JP2004143363A - Porous film supporting adhesive/gelling agent and use thereof - Google Patents

Porous film supporting adhesive/gelling agent and use thereof Download PDF

Info

Publication number
JP2004143363A
JP2004143363A JP2002312197A JP2002312197A JP2004143363A JP 2004143363 A JP2004143363 A JP 2004143363A JP 2002312197 A JP2002312197 A JP 2002312197A JP 2002312197 A JP2002312197 A JP 2002312197A JP 2004143363 A JP2004143363 A JP 2004143363A
Authority
JP
Japan
Prior art keywords
porous film
gelling agent
battery
electrode
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002312197A
Other languages
Japanese (ja)
Other versions
JP4152721B2 (en
Inventor
Mutsuko Yamaguchi
山口 睦子
Michio Satsuma
薩摩 道夫
Yoshihiro Uetani
植谷 慶裕
Keisuke Yoshii
喜井 敬介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2002312197A priority Critical patent/JP4152721B2/en
Publication of JP2004143363A publication Critical patent/JP2004143363A/en
Application granted granted Critical
Publication of JP4152721B2 publication Critical patent/JP4152721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous film supporting an adhesive/gelling agent, useful as an electrode/film laminate composed of an electrode and a separator firmly bonded together and used in the assembly of a cell and enabling the assembly of the cell in high efficiency without causing the mutual slippage between the members and provide a method for producing a cell using the porous film. <P>SOLUTION: The porous film supporting an adhesive/gelling agent is produced by supporting a heat-crosslinkable adhesive composition crosslinking and curing by heating and a gelling agent on a porous film. The heat-crosslinkable adhesive composition is e.g. composed of a polyfunctional isocyanate and a reactive polymer having a functional group reactive with the isocyanate group of the polyfunctional isocyanate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電極とセパレータが接着された高性能のゲル電解質電池の組み立てに有用である、熱架橋性接着剤組成物とゲル化剤とを担持させてなる多孔質フィルム(以下、接着剤/ゲル化剤担持多孔質フィルムという。)とその利用、特に、そのような接着剤/ゲル化剤担持多孔質フィルムを用いるゲル電解質電池の製造方法に関する。
【0002】
【従来の技術】
従来、種々の電池が実用に供されているが、最近、電子機器のコードレス化等に対応するために、軽量で高起電力、高エネルギーを得ることができ、しかも、自己放電が少ないリチウムイオン二次電池が注目を集めている。このリチウムイオン二次電池は、例えば、コイン型(円筒型)電池として、携帯電話やノート型パソコン用として、現在、多量に用いられている。更に、リチウムイオン二次電池は、今後、電気自動車用バッテリーとして期待されている。
【0003】
このようなリチウムイオン二次電池の負極材料としては、金属リチウムをはじめ、リチウム合金やりチウムイオンを吸蔵放出できる炭素材料のような層間化合物を挙げることができる。他方、正極材料としては、コバルト、ニッケル、マンガン、鉄等の遷移金属の化合物や、これら遷移金属とリチウムとの複合酸化物を挙げることができる。
【0004】
一般に、このようなリチウムイオン二次電池においては、上述したような正極と負極との間に、これらの電極間の直接接触による短絡を防止するために、セパレータが設けられている。このようなセパレータとしては、通常、正極負極間のイオンの透過性を確保するために、多数の微細孔を有する多孔質フィルムが用いられている。
【0005】
従来、電池の製造方法として、正極と負極との間にこれら電極間の短絡を防止するために上記セパレータを挟み、積層して、電極/セパレータ積層体を組み立て、必要に応じて、これを捲回し、又は積層した後、この電極/セパレータ積層体を電池容器内に組み込み、次いで、この電池容器内に電解液を注入して、電池を組み立てる方法が知られている。
【0006】
しかし、このような電池の製造方法においては、電極/セパレータ積層体の保管時や搬送時に電極やセパレータの各部材が相互にずり移動を起こしやすく、その結果、電池製造の生産性が低く、また、不良品が発生しやすい等の問題があった。また、このようにして得られた電池によれば、電極とセパレータとの密着性が悪く、使用時に電池特性が低下したり、また、内部短絡を生じて、電池が発熱昇温し、場合によっては、破壊するおそれさえあった。
【0007】
一方、近年、従来の電解液を用いた電池に比べて、液漏れのおそれがなく、また、薄型化も可能である等、形状の自由度が高い高分子型固体電解質を用いた電池が電池の薄型化や安全性の向上の要求に適うものとして、注目されている。しかしながら、従来より知られている高分子型固体電解質は、電解液に比べて、電導度が著しく低いという問題がある。
【0008】
そこで、例えば、ポリマーマトリックス中に電解液を保持させることによって、電解液に近い特性を有せしめたゲル電解質の実用化が進められている。このようなゲル電解質は、既に、種々のものが知られている。例えば、分子中にポリエチレンオキシドの3官能アクリルエステルを重合させてなる架橋ポリマーからなるマトリックス中にγ−ブチロラクトンを溶媒とする電解液を含有させたゲル電解質が知られている(例えば、特許文献1参照。)。また、4官能末端アクリロイル変性アルキレンオキシドからなるポリマーをマトリックスとするゲル電解質も知られている(例えば、特許文献2参照。)。
【0009】
このようなポリエーテル系ポリマーは、電解液との相溶性が高く、均一で電導度の高いゲル電解質を形成するが、しかし、このゲル電解質は、単独では、その機械的強度が低いので、正極負極を短絡が起こらないように隔離することは困難であり、セパレータとの併用が不可欠である。また、リチウムイオン二次電池においける一般的な電解質であるヘキサフルオロリン酸リチウムを電解質塩として用いた時、上記ポリマーの分解が起こるので、得られる電池の耐久性に問題がある。
【0010】
【特許文献1】特開平8−298126号公報(第3〜4頁)
【特許文献2】特開平1 1 −176452号公報(第1頁)
【0011】
【発明が解決しようとする課題】
本発明は、従来のゲル電解質電池の製造における上述したような問題を解決するためになされたものであって、熱架橋性接着剤組成物とゲル化剤とを多孔質フィルムに担持させてなる接着剤/ゲル化剤担持多孔質フィルムを提供することを目的とする。本発明によれば、このような接着剤/ゲル化剤担持多孔質フィルムに電極を圧着し、加熱することによって、電極を多孔質フィルムに強固に接着させた多孔質フィルム/電極接合体を得ることができ、このような多孔質フィルム/電極接合体を用いることによって、部材の相互のずり移動なく、電池を効率よく組み立てることができ、しかも、電池を組み立てた後は、上記多孔質フィルムは電極に接着されたセパレータとして機能するゲル電解質電池を効率よく組み立てることができる。更に、本発明は、このような接着剤/ゲル化剤担持多孔質フィルムを用いるゲル電解質電池の製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明によれば、加熱によって架橋硬化する熱架橋性接着剤組成物とゲル化剤とを多孔質フィルムに担持させてなることを特徴とする接着剤/ゲル化剤担持多孔質フィルムが提供され、上記熱架橋性接着剤組成物は、好ましくは、多官能イソシアネートとこの多官能イソシアネートのイソシアネート基と反応し得る官能基を有する反応性ポリマーとからなる。
【0013】
更に、本発明によれば、上記接着剤/ゲル化剤担持多孔質フィルムに電極を接着してなる多孔質フィルム/電極接合体が提供される。
【0014】
また、本発明によれば、上記接着剤/ゲル化剤担持多孔質フィルムに電極を積層した後、加熱し、架橋硬化させて、多孔質フィルム/電極接合体とし、これを電池缶内に仕込んだ後、この電池缶中に電解液を注入し、加熱して、上記接着剤/ゲル化剤担持多孔質フィルムの担持するゲル化剤を融解させ、電解液中に溶出させた後、冷却し、電解液をゲル化させると共に、ゲル化剤が溶出した後の多孔質フィルムをセパレータとして有するゲル電解質電池を得ることを特徴とする電池の製造方法が提供される。
【0015】
【発明の実施の形態】
本発明において、多孔質フィルムは、膜厚5〜200μmの範囲のものが好ましく用いられる。多孔質フィルムの厚みが5μmよりも薄いときは、強度が不十分であって、電池においてセパレータとして用いるとき、電極が内部短絡を起こすおそれがある。他方、多孔質フィルムの厚みが200μmを越えるときは、そのような多孔質フィルムをセパレータとする電池は電極間距離が大きすぎて、電池の内部抵抗が過大となる。また、多孔質フィルムは、平均孔径0.01〜5μmの細孔を有するものが好ましく用いられる。
【0016】
本発明によれば、多孔質フィルムは、上述したような特性を有すれば、特に、限定されるものではないが、耐溶剤性や耐酸化還元性を考慮すれば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂からなる多孔質フィルムが好適である。しかし、なかでも、加熱されたとき、樹脂が溶融して、細孔が閉塞する性質を有し、従って、電池に所謂シャットダウン機能を有せしめることができるところから、多孔質フィルムとしては、ポリエチレン樹脂フィルムが特に好適である。ここに、ポリエチレン樹脂には、エチレンのホモポリマーのみならず、プロピレン、ブテン、ヘキセン等のα−オレフィンとエチレンとのコポリマーを含むものとする。しかし、本発明によれば、ポリテトラフルオロエチレンやポリイミド等の多孔質フィルムと上記ポリオレフィン樹脂多孔質フィルムとの積層フィルムも、耐熱性にすぐれるところから、多孔質フィルムとして、好適に用いられる。
【0017】
本発明による接着剤/ゲル化剤担持多孔質フィルムは、このような多孔質フィルムに加熱によって架橋硬化する熱架橋性接着剤組成物とゲル化剤とを担持させてなるものである。
【0018】
先ず、上記熱架橋性接着剤組成物について説明する。本発明によれば、熱架橋性接着剤組成物は、特に限定されるものではないが、しかし、多官能イソシアネートとこの多官能イソシアネートのイソシアネート基と反応し得る官能基を有する反応性ポリマーとからなる熱架橋性接着剤組成物が好ましく用いられる。特に、本発明においては、上記反応性ポリマーは、(メタ)アクリル酸エステル成分と共に、前記多官能イソシアネートのイソシアネート基と反応し得る活性水素を有する反応性モノマー成分とを含むものであることが好ましい。
【0019】
上記(メタ)アクリル酸エステルとしては、例えば、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート等のように、アルキル基における炭素原子数が1〜12のアルキルエステルが好ましく用いられる。
【0020】
また、本発明によれば、上記反応性ポリマーは、そのガラス転移温度が0℃以下でもよく、この場合には、得られる接着剤/ゲル化剤担持多孔質フィルムに室温にて電極を圧着して、いわば、電極を多孔質フィルムに仮接着することができるが、しかし、本発明によれば、上記反応性ポリマーは、0〜100℃、好ましくは、40〜100℃の範囲のガラス転移温度を有するものであることが好ましい。このように、反応性ポリマーが0〜100℃、好ましくは、40〜100℃の範囲のガラス転移温度を有する場合には、通常、得られる接着剤/ゲル化剤担持多孔質フィルムに電極を圧着して、仮接着するためには、接着剤/ゲル化剤担持多孔質フィルムを加熱することが必要であるが、反面、例えば、接着剤/ゲル化剤担持多孔質フィルムを積層し、又はロールに捲回して保存する場合に、その接着剤/ゲル化剤担持多孔質フィルム間に剥離紙を挟む必要がない利点がある。
【0021】
より詳しくは、上記反応性モノマーの具体例としては、(メタ)アクリル酸、イタコン酸、マレイン酸のようなカルボキシル基含有共重合性モノマーや、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート等に代表されるヒドロキシアルキル(メタ)アクリレートのようなヒドロキシル基含有共重合性モノマーを挙げることができる。しかし、これら以外にも、例えば、アミノ基を有する共重合性モノマーも、反応性モノマーとして用いることができる。
【0022】
特に、本発明においては、反応性ポリマーは、上述したような反応性モノマー成分を0.1〜30重量%の範囲で有すると共に、(メタ)アクリル酸エステル成分や、必要に応じて、ニトリル基を有する共重合性モノマー成分、好ましくは、(メタ)アクリロニトリル成分や、スチレン、α−メチルスチレン、酢酸ビニルのようなビニルモノマー成分を有するものであることが好ましい。特に、本発明においては、反応性ポリマーは、耐熱性と耐溶剤性にすぐれるように、ニトリル基を有する共重合性モノマー成分、好ましくは、(メタ)アクリロニトリル成分を80重量%まで、好ましくは、5〜70重量%の範囲にて有することが好ましい。反応性ポリマーにおいて、ニトリル基を有する共重合性モノマー成分の割合が5重量%以下のときは、耐熱性と耐溶剤性の向上に殆ど効果がなく、他方、80重量%を越えるときは、得られる反応性ポリマーのガラス転移温度が100℃を越える場合があるので好ましくない。特に、本発明によれば、反応性ポリマーは、反応性モノマー成分0.1〜30重量%、(メタ)アクリル酸エステル成分10〜95重量%及び(メタ)アクリロニトリル4.9〜60重量%からなることが好ましい。
【0023】
また、本発明によれば、分子中にヒドロキシル基を有するアクリル変性フッ素樹脂(例えば、セントラル硝子(株)製セフラルコートFG730B、ワニスとして入手することができる。)も、反応性ポリマーとして好適に用いることができる。
【0024】
前述したように、反応性ポリマーが0〜100℃、好ましくは、40〜100℃の範囲のガラス転移温度を有するものであるとき、多孔質フィルムに多官能性イソシアネートとそのような反応性ポリマーからなる熱架橋性接着剤組成物とゲル化剤を塗布して得られる本発明による接着剤/ゲル化剤担持多孔質フィルムは、それ自体で安定に保存することができ、また、剥離紙を用いることなく、積層し、又はロール状に捲回して保管することができる。しかし、このような場合、多孔質フィルム/電極積層体を得るには、接着剤/ゲル化剤担持多孔質フィルムを多官能性イソシアネートが反応しない温度での加熱下に電極に圧着し、仮接着することが必要である。
【0025】
上述したような反応性ポリマーは、例えば、べンゼン、トルエン、キシレン、酢酸エチル、酢酸ブチルのような溶剤中で所要のモノマーを共重合させることによって、ポリマー溶液として得ることができる。他方、エマルジョン重合法によれば、反応性ポリマーの水分散液を得ることができる。このように、エマルジョン法によるときは、前述したモノマーに加えて、ジビニルベンゼン、トリメチロールプロパントリアクリレートのような多官能性架橋性モノマーを1重量%以下の割合で用いるのが好ましい。
【0026】
多官能性イソシアネートとしては、フェニレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ジフェニルエーテルジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート等の芳香族、芳香脂肪族、脂環族、脂肪族のジイソシアネートのほか、これらのジイソシアネートを所謂ブロック化剤とを反応させて得られるブロック化ジイソシアネートが用いられる。上記ブロック化剤としては、例えば、アルコール類、フェノール類、ε−カプロラクタム、オキシム類、活性メチロール化合物等が好ましく用いられる。
【0027】
本発明によれば、上述したようにして、反応性ポリマーを溶液又は水分散液として得た後、これに上記多官能性イソシアネートを配合することによって、多官能イソシアネートと上記コポリマーとからなる熱架橋性接着剤組成物を得る。
【0028】
本発明によれば、上記多官能性イソシアネートは、上記反応性ポリマーを溶液として用いるときは、好ましくは、油溶性の多官能性イソシアネートを用いて、油性の熱架橋性接着剤組成物を調製し、上記反応性ポリマーを水分散液として用いるときは、好ましくは、水溶性又は水分散性の多官能性イソシアネートを用いて、水性の熱架橋性接着剤組成物を調製する。また、このように、油性の熱架橋性接着剤組成物を調製する場合には、その塗工性を向上させるために、メチルエチルケトン、メチルイソブチルケトンのような有機溶剤を配合してもよく、また、重質炭酸カルシウムやケイ砂の微粉末のような無機質微粉末を流動性改質剤として、50重量%以下の割合で配合してもよい。
【0029】
このような熱架橋性接着剤組成物において、多官能性イソシアネートの割合は、反応性ポリマー100重量部に対して、通常、0.1〜20重量部の範囲である。多官能性イソシアネートの割合が反応性ポリマー100重量部に対して、0.1重量部よりも少ないときは、反応性ポリマーの多官能性イソシアネートによる架橋が不十分であって、得られるフィルム/電極接合体において、多孔質フィルムと電極との間に強固な接着を得ることができない。しかし、多官能性イソシアネートの割合が反応性ポリマー100重量部に対して20重量部よりも多いときは、架橋後の接着剤組成物が硬すぎて、フィルムと電極間の密着性を阻害することがある。
【0030】
次に、ゲル化剤について説明する。ゲル化剤とは、一般的には、常温(25℃)で液体の有機物質に対して可逆的ゲル形成性を有する有機化合物をいい、本発明においては、特に、有機溶媒(好ましくは、非水系有機溶媒)に電解質塩を溶解させてなる溶液(即ち、電解液)にこれを配合して組成物とするとき、この組成物を室温(25℃)よりも高い温度、例えば、限定されるものではないが、40〜100℃に加熱するとき、均一な溶液を形成し、この溶液を室温(25℃)に冷却するとき、可逆的にゲル状組成物を形成する有機化合物をいう。
【0031】
特に、本発明によれば、室温(25℃)よりも高い温度域、好ましくは、60〜100℃の範囲の温度では電解液に溶解するが、室温ではその電解液と共に固化して、可逆的にゲル状組成物、即ち、物理ゲルを形成することができる有機化合物であって、オイルゲル化剤として知られている一群の有機化合物が好ましく用いられる。オイルゲル化剤は、例えば、「高分子加工」第45巻第1号第21〜26頁(1996年)に記載されているように、油類に少量添加することによって、油全体をゼリー状に固めることができる薬剤であって、既に、種々のものが知られている。
【0032】
本発明においては、このように、ゲル化剤として、上述したように、オイルゲル化剤として知られているものであれば、特に、限定されることなく、いずれでも用いることができるが、好ましい具体例として、例えば、12−ヒドロキシステアリン酸、N−ラウロイル−L−グルタミン酸−α,γ−ビス−n−ブチルアミド、ジアルキルリン酸アルミニウム、2,3−ビス−n−ヘキサデシロキシアントラセン、トリアルキル−シス−1,3,5−シクロヘキサントリカルボキシアミド、
【0033】
【化1】

Figure 2004143363
【0034】
で表される化合物(1)、
【0035】
【化2】
Figure 2004143363
【0036】
で表される化合物(2)、
【0037】
【化3】
Figure 2004143363
【0038】
で示されるジベンジリデンソルビトール(3)、
【0039】
【化4】
Figure 2004143363
【0040】
で示されるトリベンジリデンソルビトール(4)、
【0041】
【化5】
Figure 2004143363
【0042】
のようなコレステロール誘導体(5)や(6)等を挙げることができる。
【0043】
前述した熱架橋性接着剤組成物とこのようなゲル化剤とを適宜の手段にて多孔質フィルムに担持させることによって、本発明による接着剤/ゲル化剤担持多孔質フィルムを得ることができる。
【0044】
本発明によれば、多孔質フィルムの表裏両面に上記熱架橋性接着剤組成物とゲル化剤とを担持させて接着剤/ゲル化剤担持多孔質フィルムとし、その表裏両面に電極、即ち、負極と正極をそれぞれ圧着し、接着して、多孔質フィルム/電極積層体としてもよく、また、多孔質フィルムの一方の表面にのみ、上記熱架橋性接着剤組成物とゲル化剤とを担持させて接着剤/ゲル化剤担持多孔質フィルムとし、その表面に電極、即ち、負極又は正極のいずれかを圧着し、接着して、多孔質フィルム/電極積層体としてもよい。
【0045】
多孔質フィルムへの熱架橋性接着剤組成物の担持量は、多ければ多い程、得られるゲル電解質において、電極との接着性にはすぐれるが、反面、接着剤組成物による多孔質フィルムの被覆率が高くなるので、得られる電池の特性が低下するおそれがある。反対に、接着剤組成物の多孔質フィルムへの担持量が少なすぎるときは、得られる電池において、多孔質フィルム(セパレータ)が電極との接着性に劣ることとなり、場合によっては、多孔質フィルム(セパレータ)と電極との間に接着が得られない。同様に、多孔質フィルムへのゲル化剤の担持量も、多ければ多い程、電解液を容易にゲル化することができるが、しかし、余りに多すぎるときは、得られる電池の特性が低下する。他方、ゲル化剤の担持量が少なすぎるときは、得られる電池の特性には有害な影響はないが、電解液をゲル化させ難い。
【0046】
そこで、本発明によれば、熱架橋性接着剤組成物とゲル化剤とを多孔質フィルムに担持させる際に、例えば、熱架橋性接着剤組成物とゲル化剤とを多孔質フィルムに塗布して担持させる際に、部分的に、即ち、例えば、斑点状、格子目状、縞状、亀甲模様状等に部分的に塗布するのが好ましく、特に、接着剤組成物とゲル化剤とを塗布する多孔質フィルムの表面の面積の5〜50%の範囲で上記熱架橋性接着剤組成物とゲル化剤とを塗布することによって、多孔質フィルムと電極との間に強固な接着を得ると共に、そのような多孔質フィルム/電極接合体を用いることによって、すぐれた特性を有する電池を得ることができる。
【0047】
更に、本発明によれば、電池の組み立てに際して、接着剤/ゲル化剤担持多孔質フィルムを用いて、熱架橋性接着剤組成物にて電極を強固に接着すると共に、後述するように、ゲル化剤にて電解液をよくゲル化するために、熱架橋性接着剤組成物とゲル化剤を熱架橋性接着剤組成物/ゲル化剤重量比で3/97〜80/20、好ましくは、5/95〜25/75にて0.4〜40g/m2 、好ましくは、0.8〜20g/m2 の担持率にて担持させることが好ましい。
【0048】
次に、本発明によるこのような接着剤/ゲル化剤担持多孔質フィルムを用いる電池の製造(組立て)方法について説明する。
【0049】
本発明によれば、上述したようにして得られる接着剤/ゲル化剤担持多孔質フィルムを挟んで、負極と正極とをこのセパレータに沿わせ、好ましくは、多官能性イソシアネートが反応しない温度に加熱しながら、圧着して、多孔質フィルム/電極積層体を得る。従って、本発明によれば、この多孔質フィルム/電極積層体において、熱架橋性接着剤組成物中の多官能性イソシアネートは、実質的に未反応の状態にあり、接着剤組成物は、架橋、硬化していない。
【0050】
本発明によれば、上記電極としては、集電体の表面に結着樹脂と共に活物質を圧着してなるシート状電極が用いられる。リチウムイオン二次電池の場合であれば、通常、正極集電体にはアルミニウム箔が用いられ、正極活物質としては、コバルト、ニッケル、マンガン、鉄等の遷移金属の化合物や、これら遷移金属とリチウムとの複合酸化物が単独で、又は黒鉛粉末等の導電性物質と混合して用いられる。なかでも、コバルト酸リチウムが現在、最も一般的に用いられている。他方、負極集電体には銅箔が用いられ、負極活物質としては、リチウム合金のほか、リチウムを吸蔵放出できる炭素系材料のよう層間化合物が用いられる。なかでも、黒鉛粉末が最も一般的に用いられている。結着樹脂としては、ポリフッ化ビニリデン樹脂が一般的に用いられている。電極は、活物質と結着樹脂をN−メチル−2−ピロリドン等の溶媒にてスラリーとし、これを集電体の表面に塗布した後、圧着することによって得ることができる。
【0051】
本発明によれば、このように、熱架橋性接着剤組成物中の多官能性イソシアネートが実質的に未反応の状態で、接着剤/ゲル化剤担持多孔質フィルムの表面に負極を沿わせると共に、接着剤/ゲル化剤担持多孔質フィルムの裏面に正極を沿わせ、好ましくは、熱架橋性接着剤組成物中の多官能性イソシアネートが反応しない温度で加熱しつつ、圧着し、電極中に接着剤組成物を一部、圧入して、いわば、電極を多孔質フィルムに仮接着して、多孔質フィルム/電極積層体とし、その後、この積層体を加熱し、多官能イソシアネートを反応性ポリマーと反応させ、熱架橋性接着剤組成物を架橋、硬化させ、多孔質フィルムに電極を接着して、多孔質フィルム/電極接合体を得る。即ち、接着剤/ゲル化剤担持多孔質フィルムに電極をいわば本接着させる。従って、このような多孔質フィルム/電極接合体においては、多孔質フィルムに電極が強固に接着されている。前述したように、本発明において、多孔質フィルム/電極接合体は、多孔質フィルムに電極が接合されておればよく、従って、負極/多孔質フィルム/正極接合体のみならず、多孔質フィルム/負極/多孔質フィルム/正極接合体、負極/多孔質フィルム/正極/多孔質フィルム接合体や、更には、多孔質フィルム/負極又は正極のいずれか一方の電極接合体をも含むものとする。
【0052】
本発明によれば、上述したように、接着剤/ゲル化剤担持多孔質フィルムに電極を圧着して、電極中に接着剤組成物を一部、圧入して、多孔質フィルム/電極積層体とし、次いで、この積層体を加熱し、多孔質フィルム/電極積層体中の熱架橋性接着剤組成物を架橋、硬化させて、多孔質フィルム/電極接合体を得る。従って、本発明によれば、熱架橋性接着剤組成物の多孔質フィルムへの塗布厚みは、それほど大きくなくとも、例えば、5μm程度の塗布厚みであっても、多孔質フィルムと電極との間に実用的に十分な強度の接着を得ることができる。
【0053】
電池を組み立てるには、上述したようにして、多孔質フィルム/電極接合体を調製した後、これを電池の電極板を兼ねる電池缶内に仕込んだ後、この電池缶中に電解液を注入し、加熱して、上記接着剤/ゲル化剤担持多孔質フィルムの担持するゲル化剤を融解させて電解液中に溶出させ、次いで、室温まで放冷すれば、ゲル化剤が電解液をゲル化させる。即ち、ゲル電解質を形成する。他方、ゲル化剤が溶出した後の多孔質フィルムは、依然として、正負電極と接着を保持しつつ、これらを隔離し、その短絡を防止するセパレータとして機能し、かくして、ゲル電解質電池を得ることができる。
【0054】
本発明によれば、上述したようにして、多孔質フィルム/電極積層体を得た後、これを加熱して、接着剤/ゲル化剤担持多孔質フィルムが担持する熱架橋性接着剤組成物を架橋、硬化させて、多孔質フィルム/電極接合体を得る。ここに、熱架橋性接着剤組成物の架橋、硬化は、通常、40〜60℃の範囲の温度で行わせるのが好ましい。この架橋、硬化を余りに高い温度で行わせるときは、電池素子の劣化を引き起こすおそれがある。熱架橋性接着剤組成物の架橋、硬化は、例えば、熱架橋性接着剤組成物として、多官能イソシアネートとこの多官能イソシアネートのイソシアネート基と反応し得る官能基を有する反応性ポリマーとからなるものであるときは、上記多官能イソシアネートと反応性ポリマーとの反応によって行われる。
【0055】
本発明によれば、電池の組み立てにおいて、接着剤/ゲル化剤担持多孔質フィルムの担持するゲル化剤を融解させ、電解液中に溶出させるには、通常、電解液中の接着剤/ゲル化剤担持多孔質フィルムを温度60〜100℃で10分から2時間程度加熱することが好ましい。上記温度が高すぎるときは、電池素子を劣化させるおそれがあり、他方、上記温度が低すぎるときは、得られる電池において、ゲル電解質が形成されないおそれがある。また、上記時間が長すぎるときも、電池素子を劣化させるおそれがあり、他方、上記時間が短すぎるときは、得られる電池において、ゲル電解質が形成されないおそれがある。このようにして、電解液中の接着剤/ゲル化剤担持多孔質フィルムからゲル化剤を電解液中に溶出させた後、実恩まで冷却すれば、ゲル化剤は電解液をゲル化して、ゲル電解質が形成される。他方、このようにして、ゲル化剤が溶出した後の多孔質フィルムには、依然として、電極が接着されており、このような多孔質フィルムは、得られる電池において、セパレータとして機能する。
【0056】
上記電解液は、電解質塩を適宜の有機溶媒に溶解してなる溶液である。上記電解質塩としては、水素、リチウム、ナトリウム、カリウム等アルカリ金属、カルシウム、ストロンチウム等のアルカリ土類金属、第三級又は第四級アンモニウム塩等をカチオン成分とし、塩酸、硝酸、リン酸、硫酸、ホウフッ化水素酸、フッ化水素酸、ヘキサフルオロリン酸、過塩素酸等の無機酸、カルボン酸、有機スルホン酸又はフッ素置換有機スルホン酸等の有機酸をアニオン成分とする塩を用いることができる。これらのなかでは、特に、アルカリ金属イオンをカチオン成分とする電解質塩が好ましく用いられる。
【0057】
このようなアルカリ金属イオンをカチオン成分とする電解質塩の具体例としては、例えば、過塩素酸リチウム、過塩素醗ナトリウム、過塩素酸カリウム等の過塩素酸アルカリ金属、テトラフルオロホウ酸リチウム、テトラフルオロホウ酸ナトリウム、テトラフルオロホウ酸カリウム等のテトラフルオロホウ酸アルカリ金属、ヘキサフルオロリン酸リチウム、ヘキサフルオロリン酸カリウム等のへキサフルオロリン酸アルカリ金属、トリフルオロ酢酸リチウム等のトリフルオロ酢酸アルカリ金属、トリフルオロメタンスルホン酸リチウム等のトリフルオロメタンスルホン酸アルカリ金属を挙げることができる。
【0058】
特に、本発明に従って、リチウムイオン二次電池を得る場合には、電解質塩ととしては、例えば、ヘキサフルオロリン酸リチウム、テトラフルオロホウ酸リチウム、過塩素酸リチウム等が好適に用いられる。
【0059】
更に、本発明において用いる上記電解質塩のための溶媒としては、上記電解質塩を溶解するものであればどのようなものでも用いることができるが、非水系の溶媒としては、エチレンカーポネート、プロピレンカーボネート、ブチレンカーボネート、γ−プチロラクトン等の環状エステル類や、テトラヒドロフラン、ジメトキシエタン等のエーテル類や、ジメチルカーボネート、ジエチルカーポネート、エチルメチルカーボネート等の鎖状エステル類を単独で、又は2種以上の混合物として用いることができる。
【0060】
また、上記電解質塩は、用いる溶媒の種類や量に応じて適宜に決定されるが、通常、得られるゲル電解質において、1〜50重量%の濃度となる量が用いられる。
【0061】
【実施例】
以下に参考例と共に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。以下において、用いた多孔質フィルムの物性は、下記のようにして評価した。また、電極と参照電池は、下記のようにして製造し、実施例で得られた電池の特性は、上記参照電池に対して以下のようにして評価した。
【0062】
(厚み)
1/10000mmシックネスゲージによる測定と多孔質フィルムの断面の10000倍走査型電子顕微鏡写真に基づいて求めた。
【0063】
(空孔率)
多孔質フィルムの単位面積S(cm)当たりの重量W(g)、平均厚みt(cm)及び多孔質フィルムを構成する樹脂の密度d(g/cm)から次式にて算出した。
【0064】
空孔率(%)=(1−(100W/S/t/d))×100
【0065】
参考例1
(熱架橋性接着剤組成物の調製)
アクリロニトリル                10部
メタクリル酸                   5部
アクリル酸ブチル                30部
アクリル酸エチル                60部
ポリエチレングリコールアルキルフェニルエーテル  3部
n−ドデシルメルカプタン             0.08部
過硫酸カリウム                  0.3部
イオン交換水                 300部
【0066】
上記配合物を常法にてエマルジョン重合に付して、反応性ポリマーの水分散液を得た。この反応性ポリマーの重量平均分子量は約85万であり、ガラス転移温度は−13℃であった。この反応性ポリマーの水分散液に10%塩酸を加えて、反応性ポリマーを沈殿させ、取り出して、十分に水洗した後、減圧乾燥させた。
【0067】
このようにして得られた反応性ポリマー100部に平均粒子径12μmのケイ砂微粉末15部を加え、これをトルエン/メチルエチルケトン(重量比75/25)混合溶剤に溶解させて、上記反応性ポリマーの20%濃度の溶液を調製した。
【0068】
次に、この反応性ポリマー溶液にその固形分100部に対して、ヘキサメチレンジイソシアネート3モル部にトリメチロールプロパン1モル部を付加させてなるブロック化ヘキサメチレンジイソシアネート2.7部を配合して、熱架橋性接着剤組成物を調製した。
【0069】
参考例2
(電極の調製)
コバルト酸リチウム(LiCoO、平均粒径15μm)と黒鉛粉末とポリフッ化ビニリデン樹脂を重量比85:10:5で混合して、これを固形分濃度15重量%となるように、N−メチル−2−ピロリドンを用いてスラリーとした。このスラリーを厚み20μmのアルミニウム箔上に塗工機にて厚み200μmに塗布し、80℃で1時間乾燥し、120℃で2時間乾燥した後、ロールプレスにて加圧して、厚み100μmの正極シートを得た。
【0070】
黒鉛粉末とポリフッ化ビニリデン樹脂を重量比95:5で混合して、これを固形分濃度15重量%となるように、N−メチル−2−ピロリドンを用いてスラリーとした。このスラリーを厚み20μmの銅箔上に塗工機にて厚み200μmに塗布し、80℃で1時間乾燥し、120℃で2時間乾燥した後、ロールプレスにて加圧して、厚み100μmの負極シートを得た。
【0071】
(参照電池の作製)
上記正極シートと負極シートをそれぞれ直径15mmの円盤に打ち抜いた。また、直径20mm、厚さ25μm、空孔率50%のポリエチレン樹脂製の多孔質フィルムからなる円盤状のセパレータを用意した。上記負極、セパレータ及び正極をこの順序に積層し、これを電池容器内に収容して、電池容器内に電解液を注入した後、封口して、2016サイズのコイン型リチウムイオン二次電池を組み立てた。この電池について、0.2CmAのレートにて5回充放電を行って、放電容量を求めた。
【0072】
(電池特性の評価)
以下の実施例にて得られたコイン型リチウムイオン二次電池を0.2CmAのレートにて5回充放電を行ったときの放電容量を求め、上記参照電池の放電容量に対する百分比(%)にて電池特性を評価した。
【0073】
実施例1
(多孔質フィルム/電極接合体の作製)
上記熱架橋性接着剤組成物15重量部と前記ゲル化剤(3)85重量部とを均一に混合し、これをポリエチレン樹脂製多孔質膜(厚さ25μm、空孔率50%、平均孔径0.1μm)の表裏の両面の全面に10g/m2 の割合でそれぞれ塗布した後、乾燥し、溶剤を除去して、ポリエチレン樹脂製多孔質膜に熱架橋性接着剤組成物とゲル化剤とを担持させて接着剤/ゲル化剤担持多孔質フィルムを得た。
【0074】
この接着剤/ゲル化剤担持多孔質フィルムの表面に正極を沿わせると共に、裏面に負極を沿わせた後、温度80℃、圧力5kg/cm2 で5分間加熱、加圧し、正負の電極を上記多孔質フィルムに圧着し、更に、この後、温度50℃の恒温器中に7日間投入して、多官能性イソシアネートを反応性ポリマーと反応させ、架橋させて、かくして、多孔質フィルム/電極接合体を得た。
【0075】
(電池の組立てと得られた電池の評価)
アルゴン置換したグローブボックス中、エチレンカーボネート/エチルメチルカーボネート混合溶媒(容量比1/1)に1.0モル/L濃度となるように電解質塩ヘキサフルオロリン酸リチウム(LiPF) を溶解させて、電解液を調製した。
【0076】
上記多孔質フィルム/電極接合体を正負電極板を兼ねる2016サイズのコイン型電池用缶に仕込み、上記電解液を上記多孔質フィルムに対して100g/m2 の割合でこのコイン型電池の缶内に注入した後、電池用缶を封口し、85℃で1時間加熱して、上記多孔質フィルム/電極接合体が担持するゲル化剤を融解させ、電解液中に溶出させ、この後、室温にまで放冷して、コイン型リチウムイオン二次電池を組立てた。
【0077】
このようにして得られた電池の放電容量は、前述した参照電池の放電容量に対する百分比にて(以下、同じ)97%であった。また、電池を分解して調べた結果、多孔質フィルムと電極の接着が保持されていると共に、電解液が電解質ゲルを形成していることが確認された。
【0078】
実施例2
実施例1と同様にして、前記熱架橋性接着剤組成物10重量部と前記ゲル化剤(4)トリベンジリデンソルビトール90重量部とを均一に混合し、これをポリエチレン樹脂製多孔質膜(厚さ25μm、空孔率50%、平均孔径0.1μm)の表裏の両面の全面に15g/m2 の割合でそれぞれ塗布した後、乾燥し、溶剤を除去して、ポリエチレン樹脂製多孔質膜に熱架橋性接着剤組成物とゲル化剤とを担持させて接着剤/ゲル化剤担持多孔質フィルムを得た。
【0079】
実施例1と同様にして、多孔質フィルム/電極接合体を得た後、これをコイン型電池用缶に仕込み、前記電解液を上記多孔質フィルムに対して90g/m2 の割合でこのコイン型電池の缶内に注入した後、電池用缶を封口し、90℃で1.5時間加熱して、上記多孔質フィルム/電極接合体が担持するゲル化剤を融解させ、電解液中に溶出させ、この後、室温にまで放冷して、コイン型リチウムイオン二次電池を組立てた。
【0080】
このようにして得られた電池の放電容量は、前述した参照電池の放電容量に対する百分比にて97%であった。また、電池を分解して調べた結果、多孔質フィルムと電極の接着が保持されていると共に、電解液が電解質ゲルを形成していることが確認された。
【0081】
実施例3
実施例1と同様にして、前記熱架橋性接着剤組成物5重量部と前記ゲル化剤(1)95重量部とを均一に混合し、これをポリエチレン樹脂製多孔質膜(厚さ25μm、空孔率50%、平均孔径0.1μm)の表裏の両面の全面に5g/m2 の割合でそれぞれ塗布した後、乾燥し、溶剤を除去して、ポリエチレン樹脂製多孔質膜に熱架橋性接着剤組成物とゲル化剤とを担持させて接着剤/ゲル化剤担持多孔質フィルムを得た。
【0082】
実施例1と同様にして、多孔質フィルム/電極接合体を得た後、これをコイン型電池用缶に仕込み、前記電解液を上記多孔質フィルムに対して90g/m2 の割合でこのコイン型電池の缶内に注入した後、電池用缶を封口し、95℃で1時間加熱して、上記多孔質フィルム/電極接合体が担持するゲル化剤を融解させ、電解液中に溶出させ、この後、室温にまで放冷して、コイン型リチウムイオン二次電池を組立てた。
【0083】
このようにして得られた電池の放電容量は、前述した参照電池の放電容量に対する百分比にて99%であった。また、電池を分解して調べた結果、多孔質フィルムと電極の接着が保持されていると共に、電解液が電解質ゲルを形成していることが確認された。
【0084】
実施例4
実施例1と同様にして、前記熱架橋性接着剤組成物25重量部と前記ゲル化剤(2)75重量部とを均一に混合し、これをポリエチレン樹脂製多孔質膜(厚さ25μm、空孔率50%、平均孔径0.1μm)の表裏の両面の全面に10g/m2 の割合でそれぞれ塗布した後、乾燥し、溶剤を除去して、ポリエチレン樹脂製多孔質膜に熱架橋性接着剤組成物とゲル化剤とを担持させて接着剤/ゲル化剤担持多孔質フィルムを得た。
【0085】
実施例1と同様にして、多孔質フィルム/電極接合体を得た後、これをコイン型電池用缶に仕込み、前記電解液を上記多孔質フィルムに対して70g/m2 の割合でこのコイン型電池の缶内に注入した後、電池用缶を封口し、90℃で1時間加熱して、上記多孔質フィルム/電極接合体が担持するゲル化剤を融解させ、電解液中に溶出させ、この後、室温にまで放冷して、コイン型リチウムイオン二次電池を組立てた。
【0086】
このようにして得られた電池の放電容量は、前述した参照電池の放電容量に対する百分比にて95%であった。また、電池を分解して調べた結果、多孔質フィルムと電極の接着が保持されていると共に、電解液が電解質ゲルを形成していることが確認された。
【0087】
比較例1
実施例1において、前記熱架橋性接着剤組成物90重量部と前記ゲル化剤(3)10重量部とを用いた以外は、実施例1と同様にして、コイン型リチウムイオン二次電池を組立てた。このようにして得られた電池の放電容量は、前述した参照電池の放電容量に対する百分比にて58%であった。また、電池を分解して調べた結果、多孔質フィルムと電極の接着が保持されていたが、電解液は電解質ゲルを形成していなかった。
【0088】
比較例2
実施例2において、前記熱架橋性接着剤組成物1重量部と前記ゲル化剤(4)99重量部とを用いた以外は、実施例2と同様にして、コイン型リチウムイオン二次電池を組立てた。このようにして得られた電池の放電容量は、前述した参照電池の放電容量に対する百分比にて98%であった。また、電池を分解して調べた結果、電解液が電解質ゲルを形成していることが確認されたが、多孔質フィルムは電極に接着していなかった。
【0089】
比較例3
実施例3において、前記熱架橋性接着剤組成物と前記ゲル化剤(1)とをポリエチレン樹脂製多孔質膜(厚さ25μm、空孔率50%、平均孔径0.1μm)に0.2g/m2 の割合でそれぞれ塗布した以外は、実施例3と同様にして、コイン型リチウムイオン二次電池を組立てた。このようにして得られた電池の放電容量は、前述した参照電池の放電容量に対する百分比にて98%であった。また、電池を分解して調べた結果、多孔質フィルムと電極の接着が保持されていたが、電解液は電解質ゲルを形成していなかった。
【0090】
比較例4
実施例4において、前記熱架橋性接着剤組成物と前記ゲル化剤(2)とをポリエチレン樹脂製多孔質膜(厚さ25μm、空孔率50%、平均孔径0.1μm)に50g/m2 の割合でそれぞれ塗布した以外は、実施例4と同様にして、コイン型リチウムイオン二次電池を組立てた。この電池を分解して調べた結果、多孔質フィルムと電極の接着が保持されていると共に、電解液が電解質ゲルを形成していることが確認されたが、しかし、電池の放電容量は、前述した参照電池の放電容量に対する百分比にて36%であった。
【0091】
【発明の効果】
本発明による接着剤/ゲル化剤担持多孔質フィルムは、多官能イソシアネートとこの多官能イソシアネートのイソシアネート基と反応し得る官能基を有する反応性ポリマーとからなる熱架橋性接着剤組成物と物理ゲルを与えるゲル化剤とを多孔質フィルムに担持させてなるものである。本発明によれば、このように、熱架橋性接着剤組成物とゲル化剤とを担持させた多孔質フィルムに電極を圧着し、更に、これを加熱して、上記多官能イソシアネートを反応性ポリマーに反応させ、接着剤組成物を架橋、硬化させて、電極を多孔質フィルムに接着させて、多孔質フィルム/電極接合体を得る。
【0092】
従って、本発明の多孔質フィルム/電極接合体によれば、部材が相互にずりを起こすことがなく、電池缶中に仕込むことができ、しかも、これより得られる電池においては、電極とセパレータとの間に強固な接着を得ることができ、効率よく電池の組み立てを行うことができる。[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is useful for assembling a high-performance gel electrolyte battery in which an electrode and a separator are bonded, and a porous film (hereinafter, referred to as an adhesive / adhesive) supporting a thermocrosslinkable adhesive composition and a gelling agent. The present invention relates to a gelling agent-supporting porous film and its use, and more particularly, to a method for producing a gel electrolyte battery using such an adhesive / gelling agent-supporting porous film.
[0002]
[Prior art]
Conventionally, various batteries have been put to practical use, but recently, in order to cope with cordless electronic devices and the like, lithium-ion can be obtained with high weight, high electromotive force and high energy, and low self-discharge. Secondary batteries are attracting attention. This lithium ion secondary battery is currently used in large quantities, for example, as a coin-type (cylindrical) battery for mobile phones and notebook computers. Further, lithium ion secondary batteries are expected as batteries for electric vehicles in the future.
[0003]
Examples of the negative electrode material of such a lithium ion secondary battery include an interlayer compound such as lithium metal and a carbon material capable of inserting and extracting lithium alloys and lithium ions. On the other hand, examples of the positive electrode material include compounds of transition metals such as cobalt, nickel, manganese, and iron, and composite oxides of these transition metals and lithium.
[0004]
Generally, in such a lithium ion secondary battery, a separator is provided between the positive electrode and the negative electrode as described above in order to prevent a short circuit due to direct contact between these electrodes. As such a separator, a porous film having a large number of micropores is usually used in order to secure the permeability of ions between the positive electrode and the negative electrode.
[0005]
Conventionally, as a method of manufacturing a battery, the above-described separator is sandwiched between a positive electrode and a negative electrode to prevent a short circuit between these electrodes, laminated, and an electrode / separator laminate is assembled. It is known to assemble a battery by turning or laminating the electrode / separator laminate into a battery container and then injecting an electrolyte into the battery container.
[0006]
However, in such a method for manufacturing a battery, the members of the electrode and the separator are liable to be displaced from each other when the electrode / separator laminate is stored or transported. As a result, the productivity of the battery manufacturing is low, and In addition, there is a problem that defective products are easily generated. In addition, according to the battery obtained in this manner, the adhesion between the electrode and the separator is poor, and the battery characteristics are deteriorated during use, or an internal short circuit occurs, causing the battery to generate heat and increase in temperature. Could even be destroyed.
[0007]
On the other hand, in recent years, a battery using a polymer-type solid electrolyte that has a high degree of freedom in shape, such as being less likely to leak and being thinner than a battery using a conventional electrolytic solution, has been developed. Attention has been paid to meet the demand for thinner and higher safety. However, the conventionally known polymer-type solid electrolyte has a problem that the electric conductivity is significantly lower than that of the electrolytic solution.
[0008]
Therefore, for example, gel electrolytes having properties close to those of an electrolyte by retaining the electrolyte in a polymer matrix have been put into practical use. Various types of such gel electrolytes are already known. For example, a gel electrolyte is known in which an electrolyte containing γ-butyrolactone as a solvent is contained in a matrix composed of a crosslinked polymer obtained by polymerizing a trifunctional acrylic ester of polyethylene oxide in a molecule (for example, Patent Document 1). reference.). Also, a gel electrolyte using a polymer composed of a tetrafunctional terminal acryloyl-modified alkylene oxide as a matrix is known (for example, see Patent Document 2).
[0009]
Such a polyether-based polymer has high compatibility with the electrolytic solution and forms a uniform and high-conductivity gel electrolyte. However, since the gel electrolyte alone has low mechanical strength, the It is difficult to isolate the negative electrode so that a short circuit does not occur, and it is essential to use the negative electrode together with a separator. Further, when lithium hexafluorophosphate, which is a common electrolyte in a lithium ion secondary battery, is used as an electrolyte salt, the above-mentioned polymer is decomposed, so that there is a problem in durability of the obtained battery.
[0010]
[Patent Document 1] JP-A-8-298126 (pages 3 and 4)
[Patent Document 2] Japanese Patent Application Laid-Open No. 11-176452 (page 1)
[0011]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-described problems in the production of a conventional gel electrolyte battery, and has a heat-crosslinkable adhesive composition and a gelling agent supported on a porous film. It is an object to provide an adhesive / gelling agent-supporting porous film. According to the present invention, a porous film / electrode assembly in which the electrode is firmly adhered to the porous film is obtained by pressing and heating the electrode on such an adhesive / gelling agent-supporting porous film. By using such a porous film / electrode assembly, the battery can be efficiently assembled without mutual movement of members, and after the battery is assembled, the porous film is A gel electrolyte battery functioning as a separator adhered to an electrode can be efficiently assembled. Another object of the present invention is to provide a method for producing a gel electrolyte battery using such an adhesive / gelling agent-supporting porous film.
[0012]
[Means for Solving the Problems]
According to the present invention, there is provided an adhesive / gelling agent-carrying porous film, wherein a thermosetting adhesive composition which crosslinks and cures by heating and a gelling agent are carried on a porous film. The heat-crosslinkable adhesive composition preferably comprises a polyfunctional isocyanate and a reactive polymer having a functional group capable of reacting with the isocyanate group of the polyfunctional isocyanate.
[0013]
Further, according to the present invention, there is provided a porous film / electrode assembly obtained by bonding an electrode to the adhesive / gelling agent-supporting porous film.
[0014]
Further, according to the present invention, after laminating an electrode on the adhesive / gelling agent-supporting porous film, it is heated and crosslinked and cured to form a porous film / electrode assembly, which is charged in a battery can. Thereafter, the electrolytic solution was poured into the battery can and heated to melt the gelling agent carried by the adhesive / gelling agent-supporting porous film, eluted into the electrolytic solution, and then cooled. The present invention also provides a method for producing a battery, characterized by obtaining a gel electrolyte battery having, as a separator, a porous film after the gelling agent is eluted, while the electrolyte solution is gelled.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, a porous film having a thickness of 5 to 200 μm is preferably used. When the thickness of the porous film is less than 5 μm, the strength is insufficient, and when used as a separator in a battery, there is a possibility that the electrode may cause an internal short circuit. On the other hand, when the thickness of the porous film exceeds 200 μm, a battery using such a porous film as a separator has an excessively large interelectrode distance, resulting in an excessive internal resistance of the battery. Further, a porous film having pores with an average pore diameter of 0.01 to 5 μm is preferably used.
[0016]
According to the present invention, the porous film is not particularly limited as long as it has the characteristics described above, but in consideration of solvent resistance and oxidation-reduction resistance, polyolefins such as polyethylene and polypropylene are used. A porous film made of a resin is preferable. However, among others, when heated, the resin melts and has the property of closing the pores, and therefore, the battery can have a so-called shutdown function. Films are particularly preferred. Here, the polyethylene resin includes not only a homopolymer of ethylene, but also a copolymer of ethylene with an α-olefin such as propylene, butene, and hexene. However, according to the present invention, a laminated film of a porous film such as polytetrafluoroethylene or polyimide and the above-mentioned polyolefin resin porous film is also suitably used as a porous film because of its excellent heat resistance.
[0017]
The adhesive / gelling agent-supporting porous film according to the present invention is obtained by supporting such a porous film with a heat-crosslinkable adhesive composition which is crosslinked and cured by heating and a gelling agent.
[0018]
First, the heat-crosslinkable adhesive composition will be described. According to the present invention, the heat-crosslinkable adhesive composition is not particularly limited, but includes a polyfunctional isocyanate and a reactive polymer having a functional group capable of reacting with an isocyanate group of the polyfunctional isocyanate. Is preferably used. In particular, in the present invention, the reactive polymer preferably contains a (meth) acrylic acid ester component and a reactive monomer component having an active hydrogen capable of reacting with an isocyanate group of the polyfunctional isocyanate.
[0019]
Examples of the (meth) acrylic acid ester include ethyl (meth) acrylate, butyl (meth) acrylate, propyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dodecyl (meth) acrylate, and the like. As described above, an alkyl ester having 1 to 12 carbon atoms in the alkyl group is preferably used.
[0020]
Further, according to the present invention, the reactive polymer may have a glass transition temperature of 0 ° C. or less. In this case, an electrode is pressure-bonded to the obtained adhesive / gelling agent-supporting porous film at room temperature. Thus, so to speak, the electrode can be temporarily bonded to the porous film, but according to the invention, the reactive polymer has a glass transition temperature in the range from 0 to 100C, preferably from 40 to 100C. It is preferable that it has. As described above, when the reactive polymer has a glass transition temperature in the range of 0 to 100 ° C., preferably 40 to 100 ° C., the electrode is usually pressure-bonded to the obtained adhesive / gelling agent-supporting porous film. Then, in order to perform the temporary bonding, it is necessary to heat the adhesive / gelling agent-supporting porous film. On the other hand, for example, the adhesive / gelling agent-supporting porous film is laminated or rolled. When it is wound and stored, there is an advantage that it is not necessary to sandwich a release paper between the adhesive / gelling agent-supporting porous film.
[0021]
More specifically, specific examples of the reactive monomer include a carboxyl group-containing copolymerizable monomer such as (meth) acrylic acid, itaconic acid, and maleic acid, 2-hydroxyethyl (meth) acrylate, and 2-hydroxypropyl. Examples include a hydroxyl group-containing copolymerizable monomer such as hydroxyalkyl (meth) acrylate represented by (meth) acrylate. However, besides these, for example, a copolymerizable monomer having an amino group can also be used as the reactive monomer.
[0022]
In particular, in the present invention, the reactive polymer has the above-mentioned reactive monomer component in the range of 0.1 to 30% by weight, and has a (meth) acrylate component and, if necessary, a nitrile group. It is preferable to have a copolymerizable monomer component having the following, preferably a (meth) acrylonitrile component, or a vinyl monomer component such as styrene, α-methylstyrene and vinyl acetate. In particular, in the present invention, the reactive polymer contains a copolymerizable monomer component having a nitrile group, preferably a (meth) acrylonitrile component, up to 80% by weight, preferably, so as to have excellent heat resistance and solvent resistance. , In the range of 5 to 70% by weight. In the reactive polymer, when the proportion of the copolymerizable monomer component having a nitrile group is 5% by weight or less, there is almost no effect on the improvement of heat resistance and solvent resistance. The glass transition temperature of the resulting reactive polymer may exceed 100 ° C., which is not preferred. In particular, according to the invention, the reactive polymer comprises from 0.1 to 30% by weight of the reactive monomer component, from 10 to 95% by weight of the (meth) acrylate component and from 4.9 to 60% by weight of (meth) acrylonitrile. Preferably.
[0023]
Further, according to the present invention, an acrylic-modified fluororesin having a hydroxyl group in the molecule (for example, Cefalcoat FG730B manufactured by Central Glass Co., Ltd., which can be obtained as a varnish) is also preferably used as a reactive polymer. Can be.
[0024]
As mentioned above, when the reactive polymer has a glass transition temperature in the range of 0 to 100 ° C., preferably 40 to 100 ° C., the porous film may be made of a polyfunctional isocyanate and such a reactive polymer. The adhesive / gelling agent-carrying porous film according to the present invention obtained by applying the heat-crosslinkable adhesive composition and the gelling agent can be stably stored by itself and uses a release paper. Without being stacked, it can be stored in a roll or rolled form. However, in such a case, in order to obtain a porous film / electrode laminate, the adhesive / gelling agent-carrying porous film is pressure-bonded to the electrode while heating at a temperature at which the polyfunctional isocyanate does not react, and the adhesive is temporarily bonded. It is necessary to.
[0025]
The reactive polymer as described above can be obtained as a polymer solution by copolymerizing a required monomer in a solvent such as benzene, toluene, xylene, ethyl acetate, and butyl acetate. On the other hand, according to the emulsion polymerization method, an aqueous dispersion of a reactive polymer can be obtained. As described above, when the emulsion method is used, it is preferable to use a polyfunctional crosslinking monomer such as divinylbenzene or trimethylolpropane triacrylate in a proportion of 1% by weight or less in addition to the above-described monomers.
[0026]
As the polyfunctional isocyanate, phenylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, diphenyl ether diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate and other aromatic, araliphatic, alicyclic, aliphatic diisocyanates, these diisocyanates A blocked diisocyanate obtained by reacting with a so-called blocking agent is used. As the blocking agent, for example, alcohols, phenols, ε-caprolactam, oximes, active methylol compounds and the like are preferably used.
[0027]
According to the present invention, as described above, after the reactive polymer is obtained as a solution or an aqueous dispersion, the above-mentioned polyfunctional isocyanate is added thereto, whereby the thermal cross-linking comprising the polyfunctional isocyanate and the above-mentioned copolymer is performed. To obtain an adhesive composition.
[0028]
According to the present invention, when the reactive polymer is used as a solution, the polyfunctional isocyanate is preferably prepared by using an oil-soluble polyfunctional isocyanate to prepare an oil-based heat-crosslinkable adhesive composition. When the reactive polymer is used as an aqueous dispersion, an aqueous heat-crosslinkable adhesive composition is preferably prepared using a water-soluble or water-dispersible polyfunctional isocyanate. When preparing an oil-based heat-crosslinkable adhesive composition as described above, an organic solvent such as methyl ethyl ketone or methyl isobutyl ketone may be blended in order to improve the coatability. An inorganic fine powder such as a fine powder of heavy calcium carbonate or silica sand may be blended as a fluidity modifier at a ratio of 50% by weight or less.
[0029]
In such a thermally crosslinkable adhesive composition, the proportion of the polyfunctional isocyanate is usually in the range of 0.1 to 20 parts by weight based on 100 parts by weight of the reactive polymer. When the proportion of the polyfunctional isocyanate is less than 0.1 part by weight based on 100 parts by weight of the reactive polymer, the crosslinking of the reactive polymer with the polyfunctional isocyanate is insufficient, and the resulting film / electrode is obtained. In the joined body, strong adhesion between the porous film and the electrode cannot be obtained. However, when the proportion of the polyfunctional isocyanate is more than 20 parts by weight with respect to 100 parts by weight of the reactive polymer, the adhesive composition after crosslinking is too hard, which impairs the adhesion between the film and the electrode. There is.
[0030]
Next, the gelling agent will be described. The gelling agent generally refers to an organic compound having a reversible gel-forming property with respect to an organic substance which is liquid at normal temperature (25 ° C.). In the present invention, an organic solvent (preferably, When a composition is prepared by blending this into a solution (that is, an electrolytic solution) obtained by dissolving an electrolyte salt in an aqueous organic solvent), the composition is heated to a temperature higher than room temperature (25 ° C.), for example, limited. Although it is not intended, it refers to an organic compound that forms a uniform solution when heated to 40 to 100 ° C. and reversibly forms a gel composition when the solution is cooled to room temperature (25 ° C.).
[0031]
In particular, according to the present invention, it dissolves in the electrolytic solution in a temperature range higher than room temperature (25 ° C.), preferably in the range of 60 to 100 ° C., but solidifies together with the electrolytic solution at room temperature to form a reversible material. In addition, a group of organic compounds known as oil gelling agents, which are organic compounds capable of forming a gel composition, that is, a physical gel, are preferably used. As described in "Polymer Processing", Vol. 45, No. 1, pp. 21-26 (1996), for example, an oil gelling agent is added in a small amount to oils to make the whole oil jelly. Various drugs that can be hardened are already known.
[0032]
In the present invention, as described above, any gelling agent can be used without particular limitation as long as it is known as an oil gelling agent, as described above. By way of example, for example, 12-hydroxystearic acid, N-lauroyl-L-glutamic acid-α, γ-bis-n-butylamide, aluminum dialkylphosphate, 2,3-bis-n-hexadecyloxyanthracene, trialkyl- Cis-1,3,5-cyclohexanetricarboxamide,
[0033]
Embedded image
Figure 2004143363
[0034]
A compound (1) represented by the formula:
[0035]
Embedded image
Figure 2004143363
[0036]
A compound (2) represented by the formula:
[0037]
Embedded image
Figure 2004143363
[0038]
Dibenzylidene sorbitol (3) represented by
[0039]
Embedded image
Figure 2004143363
[0040]
Tribenzylidene sorbitol (4) represented by the formula:
[0041]
Embedded image
Figure 2004143363
[0042]
And cholesterol derivatives (5) and (6).
[0043]
The porous film carrying the adhesive / gelling agent according to the present invention can be obtained by supporting the above-mentioned heat-crosslinkable adhesive composition and such a gelling agent on a porous film by an appropriate means. .
[0044]
According to the present invention, the heat-crosslinkable adhesive composition and the gelling agent are supported on both front and back surfaces of the porous film to form an adhesive / gelling agent-supporting porous film, and electrodes are provided on both front and back surfaces, that is, The negative electrode and the positive electrode may be pressed and bonded, respectively, to form a porous film / electrode laminate, and the heat-crosslinkable adhesive composition and the gelling agent are supported on only one surface of the porous film. Then, an adhesive / gelling agent-supporting porous film may be formed, and an electrode, that is, either a negative electrode or a positive electrode, may be pressed and adhered to the surface thereof to form a porous film / electrode laminate.
[0045]
The larger the amount of the thermally crosslinkable adhesive composition carried on the porous film, the greater the gel electrolyte obtained in the obtained gel electrolyte, the better the adhesion with the electrode, but on the other hand, the more the porous film by the adhesive composition Since the coverage is increased, the characteristics of the obtained battery may be reduced. Conversely, if the amount of the adhesive composition supported on the porous film is too small, the resulting film will have poor porous film (separator) adhesion to the electrode, and in some cases, the porous film No adhesion is obtained between the (separator) and the electrode. Similarly, the more the amount of the gelling agent carried on the porous film, the more the electrolyte solution can be gelled as the amount increases, but when the amount is too large, the characteristics of the obtained battery deteriorate. . On the other hand, when the carrying amount of the gelling agent is too small, there is no harmful effect on the characteristics of the obtained battery, but it is difficult to gel the electrolytic solution.
[0046]
Therefore, according to the present invention, when the heat-crosslinkable adhesive composition and the gelling agent are carried on the porous film, for example, the heat-crosslinkable adhesive composition and the gelling agent are applied to the porous film. When carried and carried, partially, that is, for example, it is preferable to partially apply, for example, spots, grids, stripes, carpentry, etc., particularly, the adhesive composition and the gelling agent By applying the thermo-crosslinkable adhesive composition and the gelling agent in a range of 5 to 50% of the area of the surface of the porous film to be coated, a strong adhesion between the porous film and the electrode can be obtained. In addition, a battery having excellent characteristics can be obtained by using such a porous film / electrode assembly.
[0047]
Further, according to the present invention, at the time of assembling the battery, the electrode is firmly adhered to the thermo-crosslinkable adhesive composition using the adhesive / gelling agent-supporting porous film, and the gel is formed as described later. In order to gel the electrolyte well with the agent, the heat-crosslinkable adhesive composition and the gelling agent are mixed in a weight ratio of the heat-crosslinkable adhesive composition / gelling agent of 3/97 to 80/20, preferably 0.4 to 40 g / m at 5/95 to 25/75 2 , Preferably 0.8 to 20 g / m 2 It is preferable that the carrier is supported at a carrier ratio of.
[0048]
Next, a method of manufacturing (assembling) a battery using such an adhesive / gelling agent-supporting porous film according to the present invention will be described.
[0049]
According to the present invention, the negative electrode and the positive electrode are placed along the separator with the adhesive / gelling agent-supporting porous film obtained as described above interposed therebetween, preferably at a temperature at which the polyfunctional isocyanate does not react. By pressing while heating, a porous film / electrode laminate is obtained. Therefore, according to the present invention, in this porous film / electrode laminate, the polyfunctional isocyanate in the thermally crosslinkable adhesive composition is substantially unreacted, and the adhesive composition is crosslinked. , Not cured.
[0050]
According to the present invention, a sheet-like electrode obtained by pressing an active material together with a binder resin on the surface of a current collector is used as the electrode. In the case of a lithium ion secondary battery, usually, an aluminum foil is used for the positive electrode current collector, and as the positive electrode active material, a compound of a transition metal such as cobalt, nickel, manganese, iron, or the like, A composite oxide with lithium is used alone or in combination with a conductive substance such as graphite powder. Among them, lithium cobaltate is currently most commonly used. On the other hand, a copper foil is used for the negative electrode current collector, and an interlayer compound such as a carbon-based material capable of inserting and extracting lithium is used as the negative electrode active material in addition to a lithium alloy. Among them, graphite powder is most commonly used. As the binder resin, polyvinylidene fluoride resin is generally used. The electrode can be obtained by forming a slurry of the active material and the binder resin in a solvent such as N-methyl-2-pyrrolidone, applying the slurry to the surface of the current collector, and pressing the slurry.
[0051]
According to the present invention, as described above, the negative electrode is made to follow the surface of the adhesive / gelling agent-supporting porous film in a state where the polyfunctional isocyanate in the thermally crosslinkable adhesive composition is substantially unreacted. At the same time, the positive electrode is placed along the back surface of the adhesive / gelling agent-supporting porous film, and is preferably pressed while heating at a temperature at which the polyfunctional isocyanate in the thermally crosslinkable adhesive composition does not react. A part of the adhesive composition is press-fitted, and the electrode is temporarily bonded to the porous film to form a porous film / electrode laminate, and then the laminate is heated to react the polyfunctional isocyanate with By reacting with the polymer, the thermo-crosslinkable adhesive composition is cross-linked and cured, and the electrode is adhered to the porous film to obtain a porous film / electrode assembly. That is, the electrodes are so-called permanently bonded to the adhesive / gelling agent-supporting porous film. Therefore, in such a porous film / electrode assembly, the electrode is firmly adhered to the porous film. As described above, in the present invention, the porous film / electrode assembly only needs to have the electrode bonded to the porous film. Therefore, not only the negative electrode / porous film / cathode assembly but also the porous film / electrode assembly can be used. The negative electrode / porous film / positive electrode assembly, the negative electrode / porous film / positive electrode / porous film assembly, and further include the porous film / negative electrode or positive electrode assembly.
[0052]
According to the present invention, as described above, an electrode is pressed against an adhesive / gelling agent-supporting porous film, a part of the adhesive composition is pressed into the electrode, and a porous film / electrode laminate is formed. Then, the laminate is heated to crosslink and cure the thermally crosslinkable adhesive composition in the porous film / electrode laminate to obtain a porous film / electrode assembly. Therefore, according to the present invention, the coating thickness of the heat-crosslinkable adhesive composition on the porous film is not so large, for example, even if the coating thickness is about 5 μm, the gap between the porous film and the electrode The adhesive having sufficient strength for practical use can be obtained.
[0053]
To assemble a battery, a porous film / electrode assembly is prepared as described above, and then charged in a battery can also serving as an electrode plate of the battery, and then an electrolyte is injected into the battery can. Then, the gelling agent carried by the adhesive / gelling agent-supporting porous film is melted and eluted in the electrolytic solution by heating, and then the solution is allowed to cool to room temperature. To That is, a gel electrolyte is formed. On the other hand, the porous film after the gelling agent is eluted still functions as a separator for isolating them and preventing a short circuit thereof while maintaining adhesion with the positive and negative electrodes, thus obtaining a gel electrolyte battery. it can.
[0054]
According to the present invention, after obtaining a porous film / electrode laminate as described above, this is heated to form a thermo-crosslinkable adhesive composition supported on an adhesive / gelling agent-supporting porous film. Is crosslinked and cured to obtain a porous film / electrode assembly. Here, the crosslinking and curing of the heat-crosslinkable adhesive composition are usually preferably performed at a temperature in the range of 40 to 60 ° C. When the crosslinking and curing are performed at an excessively high temperature, the battery element may be deteriorated. Crosslinking and curing of the thermally crosslinkable adhesive composition include, for example, a thermally crosslinkable adhesive composition comprising a polyfunctional isocyanate and a reactive polymer having a functional group capable of reacting with an isocyanate group of the polyfunctional isocyanate. When it is, the reaction is carried out by a reaction between the polyfunctional isocyanate and the reactive polymer.
[0055]
According to the present invention, in assembling a battery, in order to melt the gelling agent carried by the adhesive / gelling agent-supporting porous film and elute it into the electrolytic solution, the adhesive / gel in the electrolytic solution is usually used. It is preferable to heat the agent-supporting porous film at a temperature of 60 to 100 ° C. for about 10 minutes to 2 hours. When the temperature is too high, the battery element may be deteriorated. On the other hand, when the temperature is too low, a gel electrolyte may not be formed in the obtained battery. Further, when the above time is too long, the battery element may be deteriorated. On the other hand, when the above time is too short, the gel electrolyte may not be formed in the obtained battery. In this way, after the gelling agent is eluted from the adhesive / gelling agent-supporting porous film in the electrolyte solution into the electrolyte solution, the gelling agent gels the electrolyte solution when cooled to the actual benefit. A gel electrolyte is formed. On the other hand, the electrode is still adhered to the porous film after the gelling agent has been eluted in this way, and such a porous film functions as a separator in the obtained battery.
[0056]
The electrolytic solution is a solution obtained by dissolving an electrolyte salt in an appropriate organic solvent. As the electrolyte salt, hydrogen, lithium, sodium, alkali metals such as potassium, alkaline earth metals such as calcium and strontium, tertiary or quaternary ammonium salts and the like as a cationic component, hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid Inorganic acids such as borofluoric acid, hydrofluoric acid, hexafluorophosphoric acid, perchloric acid, and salts having an anionic component of an organic acid such as carboxylic acid, organic sulfonic acid, or fluorine-substituted organic sulfonic acid may be used. it can. Among them, an electrolyte salt containing an alkali metal ion as a cation component is particularly preferably used.
[0057]
Specific examples of such an electrolyte salt having an alkali metal ion as a cation component include, for example, lithium perchlorate, sodium perchlorate, alkali metal perchlorates such as potassium perchlorate, lithium tetrafluoroborate, and tetrafluoroborate. Sodium fluoroborate, alkali metal tetrafluoroborate such as potassium tetrafluoroborate, lithium hexafluorophosphate, alkali metal hexafluorophosphate such as potassium hexafluorophosphate, alkali trifluoroacetate such as lithium trifluoroacetate Examples of the metal include alkali metals such as metal and lithium trifluoromethanesulfonate.
[0058]
In particular, when a lithium ion secondary battery is obtained according to the present invention, as the electrolyte salt, for example, lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate and the like are suitably used.
[0059]
Further, as the solvent for the electrolyte salt used in the present invention, any solvent can be used as long as it dissolves the electrolyte salt, and as the non-aqueous solvent, ethylene carbonate, propylene carbonate , Butylene carbonate, cyclic esters such as γ-butyrolactone, ethers such as tetrahydrofuran and dimethoxyethane, and chain esters such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, alone or as a mixture of two or more. Can be used as
[0060]
The electrolyte salt is appropriately determined depending on the type and amount of the solvent to be used. Usually, an amount of the obtained gel electrolyte having a concentration of 1 to 50% by weight is used.
[0061]
【Example】
Hereinafter, the present invention will be described with reference to Examples together with Reference Examples, but the present invention is not limited to these Examples. Hereinafter, the physical properties of the used porous film were evaluated as follows. The electrodes and the reference battery were manufactured as described below, and the characteristics of the batteries obtained in the examples were evaluated for the reference battery as follows.
[0062]
(Thickness)
It was determined based on a measurement with a 1/10000 mm thickness gauge and a 10000-fold scanning electron micrograph of the cross section of the porous film.
[0063]
(Porosity)
Unit area S of porous film (cm 2 ), The average thickness t (cm), and the density d (g / cm) of the resin constituting the porous film. 3 ) Was calculated by the following equation.
[0064]
Porosity (%) = (1− (100 W / S / t / d)) × 100
[0065]
Reference Example 1
(Preparation of thermocrosslinkable adhesive composition)
Acrylonitrile 10 parts
Methacrylic acid 5 parts
30 parts of butyl acrylate
Ethyl acrylate 60 parts
Polyethylene glycol alkyl phenyl ether 3 parts
0.08 parts of n-dodecyl mercaptan
0.3 parts of potassium persulfate
300 parts of ion exchange water
[0066]
The above mixture was subjected to emulsion polymerization by a conventional method to obtain an aqueous dispersion of a reactive polymer. The weight average molecular weight of this reactive polymer was about 850,000, and the glass transition temperature was -13 ° C. 10% hydrochloric acid was added to the aqueous dispersion of the reactive polymer to precipitate the reactive polymer, which was taken out, sufficiently washed with water, and dried under reduced pressure.
[0067]
To 100 parts of the reactive polymer thus obtained, 15 parts of fine silica sand powder having an average particle diameter of 12 μm was added, and this was dissolved in a mixed solvent of toluene / methyl ethyl ketone (75/25 by weight) to obtain the reactive polymer. A 20% strength solution was prepared.
[0068]
Next, 2.7 parts of blocked hexamethylene diisocyanate obtained by adding 1 mol part of trimethylolpropane to 3 mol parts of hexamethylene diisocyanate was added to 100 parts of the solid content of the reactive polymer solution, A heat-crosslinkable adhesive composition was prepared.
[0069]
Reference Example 2
(Preparation of electrode)
Lithium cobaltate (LiCoO 2 , An average particle size of 15 μm), graphite powder and polyvinylidene fluoride resin in a weight ratio of 85: 10: 5, and using N-methyl-2-pyrrolidone so that the solid content concentration becomes 15% by weight. A slurry was obtained. This slurry was applied on a 20 μm-thick aluminum foil to a thickness of 200 μm with a coating machine, dried at 80 ° C. for 1 hour, dried at 120 ° C. for 2 hours, and then pressed by a roll press to obtain a positive electrode having a thickness of 100 μm. I got a sheet.
[0070]
Graphite powder and polyvinylidene fluoride resin were mixed at a weight ratio of 95: 5, and this was made into a slurry using N-methyl-2-pyrrolidone so as to have a solid content concentration of 15% by weight. This slurry was applied to a thickness of 200 μm on a copper foil having a thickness of 20 μm with a coating machine, dried at 80 ° C. for 1 hour, dried at 120 ° C. for 2 hours, and then pressed by a roll press to obtain a negative electrode having a thickness of 100 μm. I got a sheet.
[0071]
(Preparation of reference battery)
Each of the positive electrode sheet and the negative electrode sheet was punched into a disk having a diameter of 15 mm. In addition, a disk-shaped separator made of a polyethylene resin porous film having a diameter of 20 mm, a thickness of 25 μm, and a porosity of 50% was prepared. The negative electrode, the separator, and the positive electrode are laminated in this order, and this is housed in a battery container, and after injecting an electrolytic solution into the battery container, sealing is performed, and a coin-type lithium-ion secondary battery of 2016 size is assembled. Was. This battery was charged and discharged five times at a rate of 0.2 CmA to determine a discharge capacity.
[0072]
(Evaluation of battery characteristics)
The discharge capacity when the coin-type lithium ion secondary battery obtained in the following example was charged and discharged five times at a rate of 0.2 CmA was determined, and was calculated as a percentage (%) with respect to the discharge capacity of the reference battery. To evaluate battery characteristics.
[0073]
Example 1
(Preparation of porous film / electrode assembly)
15 parts by weight of the above thermally crosslinkable adhesive composition and 85 parts by weight of the above-mentioned gelling agent (3) are uniformly mixed, and this is mixed with a polyethylene resin porous membrane (thickness: 25 μm, porosity: 50%, average pore diameter). 0.1 μm) On both sides of the front and back 10g / m 2 And then dried, the solvent is removed, and a heat-crosslinkable adhesive composition and a gelling agent are supported on a polyethylene resin porous film to form an adhesive / gelling agent-supporting porous film. Got.
[0074]
After the positive electrode extends along the surface of the adhesive / gelling agent-supporting porous film and the negative electrode extends along the back surface, the temperature is 80 ° C., the pressure is 5 kg / cm 2 For 5 minutes, press the positive and negative electrodes against the above porous film, and then put it in a thermostat at a temperature of 50 ° C. for 7 days to react the polyfunctional isocyanate with the reactive polymer. Then, the porous film / electrode assembly was obtained.
[0075]
(Assembly of battery and evaluation of obtained battery)
In a glove box purged with argon, the electrolyte salt lithium hexafluorophosphate (LiPF) was adjusted to a concentration of 1.0 mol / L in a mixed solvent of ethylene carbonate / ethyl methyl carbonate (volume ratio 1/1). 6 Was dissolved to prepare an electrolytic solution.
[0076]
The porous film / electrode assembly is charged into a 2016-size coin-type battery can serving also as a positive / negative electrode plate, and the electrolyte is supplied to the porous film at a rate of 100 g / m2. 2 , And the battery can was sealed and heated at 85 ° C. for 1 hour to melt the gelling agent carried by the porous film / electrode assembly. It was eluted in the solution, and then allowed to cool to room temperature to assemble a coin-type lithium ion secondary battery.
[0077]
The discharge capacity of the battery thus obtained was 97% (hereinafter the same) as a percentage of the discharge capacity of the above-described reference battery. In addition, as a result of disassembling and examining the battery, it was confirmed that the adhesion between the porous film and the electrode was maintained, and that the electrolyte formed an electrolyte gel.
[0078]
Example 2
In the same manner as in Example 1, 10 parts by weight of the heat-crosslinkable adhesive composition and 90 parts by weight of the gelling agent (4) tribenzylidene sorbitol were uniformly mixed, and this was mixed with a polyethylene resin porous membrane (thickness). (25 μm, porosity 50%, average pore diameter 0.1 μm) 2 And then dried, the solvent is removed, and a heat-crosslinkable adhesive composition and a gelling agent are supported on a polyethylene resin porous film to form an adhesive / gelling agent-supporting porous film. Got.
[0079]
After obtaining a porous film / electrode assembly in the same manner as in Example 1, this was charged into a coin-type battery can, and the electrolytic solution was supplied at 90 g / m to the porous film. 2 , And the battery can was sealed and heated at 90 ° C. for 1.5 hours to melt the gelling agent carried by the porous film / electrode assembly. Then, it was eluted into the electrolytic solution, and then allowed to cool to room temperature to assemble a coin-type lithium ion secondary battery.
[0080]
The battery thus obtained had a discharge capacity of 97% as a percentage of the discharge capacity of the reference battery. In addition, as a result of disassembling and examining the battery, it was confirmed that the adhesion between the porous film and the electrode was maintained, and that the electrolyte formed an electrolyte gel.
[0081]
Example 3
In the same manner as in Example 1, 5 parts by weight of the heat-crosslinkable adhesive composition and 95 parts by weight of the gelling agent (1) are uniformly mixed, and this is mixed with a polyethylene resin porous membrane (thickness 25 μm, 5 g / m on the entire front and back surfaces with a porosity of 50% and an average pore diameter of 0.1 μm) 2 And then dried, the solvent is removed, and a heat-crosslinkable adhesive composition and a gelling agent are supported on a polyethylene resin porous film to form an adhesive / gelling agent-supporting porous film. Got.
[0082]
After obtaining a porous film / electrode assembly in the same manner as in Example 1, this was charged into a coin-type battery can, and the electrolytic solution was supplied at 90 g / m to the porous film. 2 , And the battery can was sealed and heated at 95 ° C. for 1 hour to melt the gelling agent carried by the porous film / electrode assembly, It was eluted in the solution, and then allowed to cool to room temperature to assemble a coin-type lithium ion secondary battery.
[0083]
The battery thus obtained had a discharge capacity of 99% as a percentage of the discharge capacity of the above-mentioned reference battery. In addition, as a result of disassembling and examining the battery, it was confirmed that the adhesion between the porous film and the electrode was maintained, and that the electrolyte formed an electrolyte gel.
[0084]
Example 4
In the same manner as in Example 1, 25 parts by weight of the heat-crosslinkable adhesive composition and 75 parts by weight of the gelling agent (2) were uniformly mixed, and this was mixed with a polyethylene resin porous membrane (thickness 25 μm, (Porosity 50%, average pore diameter 0.1 μm) 10 g / m 2 And then dried, the solvent is removed, and a heat-crosslinkable adhesive composition and a gelling agent are supported on a polyethylene resin porous film to form an adhesive / gelling agent-supporting porous film. Got.
[0085]
After obtaining a porous film / electrode assembly in the same manner as in Example 1, this was charged into a coin-type battery can, and the electrolytic solution was supplied at 70 g / m to the porous film. 2 , And the battery can was sealed and heated at 90 ° C. for 1 hour to melt the gelling agent carried by the porous film / electrode assembly. It was eluted in the solution, and then allowed to cool to room temperature to assemble a coin-type lithium ion secondary battery.
[0086]
The battery thus obtained had a discharge capacity of 95% as a percentage of the discharge capacity of the reference battery described above. In addition, as a result of disassembling and examining the battery, it was confirmed that the adhesion between the porous film and the electrode was maintained, and that the electrolyte formed an electrolyte gel.
[0087]
Comparative Example 1
A coin-type lithium-ion secondary battery was prepared in the same manner as in Example 1, except that 90 parts by weight of the thermally crosslinkable adhesive composition and 10 parts by weight of the gelling agent (3) were used. Assembled. The battery thus obtained had a discharge capacity of 58% as a percentage of the discharge capacity of the above-described reference battery. In addition, as a result of disassembling and examining the battery, the adhesion between the porous film and the electrode was maintained, but the electrolyte did not form an electrolyte gel.
[0088]
Comparative Example 2
A coin-type lithium-ion secondary battery was prepared in the same manner as in Example 2 except that 1 part by weight of the heat-crosslinkable adhesive composition and 99 parts by weight of the gelling agent (4) were used. Assembled. The battery thus obtained had a discharge capacity of 98% as a percentage of the discharge capacity of the reference battery. In addition, as a result of disassembling the battery and examining it, it was confirmed that the electrolytic solution formed an electrolyte gel, but the porous film did not adhere to the electrode.
[0089]
Comparative Example 3
In Example 3, 0.2 g of the thermo-crosslinkable adhesive composition and the gelling agent (1) were added to a polyethylene resin porous membrane (thickness: 25 μm, porosity: 50%, average pore diameter: 0.1 μm). / M 2 In this manner, a coin-type lithium-ion secondary battery was assembled in the same manner as in Example 3 except that the coating was performed at a ratio of 1: 1. The battery thus obtained had a discharge capacity of 98% as a percentage of the discharge capacity of the reference battery. In addition, as a result of disassembling and examining the battery, the adhesion between the porous film and the electrode was maintained, but the electrolyte did not form an electrolyte gel.
[0090]
Comparative Example 4
In Example 4, the heat-crosslinkable adhesive composition and the gelling agent (2) were added to a polyethylene resin porous membrane (thickness 25 μm, porosity 50%, average pore diameter 0.1 μm) at 50 g / m 2. 2 In this manner, a coin-type lithium-ion secondary battery was assembled in the same manner as in Example 4 except that the respective components were applied in the ratios as described in Example 4. As a result of disassembling the battery and examining it, it was confirmed that the adhesion between the porous film and the electrode was maintained, and that the electrolyte formed an electrolyte gel. However, the discharge capacity of the battery was as described above. It was 36% as a percentage of the discharge capacity of the reference battery.
[0091]
【The invention's effect】
The adhesive / gelling agent-supporting porous film according to the present invention comprises a heat-crosslinkable adhesive composition comprising a polyfunctional isocyanate and a reactive polymer having a functional group capable of reacting with the isocyanate group of the polyfunctional isocyanate, and a physical gel. And a gelling agent that gives the gelling agent is supported on a porous film. According to the present invention, as described above, the electrode is pressure-bonded to the porous film supporting the thermo-crosslinkable adhesive composition and the gelling agent, and further heated to convert the polyfunctional isocyanate into a reactive one. By reacting with the polymer, the adhesive composition is crosslinked and cured, and the electrode is adhered to the porous film to obtain a porous film / electrode assembly.
[0092]
Therefore, according to the porous film / electrode assembly of the present invention, the members can be charged into the battery can without causing mutual shearing, and in the battery obtained therefrom, the electrode and the separator can be used. Strong adhesion can be obtained between them, and the battery can be efficiently assembled.

Claims (8)

加熱によって架橋硬化する熱架橋性接着剤組成物とゲル化剤とを多孔質フィルムに担持させてなることを特徴とする接着剤/ゲル化剤担持多孔質フィルム。An adhesive / gelling agent-supporting porous film, comprising a porous film carrying a heat-crosslinkable adhesive composition that is crosslinked and cured by heating and a gelling agent. 熱架橋性接着剤組成物が多官能イソシアネートとこの多官能イソシアネートのイソシアネート基と反応し得る官能基を有する反応性ポリマーとからなるものである請求項1に記載の接着剤/ゲル化剤担持多孔質フィルム。2. The adhesive / gelling agent-carrying porous material according to claim 1, wherein the heat-crosslinkable adhesive composition comprises a polyfunctional isocyanate and a reactive polymer having a functional group capable of reacting with an isocyanate group of the polyfunctional isocyanate. Quality film. 反応性ポリマーがイソシアネート基と反応し得る官能基としてカルボキシル基又はヒドロキシル基を有するものである請求項2に記載の接着剤/ゲル化剤担持多孔質フィルム。The adhesive / gelling agent-supporting porous film according to claim 2, wherein the reactive polymer has a carboxyl group or a hydroxyl group as a functional group capable of reacting with an isocyanate group. 反応性ポリマーが(メタ)アクリル酸成分とヒドロキシアルキル(メタ)アクリレート成分とから選ばれる少なくとも1種の反応性モノマー成分と(メタ)アクリル酸エステル成分とを有するものである請求項3に記載の接着剤/ゲル化剤担持多孔質フィルム。4. The reactive polymer according to claim 3, wherein the reactive polymer has at least one reactive monomer component selected from a (meth) acrylic acid component and a hydroxyalkyl (meth) acrylate component, and a (meth) acrylate component. Adhesive / gelling agent supporting porous film. 反応性ポリマーが(メタ)アクリロニトリル成分を有するものである請求項4に記載の接着剤/ゲル化剤担持多孔質フィルム。The adhesive / gelling agent-supporting porous film according to claim 4, wherein the reactive polymer has a (meth) acrylonitrile component. 反応性ポリマーが0〜100℃の範囲のガラス転移温度を有するものである請求項1から5のいずれかに記載の接着剤/ゲル化剤担持多孔質フィルム。The adhesive / gelling agent-supporting porous film according to any one of claims 1 to 5, wherein the reactive polymer has a glass transition temperature in the range of 0 to 100 ° C. 請求項1から6のいずれかに記載の接着剤/ゲル化剤担持多孔質フィルムを電極に接着してなる多孔質フィルム/電極接合体。A porous film / electrode assembly obtained by bonding the adhesive / gelling agent-supporting porous film according to any one of claims 1 to 6 to an electrode. 請求項1から6のいずれかに記載の接着剤/ゲル化剤担持多孔質フィルムに電極を積層した後、加熱し、熱架橋性接着剤組成物を架橋硬化させて、多孔質フィルム/電極接合体を得、これを電池缶内に仕込んだ後、この電池缶中に電解液を注入し、加熱して、上記接着剤/ゲル化剤担持多孔質フィルムの担持するゲル化剤を融解させ、電解液中に溶出させた後、冷却して、電解液をゲル化させると共に、ゲル化剤が溶出した後の多孔質フィルムをセパレータとして有するゲル電解質電池を得ることを特徴とする電池の製造方法。After laminating an electrode on the adhesive / gelling agent-supporting porous film according to any one of claims 1 to 6, heating is performed to crosslink and cure the thermally crosslinkable adhesive composition, thereby joining the porous film / electrode. After obtaining the body and charging it in a battery can, an electrolyte is poured into the battery can and heated to melt the gelling agent carried by the adhesive / gelling agent-supporting porous film, A method for producing a battery, comprising: eluted into an electrolytic solution; and cooling to gel the electrolytic solution and obtain a gel electrolyte battery having a porous film as a separator after the gelling agent is eluted. .
JP2002312197A 2002-10-28 2002-10-28 Adhesive / gelator-supported porous film and use thereof Expired - Fee Related JP4152721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002312197A JP4152721B2 (en) 2002-10-28 2002-10-28 Adhesive / gelator-supported porous film and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002312197A JP4152721B2 (en) 2002-10-28 2002-10-28 Adhesive / gelator-supported porous film and use thereof

Publications (2)

Publication Number Publication Date
JP2004143363A true JP2004143363A (en) 2004-05-20
JP4152721B2 JP4152721B2 (en) 2008-09-17

Family

ID=32457161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002312197A Expired - Fee Related JP4152721B2 (en) 2002-10-28 2002-10-28 Adhesive / gelator-supported porous film and use thereof

Country Status (1)

Country Link
JP (1) JP4152721B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004091014A1 (en) * 2003-04-09 2004-10-21 Nitto Denko Corporation Adhesive-carrying porous film for cell separator and its application
WO2006038362A1 (en) * 2004-09-30 2006-04-13 Nitto Denko Corporation Reactive-polymer-carrying porous film and process for producing the same
JP2010503175A (en) * 2006-09-07 2010-01-28 エルジー・ケム・リミテッド Gel polymer electrolyte and electrochemical device provided with the same
JP2010067376A (en) * 2008-09-09 2010-03-25 Nitto Denko Corp Separator for battery and manufacturing method thereof, and lithium-ion secondary battery and manufacturing method thereof
WO2011126310A2 (en) 2010-04-06 2011-10-13 주식회사 엘지화학 Stack-type cell, enhanced bi-cell, electrode assembly for secondary battery using same, and manufacturing method therefor
JP2012209118A (en) * 2011-03-29 2012-10-25 Asahi Kasei E-Materials Corp Lithium ion secondary battery and manufacturing method thereof
JP2013254634A (en) * 2012-06-06 2013-12-19 Asahi Kasei Corp Lithium ion secondary battery manufacturing method, and component for lithium ion secondary battery
JP2014524112A (en) * 2011-07-07 2014-09-18 エルジー・ケム・リミテッド Electrode element electrode assembly and electrochemical element equipped with the same
JP2019110057A (en) * 2017-12-19 2019-07-04 株式会社リコー Electrode, nonaqueous power storage element, and coating liquid
CN110690509A (en) * 2019-10-15 2020-01-14 金妍 Opening formation method of lithium ion battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204136A (en) * 1998-01-08 1999-07-30 Toyota Motor Corp Bipolar-type lithium-ion secondary battery and manufacture thereof
JP2002093384A (en) * 2000-09-13 2002-03-29 Yuasa Corp Film package battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204136A (en) * 1998-01-08 1999-07-30 Toyota Motor Corp Bipolar-type lithium-ion secondary battery and manufacture thereof
JP2002093384A (en) * 2000-09-13 2002-03-29 Yuasa Corp Film package battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004091014A1 (en) * 2003-04-09 2004-10-21 Nitto Denko Corporation Adhesive-carrying porous film for cell separator and its application
JP2004323827A (en) * 2003-04-09 2004-11-18 Nitto Denko Corp Adhesive-carrying porous film for battery separator and use of the same
US7833654B2 (en) 2003-04-09 2010-11-16 Nitto Denko Corporation Adhesive-carrying porous film for battery separator and use thereof
JP2006128069A (en) * 2004-09-30 2006-05-18 Nitto Denko Corp Porous film carrying reactive polymer and its manufacturing method
WO2006038362A1 (en) * 2004-09-30 2006-04-13 Nitto Denko Corporation Reactive-polymer-carrying porous film and process for producing the same
US8092935B2 (en) 2004-09-30 2012-01-10 Nitto Denko Corporation Reactive polymer-carrying porous film and process for producing the same
JP2010503175A (en) * 2006-09-07 2010-01-28 エルジー・ケム・リミテッド Gel polymer electrolyte and electrochemical device provided with the same
JP2010067376A (en) * 2008-09-09 2010-03-25 Nitto Denko Corp Separator for battery and manufacturing method thereof, and lithium-ion secondary battery and manufacturing method thereof
WO2011126310A2 (en) 2010-04-06 2011-10-13 주식회사 엘지화학 Stack-type cell, enhanced bi-cell, electrode assembly for secondary battery using same, and manufacturing method therefor
JP2012209118A (en) * 2011-03-29 2012-10-25 Asahi Kasei E-Materials Corp Lithium ion secondary battery and manufacturing method thereof
JP2014524112A (en) * 2011-07-07 2014-09-18 エルジー・ケム・リミテッド Electrode element electrode assembly and electrochemical element equipped with the same
JP2013254634A (en) * 2012-06-06 2013-12-19 Asahi Kasei Corp Lithium ion secondary battery manufacturing method, and component for lithium ion secondary battery
JP2019110057A (en) * 2017-12-19 2019-07-04 株式会社リコー Electrode, nonaqueous power storage element, and coating liquid
JP7102724B2 (en) 2017-12-19 2022-07-20 株式会社リコー Manufacturing method of electrodes, non-aqueous power storage elements, coating liquids and electrodes
CN110690509A (en) * 2019-10-15 2020-01-14 金妍 Opening formation method of lithium ion battery

Also Published As

Publication number Publication date
JP4152721B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
KR100923375B1 (en) Adhesive composition-supporting separator for battery and electrode/separator laminate obtained by using the same
JP6635043B2 (en) Double-sided tape for fixing electrode assembly and secondary battery
JP5200367B2 (en) Bipolar battery electrode
KR100923377B1 (en) Partially crosslinked adhesive-supported porous film for battery separator and its use
JP4207439B2 (en) Manufacturing method of lithium ion secondary battery
EP2706605B1 (en) Electrode assembly having a novel structure and secondary battery using same
JP2007250433A (en) Nonaqueous electrolyte battery
CN111916747A (en) High-safety polymer battery positive plate, polymer battery and battery preparation method
JP4152721B2 (en) Adhesive / gelator-supported porous film and use thereof
JP3500245B2 (en) Gel-like solid electrolyte secondary battery
JP2007035541A (en) Separator for battery and manufacturing method of battery using same
JP5140240B2 (en) Battery separator and battery manufacturing method using the same
JP2002359006A (en) Secondary battery
JP4989053B2 (en) Battery separator and battery manufacturing method using the same
JP4718816B2 (en) Reactive polymer-supported porous film for battery separator and battery manufacturing method using the same
JP4053778B2 (en) Polymer electrolyte substrate, polymer electrolyte, polymer electrolyte sheet and electrochemical element using the same
JP2007035556A (en) Separator for battery and manufacturing method of battery using same
JP2002008655A (en) Negative electrode and non-aqueous electrolyte cell
JP2004241172A (en) Manufacturing method of electrode/separator junction in battery
JP4601338B2 (en) Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate
JP2001006744A (en) Battery using organic electrolyte
JP4601323B2 (en) Electrode element for large-sized lithium ion secondary battery and manufacturing method thereof
JP4088508B2 (en) Adhesive / gelator-supported porous film and use thereof
JP5373349B2 (en) Battery separator and non-aqueous lithium ion secondary battery using the same
JP2007035554A (en) Separator for battery and manufacturing method of battery using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080702

R150 Certificate of patent or registration of utility model

Ref document number: 4152721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140711

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees