JP2004241172A - Manufacturing method of electrode/separator junction in battery - Google Patents

Manufacturing method of electrode/separator junction in battery Download PDF

Info

Publication number
JP2004241172A
JP2004241172A JP2003026782A JP2003026782A JP2004241172A JP 2004241172 A JP2004241172 A JP 2004241172A JP 2003026782 A JP2003026782 A JP 2003026782A JP 2003026782 A JP2003026782 A JP 2003026782A JP 2004241172 A JP2004241172 A JP 2004241172A
Authority
JP
Japan
Prior art keywords
electrode
porous film
battery
adhesive
reactive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003026782A
Other languages
Japanese (ja)
Inventor
Michio Satsuma
道夫 薩摩
Yoshihiro Uetani
慶裕 植谷
Keisuke Yoshii
敬介 喜井
Yutaka Kishii
豊 岸井
Mutsuko Yamaguchi
睦子 山口
Shuhei Murata
修平 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2003026782A priority Critical patent/JP2004241172A/en
Publication of JP2004241172A publication Critical patent/JP2004241172A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an electrode/separator junction having high productivity without causing mutual shear movement between an electrode and a separator in manufacturing a battery. <P>SOLUTION: This manufacturing method of an electrode/separator junction is characterized by that a partially cross-linking adhesive prepared by reacting and partially cross-linking multifunctional isocyanate with a reactive polymer having a functional group capable of reacting with an isocyanate group is supported to a porous film to obtain a partially cross-linking adhesive supporting porous film; an electrode/porous film layered product is obtained by sticking an electrode to the partially cross-linking adhesive supporting porous film; and next the electrode/porous film layered product is immersed into an electrolyte containing multifunctional isocyanate and heated to react the reactive polymer in the partially cross-linking adhesive included in the electrode/porous film layered product with the multifunctional isocyanate so that the electrode is stuck to the porous film by cross-linking and solidifying the reactive polymer. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電池における電極/セパレータ接合体の製造方法に関する。
【0002】
【従来の技術】
従来、電池の製造方法として、正極と負極との間にこれら電極間の短絡を防止するためのセパレータを挟んで積層し、又は正(負)極、セパレータ、負(正)極及びセパレータをこの順序に積層し、捲回して、電極/セパレータ積層体とし、この電極/セパレータ積層体を電池容器内に仕込んだ後、この電池容器内に電解液を注入して、封口する方法が知られている(例えば、特許文献1及び2参照)。
【0003】
しかし、このような電池の製造方法においては、電極/セパレータ積層体の保管時や搬送時に電極とセパレータが相互にずり移動を起こしやすく、その結果、電池製造の生産性が低く、また、不良品が発生しやすい等の問題があった。また、このようにして得られた電池によれば、その使用時に電極が膨張又は収縮して、電極とセパレータとの間の密着性が悪くなって、電池特性が低下したり、また、内部短絡を生じて、電池が発熱昇温し、場合によっては、破壊するおそれさえあった。
【0004】
他方、特に、積層型の電池の製造においては、多くの場合、ポリフッ化ビニリデン樹脂溶液を接着剤として用いて、電極とセパレータとを接着した後、減圧下に上記樹脂溶液に用いた溶剤を除去する方法が採用されている。しかし、このような方法によれば、工程が煩雑であるうえに、得られる製品の品質が安定し難く、更に、電極とセパレータとの接着が十分ではないという問題もあった(例えば、特許文献3参照)。
【0005】
【特許文献1】特開平09−161814号公報
【特許文献2】特開平11−329439号公報
【特許文献3】特開平10−172606号公報
【0006】
【発明が解決しようとする課題】
本発明は、従来の電池の製造における上述したような問題を解決するためになされたものであって、電池の製造に際して、電極とセパレータの相互のずり移動なく、生産性よく、電極/セパレータ接合体を製造する方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明によれば、イソシアネート基と反応し得る官能基を有する反応性ポリマーを接着剤として基材多孔質フィルムに担持させて、接着剤担持多孔質フィルムを得、この接着剤担持多孔質フィルムに電極を貼り合わせて電極/多孔質フィルム積層体を得、次いで、多官能イソシアネートを含む電解液に上記電極/多孔質フィルム積層体を浸漬して、上記電極/多孔質フィルム積層体中の上記反応性ポリマーを上記多官能イソシアネートと反応させ、反応性ポリマーを架橋、硬化させて、電極を多孔質フィルムに接着することを特徴とする電池における電極/セパレータ接合体の製造方法が提供される。
【0008】
【発明の実施の形態】
本発明において、基材多孔質フィルムは、電池の製造後にはセパレータとして機能するものであるので、膜厚3〜100μmの範囲のものがよい。膜厚が3μmよりも薄いときは、強度が不十分であって、電池においてセパレータとして用いた場合に内部短絡を起こすおそれがあり、他方、100μmを越えるときは、電極間距離が大きすぎて、電池の内部抵抗が過大となる。また、基材多孔質フィルムは、平均孔径0.01〜5μmの細孔を有するものがよい。
【0009】
本発明によれば、基材多孔質フィルムは、上述したような特性を有すれば、特に、限定されるものではないが、耐溶剤性や耐酸化還元性を考慮すれば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂からなる多孔質フィルムが好適である。しかし、なかでも、加熱されたとき、樹脂が溶融して、細孔が閉塞する性質を有し、従って、電池に所謂シャットダウン機能を有せしめることができるところから、基材多孔質フィルムとしては、ポリエチレンが特に好適である。ここに、ポリエチレンには、エチレンのホモポリマーのみならず、プロピレン、ブテン、ヘキセン等のα−オレフィンとエチレンとのコポリマーを含むものとする。しかし、本発明によれば、ポリテトラフルオロエチレンやポリイミド等の多孔質膜と上記ポリオレフィン樹脂多孔質フィルムとの積層フィルムも、耐熱性にすぐれるところから、基材多孔質フィルムとして、好適に用いられる。
【0010】
本発明の電池における電極/セパレータ接合体の製造方法によれば、先ず、イソシアネート基と反応し得る官能基を有する反応性ポリマーを接着剤として基材多孔質フィルムに担持させて、接着剤担持多孔質フィルムを得る。
【0011】
本発明によれば、上記反応性ポリマーは、多官能イソシアネートのイソシアネート基と反応し得る活性水素、例えば、カルボキシル基、ヒドロキシル基、アミノ基等を有するポリマーであれば、特に限定されるものではないが、しかし、用いる電解液に不溶性又は非膨潤性のポリマーが好ましく用いられる。そのような反応性ポリマーとして、例えば、多官能イソシアネートのイソシアネート基と反応し得る活性水素を有するオレフィン系やゴム系のポリマーであることが好ましい。
【0012】
従って、そのような電解液に不溶性又は非膨潤性の反応性ポリマーとして、例えば、マレイン酸変成エチレン−酢酸ビニル共重合体、マレイン酸変成エチレン−アクリル酸エステル共重合体、エチレン−アクリル酸共重合体、(メタ)アクリル酸長鎖アルキルエステルと(メタ)アクリル酸、ヒドロキシエチル(メタ)アクリル酸、ヒドロキシプロピル(メタ)アクリル酸、無水マレイン酸等との共重合体、グリシジル基変成エチレン−酢酸ビニル共重合体、アミン変成ポリブタジエン、アミン変成ポリイソプレン等を挙げることができる。上記(メタ)アクリル酸長鎖アルキルエステルは、アルキル基の炭素原子数が8〜18の範囲にあるものが好ましく、従って、上記(メタ)アクリル酸長鎖アルキルエステルの具体例として、例えば、2−エチルヘキシル((メタ)アクリレート、ドデシル(メタ)アクリレート、イソステアリル(メタ)アクリレート等を挙げることができる。
【0013】
更に、本発明によれば、反応性ポリマーは、ガラス転移温度が0℃以下でもよく、この場合には、得られる接着剤担持多孔質フィルムに室温にて電極を圧着して、いわば、電極を接着剤担持多孔質フィルムに仮接着することができる。しかし、本発明によれば、上記反応性ポリマーは、0〜80℃の範囲のガラス転移温度を有することが好ましい。このように、反応性ポリマーが0〜80℃の範囲のガラス転移温度を有するときは、通常、接着剤担持多孔質フィルムに電極を圧着して、仮接着するためには、接着剤担持多孔質フィルムを加熱することが必要であるが、反面、例えば、接着剤担持多孔質フィルムを積層し、又はロールに捲回して保存する場合に、接着剤担持多孔質フィルムの間に剥離紙を挟む必要がない等の利点がある。
【0014】
特に、反応性ポリマーのガラス転移温度を20〜60℃の範囲として、常態で非粘着性としたときには、電極/セパレータ捲回型の電池の組み立てに際して、所謂ピン抜き性にすぐれる利点がある。
【0015】
上述したような反応性ポリマーを、例えば、溶液として得た後、これを基材多孔質フィルムに直接、塗布し、乾燥させることによって、接着剤担持多孔質フィルムを得ることができ、また、反応性ポリマーを剥離性フィルムに塗布し、乾燥させて、剥離性フィルム上に反応性ポリマー層を形成した後、この反応性ポリマー層を基材多孔質フィルムに転写することによっても、接着剤担持多孔質フィルムを得ることができる。また、反応性ポリマーの基材多孔質フィルムへの塗工性を向上させるために、反応性ポリマーにメチルエチルケトンやメチルイソブチルケトンのような有機溶剤や、重質炭酸カルシウムや珪砂の微粉末のような無機質粉末を流動性改質剤として、50重量%以下の割合で反応性ポリマーに配合してもよい。
【0016】
本発明によれば、基材多孔質フィルムに接着剤としての反応性ポリマーを担持させる際に、部分的に、即ち、例えば、線状、斑点状、格子目状、縞状、亀甲模様状等に部分的に塗布して担持させるのが好ましく、特に、反応性ポリマーを塗布する基材多孔質フィルムの表面の面積の5〜95%の範囲で反応性ポリマーを塗布して担持させることによって、電極と多孔質フィルム(後述するように、多孔質フィルムは電池の製造後はセパレータとして機能する。)従って、電極とセパレータとの間に強固な接着を得ると共に、得られる電池において、セパレータとしてのイオン透過性を確保して、すぐれた特性を有する電池を得ることができる。
【0017】
本発明において、接着剤の基材多孔質フィルムへの塗布厚みは、何ら限定されるものではないが、通常、0.1〜20μmの範囲であり、好ましくは、0.5〜10μmの範囲が適当であり、最も好ましくは、1〜5μmの範囲である。余りに厚いときは、得られる電池の特性に有害な影響を与え、他方、余りに薄いときは、電極とセパレータを実用的な接着強度で接着することができない。
【0018】
本発明によれば、上述したように、接着剤を担持させた基材多孔質フィルムに電極を圧着して、電極中に接着剤を一部、圧入し、その後、多官能イソシアネートを溶解させた電解液中で上記積層体を加熱し、接着剤を架橋、硬化させて、電極/セパレータ接合体を得るので、接着剤の基材多孔質フィルムへの塗布厚みは、それほど大きくなくとも、例えば、1〜5μm程度の塗布厚みであっても、基材多孔質フィルムと電極との間に実用的に十分な強度の接着を得ることができる。
【0019】
次いで、本発明によれば、接着剤担持多孔質フィルムに電極を沿わせ、好ましくは、50〜100℃の温度で加熱しながら、圧着し、貼り合わせて、電極/多孔質フィルム積層体を得る。本発明によれば、電極/多孔質フィルム積層体は、目的とする電池やその製造工程に応じて、適宜の構成とすればよく、例えば、基材多孔質フィルムの表裏両面に接着剤を担持させ、接着剤担持多孔質フィルムの表裏両面に電極、即ち、負極と正極をそれぞれ圧着し、貼り合わせ、仮接着して、電極/多孔質フィルム積層体としてもよく、また、基材多孔質フィルムの一方の表面にのみ、接着剤を担持させて、その一方の表面にのみ、電極、即ち、負極又は正極のいずれかを圧着し、貼り合わせ、仮接着して、電極/多孔質フィルム積層体としてもよい。勿論、正(負)極/多孔質フィルム/負(正)極/多孔質フィルムの構成を有する積層体とすることもできる。このような電極/多孔質フィルム積層体は、必要に応じて、更に、捲回し、又は積層した後、これ電池容器に仕込む。
【0020】
次いで、本発明によれば、用いる電解液に多官能イソシアネートを溶解させ、これを電池容器内に充填して、上述したように、多孔質フィルムに電極を貼り合わせてなる電極/多孔質フィルム積層体をそのような電解液に浸漬し、加熱して、上記電極/多孔質フィルム積層体に含まれる反応性ポリマーの有する官能基と多官能イソシアネートを反応させ、反応性ポリマーからなる接着剤を架橋、硬化させて、電極を多孔質フィルムに一体的に接合させ、かくして、多孔質フィルムをセパレータとする電極/セパレータ接合体を得ることができ、従って、適当な時期に電池容器を密封すれば、電池を得ることができる。
【0021】
前述した電極/多孔質フィルム積層体と同様に、本発明において、電極/セパレータ接合体は、負極/セパレータ/正極接合体のみならず、負極又は正極のいずれか一方の電極/セパレータ接合体や、また、正(負)極/セパレータ/負(正)極/セパレータなる構成をも含むものとする。
【0022】
上記多官能性イソシアネートとしては、フェニレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ジフェニルエーテルジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート等の芳香族、芳香脂肪族、脂環族、脂肪族のジイソシアネートのほか、これらのジイソシアネートにトリメチロールプロパンのようなポリオールを付加させた所謂イソシアネートアダクト体も好ましく用いられる。
【0023】
電解液中の多官能性イソシアネートの割合は、基材多孔質フィルムに担持させた反応性ポリマー100重量部に対して、通常、0.1〜20重量部の範囲である。多官能性イソシアネートの割合が多孔質フィルムに担持させた反応性ポリマー100重量部に対して、0.1重量部よりも少ないときは、反応性ポリマーの多官能性イソシアネートによる架橋が不十分であって、得られる電極/セパレータ接合体において、電極とセパレータとの間に強固な接着を得ることができない。しかし、多官能性イソシアネートの割合が反応性ポリマー100重量部に対して20重量部よりも多いときは、架橋後の反応性ポリマーが硬すぎて、セパレータと電極間の密着性を阻害することがある。
【0024】
本発明において、多官能イソシアネートを溶解させた電解液中で電極/多孔質フィルム積層体の有する反応性ポリマーを上記多官能イソシアネートと反応させ、架橋させるための加熱温度やそのための時間は、用いる反応性ポリマーや多官能イソシアネートにもよるが、実験によってこれら反応条件を定めることができる。50℃の温度で7日間、加熱、反応させれば、架橋反応は完結して、得られる電極/多孔質フィルム接合体は特性的に安定する。
【0025】
本発明において、負極と正極は、電池によって相違するが、一般に、導電性基材に活物質と、必要に応じて、導電剤とを樹脂バインダーを用いて、担持させてなるシート状のものが用いられる。
【0026】
電解液は、電解質塩を溶剤に溶解してなる溶液である。電解質塩としては、例えば、水素、リチウム、ナトリウム、カリウム等のアルカリ金属、カルシウム、ストロンチウム等のアルカリ土類金属、第三級又は第四級アンモニウム塩等をカチオン成分とし、塩酸、硝酸、リン酸、硫酸、ホウフッ化水素酸、フッ化水素酸、六フッ化リン酸、過塩素酸等の無機酸、有機カルボン酸、有機スルホン酸、フッ素置換有機スルホン酸等の有機酸をアニオン成分とする塩を用いることができる。しかし、これらのなかでは、特に、アルカリ金属イオンをカチオン成分とする電解質塩が好ましく用いられる。
【0027】
電解液のための溶剤としては、上記電解質塩を溶解するものであれば、どのようなものも用いることができるが、非水系の溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン等の環状エステル類、テトラヒドロフラン、ジメトキシエタン等のエーテル類、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状エステル類が用いられる。これらの溶剤は、単独で、又は2種以上の混合物として用いられる。
【0028】
【実施例】
以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。以下において、部は重量部である。
【0029】
実施例1
(接着剤担持多孔質フィルムの調製)
反応性ポリマーとして無水マレイン酸変成したエチレン−酢酸ビニル共重合体(三井デュポンポリケミカル(株)製VR105−1)をトルエンに溶解させて、上記共重合体の10重量%濃度の溶液を調製し、これに平均粒子径12mμの硅砂粉末を上記共重合体100部当たりに10部を加え、均一に分散させて、接着剤溶液を調製した。この接着剤溶液を剥離性のグラシン紙にワイヤーバーを用いて部分的に塗布、乾燥させた後、これをポリエチレン樹脂製多孔質フィルムの表裏の両面に貼り合わせ、接着剤層を転写して、接着剤をその表面に40%の割合で部分的に担持させ接着剤担持多孔質フィルムを得た。多孔質フィルムへの接着剤の塗布量は1g/mであった。
【0030】
(電極の調製)
平均粒径15μmのコバルト酸リチウム(LiCoO) と黒鉛粉末とポリフッ化ビニリデン樹脂を重量比85:10:5で混合し、これをN−メチル−2−ピロリドンに加えて、固形分濃度15重量%のスラリーを調製した。このスラリーを塗工機にて厚さ20μmのアルミニウム箔の表面に厚み200μmに塗布した後、80℃で1時間乾燥させた。次いで、このアルミニウム箔の裏面にも、同様に、上記スラリーを厚み200μmに塗布し、120℃で2時間乾燥させた後、ロールプレスを通して、厚み200μmの正極シートを調製した。
【0031】
黒鉛粉末とポリフッ化ビニリデン樹脂を重量比95:5で混合し、これをN−メチル−2−ピロリドンに加えて、固形分濃度15重量%のスラリーを調製した。このスラリーを塗工機にて厚さ20μmの銅箔の表面に厚み200μmに塗布した後、80℃で1時間乾燥させた。次いで、このアルミニウム箔の裏面にも、同様に、上記スラリーを厚み200μmに塗布し、120℃で2時間乾燥させた後、ロールプレスを通して、厚み200μmの負極シートを調製した。
【0032】
(負極/多孔質フィルム/正極積層体の調製)
前記接着剤担持多孔質フィルムの表面に上記正極シートを沿わせると共に、裏面に負極シートを沿わせた後、温度80℃、圧力5kg/cmで5分間加熱、加圧し、正負の電極シートを多孔質フィルムに圧着し、仮接着して、負極/多孔質フィルム/正極積層体を得た。
【0033】
(電池の組立てと得られた電池の評価)
アルゴン置換したグローブボックス中、エチレンカーボネート/エチルメチルカーボネート混合溶媒(容量比1/2)に1.2モル/L濃度となるように電解質塩六フッ化リン酸リチウム(LiPF) を溶解させて、電解液を調製した。更に、ヘキサメチレンジイソシアネート3モル部にトリメチロールプロパン1モル部を付加してなる3官能イソシアネート2部を上記電解液100部に溶解させた。
【0034】
上記負極/多孔質フィルム/正極積層体を正負電極板を兼ねる2016サイズのコイン型電池用缶に仕込み、上記3官能イソシアネートを溶解させた電解液をこのコイン型電池の缶内に注入した後、電池用缶を封口して、仕掛品を製作した。この後、この仕掛品を温度50℃の恒温室中に7日間投入して、上記負極/多孔質フィルム/正極積層体の多孔質フィルムに担持させた接着剤中の反応性ポリマーを上記3官能イソシアネートと反応させ、架橋させて、正負の電極を多孔質フィルム、即ち、セパレータに接着させ、かくして、負極/多孔質フィルム(セパレータ)/正極接合体を有するコイン型リチウムイオン二次電池を得た。
【0035】
この電池について、0.2CmAのレートにて5回充放電を行った後、0.2CmAのレートで充電し、更にその後、2.0CmAのレートで放電を行って、2.0CmAのレートでの放電容量/0.2CmAのレートでの放電容量の比にて評価した放電負荷特性は89%であった。
【0036】
また、上記充放電試験の後、電池の膨れ性を評価した。ここに、電池の膨れ性とは、電解液における気泡の発生やセパレータに接着した電極シートの伸縮等によって、セパレータが電極から浮き上がることをいう。上記充放電試験の後、電池を分解し、セパレータを観察して評価した評価したところ、膨れはみられなかった。
【0037】
実施例2
実施例1において、無水マレイン酸変成したエチレン−酢酸ビニル共重合体に代えて、無水マレイン酸変成したエチレン−アクリル酸エチル共重合体(三井デュポンポリケミカル(株)製AR201)を用いた以外は、実施例1と同様にして、負極/セパレータ/正極接合体を有するコイン型電池を得た。この電池の放電負荷特性は89%であった。また、電池に膨れはみられなかった。
【0038】
実施例3
実施例1において、無水マレイン酸変成したエチレン−酢酸ビニル共重合体に代えて、無水マレイン酸変成した1,2−ポリブタジエン(日本曹達(株)製BN−1015)を用いた以外は、実施例1と同様にして、負極/セパレータ/正極接合体を有するコイン型電池を得た。この電池の放電負荷特性は89%であった。また、電池に膨れはみられなかった。
【0039】
実施例4
実施例1において、無水マレイン酸変成したエチレン−酢酸ビニル共重合体に代えて、分子の両末端にアミノ基を有するブタジエン/アクリロニトリル共重合ゴム(宇部興産(株)製ハイカーATBN)を用いた以外は、実施例1と同様にして、負極/セパレータ/正極接合体を有するコイン型電池を得た。この電池の放電負荷特性は89%であった。また、電池に膨れはみられなかった。
【0040】
実施例5
実施例1において、ヘキサメチレンジイソシアネート3モル部にトリメチロールプロパン1モル部を付加させた3官能イソシアネートに代えて、ジフェニルメタンジイソシアネート2部を電解液に溶解させ、これを用いた以外は、実施例1と同様にして、負極/セパレータ/正極接合体を有するコイン型電池を得た。この電池の放電負荷特性は92%であった。また、電池に膨れはみられなかった。
【0041】
比較例1
実施例1と同じポリエチレン樹脂製多孔質フィルムに接着剤を担持させることなく、そのままを用いて、電池を組み立てた。即ち、上記ポリエチレン樹脂製多孔質フィルムの表面に前記正極シートを沿わせると共に、裏面に負極シートを沿わせて、積層体とした。実施例1において、この積層体を電極/多孔質フィルム積層体に代えて用いた以外は、同様にして、コイン型リチウムイオン二次電池を組立てた。この電池について、実施例1と同様にして、放電負荷特性を評価したところ、85%であった。また、電池に膨れがみられた。
【0042】
【発明の効果】
本発明によれば、それ自体では、架橋しない反応性ポリマーからなる接着剤を多孔質フィルムに部分的に担持させて、接着剤担持多孔質フィルムとし、これに電極を圧着し、貼り合わせて、いわば、仮接着した電極/多孔質フィルム積層体とし、これを多官能性イソシアネートを含む電解液に浸漬して、反応性ポリマーをこの多官能イソシアナートと反応させ、架橋させて、電極を多孔質フィルムに強固に接着し、他方、この多孔質フィルムには、接着剤が担持されておらず、接着剤によって被覆されていない領域において、同時にセパレータとしてのイオン透過性を確保させる。かくして、本発明によれば、電池の製造に際して、電極とセパレータとの間の相互のずり移動なく、セパレータに電極が強固に接着されている電池を生産性よく得ることができる。
【0043】
特に、本発明に従って、電解液に非膨潤性の反応性ポリマーを接着剤として用いて、これを多官能イソシアネートで架橋して、電極を多孔質フィルムに接合すれば、電極/多孔質フィルム接着界面への電解液の浸透に基づく接着剥離等が起こり難く、従って、電極/セパレータ接合体において強固で耐熱性にすぐれる接着を得ることができ、例えば、電池内部が高温になっても、電極とセパレータとの接着が保たれるので、セパレータの収縮による電極の短絡等も起こらず、耐久性のある電極/セパレータ接合体を有し、安全性にすぐれる電池を得ることができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an electrode / separator assembly in a battery.
[0002]
[Prior art]
Conventionally, as a method of manufacturing a battery, a positive electrode and a negative electrode are laminated with a separator for preventing short circuit between the electrodes, or a positive (negative) electrode, a separator, a negative (positive) electrode, and a A method of laminating and winding in order to form an electrode / separator laminate, charging the electrode / separator laminate in a battery container, injecting an electrolytic solution into the battery container, and sealing the battery is known. (For example, see Patent Documents 1 and 2).
[0003]
However, in such a battery manufacturing method, the electrode and the separator are liable to be displaced from each other when the electrode / separator laminate is stored or transported. As a result, the productivity of the battery manufacturing is low, and the defective product is poor. There is a problem such as easy occurrence. In addition, according to the battery obtained in this way, the electrodes expand or contract during use, the adhesion between the electrode and the separator deteriorates, the battery characteristics deteriorate, and an internal short circuit occurs. , Causing the battery to heat up and, in some cases, even be destroyed.
[0004]
On the other hand, particularly in the production of a stacked battery, in many cases, a polyvinylidene fluoride resin solution is used as an adhesive, and after the electrodes are bonded to the separator, the solvent used for the resin solution is removed under reduced pressure. The method is adopted. However, according to such a method, the steps are complicated, the quality of the obtained product is hard to stabilize, and further, there is a problem that the adhesion between the electrode and the separator is not sufficient (for example, Patent Document 3).
[0005]
[Patent Document 1] JP-A-09-161814 [Patent Document 2] JP-A-11-329439 [Patent Document 3] JP-A 10-172606 [0006]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems in the conventional battery manufacturing. In manufacturing the battery, the electrode and the separator are not shifted from each other, the productivity is improved, and the electrode / separator bonding is performed. It is an object to provide a method for producing a body.
[0007]
[Means for Solving the Problems]
According to the present invention, a reactive polymer having a functional group capable of reacting with an isocyanate group is supported as an adhesive on a substrate porous film to obtain an adhesive-supported porous film, and the adhesive-supported porous film is The electrode / porous film laminate is obtained by bonding the electrodes, and then the electrode / porous film laminate is immersed in an electrolytic solution containing a polyfunctional isocyanate, and the reaction in the electrode / porous film laminate is performed. A method for producing an electrode / separator assembly in a battery, comprising reacting a reactive polymer with the above-mentioned polyfunctional isocyanate, crosslinking and curing the reactive polymer, and bonding the electrode to a porous film.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, since the porous substrate film functions as a separator after the production of the battery, the porous film preferably has a thickness of 3 to 100 μm. When the film thickness is less than 3 μm, the strength is insufficient, there is a risk of causing an internal short circuit when used as a separator in the battery, while when it exceeds 100 μm, the distance between the electrodes is too large, The internal resistance of the battery becomes excessive. The substrate porous film preferably has pores having an average pore diameter of 0.01 to 5 μm.
[0009]
According to the present invention, the substrate porous film is not particularly limited as long as it has the above-described properties, but in consideration of solvent resistance and oxidation-reduction resistance, polyethylene, polypropylene, and the like. The porous film made of the polyolefin resin is preferable. However, among them, when heated, the resin melts and has a property that pores are closed, and therefore, since the battery can have a so-called shutdown function, as a substrate porous film, Polyethylene is particularly preferred. Here, the polyethylene includes not only a homopolymer of ethylene but also a copolymer of ethylene with an α-olefin such as propylene, butene, and hexene. However, according to the present invention, a laminated film of a porous film such as polytetrafluoroethylene or polyimide and the above-mentioned polyolefin resin porous film is also preferably used as a substrate porous film because of its excellent heat resistance. Can be
[0010]
According to the method for producing an electrode / separator assembly in a battery of the present invention, first, a reactive polymer having a functional group capable of reacting with an isocyanate group is supported on a porous substrate film as an adhesive. Get a quality film.
[0011]
According to the present invention, the reactive polymer is not particularly limited as long as it is a polymer having active hydrogen capable of reacting with an isocyanate group of a polyfunctional isocyanate, for example, a carboxyl group, a hydroxyl group, an amino group, and the like. However, polymers which are insoluble or non-swellable in the electrolyte used are preferably used. As such a reactive polymer, for example, an olefin-based or rubber-based polymer having active hydrogen capable of reacting with an isocyanate group of a polyfunctional isocyanate is preferable.
[0012]
Accordingly, examples of such an insoluble or non-swellable reactive polymer in an electrolytic solution include a maleic acid-modified ethylene-vinyl acetate copolymer, a maleic acid-modified ethylene-acrylate copolymer, and an ethylene-acrylic acid copolymer. Copolymer, copolymer of (meth) acrylic acid long-chain alkyl ester and (meth) acrylic acid, hydroxyethyl (meth) acrylic acid, hydroxypropyl (meth) acrylic acid, maleic anhydride, etc., glycidyl group-modified ethylene-acetic acid Examples thereof include a vinyl copolymer, an amine-modified polybutadiene, and an amine-modified polyisoprene. The (meth) acrylic acid long-chain alkyl ester preferably has an alkyl group having 8 to 18 carbon atoms. Therefore, specific examples of the (meth) acrylic acid long-chain alkyl ester include, for example, 2 -Ethylhexyl ((meth) acrylate, dodecyl (meth) acrylate, isostearyl (meth) acrylate and the like.
[0013]
Further, according to the present invention, the reactive polymer may have a glass transition temperature of 0 ° C. or lower, in which case the electrode is pressed at room temperature on the obtained adhesive-carrying porous film, so-called It can be temporarily bonded to the adhesive-carrying porous film. However, according to the invention, it is preferred that the reactive polymer has a glass transition temperature in the range from 0 to 80C. As described above, when the reactive polymer has a glass transition temperature in the range of 0 to 80 ° C., usually, the electrode is pressed against the adhesive-carrying porous film and the adhesive-carrying porous film is used for temporary bonding. It is necessary to heat the film, but on the other hand, for example, when laminating the adhesive-carrying porous film or winding and storing it on a roll, it is necessary to sandwich a release paper between the adhesive-carrying porous films There are advantages such as no.
[0014]
In particular, when the reactive polymer has a glass transition temperature in the range of 20 to 60 ° C. and is made non-adhesive under normal conditions, there is an advantage that the electrode / separator wound type battery is excellent in so-called pin removability when assembled.
[0015]
The reactive polymer as described above is obtained, for example, as a solution, and then directly applied to a substrate porous film and dried to obtain an adhesive-carrying porous film. Applying the reactive polymer to the release film, drying it, forming a reactive polymer layer on the release film, and then transferring this reactive polymer layer to the base porous film, the adhesive-carrying porous Quality film can be obtained. In addition, in order to improve the coatability of the reactive polymer to the substrate porous film, the reactive polymer may be an organic solvent such as methyl ethyl ketone or methyl isobutyl ketone, or a fine powder of heavy calcium carbonate or silica sand. Inorganic powder may be blended with the reactive polymer in a proportion of 50% by weight or less as a flow modifier.
[0016]
According to the present invention, when the reactive polymer as an adhesive is supported on the porous base film, the reactive polymer is partially, that is, for example, linear, spot-like, grid-like, striped, or turtle-shaped. It is preferable to partially coat and carry the reactive polymer, in particular, by applying and supporting the reactive polymer in the range of 5 to 95% of the surface area of the substrate porous film to which the reactive polymer is applied, The electrode and the porous film (as will be described later, the porous film functions as a separator after the production of the battery). Therefore, while obtaining strong adhesion between the electrode and the separator, the obtained battery has A battery having excellent characteristics can be obtained while securing ion permeability.
[0017]
In the present invention, the thickness of the adhesive applied to the substrate porous film is not particularly limited, but is usually in the range of 0.1 to 20 μm, and preferably in the range of 0.5 to 10 μm. It is suitable, most preferably in the range of 1 to 5 μm. If it is too thick, it will have a detrimental effect on the properties of the resulting battery, while if it is too thin, the electrodes and separator cannot be bonded with practical adhesive strength.
[0018]
According to the present invention, as described above, the electrode is pressure-bonded to the substrate porous film supporting the adhesive, a part of the adhesive is pressed into the electrode, and then the polyfunctional isocyanate is dissolved. The laminate is heated in an electrolytic solution, and the adhesive is crosslinked and cured to obtain an electrode / separator assembly. Therefore, even if the thickness of the adhesive applied to the substrate porous film is not so large, for example, Even with a coating thickness of about 1 to 5 μm, practically sufficient adhesion between the porous substrate film and the electrode can be obtained.
[0019]
Next, according to the present invention, the electrodes are made to adhere along the adhesive-carrying porous film, and are preferably pressed and bonded while being heated at a temperature of 50 to 100 ° C. to obtain an electrode / porous film laminate. . According to the present invention, the electrode / porous film laminate may have an appropriate configuration according to the intended battery and the manufacturing process thereof. For example, the adhesive is supported on both the front and back surfaces of the porous substrate film. Then, the electrodes, that is, the negative electrode and the positive electrode, are pressed and bonded to each other on both the front and back surfaces of the adhesive-carrying porous film to form an electrode / porous film laminate. An adhesive is carried on only one surface of the electrode, and the electrode, that is, either the negative electrode or the positive electrode is pressure-bonded, bonded and temporarily bonded only on one surface of the electrode / porous film laminate. It may be. Of course, a laminate having a configuration of positive (negative) electrode / porous film / negative (positive) electrode / porous film can also be used. Such an electrode / porous film laminate is further wound or laminated, if necessary, and then charged into a battery container.
[0020]
Next, according to the present invention, a polyfunctional isocyanate is dissolved in an electrolytic solution to be used, the resultant is filled in a battery container, and an electrode / porous film laminate obtained by bonding an electrode to a porous film as described above. The body is immersed in such an electrolytic solution and heated to cause the functional groups of the reactive polymer contained in the electrode / porous film laminate to react with the polyfunctional isocyanate, thereby crosslinking the adhesive made of the reactive polymer. Curing, the electrode is integrally bonded to the porous film, and thus an electrode / separator assembly having the porous film as a separator can be obtained. Therefore, if the battery container is sealed at an appropriate time, You can get a battery.
[0021]
Similarly to the above-described electrode / porous film laminate, in the present invention, the electrode / separator assembly is not only a negative electrode / separator / positive electrode assembly, but also an electrode / separator assembly of one of a negative electrode and a positive electrode, In addition, the configuration includes a positive (negative) electrode / separator / negative (positive) electrode / separator.
[0022]
Examples of the polyfunctional isocyanate include aromatic, araliphatic, alicyclic, and aliphatic diisocyanates such as phenylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, diphenyl ether diisocyanate, hexamethylene diisocyanate, and cyclohexane diisocyanate. A so-called isocyanate adduct obtained by adding a polyol such as trimethylolpropane to the polymer is also preferably used.
[0023]
The ratio of the polyfunctional isocyanate in the electrolytic solution is usually in the range of 0.1 to 20 parts by weight based on 100 parts by weight of the reactive polymer supported on the porous substrate film. When the ratio of the polyfunctional isocyanate is less than 0.1 part by weight based on 100 parts by weight of the reactive polymer supported on the porous film, the crosslinking of the reactive polymer with the polyfunctional isocyanate is insufficient. Thus, in the obtained electrode / separator assembly, strong adhesion between the electrode and the separator cannot be obtained. However, when the proportion of the polyfunctional isocyanate is more than 20 parts by weight with respect to 100 parts by weight of the reactive polymer, the reactive polymer after crosslinking is too hard and may hinder the adhesion between the separator and the electrode. is there.
[0024]
In the present invention, the heating temperature and the time required for reacting the reactive polymer of the electrode / porous film laminate with the above-mentioned polyfunctional isocyanate in an electrolytic solution in which the polyfunctional isocyanate is dissolved and for crosslinking are determined by the reaction used. These reaction conditions can be determined by experiments, depending on the reactive polymer and the polyfunctional isocyanate. If the mixture is heated and reacted at a temperature of 50 ° C. for 7 days, the crosslinking reaction is completed and the resulting electrode / porous film assembly is characteristically stable.
[0025]
In the present invention, the negative electrode and the positive electrode differ depending on the battery, but in general, a sheet-like material obtained by supporting an active material on a conductive substrate and, if necessary, a conductive agent using a resin binder is used. Used.
[0026]
The electrolytic solution is a solution obtained by dissolving an electrolyte salt in a solvent. Examples of the electrolyte salt include hydrogen, an alkali metal such as lithium, sodium, and potassium, an alkaline earth metal such as calcium and strontium, and a tertiary or quaternary ammonium salt as a cation component, and hydrochloric acid, nitric acid, and phosphoric acid. Inorganic acids such as sulfuric acid, sulfuric acid, borofluoric acid, hydrofluoric acid, hexafluorophosphoric acid, and perchloric acid; salts containing an organic acid such as organic carboxylic acid, organic sulfonic acid, and fluorine-substituted organic sulfonic acid as an anionic component Can be used. However, among these, an electrolyte salt containing an alkali metal ion as a cation component is particularly preferably used.
[0027]
As the solvent for the electrolytic solution, any solvent can be used as long as it dissolves the above-mentioned electrolyte salt.Examples of the non-aqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, and γ-butyrolactone. And cyclic esters such as tetrahydrofuran and dimethoxyethane, and chain esters such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate. These solvents are used alone or as a mixture of two or more.
[0028]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. In the following, parts are parts by weight.
[0029]
Example 1
(Preparation of adhesive-carrying porous film)
As a reactive polymer, a maleic anhydride-modified ethylene-vinyl acetate copolymer (VR105-1 manufactured by Du Pont-Mitsui Polychemicals Co., Ltd.) was dissolved in toluene to prepare a 10% by weight solution of the copolymer. Then, 10 parts of silica sand powder having an average particle diameter of 12 mμ was added per 100 parts of the above-mentioned copolymer and uniformly dispersed to prepare an adhesive solution. This adhesive solution was partially applied to peelable glassine paper using a wire bar, dried and then bonded to both sides of the polyethylene resin porous film, and the adhesive layer was transferred. The adhesive was partially supported on the surface at a rate of 40% to obtain an adhesive-supported porous film. The amount of the adhesive applied to the porous film was 1 g / m 2 .
[0030]
(Preparation of electrode)
Lithium cobaltate (LiCoO 2 ) having an average particle diameter of 15 μm, graphite powder, and polyvinylidene fluoride resin were mixed at a weight ratio of 85: 10: 5, and this was added to N-methyl-2-pyrrolidone to obtain a solid content concentration of 15 wt. % Slurry was prepared. This slurry was applied on a surface of an aluminum foil having a thickness of 20 μm to a thickness of 200 μm using a coating machine, and then dried at 80 ° C. for 1 hour. Next, the slurry was similarly coated on the back surface of the aluminum foil to a thickness of 200 μm, dried at 120 ° C. for 2 hours, and then roll-pressed to prepare a 200 μm-thick positive electrode sheet.
[0031]
Graphite powder and polyvinylidene fluoride resin were mixed at a weight ratio of 95: 5, and this was added to N-methyl-2-pyrrolidone to prepare a slurry having a solid concentration of 15% by weight. The slurry was applied on a surface of a copper foil having a thickness of 20 μm to a thickness of 200 μm by a coating machine, and then dried at 80 ° C. for 1 hour. Next, the slurry was similarly coated on the back surface of the aluminum foil to a thickness of 200 μm, dried at 120 ° C. for 2 hours, and then roll-pressed to prepare a 200 μm-thick negative electrode sheet.
[0032]
(Preparation of negative electrode / porous film / positive electrode laminate)
After the positive electrode sheet is made to extend along the surface of the adhesive-carrying porous film and the negative electrode sheet is made to extend along the back surface, the mixture is heated and pressed at a temperature of 80 ° C. and a pressure of 5 kg / cm 2 for 5 minutes to form positive and negative electrode sheets. It was press-bonded to the porous film and temporarily bonded to obtain a negative electrode / porous film / positive electrode laminate.
[0033]
(Assembly of battery and evaluation of obtained battery)
In a glove box purged with argon, an electrolyte salt lithium hexafluorophosphate (LiPF 6 ) was dissolved in a mixed solvent of ethylene carbonate / ethyl methyl carbonate (volume ratio: 1/2) to a concentration of 1.2 mol / L. And an electrolytic solution was prepared. Further, 2 parts of trifunctional isocyanate obtained by adding 1 mol part of trimethylolpropane to 3 mol parts of hexamethylene diisocyanate was dissolved in 100 parts of the above-mentioned electrolytic solution.
[0034]
The negative electrode / porous film / positive electrode laminate was charged into a 2016-size coin-type battery can serving also as a positive / negative electrode plate, and an electrolyte in which the trifunctional isocyanate was dissolved was injected into the coin-type battery can. The battery can was sealed to produce a work in process. Thereafter, the work-in-progress is put into a constant temperature chamber at a temperature of 50 ° C. for 7 days, and the reactive polymer in the adhesive carried on the porous film of the negative electrode / porous film / positive electrode laminate is subjected to the trifunctional reaction. By reacting with isocyanate and crosslinking, the positive and negative electrodes are adhered to a porous film, that is, a separator, and thus a coin-type lithium ion secondary battery having a negative electrode / porous film (separator) / positive electrode assembly is obtained. .
[0035]
The battery was charged and discharged five times at a rate of 0.2 CmA, charged at a rate of 0.2 CmA, and further discharged at a rate of 2.0 CmA, and then discharged at a rate of 2.0 CmA. The discharge load characteristic evaluated by the ratio of discharge capacity / discharge capacity at a rate of 0.2 CmA was 89%.
[0036]
After the charge / discharge test, the swelling property of the battery was evaluated. Here, the swelling property of the battery means that the separator floats up from the electrode due to generation of air bubbles in the electrolytic solution, expansion and contraction of the electrode sheet adhered to the separator, and the like. After the charge / discharge test, the battery was disassembled, and the separator was observed and evaluated. As a result, no swelling was observed.
[0037]
Example 2
In Example 1, a maleic anhydride-modified ethylene-ethyl acrylate copolymer (AR201 manufactured by Du Pont-Mitsui Polychemicals Co., Ltd.) was used in place of the maleic anhydride-modified ethylene-vinyl acetate copolymer. In the same manner as in Example 1, a coin-type battery having a negative electrode / separator / positive electrode assembly was obtained. The discharge load characteristic of this battery was 89%. In addition, no swelling was observed in the battery.
[0038]
Example 3
The procedure of Example 1 was repeated, except that the maleic anhydride-modified ethylene-vinyl acetate copolymer was replaced by maleic anhydride-modified 1,2-polybutadiene (BN-1015, manufactured by Nippon Soda Co., Ltd.). In the same manner as in 1, a coin-type battery having a negative electrode / separator / positive electrode assembly was obtained. The discharge load characteristic of this battery was 89%. In addition, no swelling was observed in the battery.
[0039]
Example 4
In Example 1, a butadiene / acrylonitrile copolymer rubber having amino groups at both ends of the molecule (Hiker ATBN manufactured by Ube Industries, Ltd.) was used in place of the maleic anhydride-modified ethylene-vinyl acetate copolymer. In the same manner as in Example 1, a coin-type battery having a negative electrode / separator / positive electrode assembly was obtained. The discharge load characteristic of this battery was 89%. In addition, no swelling was observed in the battery.
[0040]
Example 5
Example 1 was repeated except that 3 parts of hexamethylene diisocyanate and 3 parts of trimethylolpropane were added to 3 parts of hexamethylene diisocyanate to dissolve 2 parts of diphenylmethane diisocyanate in the electrolytic solution. In the same manner as in the above, a coin-type battery having a negative electrode / separator / positive electrode assembly was obtained. The discharge load characteristic of this battery was 92%. In addition, no swelling was observed in the battery.
[0041]
Comparative Example 1
A battery was assembled using the same porous film made of polyethylene resin as in Example 1 without supporting the adhesive and using the film as it was. That is, the positive electrode sheet was made to extend along the surface of the porous film made of polyethylene resin, and the negative electrode sheet was made to extend along the back surface to form a laminate. A coin-type lithium ion secondary battery was assembled in the same manner as in Example 1, except that this laminate was used instead of the electrode / porous film laminate. When the discharge load characteristics of this battery were evaluated in the same manner as in Example 1, it was 85%. In addition, the battery was swollen.
[0042]
【The invention's effect】
According to the present invention, by itself, an adhesive made of a non-crosslinkable reactive polymer is partially supported on a porous film to form an adhesive-carrying porous film, and an electrode is press-bonded to the film, and bonded. In other words, a temporarily bonded electrode / porous film laminate is immersed in an electrolytic solution containing a polyfunctional isocyanate, and the reactive polymer is reacted with the polyfunctional isocyanate and crosslinked to form a porous electrode. The porous film firmly adheres to the film. On the other hand, in the porous film, the adhesive is not carried, and at the same time, the ion permeability as a separator is secured in a region not covered with the adhesive. Thus, according to the present invention, a battery in which the electrode is firmly adhered to the separator can be obtained with high productivity without mutual shear movement between the electrode and the separator when the battery is manufactured.
[0043]
In particular, according to the present invention, if a non-swellable reactive polymer is used as an adhesive in an electrolytic solution, this is crosslinked with a polyfunctional isocyanate, and the electrode is bonded to a porous film, the electrode / porous film adhesive interface Adhesion and the like based on the permeation of the electrolytic solution into the electrode / separator are unlikely to occur. Therefore, it is possible to obtain a strong and excellent heat-resistant bond in the electrode / separator assembly. Since the adhesion to the separator is maintained, a short circuit of the electrode due to the contraction of the separator does not occur, and a battery having a durable electrode / separator assembly and excellent safety can be obtained.

Claims (3)

イソシアネート基と反応し得る官能基を有する反応性ポリマーを接着剤として基材多孔質フィルムに担持させて、接着剤担持多孔質フィルムを得、この接着剤担持多孔質フィルムに電極を貼り合わせて電極/多孔質フィルム積層体を得、次いで、多官能イソシアネートを含む電解液に上記電極/多孔質フィルム積層体を浸漬し、加熱して、上記電極/多孔質フィルム積層体中の上記反応性ポリマーを上記多官能イソシアネートと反応させ、反応性ポリマーを架橋、硬化させて、電極を多孔質フィルムに接着することを特徴とする電池における電極/セパレータ接合体の製造方法。A reactive polymer having a functional group capable of reacting with an isocyanate group is supported as an adhesive on a porous substrate film to obtain an adhesive-supported porous film, and an electrode is attached to the adhesive-supported porous film to form an electrode. / The porous film laminate is obtained, and then the electrode / porous film laminate is immersed in an electrolytic solution containing a polyfunctional isocyanate and heated to remove the reactive polymer in the electrode / porous film laminate. A method for producing an electrode / separator assembly in a battery, comprising reacting with a polyfunctional isocyanate, crosslinking and curing a reactive polymer, and bonding an electrode to a porous film. 反応性ポリマーがマレイン酸変成エチレン−酢酸ビニル共重合体、マレイン酸変成エチレン−アクリル酸エステル共重合体、エチレン−アクリル酸共重合体、グリシジル基変成エチレン−酢酸ビニル共重合体、アミン変成ポリブタジエン又はアミン変成ポリイソプレンである請求項1に記載の電池における電極/セパレータ接合体の製造方法。The reactive polymer is a maleic acid-modified ethylene-vinyl acetate copolymer, a maleic acid-modified ethylene-acrylate copolymer, an ethylene-acrylic acid copolymer, a glycidyl group-modified ethylene-vinyl acetate copolymer, an amine-modified polybutadiene or The method for producing an electrode / separator assembly in a battery according to claim 1, which is an amine-modified polyisoprene. 接着剤を基材多孔質フィルムにその表面積の5〜95%の範囲で担持させる請求項1に記載の電池における電極/セパレータ接合体の製造方法。The method for producing an electrode / separator assembly in a battery according to claim 1, wherein the adhesive is carried on the porous substrate film in a range of 5 to 95% of the surface area.
JP2003026782A 2003-02-04 2003-02-04 Manufacturing method of electrode/separator junction in battery Pending JP2004241172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003026782A JP2004241172A (en) 2003-02-04 2003-02-04 Manufacturing method of electrode/separator junction in battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003026782A JP2004241172A (en) 2003-02-04 2003-02-04 Manufacturing method of electrode/separator junction in battery

Publications (1)

Publication Number Publication Date
JP2004241172A true JP2004241172A (en) 2004-08-26

Family

ID=32954686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003026782A Pending JP2004241172A (en) 2003-02-04 2003-02-04 Manufacturing method of electrode/separator junction in battery

Country Status (1)

Country Link
JP (1) JP2004241172A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110683A (en) * 2007-10-26 2009-05-21 Nitto Denko Corp Porous film having reactive polymer layer thereon for use in battery separator, and use of it
KR20120098526A (en) * 2011-02-28 2012-09-05 닛토덴코 가부시키가이샤 Pressure-sensitive adhesive tape for battery and battery using the pressure-sensitive adhesive tape
JP2012204246A (en) * 2011-03-28 2012-10-22 Toyo Ink Sc Holdings Co Ltd Binder resin composition for nonaqueous secondary battery electrode
CN104508898A (en) * 2012-07-18 2015-04-08 住友化学株式会社 Adhesive layer, layer and composition
JP2015537337A (en) * 2013-01-16 2015-12-24 エルジー・ケム・リミテッド Electrode assembly manufacturing equipment
JPWO2014021292A1 (en) * 2012-07-30 2016-07-21 帝人株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP2019185898A (en) * 2018-04-03 2019-10-24 トヨタ自動車株式会社 Method of manufacturing laminated electrode body
WO2022024703A1 (en) * 2020-07-30 2022-02-03 三洋電機株式会社 Non-aqueous electrolytic solution secondary battery and method for producing non-aqueous electrolytic solution secondary battery

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009110683A (en) * 2007-10-26 2009-05-21 Nitto Denko Corp Porous film having reactive polymer layer thereon for use in battery separator, and use of it
KR20120098526A (en) * 2011-02-28 2012-09-05 닛토덴코 가부시키가이샤 Pressure-sensitive adhesive tape for battery and battery using the pressure-sensitive adhesive tape
KR101979956B1 (en) * 2011-02-28 2019-05-17 닛토덴코 가부시키가이샤 Pressure-sensitive adhesive tape for battery and battery using the pressure-sensitive adhesive tape
JP2012204246A (en) * 2011-03-28 2012-10-22 Toyo Ink Sc Holdings Co Ltd Binder resin composition for nonaqueous secondary battery electrode
CN109638207A (en) * 2012-07-18 2019-04-16 住友化学株式会社 Adhesive layer, layer and composition
JP2018137242A (en) * 2012-07-18 2018-08-30 住友化学株式会社 Adhesive layer and composition
US10522809B2 (en) 2012-07-18 2019-12-31 Sumitomo Chemical Company, Limited Adhesive layer, layer, and composition
JPWO2014014118A1 (en) * 2012-07-18 2016-07-07 住友化学株式会社 Adhesive layer, layer and composition
JP5790866B2 (en) * 2012-07-18 2015-10-07 住友化学株式会社 Adhesive layer, layer and composition
CN104508898A (en) * 2012-07-18 2015-04-08 住友化学株式会社 Adhesive layer, layer and composition
JP2015156395A (en) * 2012-07-18 2015-08-27 住友化学株式会社 Adhesive layer, layer and composition
JPWO2014021292A1 (en) * 2012-07-30 2016-07-21 帝人株式会社 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
US9692028B2 (en) 2012-07-30 2017-06-27 Teijin Limited Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
US9768439B2 (en) 2013-01-16 2017-09-19 Lg Chem, Ltd. Apparatus for preparing electrode assembly
JP2015537337A (en) * 2013-01-16 2015-12-24 エルジー・ケム・リミテッド Electrode assembly manufacturing equipment
JP2019185898A (en) * 2018-04-03 2019-10-24 トヨタ自動車株式会社 Method of manufacturing laminated electrode body
JP7031453B2 (en) 2018-04-03 2022-03-08 トヨタ自動車株式会社 Manufacturing method of laminated electrode body
WO2022024703A1 (en) * 2020-07-30 2022-02-03 三洋電機株式会社 Non-aqueous electrolytic solution secondary battery and method for producing non-aqueous electrolytic solution secondary battery

Similar Documents

Publication Publication Date Title
JP4369681B2 (en) Adhesive composition-supported battery separator and electrode / separator laminate obtained using the same
JP4381054B2 (en) Partially crosslinked adhesive-supporting porous film for battery separator and its use
KR102330760B1 (en) Double-sided tape for electrode constituent body immobilization, and secondary battery
JP2009110683A (en) Porous film having reactive polymer layer thereon for use in battery separator, and use of it
JP2005243303A (en) Member for electrochemical element and its manufacturing method, and the electrochemical element using it
JP2007035541A (en) Separator for battery and manufacturing method of battery using same
JP2004241172A (en) Manufacturing method of electrode/separator junction in battery
JP5140240B2 (en) Battery separator and battery manufacturing method using the same
JP4152721B2 (en) Adhesive / gelator-supported porous film and use thereof
JP4989053B2 (en) Battery separator and battery manufacturing method using the same
JP2007035543A (en) Separator for battery and manufacturing method of battery using same
JP2004335210A (en) Manufacturing method of reactive polymer-carrying porous film for separator for battery and battery using it
JP4601338B2 (en) Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate
JP2006179279A (en) Separator for battery and method of manufacturing battery using it
JP2007035554A (en) Separator for battery and manufacturing method of battery using same
JP4601323B2 (en) Electrode element for large-sized lithium ion secondary battery and manufacturing method thereof
JP2006012560A (en) Positive electrode for battery/reactive polymer carrying porous film/negative electrode laminated body
JP5010801B2 (en) Battery separator and battery manufacturing method using the same
WO2022120654A1 (en) Polymer binder, laminated porous membrane, battery, and electronic apparatus
JP2009193743A (en) Cross-linked polymer supporting porous film for separator for battery and separator for battery and electrode/separator assembly obtained therefrom
JP5260073B2 (en) Battery separator and electrode / separator assembly obtained therefrom
TW202405120A (en) Negative electrode binder composition, method for producing same, negative electrode and secondary battery