermore, when the heat shrinkage rate of the porous film was determined in the same manner as in Example 1, it was 2%.

比較例1
実施例1と同じ多孔質フィルムに反応性ポリマーを担時させることなく、これをそのまま用いて、実施例1と同様にして電池を組立て、その放電負荷特性を評価したところ、95%であった。また、実施例1と同様にして、上記多孔質フィルムの熱収縮率を求めたところ、64%であった。
Comparative Example 1
A battery was assembled in the same manner as in Example 1 without using the reactive polymer on the same porous film as in Example 1, and the discharge load characteristics were evaluated. The result was 95%. . Moreover, when the heat shrinkage rate of the said porous film was calculated | required like Example 1, it was 64%.

比較例2
実施例1と同じ反応性ポリマーのトルエン溶液に、その固形分100重量部に対して、トリメチロールプロパン1モル部にヘキサメチレンジイソシアネート3モル部を付加させてなる3官能イソシアネート3重量部を溶解させた。このように反応性ポリマーと3官能イソシアネートを含む溶液をワイヤーバー(ワイヤー径0.2mm)を用いて剥離性延伸ポリプロピレン樹脂フィルム上に平行な複数の線状に塗布し、乾燥させた後、実施例1と同じ多孔質フィルムの表裏両面に上記反応性ポリマーと3官能イソシアネートとを転写した。この多孔質フイルムを温度70℃の恒温室中に2日間投入して、反応性ポリマーを架橋させた。
Comparative Example 2
In a toluene solution of the same reactive polymer as in Example 1, 3 parts by weight of trifunctional isocyanate formed by adding 3 parts by mole of hexamethylene diisocyanate to 1 part by mole of trimethylolpropane is dissolved in 100 parts by weight of the solid content. It was. In this way, a solution containing a reactive polymer and a trifunctional isocyanate was applied in a plurality of parallel lines on a peelable stretched polypropylene resin film using a wire bar (wire diameter: 0.2 mm), dried, and then carried out. The reactive polymer and trifunctional isocyanate were transferred to both the front and back surfaces of the same porous film as in Example 1. This porous film was put in a thermostatic chamber at a temperature of 70 ° C. for 2 days to crosslink the reactive polymer.

この架橋させた反応性ポリマーを担持させた多孔質フィルムを用いた以外は、実施例1と同様にして、電池を組立て、その放電負荷特性を評価したところ、53%であり、また、実施例1と同様にして、この電池を分解して、正極/多孔質フィルム間の接着力を求めたところ、0.5N/10mmであり、150℃で加熱処理した後の正極/多孔質フィルム間の常温での接着力は0.65N/10mmであった。更に、実施例1と同様にして、上記多孔質フィルムの熱収縮率を求めたところ、0%であった。   A battery was assembled and its discharge load characteristics were evaluated in the same manner as in Example 1 except that the porous film carrying the crosslinked reactive polymer was used. The result was 53%. In the same manner as in Example 1, this battery was disassembled and the adhesive strength between the positive electrode and the porous film was determined, and it was 0.5 N / 10 mm. Between the positive electrode and the porous film after heat treatment at 150 ° C. The adhesive strength at room temperature was 0.65 N / 10 mm. Furthermore, when the heat shrinkage rate of the porous film was determined in the same manner as in Example 1, it was 0%.

比較例3
実施例1と同じ負極/多孔質フィルム/正極積層体を2016サイズのコイン電池用缶に仕込み、3官能イソシアネートを含まない電解液をこのコイン型電池の缶内に注入した後、電池用缶を封口して、コイン型リチウムイオン二次電池を得た。この電池について、実施例1と同様にして、放電負荷特性を評価したところ、90%であっり、また、実施例1と同様にして、この電池を分解して、正極/多孔質フィルム間の接着力を求めたところ、0.01N/10mmであり、150℃で加熱処理した後の正極/多孔質フィルム間の常温での接着力は0.02N/10mmであった。更に、実施例1と同様にして、上記多孔質フィルムの熱収縮率を求めたところ、58%であった。

Comparative Example 3
The same negative electrode / porous film / positive electrode laminate as in Example 1 was charged into a 2016-size coin battery can, and an electrolyte containing no trifunctional isocyanate was injected into the coin-type battery can. Sealing was performed to obtain a coin-type lithium ion secondary battery. With respect to this battery, the discharge load characteristics were evaluated in the same manner as in Example 1. As a result, it was 90%, and in the same manner as in Example 1, the battery was disassembled and the positive electrode / porous film was separated. The adhesion strength was determined to be 0.01 N / 10 mm, and the adhesion strength at normal temperature between the positive electrode / porous film after heat treatment at 150 ° C. was 0.02 N / 10 mm. Furthermore, when the heat shrinkage rate of the porous film was determined in the same manner as in Example 1, it was 58%.

Claims (3)

ガラス転移温度が0〜100℃の範囲にあり、加熱下にイソシアネート基と反応し得る官能基を有する反応性ポリマーを多孔質フィルムに担持させ、この多孔質フィルムを挟んで、これに接触して正極と負極とを重ねて、電極/多孔質フィルム積層体とし、この電極/多孔質フィルム積層体を多官能イソシアネートを含む電解液と共に電池容器内に仕込んでなる電池であって、常温において、上記電解液の存在下に上記多孔質フィルムと電極との間の上記反応性ポリマーによる接着力が0.05N/10mm以下であることを特徴とする電池。   A glass transition temperature is in the range of 0 to 100 ° C., and a reactive polymer having a functional group capable of reacting with an isocyanate group under heating is supported on a porous film, and the porous film is sandwiched between and in contact with the porous film. A battery in which a positive electrode and a negative electrode are stacked to form an electrode / porous film laminate, and the electrode / porous film laminate is charged into a battery container together with an electrolyte containing polyfunctional isocyanate, A battery characterized in that an adhesive force by the reactive polymer between the porous film and the electrode in the presence of an electrolytic solution is 0.05 N / 10 mm or less. 反応性ポリマーが官能基としてカルボキシル基又はヒドロキシル基を有するものである請求項1に記載の電池。   The battery according to claim 1, wherein the reactive polymer has a carboxyl group or a hydroxyl group as a functional group. 電極/多孔質フィルム積層体を電解液の存在下に150℃で1時間加熱処理したときの多孔質フィルムの面積収縮率が20%以下である請求項1に記載の電池。

The battery according to claim 1, wherein the area shrinkage of the porous film when the electrode / porous film laminate is heat-treated at 150 ° C. for 1 hour in the presence of an electrolytic solution is 20% or less.

JP2004069448A 2003-10-28 2004-03-11 battery Expired - Fee Related JP4537736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004069448A JP4537736B2 (en) 2003-10-28 2004-03-11 battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003367849 2003-10-28
JP2004069448A JP4537736B2 (en) 2003-10-28 2004-03-11 battery

Publications (2)

Publication Number Publication Date
JP2005158671A JP2005158671A (en) 2005-06-16
JP4537736B2 true JP4537736B2 (en) 2010-09-08

Family

ID=34741091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004069448A Expired - Fee Related JP4537736B2 (en) 2003-10-28 2004-03-11 battery

Country Status (1)

Country Link
JP (1) JP4537736B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100989309B1 (en) * 2005-06-23 2010-10-22 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte, and rechargeable battery with nonaqueous electrolyte
JP5140240B2 (en) * 2005-07-29 2013-02-06 日東電工株式会社 Battery separator and battery manufacturing method using the same
JP4989053B2 (en) * 2005-07-29 2012-08-01 日東電工株式会社 Battery separator and battery manufacturing method using the same
JP5010817B2 (en) * 2005-08-25 2012-08-29 日東電工株式会社 Adhesive-supporting porous film for battery separator and battery manufacturing method using the same
JP5249688B2 (en) * 2008-09-09 2013-07-31 日東電工株式会社 Battery separator and manufacturing method thereof, and lithium ion secondary battery and manufacturing method thereof
EP2675010B1 (en) 2011-02-10 2019-03-27 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution for secondary battery, and non-aqueous electrolyte secondary battery using same
JP6031856B2 (en) * 2011-07-12 2016-11-24 三菱化学株式会社 Non-aqueous electrolyte secondary battery
CN108260363B (en) * 2015-08-25 2022-02-01 株式会社Lg化学 Composite separator for electrochemical element comprising adhesive layer, and electrochemical element comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016219A1 (en) * 1999-08-31 2001-03-08 Nitto Denko Corporation Microporous film
JP2003142158A (en) * 2001-11-01 2003-05-16 Hitachi Maxell Ltd Method for manufacturing lithium ion secondary battery
JP2003223932A (en) * 2001-11-24 2003-08-08 Samsung Sdi Co Ltd Composite for forming polymer electrolyte to improve overcharging safety and lithium battery using it
JP2004323827A (en) * 2003-04-09 2004-11-18 Nitto Denko Corp Adhesive-carrying porous film for battery separator and use of the same
JP2004342572A (en) * 2002-11-13 2004-12-02 Nitto Denko Corp Porous film carrying partially cross-linked adhesive for separator of battery and its utilization

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016219A1 (en) * 1999-08-31 2001-03-08 Nitto Denko Corporation Microporous film
JP2003142158A (en) * 2001-11-01 2003-05-16 Hitachi Maxell Ltd Method for manufacturing lithium ion secondary battery
JP2003223932A (en) * 2001-11-24 2003-08-08 Samsung Sdi Co Ltd Composite for forming polymer electrolyte to improve overcharging safety and lithium battery using it
JP2004342572A (en) * 2002-11-13 2004-12-02 Nitto Denko Corp Porous film carrying partially cross-linked adhesive for separator of battery and its utilization
JP2004323827A (en) * 2003-04-09 2004-11-18 Nitto Denko Corp Adhesive-carrying porous film for battery separator and use of the same

Also Published As

Publication number Publication date
JP2005158671A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
KR100923377B1 (en) Partially crosslinked adhesive-supported porous film for battery separator and its use
JP5184608B2 (en) Adhesive-supporting porous film for battery separator and its use
KR100923375B1 (en) Adhesive composition-supporting separator for battery and electrode/separator laminate obtained by using the same
US7833654B2 (en) Adhesive-carrying porous film for battery separator and use thereof
JP2017050149A (en) Separator for secondary battery
WO2019151118A1 (en) Composition for lithium ion secondary cell separator, two-part composition for lithium ion secondary cell separator, method for manufacturing lithium ion secondary cell separator, and method for manufacturing lithium ion secondary cell
JP4537736B2 (en) battery
JP2007035541A (en) Separator for battery and manufacturing method of battery using same
JP5140240B2 (en) Battery separator and battery manufacturing method using the same
JP4989053B2 (en) Battery separator and battery manufacturing method using the same
JP2007035556A (en) Separator for battery and manufacturing method of battery using same
JP2004143363A (en) Porous film supporting adhesive/gelling agent and use thereof
JP2007035543A (en) Separator for battery and manufacturing method of battery using same
JP4601338B2 (en) Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate
JP2006179279A (en) Separator for battery and method of manufacturing battery using it
JP4601323B2 (en) Electrode element for large-sized lithium ion secondary battery and manufacturing method thereof
JP2007035542A (en) Separator for battery and manufacturing method of battery using same
JP2007035555A (en) Separator for battery and manufacturing method of battery using same
JP2007035554A (en) Separator for battery and manufacturing method of battery using same
JP2006012560A (en) Positive electrode for battery/reactive polymer carrying porous film/negative electrode laminated body
JP2006179280A (en) Separator for battery and method of manufacturing battery using it
JP5010801B2 (en) Battery separator and battery manufacturing method using the same
JP2009193743A (en) Cross-linked polymer supporting porous film for separator for battery and separator for battery and electrode/separator assembly obtained therefrom
JP5260073B2 (en) Battery separator and electrode / separator assembly obtained therefrom
JP2006179281A (en) Separator for battery and method of manufacturing battery using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4537736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160625

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees