JP4601338B2 - Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate - Google Patents

Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate Download PDF

Info

Publication number
JP4601338B2
JP4601338B2 JP2004186922A JP2004186922A JP4601338B2 JP 4601338 B2 JP4601338 B2 JP 4601338B2 JP 2004186922 A JP2004186922 A JP 2004186922A JP 2004186922 A JP2004186922 A JP 2004186922A JP 4601338 B2 JP4601338 B2 JP 4601338B2
Authority
JP
Japan
Prior art keywords
porous film
reactive polymer
supported
polymer
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004186922A
Other languages
Japanese (ja)
Other versions
JP2006012561A (en
Inventor
智昭 市川
道夫 薩摩
慶裕 植谷
敬介 喜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2004186922A priority Critical patent/JP4601338B2/en
Publication of JP2006012561A publication Critical patent/JP2006012561A/en
Application granted granted Critical
Publication of JP4601338B2 publication Critical patent/JP4601338B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、電池の製造に有用であると共に、そのように製造した電池の使用時の安全に寄与することができる正極/反応性ポリマー担持多孔質フィルム/負極積層体とこれを利用する電池の製造方法に関する。   INDUSTRIAL APPLICABILITY The present invention is useful for manufacturing a battery, and can contribute to safety during use of the battery thus manufactured, and a positive electrode / reactive polymer-supported porous film / negative electrode laminate and a battery using the same It relates to a manufacturing method.

従来、電池の製造方法として、正極と負極との間にこれら電極間の短絡を防止するためのセパレータを挟んで積層し、又は正(負)極、セパレータ、負(正)極及びセパレータをこの順序に積層し、捲回して、電極/セパレータ積層体とし、この電極/セパレータ積層体を電池容器内に仕込んだ後、この電池容器内に電解液を注入して、封口する方法が知られている(例えば、特許文献1及び2参照)。   Conventionally, as a method of manufacturing a battery, a positive electrode and a negative electrode are laminated with a separator for preventing a short circuit between the electrodes, or a positive (negative) electrode, a separator, a negative (positive) electrode, and a separator are laminated. It is known that the electrode / separator laminate is stacked in order and wound into an electrode / separator laminate, and after the electrode / separator laminate is charged into the battery container, an electrolytic solution is injected into the battery container and sealed. (For example, see Patent Documents 1 and 2).

しかし、このようにして得られる電池における問題として、長時間にわたって電池を高温環境下に置いたり、過充電した場合や、また、電池の内部又は外部で電極間に短絡が生じた場合、電池が異常に発熱して、急激に温度が上昇し、電池内部の電解液が外部に噴出し、場合によっては、破壊するおそれさえあった。   However, as a problem with the battery thus obtained, if the battery is left in a high temperature environment for a long time, overcharged, or if a short circuit occurs between the electrodes inside or outside the battery, the battery Abnormal heat generation caused the temperature to rise suddenly, and the electrolyte inside the battery was ejected to the outside, and in some cases, it could even be destroyed.

他方、特に、積層型の電池の製造においては、多くの場合、ポリフッ化ビニリデン樹脂溶液を接着剤として用いて、電極とセパレータとを接着した後、減圧下に上記樹脂溶液に用いた溶剤を除去する方法が採用されている。しかし、このような方法によれば、工程が煩雑であるうえに、得られる製品の品質が安定し難く、更に、電極とセパレータとの接着が十分ではないという問題もあった(例えば、特許文献3参照)。   On the other hand, especially in the production of stacked batteries, in many cases, the polyvinylidene fluoride resin solution is used as an adhesive, the electrode and the separator are bonded, and then the solvent used in the resin solution is removed under reduced pressure. The method to do is adopted. However, according to such a method, there are problems that the process is complicated, the quality of the obtained product is difficult to stabilize, and the adhesion between the electrode and the separator is not sufficient (for example, patent document) 3).

また、電池用セパレータのための多孔質フィルムは、従来、種々の製造方法が知られている。一つの方法として、例えば、ポリオレフィン樹脂からなるシートを製造し、これを高倍率延伸する方法が知られている(例えば、特許文献4参照)。しかし、このように高倍率延伸して得られる多孔質膜からなる電池用セパレータは、電池が内部短絡等によって異常昇温した場合のような高温環境下においては、著しく収縮し、場合によっては、電極間の隔壁として機能しなくなるという問題がある。   In addition, various manufacturing methods are conventionally known for porous films for battery separators. As one method, for example, a method of manufacturing a sheet made of a polyolefin resin and stretching the sheet at a high magnification is known (for example, see Patent Document 4). However, the battery separator made of a porous membrane obtained by stretching at a high magnification in this way is significantly shrunk under a high temperature environment such as when the battery is abnormally heated due to an internal short circuit or the like. There is a problem that it does not function as a partition between electrodes.

そこで、電池の安全性を向上させるために、このような高温環境下での電池用セパレータの熱収縮率の低減が重要な課題とされている。この点に関して、高温環境下での電池用セパレータの熱収縮を抑制するために、例えば、超高分子量ポリエチレンと可塑剤を溶融混練し、ダイスからシート状に押し出した後、可塑剤を抽出、除去して、電池用セパレータに用いる多孔質膜を製造する方法も知られている(特許文献5参照)。しかし、この方法によれば、上記の方法と反対に、得られる多孔質膜は、延伸を経ていないので、強度において十分でない問題がある。
特開平09−161814号公報 特開平11−329439号公報 特開平10−172606号公報 特開平09−012756号公報 特開平05−310989号公報
Therefore, in order to improve the safety of the battery, reduction of the thermal contraction rate of the battery separator under such a high temperature environment is an important issue. In this regard, for example, in order to suppress thermal contraction of the battery separator in a high temperature environment, for example, melt and knead ultra high molecular weight polyethylene and a plasticizer, and extrude the plasticizer from a die, and then extract and remove the plasticizer. And the method of manufacturing the porous film | membrane used for a battery separator is also known (refer patent document 5). However, according to this method, contrary to the above method, the obtained porous film has not been stretched, and thus there is a problem that the strength is not sufficient.
JP 09-161814 A JP 11-329439 A JP-A-10-172606 Japanese Patent Application Laid-Open No. 09-012756 Japanese Patent Laid-Open No. 05-310989

本発明は、セパレータに電極を接着してなる電池の製造における上述した問題を解決するためになされたものであって、電極/セパレータ間に十分な接着性を有すると共に、内部抵抗が低く、高レート特性にすぐれた電池を製造するために好適に用いることができ、しかも、電池の製造後は、それ自体、高温の環境下に置かれても、溶融や破膜することなく、熱収縮の小さいセパレータとして機能する多孔質フィルムを含む電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体と、そのような正極/反応性ポリマー担持多孔質フィルム/負極積層体を用いる電池の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems in the production of a battery in which an electrode is bonded to a separator, and has sufficient adhesion between the electrode / separator and has a low internal resistance and a high level. It can be suitably used to manufacture a battery with excellent rate characteristics, and after the battery is manufactured, it does not melt or break even if it is placed in a high-temperature environment. A battery positive electrode / reactive polymer-supported porous film / negative electrode laminate including a porous film functioning as a small separator, and a battery manufacturing method using such a positive electrode / reactive polymer-supported porous film / negative electrode laminate The purpose is to provide.

本発明によれば、分子中に活性水素をもつ反応性基を有し、この反応性基に多官能イソシアネートを反応させることによって架橋し得る架橋性ポリマーを用意し、この架橋性ポリマーを多官能イソシアネートと反応させ、一部、架橋させて、反応性ポリマーとして、多孔質フィルムに担持させてなる反応性ポリマー担持多孔質フィルムとなし、この反応性ポリマー担持多孔質フィルムにこれを挟んで正極と負極を積層してなる正極/反応性ポリマー担持多孔質フィルム/負極積層体において、上記反応性ポリマー担持多孔質フィルムの片面当たりの反応性ポリマーの担持量が0.3〜5.0g/m2 の範囲にあると共に、正極側の多孔質フィルム上の反応性ポリマーの担持量/負極側の多孔質フィルム上の反応性ポリマーの担持量の比が0.1〜1.0の範囲にあることを特徴とする電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体が提供される。 According to the present invention, a crosslinkable polymer having a reactive group having an active hydrogen in the molecule and capable of crosslinking by reacting the reactive group with a polyfunctional isocyanate is prepared. Reactive polymer-supported porous film formed by reacting with isocyanate, partially cross-linking, and supporting as a reactive polymer on a porous film, and sandwiching this reactive polymer-supported porous film with a positive electrode In the positive electrode / reactive polymer-supported porous film / negative electrode laminate formed by laminating the negative electrode, the amount of the reactive polymer supported per side of the reactive polymer-supported porous film is 0.3 to 5.0 g / m 2. The ratio of the amount of the reactive polymer supported on the positive electrode porous film / the amount of the reactive polymer supported on the negative porous film is 0. Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate, characterized in that in the range of 1.0 is provided.

更に、本発明によれば、上記正極/反応性ポリマー担持多孔質フィルム/負極接合体を電池容器内に仕込んだ後、多官能イソシアネートを含む電解液を上記電池容器内に注入して、少なくとも多孔質フィルムと電極との界面の近傍にて、上記反応性ポリマーの少なくとも一部を電解液中で膨潤させ、又は電解液中に溶出させ、多官能イソシアネートと反応、架橋させて、電解液の少なくとも一部をゲル化させて、多孔質フィルムと電極を接着することを特徴とする電池の製造方法が提供される。   Further, according to the present invention, after the positive electrode / reactive polymer-supported porous film / negative electrode assembly is charged into the battery container, an electrolytic solution containing polyfunctional isocyanate is injected into the battery container, and at least porous In the vicinity of the interface between the porous film and the electrode, at least a part of the reactive polymer is swollen in the electrolytic solution, or eluted into the electrolytic solution, reacted with a polyfunctional isocyanate, crosslinked, and at least of the electrolytic solution. A method for producing a battery is provided, in which a part is gelled to adhere a porous film and an electrode.

本発明による電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体においては、その反応性ポリマーは一部、架橋されているが、未反応の反応性基を有しており、更に、多官能イソシアネートと反応し、一層、架橋することができる。   In the battery positive electrode / reactive polymer-supported porous film / negative electrode laminate according to the present invention, the reactive polymer is partially crosslinked, but has unreacted reactive groups. It reacts with functional isocyanate and can be further cross-linked.

従って、このような正極/反応性ポリマー担持多孔質フィルム/負極積層体を電池容器内に仕込んだ後、多官能イソシアネートを含む電解液を上記電池容器内に注入して、少なくとも多孔質フィルムと電極との界面の近傍にて、上記反応性ポリマーの少なくとも一部を電解液中で膨潤させ、又は電解液中に溶出させ、反応性ポリマーを更に架橋させて、電解液の少なくとも一部をゲル化させることによって、多孔質フィルムと電極が強固に接着された電極/多孔質フィルム接合体を有する電池を得ることができる。   Therefore, after preparing such a positive electrode / reactive polymer-supported porous film / negative electrode laminate in a battery container, an electrolytic solution containing polyfunctional isocyanate is injected into the battery container, and at least the porous film and electrode In the vicinity of the interface, at least a part of the reactive polymer is swollen in the electrolytic solution or eluted into the electrolytic solution, and the reactive polymer is further cross-linked to gel at least a part of the electrolytic solution. As a result, a battery having an electrode / porous film assembly in which the porous film and the electrode are firmly bonded can be obtained.

ここに、上記正極/反応性ポリマー担持多孔質フィルム/負極積層体においては、反応性ポリマーが予め、一部、架橋されているので、正極/反応性ポリマー担持多孔質フィルム/負極積層体を電解液に浸漬したとき、反応性ポリマーは、電極/反応性ポリマー担持多孔質フィルム積層体からの電解液中への溶出、拡散が抑制されつつ、膨潤するので、その結果、少量の反応性ポリマーを用いることによって、電極を多孔質フィルム(セパレータ)に接着することができると共に、多孔質フィルムがイオン透過性にすぐれているので、セパレータとしてよく機能する。また、反応性ポリマーが電解液に過度に溶出、拡散して、電解液に有害な影響を与えることもない。   Here, in the positive electrode / reactive polymer-supported porous film / negative electrode laminate, since the reactive polymer is partially crosslinked in advance, the positive electrode / reactive polymer-supported porous film / negative electrode laminate is electrolyzed. When immersed in the solution, the reactive polymer swells while suppressing elution and diffusion from the electrode / reactive polymer-supported porous film laminate into the electrolyte, and as a result, a small amount of the reactive polymer is added. By using it, the electrode can be adhered to the porous film (separator), and the porous film is excellent in ion permeability, so that it functions well as a separator. Further, the reactive polymer is not excessively eluted and diffused in the electrolytic solution, and does not adversely affect the electrolytic solution.

更に、本発明によれば、正極/反応性ポリマー担持多孔質フィルム/負極積層体において、多孔質フィルムの片面当たりの反応性ポリマーの担持量と共に、正極側の多孔質フィルム上の反応性ポリマーの担持量/負極側の多孔質フィルム上の反応性ポリマーの担持量の比とをそれぞれ所定の範囲にすることによって、得られる電池において、その特性と電極と多孔質フィルム(セパレータ)との間の接着特性との間に適切なバランスを有せしめることができ、更に、セパレータとして機能する多孔質フィルムと電極とを強固に接着することができるので、高温の環境下に置かれても、セパレータは溶融、破膜せず、熱収縮か小さいので、安全性にすぐれる電池を得ることができる。   Furthermore, according to the present invention, in the positive electrode / reactive polymer-supported porous film / negative electrode laminate, the amount of the reactive polymer supported on one side of the porous film and the reactive polymer on the porous film on the positive electrode side are By setting the ratio of the supported amount / the supported amount of the reactive polymer on the negative electrode side porous film to a predetermined range, in the obtained battery, the characteristics and the relationship between the electrode and the porous film (separator) It is possible to have an appropriate balance between the adhesive properties and furthermore, the porous film functioning as a separator and the electrode can be firmly bonded, so that the separator can be used even in a high temperature environment. Since it does not melt and break, and heat shrinkage is small, a battery with excellent safety can be obtained.

かくして、本発明の正極/反応性ポリマー担持多孔質フィルム/負極積層体を用いることによって、電極/セパレータ間に強固な接着を有する電極/セパレータ接合体を電池の製造過程においてその場で形成しつつ、多孔質フィルムと電極との間の接着性と電池特性との間にバランスがとれており、更に、安全性にすぐれる電池を容易に得ることができる。   Thus, by using the positive electrode / reactive polymer-supported porous film / negative electrode laminate of the present invention, an electrode / separator assembly having strong adhesion between the electrode / separator is formed in situ in the battery manufacturing process. In addition, a balance is achieved between the adhesion between the porous film and the electrode and the battery characteristics, and a battery with excellent safety can be easily obtained.

本発明は、分子中に活性水素をもつ反応性基を有し、この反応性基に多官能イソシアネートを反応させることによって架橋し得る架橋性ポリマーを用意し、この架橋性ポリマーを多官能イソシアネートと反応させ、一部、架橋させて、反応性ポリマーとして、多孔質フィルムに担持させてなる反応性ポリマー担持多孔質フィルムとなし、この反応性ポリマー担持多孔質フィルムにこれを挟んで正極と負極を積層してなる正極/反応性ポリマー担持多孔質フィルム/負極積層体において、上記反応性ポリマー担持多孔質フィルムの片面当たりの反応性ポリマーの担持量が0.3〜5.0g/m2 の範囲にあると共に、正極側の多孔質フィルム上の反応性ポリマーの担持量/負極側の多孔質フィルム上の反応性ポリマーの担持量の比が0.1〜1.0の範囲にあるものである。 The present invention provides a crosslinkable polymer having a reactive group having an active hydrogen in the molecule and capable of crosslinking by reacting the reactive group with a polyfunctional isocyanate, and the crosslinkable polymer is combined with the polyfunctional isocyanate. Reacting, partially crosslinking, and forming a reactive polymer-supporting porous film supported on a porous film as a reactive polymer, and sandwiching this reactive polymer-supporting porous film with a positive electrode and a negative electrode In the laminated positive electrode / reactive polymer-supported porous film / negative electrode laminate, the amount of the reactive polymer supported per one side of the reactive polymer-supported porous film is in the range of 0.3 to 5.0 g / m 2 . The ratio of the amount of the reactive polymer supported on the positive electrode porous film / the amount of the reactive polymer supported on the negative porous film is 0.1-1 It is those in the range of 0.

本発明において、多孔質フィルムは、電池の製造後にはセパレータとして機能するものであるので、膜厚3〜100μmの範囲のものがよい。膜厚が3μmよりも薄いときは、強度が不十分であって、電池においてセパレータとして用いた場合に内部短絡を起こすおそれがあり、他方、100μmを越えるときは、電極間距離が大きすぎて、電池の内部抵抗が過大となる。特に、好ましくは、基材多孔膜フィルムは、膜厚5〜50μmの範囲のものがよい。また、多孔質フィルムは、平均孔径0.01〜5μmの細孔を有し、空孔率が20〜80%、好ましくは、25〜75%の範囲のものが用いられる。多孔質フィルムの空孔率が余りに低いときは、電池のセパレータとして用いた場合に、イオン伝導経路が少なくなり、十分な電池特性を得ることができない。他方、空孔率が余りに高いときは、電池のセパレータとして用いた場合に、強度が不十分であり、所要の強度を得るためには、多孔質フィルムとして厚いものを用いざるを得ず、そうすれば、電池の内部抵抗が高くなるので好ましくない。   In this invention, since a porous film functions as a separator after manufacture of a battery, the thing of the film thickness of 3-100 micrometers is good. When the film thickness is less than 3 μm, the strength is insufficient and there is a possibility of causing an internal short circuit when used as a separator in a battery. On the other hand, when it exceeds 100 μm, the distance between the electrodes is too large, The internal resistance of the battery becomes excessive. Particularly preferably, the substrate porous film has a film thickness in the range of 5 to 50 μm. The porous film has pores having an average pore diameter of 0.01 to 5 μm and a porosity of 20 to 80%, preferably 25 to 75%. When the porosity of the porous film is too low, when used as a battery separator, the ion conduction path is reduced and sufficient battery characteristics cannot be obtained. On the other hand, when the porosity is too high, when used as a battery separator, the strength is insufficient, and in order to obtain the required strength, a thick porous film must be used. This is not preferable because the internal resistance of the battery increases.

本発明によれば、多孔質フィルムは、上述したような特性を有すれば、特に、限定されるものではないが、耐溶剤性や耐酸化還元性を考慮すれば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂からなる多孔質フィルムが好適である。しかし、なかでも、加熱されたとき、樹脂が溶融して、細孔が閉塞する性質を有し、従って、電池に所謂シャットダウン機能を有せしめることができるところから、多孔質フィルムとしては、ポリエチレンが特に好適である。ここに、ポリエチレンには、エチレンのホモポリマーのみならず、プロピレン、ブテン、ヘキセン等のα−オレフィンとエチレンとのコポリマーを含むものとする。しかし、本発明によれば、ポリテトラフルオロエチレンやポリイミド等の多孔質膜と上記ポリオレフィン樹脂多孔質フィルムとの積層フィルムも、耐熱性にすぐれるところから、多孔質フィルムとして、好適に用いられる。   According to the present invention, the porous film is not particularly limited as long as it has the above-described characteristics, but if considering solvent resistance and oxidation-reduction resistance, polyolefin such as polyethylene and polypropylene is used. A porous film made of a resin is preferred. However, among them, polyethylene has a property that when heated, the resin melts and the pores are blocked, so that the battery can have a so-called shutdown function. Particularly preferred. Here, the polyethylene includes not only a homopolymer of ethylene but also a copolymer of ethylene with an α-olefin such as propylene, butene, and hexene. However, according to the present invention, a laminated film of a porous film such as polytetrafluoroethylene or polyimide and the polyolefin resin porous film is also suitably used as a porous film because of its excellent heat resistance.

本発明において、架橋性ポリマーは、分子中に活性水素をもつ反応性基を有し、この反応性基に多官能イソシアネートを反応させることによって架橋することができるポリマーをいう。上記活性水素をもつ反応性基は、好ましくは、ヒドロキシル基又はカルボキシル基である。   In the present invention, the crosslinkable polymer refers to a polymer having a reactive group having an active hydrogen in the molecule and capable of crosslinking by reacting this reactive group with a polyfunctional isocyanate. The reactive group having active hydrogen is preferably a hydroxyl group or a carboxyl group.

本発明において、反応性ポリマーとは、上記架橋性ポリマーをその反応性基に多官能イソシアネートを反応させることによって、一部、架橋させたポリマーをいい、このように、本発明によれば、反応性ポリマーは、架橋性ポリマーと多官能イソシアネートとを反応させ、架橋性ポリマーを一部、架橋させてなるものであるので、反応性ポリマーの重量とは、便宜上、架橋性ポリマーと多官能イソシアネートとの合計の重量をいうものとする。   In the present invention, the reactive polymer means a polymer partially cross-linked by reacting the crosslinkable polymer with a reactive group with a polyfunctional isocyanate. Thus, according to the present invention, the reactive polymer is reacted. The reactive polymer is obtained by reacting a crosslinkable polymer with a polyfunctional isocyanate, and partially crosslinking the crosslinkable polymer. Therefore, the weight of the reactive polymer is, for convenience, the crosslinkable polymer and the polyfunctional isocyanate. The total weight of

また、本発明において、正極/反応性ポリマー担持多孔質フィルム/負極積層体(以下、電極/多孔質フィルム積層体ということがある。)とは、このように、架橋性ポリマーを一部、架橋させてなる反応性ポリマーを担持させた多孔質フィルムに、これを挟んで正極と負極を圧着し、好ましくは、仮接着して貼り合わせたものをいう。   In the present invention, the positive electrode / reactive polymer-supported porous film / negative electrode laminate (hereinafter sometimes referred to as an electrode / porous film laminate) is a part of the crosslinkable polymer. A positive electrode and a negative electrode are pressure-bonded to a porous film carrying a reactive polymer, and are preferably bonded by temporary adhesion.

正極/反応性ポリマー担持多孔質フィルム/負極接合体(以下、電極/多孔質フィルム接合体ということがある。)とは、上述したような電極/多孔質フィルム積層体において、反応性ポリマーを更に反応させ、架橋させることによって、電極と多孔質フィルムとを相互に接着したものをいう。   The positive electrode / reactive polymer-supported porous film / negative electrode assembly (hereinafter sometimes referred to as an electrode / porous film assembly) refers to the reactive polymer in the electrode / porous film laminate as described above. It refers to a structure in which an electrode and a porous film are bonded to each other by reacting and crosslinking.

本発明によれば、電極/多孔質フィルム積層体において、反応性ポリマー担持多孔質フィルムの片面当たりの反応性ポリマーの担持量は0.3〜5.0g/m2 の範囲にあり、正極側の多孔質フィルム上の反応性ポリマーの担持量/負極側の多孔質フィルム上の反応性ポリマーの担持量の比は0.1〜1.0の範囲にある。 According to the present invention, in the electrode / porous film laminate, the amount of the reactive polymer supported on one side of the reactive polymer-supported porous film is in the range of 0.3 to 5.0 g / m 2 , and the positive electrode side The ratio of the amount of the reactive polymer supported on the porous film / the amount of the reactive polymer supported on the negative electrode porous film is in the range of 0.1 to 1.0.

以下にこのような本発明による電池用電極/反応性ポリマー担持多孔質フィルム積層体とこれを用いる電池の製造について詳細に説明する。   The battery electrode / reactive polymer-supported porous film laminate according to the present invention and the production of a battery using the same will be described in detail below.

本発明において、架橋性ポリマーは、例えば、前述したような反応性基を有するラジカル重合性モノマーとそのような反応性基をもたないその他のラジカル重合性モノマーとを溶液重合や塊状重合やエマルジョン重合等、常法に従って、ラジカル共重合させることによって得ることができる。ここに、反応性基を有するラジカル重合性モノマーは、通常、全モノマー量の0.1〜20重量%、好ましくは、0.1〜10重量%の範囲で用いられる。   In the present invention, the crosslinkable polymer is, for example, solution polymerization, bulk polymerization, or emulsion of a radical polymerizable monomer having a reactive group as described above and another radical polymerizable monomer having no such reactive group. It can be obtained by radical copolymerization according to a conventional method such as polymerization. Here, the radically polymerizable monomer having a reactive group is usually used in the range of 0.1 to 20% by weight, preferably 0.1 to 10% by weight of the total amount of monomers.

反応性基としてカルボキシル基を有するラジカル重合性モノマーとしては、例えば、(メタ)アクリル酸、イタコン酸、マレイン酸等を挙げることができ、反応性基としてヒドロキシル基を有するラジカル重合性モノマーとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチルアクリレート等のようなヒドロキシアルキル(メタ)アクリレートを挙げることができる。   Examples of the radical polymerizable monomer having a carboxyl group as a reactive group include (meth) acrylic acid, itaconic acid, maleic acid and the like, and the radical polymerizable monomer having a hydroxyl group as a reactive group, Examples thereof include hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl acrylate and the like.

他方、反応性基をもたないラジカル重合性モノマーとしては、例えば、(メタ)アクリル酸エステル、(メタ)アクリルアミド、(メタ)アクリロニトリル等の(メタ)アクリルモノマーのほか、種々のビニルモノマー、例えば、スチレン、酢酸ビニル、N−ビニルピロリドン等を挙げることができる。   On the other hand, examples of the radical polymerizable monomer having no reactive group include (meth) acrylic monomers such as (meth) acrylic acid ester, (meth) acrylamide, (meth) acrylonitrile, and various vinyl monomers such as Styrene, vinyl acetate, N-vinylpyrrolidone, and the like.

上記(メタ)アクリル酸エステルとしては、例えば、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート等のように、アルキル基における炭素原子数が1〜12のアルキルエステルが好ましく用いられる。   Examples of the (meth) acrylic acid ester include ethyl (meth) acrylate, butyl (meth) acrylate, propyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dodecyl (meth) acrylate, and the like. As described above, alkyl esters having 1 to 12 carbon atoms in the alkyl group are preferably used.

また、上記(メタ)アクリルアミドとしては、例えば、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N,N−ジ−n−プロピル(メタ)アクリルアミド、N,N−ジイソプロピル(メタ)アクリルアミド、N−(メタ)アクリロイルモルホリン、N−(メタ)アクリロイルピロリドン、N−(メタ)アクリロイルピペリジン、N−(メタ)アクリロイルピロリジン等を挙げることができる。   Examples of the (meth) acrylamide include N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N, N-di-n-propyl (meth) acrylamide, and N, N-. Examples include diisopropyl (meth) acrylamide, N- (meth) acryloylmorpholine, N- (meth) acryloylpyrrolidone, N- (meth) acryloylpiperidine, N- (meth) acryloylpyrrolidine.

特に、本発明においては、架橋性ポリマーの好ましい一例として、上述した反応性基を有するアクリル系モノマー成分と共に、(メタ)アクリル酸エステル、(メタ)アクリロニトリル、(メタ)アクリルアミドのようなアクリル系モノマー成分からなる架橋性ポリマーを挙げることができる。例えば、(メタ)アクリロニトリル成分を80重量%まで、好ましくは、5〜70重量%の範囲にて有する架橋性ポリマーは、耐熱性と耐溶剤性にすぐれるので、本発明において用いる好ましい反応性ポリマーの一例である。反応性基を有するモノマー成分0.1〜20重量%、(メタ)アクリル酸エステル成分10〜95重量%及び(メタ)アクリロニトリル4.9〜60重量%からなる反応性ポリマーは、そのような好ましい反応性ポリマーの一例である。   In particular, in the present invention, as a preferred example of the crosslinkable polymer, an acrylic monomer such as (meth) acrylic acid ester, (meth) acrylonitrile, (meth) acrylamide, together with the acrylic monomer component having the reactive group described above. Mention may be made of crosslinkable polymers comprising components. For example, a crosslinkable polymer having a (meth) acrylonitrile component up to 80% by weight, preferably in the range of 5 to 70% by weight is excellent in heat resistance and solvent resistance. It is an example. A reactive polymer comprising 0.1 to 20% by weight of a monomer component having a reactive group, 10 to 95% by weight of a (meth) acrylic acid ester component and 4.9 to 60% by weight of (meth) acrylonitrile is preferred as such. It is an example of a reactive polymer.

しかし、本発明において、架橋性ポリマーは、上記に限られるものではなく、多官能イソシアネートと反応し得る反応性基を有するポリマーであればよく、例えば、イソシアネート基と反応し得る反応性基を有するポリオレフィン系ポリマー、ゴム系ポリマー、ポリエステル系ポリマー、ポリエーテル系ポリマー等も用いることができる。更に、本発明によれば、分子中にヒドロキシル基を有するアクリル変性フッ素樹脂(例えば、セントラル硝子(株)製セフラルコートFG730B、ワニスとして入手することができる。)も、架橋性ポリマーとして好適に用いることができる。   However, in the present invention, the crosslinkable polymer is not limited to the above, and may be a polymer having a reactive group capable of reacting with a polyfunctional isocyanate, for example, having a reactive group capable of reacting with an isocyanate group. Polyolefin polymers, rubber polymers, polyester polymers, polyether polymers and the like can also be used. Furthermore, according to the present invention, an acrylic-modified fluororesin having a hydroxyl group in the molecule (for example, Cefral Coat FG730B manufactured by Central Glass Co., Ltd., available as varnish) is also preferably used as the crosslinkable polymer. Can do.

上述したような架橋性ポリマーは、例えば、べンゼン、トルエン、キシレン、酢酸エチル、酢酸ブチルのような溶剤中で上述したようなラジカル重合性モノマーを共重合させることによって、ポリマー溶液として得ることができる。他方、エマルジョン重合法によれば、反応性ポリマーの水分散液を得ることができるので、これよりポリマーを分離、乾燥させた後、上述したような溶剤に溶解させてポリマー溶液として用いる。尚、エマルジョン法によるときは、前述したモノマーに加えて、ジビニルベンゼン、トリメチロールプロパントリアクリレートのような多官能性架橋性モノマーを1重量%以下の割合で用いてもよい。   The crosslinkable polymer as described above can be obtained as a polymer solution by copolymerizing the radical polymerizable monomer as described above in a solvent such as benzene, toluene, xylene, ethyl acetate and butyl acetate. it can. On the other hand, according to the emulsion polymerization method, an aqueous dispersion of a reactive polymer can be obtained. After the polymer is separated and dried from this, it is dissolved in a solvent as described above and used as a polymer solution. In addition, when using the emulsion method, in addition to the above-described monomers, a polyfunctional crosslinking monomer such as divinylbenzene or trimethylolpropane triacrylate may be used in a proportion of 1% by weight or less.

本発明によれば、このような架橋性ポリマーに多官能イソシアネートを反応させ、一部、架橋させて、反応性ポリマーを得る。このような多官能イソシアネートとしては、例えば、フェニレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ジフェニルエーテルジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート等の芳香族、芳香脂肪族、脂環族、脂肪族のジイソシアネートのほか、トリメチロールプロパンのようなポリオールにこれらのジイソシアネートを付加させてなる所謂イソシアネートアダクト体も好ましく用いられる。   According to the present invention, such a crosslinkable polymer is reacted with a polyfunctional isocyanate and partially crosslinked to obtain a reactive polymer. Examples of such polyfunctional isocyanates include aromatic, araliphatic, alicyclic, and aliphatic diisocyanates such as phenylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, diphenyl ether diisocyanate, hexamethylene diisocyanate, and cyclohexane diisocyanate. A so-called isocyanate adduct obtained by adding these diisocyanates to a polyol such as trimethylolpropane is also preferably used.

本発明によれば、このような架橋性ポリマーに多官能イソシアネートの所定量を所定の条件下に反応させることによって、架橋性ポリマーの架橋反応を制御して、その一部を架橋させることができ、本発明によれば、このように、一部、架橋させた架橋性ポリマーを反応性ポリマーとして多孔質フィルムに担持させ、かくして、反応性ポリマー担持多孔質フィルムを得る。   According to the present invention, by reacting such a crosslinkable polymer with a predetermined amount of polyfunctional isocyanate under predetermined conditions, it is possible to control the crosslink reaction of the crosslinkable polymer and to partially crosslink the polymer. According to the present invention, the partially cross-linked crosslinkable polymer is supported on the porous film as a reactive polymer in this way, and thus a reactive polymer-supported porous film is obtained.

このように、架橋性ポリマーを一部、架橋させてなる反応性ポリマーを多孔質フィルムに担持させるには、架橋性ポリマーとこれに対して所定量の多官能イソシアネートとを含む溶液を多孔質フィルムに塗布し、乾燥させた後、加熱して、多孔質フィルム上で架橋性ポリマーを一部、架橋させ、かくして、反応性ポリマーを多孔質フィルムに担持させてもよく、また、架橋性ポリマーと多官能イソシアネートとを含む溶液を延伸ポリプロピレンフィルムや離型処理を施した紙等の剥離性シート上に塗布し、乾燥させた後、これを多孔質フィルムに転写し、加熱して、多孔質フィルム上で架橋性ポリマーを一部、架橋させて、反応性ポリマーを多孔質フィルムに担持させてもよい。   As described above, in order to support the porous film with the reactive polymer obtained by partially crosslinking the crosslinkable polymer, a solution containing the crosslinkable polymer and a predetermined amount of polyfunctional isocyanate is added to the porous film. After coating, drying, and heating to partially crosslink the crosslinkable polymer on the porous film, the reactive polymer may be supported on the porous film. A solution containing a polyfunctional isocyanate is applied onto a peelable sheet such as a stretched polypropylene film or a release-treated paper, dried, and then transferred to a porous film and heated to form a porous film. The reactive polymer may be supported on the porous film by partially crosslinking the crosslinkable polymer.

本発明によれば、このようにして、架橋性ポリマーを部分架橋させてなる反応性ポリマーは、5〜90%の範囲のゲル分率、好ましくは、3〜60%の範囲のゲル分率を有することが望ましい。ここに、本発明において、反応性ポリマーのゲル分率とは、架橋性ポリマーと多官能イソシアネートを反応させて、架橋性ポリマーを一部、架橋させ、反応性ポリマーとして多孔質フィルムに担持させ、これを、後述するように、所定の有機溶媒に所定時間浸漬したとき、有機溶媒に溶解せずに、多孔質フィルム上に残存している反応性ポリマーの上記架橋性ポリマーと多官能イソシアネートとの合計量に対する割合をいう。   According to the present invention, the reactive polymer obtained by partially crosslinking the crosslinkable polymer in this way has a gel fraction in the range of 5 to 90%, preferably a gel fraction in the range of 3 to 60%. It is desirable to have. Here, in the present invention, the gel fraction of the reactive polymer means that the crosslinkable polymer and the polyfunctional isocyanate are reacted to partially crosslink the crosslinkable polymer, and are supported on the porous film as a reactive polymer, As described later, when immersed in a predetermined organic solvent for a predetermined time, the crosslinkable polymer and the polyfunctional isocyanate of the reactive polymer remaining on the porous film are not dissolved in the organic solvent. The ratio to the total amount.

反応性ポリマーのゲル分率が5%よりも少ないときは、後述するように、このような反応性ポリマーを担持させた多孔質フィルムに電極を圧着して、電極/多孔質フィルム積層体とし、これを電解液に浸漬したとき、反応性ポリマーの多くが電解液中に溶出、拡散して、反応性ポリマーを更にカチオン重合させ、架橋させても、電極と多孔質フィルムとの間に有効な接着を得ることができない。他方、反応性ポリマーのゲル分率が90%よりも多いときは、電極/多孔質フィルム積層体とし、これを電解液に浸漬したとき、反応性ポリマーの膨潤性が低く、得られる電極/多孔質フィルム接合体を有する電池が高い内部抵抗を有することとなり、電池特性に好ましくない。   When the gel fraction of the reactive polymer is less than 5%, as will be described later, an electrode is pressure-bonded to a porous film carrying such a reactive polymer to form an electrode / porous film laminate, When this is immersed in the electrolytic solution, most of the reactive polymer is eluted and diffused in the electrolytic solution, and even if the reactive polymer is further cationically polymerized and crosslinked, it is effective between the electrode and the porous film. Adhesion cannot be obtained. On the other hand, when the gel fraction of the reactive polymer is more than 90%, an electrode / porous film laminate is formed, and when this is immersed in an electrolyte solution, the swelling property of the reactive polymer is low, and the resulting electrode / porous A battery having a quality film assembly has a high internal resistance, which is not preferable for battery characteristics.

5〜90%の範囲のゲル分率を有する反応性ポリマーを得るには、限定されるものではないが、前述したように、通常、架橋性ポリマー100重量部に対して、多官能イソシアネートを0.1〜10重量部の範囲で配合し、加熱し、架橋性ポリマーと多官能イソシアネートとを所定の条件下に得られる反応性ポリマーが特性的に安定化するまで、反応を行わせることによって得ることができる。加熱温度やそのための時間は、用いる架橋性ポリマーや多官能イソシアネートやその種類等にもよるが、実験によってこれら反応条件を定めることができる。例えば、50℃の温度で7日間、加熱、反応させれば、通常、架橋性ポリマーの多官能イソシアネートによる架橋反応を完結させて、得られる反応性ポリマーが特性的に安定化する。   Although there is no limitation to obtain a reactive polymer having a gel fraction in the range of 5 to 90%, as described above, the polyfunctional isocyanate is usually 0% with respect to 100 parts by weight of the crosslinkable polymer. It is obtained by blending in the range of 1 to 10 parts by weight, heating, and allowing the crosslinkable polymer and the polyfunctional isocyanate to react until the reactive polymer obtained under predetermined conditions is characteristically stabilized. be able to. Although the heating temperature and the time for it depend on the crosslinkable polymer used, the polyfunctional isocyanate and the kind thereof, etc., these reaction conditions can be determined by experiments. For example, heating and reacting at a temperature of 50 ° C. for 7 days usually completes the cross-linking reaction of the cross-linkable polymer with the polyfunctional isocyanate and stabilizes the resulting reactive polymer characteristically.

本発明において、多孔質フィルムがその表面に反応性ポリマーを担持している割合を反応性ポリマー担持率ということとすれば、例えば、多孔質フィルムがその一表面の全面に反応性ポリマーを担持しているとき、その一表面における担持率は100%であり、例えば、多孔質フィルムがその表裏両面に筋状や点状に反応性ポリマーを担持しており、反応性ポリマーを担持している割合が各表面においてその面積の50%であるとき、担持率は表裏両面においてそれぞれ50%である。   In the present invention, if the ratio of the porous film carrying the reactive polymer on its surface is called the reactive polymer carrying ratio, for example, the porous film carries the reactive polymer on the entire surface of one surface. The loading rate on one surface is 100%. For example, the porous film carries the reactive polymer in the form of streaks or dots on both the front and back surfaces, and the proportion of the loading of the reactive polymer. Is 50% of the area on each surface, the loading is 50% on both the front and back surfaces.

本発明によれば、反応性ポリマーの担持率は、5〜100%の範囲が好ましく、特に、10〜90%の範囲が好ましい。例えば、多孔質フィルムに反応性ポリマーを担持させる際に、部分的に、即ち、例えば、筋状、斑点状、格子目状、縞状、亀甲模様状等に部分的に担持させて、担持率を10〜90%の範囲とすることが好ましい。このように、反応性ポリマーを多孔質フィルムに部分的に担持せることによって、電極と多孔質フィルム(従って、セパレータ)との間に強固な接着を得るのみならず、多孔質フィルム(セパレータ)にイオン透過性を確保せしめることによって、すぐれた特性を有する電池を得ることができる。   According to the present invention, the loading ratio of the reactive polymer is preferably in the range of 5 to 100%, particularly preferably in the range of 10 to 90%. For example, when the reactive polymer is supported on the porous film, it is supported partially, that is, for example, in the form of stripes, spots, lattices, stripes, turtle shells, etc. Is preferably in the range of 10 to 90%. In this way, by partially supporting the reactive polymer on the porous film, not only a strong adhesion is obtained between the electrode and the porous film (and thus the separator), but also the porous film (separator). By ensuring ion permeability, a battery having excellent characteristics can be obtained.

このように、多孔質フィルムに部分的に反応性ポリマーを担持させることによって、多孔質フィルムのイオン透過性を確保しつつ、他方において、多孔質フィルム上に担持する反応性ポリマーの層の厚みを0.5μm以上に大きくして、最終的に得られる電池において、電極と多孔質フィルム(セパレータ)との間に強固な接着を得ることができる。   In this way, by partially supporting the reactive polymer on the porous film, while ensuring the ion permeability of the porous film, on the other hand, the thickness of the reactive polymer layer supported on the porous film is reduced. In the battery finally obtained by increasing the thickness to 0.5 μm or more, strong adhesion can be obtained between the electrode and the porous film (separator).

本発明による電極/多孔質フィルム積層体は、このように、反応性ポリマーを担持させてなる多孔質フィルムにこれを挟んで正極と負極を積層し、好ましくは、加熱下に加圧し、圧着して、正極と負極を反応性ポリマー担持多孔質フィルムに仮接着し、貼り合わせることによって得ることができる。   In the electrode / porous film laminate according to the present invention, the positive electrode and the negative electrode are laminated with the porous film formed by supporting the reactive polymer in this manner, and preferably pressurized and heated under pressure. Then, the positive electrode and the negative electrode can be obtained by temporarily adhering and bonding the reactive polymer-supported porous film.

本発明において、負極と正極は、電池によって相違するが、一般に、導電性基材に活物質と、必要に応じて、導電剤とを樹脂バインダーを用いて、担持させてなるシート状のものが用いられる。   In the present invention, the negative electrode and the positive electrode differ depending on the battery, but in general, a sheet-like material in which an active material and, if necessary, a conductive agent are supported on a conductive base material using a resin binder is used. Used.

本発明において、電極/多孔質フィルム積層体は、反応性ポリマー担持多孔質フィルムに電極が積層されておればよい。従って、電池の構造や形態に応じて、電極/多孔質フィルム積層体として、例えば、負極/多孔質フィルム/正極、負極/多孔質フィルム/正極/多孔質フィルム等が用いられる。また、電極/多孔質フィルム積層体は、シート状でもよく、また、捲回されていてもよい。   In the present invention, the electrode / porous film laminate may have an electrode laminated on a reactive polymer-supported porous film. Therefore, for example, a negative electrode / porous film / positive electrode, a negative electrode / porous film / positive electrode / porous film, etc. are used as the electrode / porous film laminate according to the structure and form of the battery. The electrode / porous film laminate may be in the form of a sheet or may be wound.

本発明によれば、正極/反応性ポリマー担持多孔質フィルム/負極積層体において、上記反応性ポリマー担持多孔質フィルムの片面当たりの反応性ポリマーの担持量は0.3〜5.0g/m2 の範囲にあると共に、正極側の多孔質フィルム上の反応性ポリマーの担持量/負極側の多孔質フィルム上の反応性ポリマーの担持量の比(以下、反応性ポリマー担持量比という。)が0.1〜1.0の範囲にある。 According to the present invention, in the positive electrode / reactive polymer-supported porous film / negative electrode laminate, the amount of the reactive polymer supported per side of the reactive polymer-supported porous film is 0.3 to 5.0 g / m 2. And the ratio of the amount of the reactive polymer supported on the positive electrode porous film / the amount of the reactive polymer supported on the negative porous film (hereinafter referred to as the ratio of the reactive polymer supported amount). It is in the range of 0.1 to 1.0.

多孔質フィルムの片面当たりの反応性ポリマーの担持量が0.3g/m2 よりも少ないときは、最終的に得られる電池において、電極と多孔質フィルム(セパレータ)との間の接着が十分でない。他方、多孔質フィルムの片面当たりの反応性ポリマーの担持量が5.0g/m2 よりも多いときは、最終的に得られる電池において、電極と多孔質フィルム(セパレータ)との間の内部抵抗が大きくなって、電池特性が著しく低下する。 When the loading amount of the reactive polymer per side of the porous film is less than 0.3 g / m 2 , the adhesion between the electrode and the porous film (separator) is not sufficient in the finally obtained battery. . On the other hand, when the loading amount of the reactive polymer per side of the porous film is more than 5.0 g / m 2 , the internal resistance between the electrode and the porous film (separator) in the battery finally obtained is Becomes large, and the battery characteristics are remarkably deteriorated.

また、多孔質フィルム上の反応性ポリマーの担持量の比が0.1よりも小さいときは、正極側の多孔質フィルム上の反応性ポリマーの担持量が少なすぎて、正極と多孔質フィルム(セパレータ)との間の接着が不十分である。しかし、多孔質フィルム上の反応性ポリマーの担持量の比が1.0よりも大きいときは、電極と多孔質フィルム(セパレータ)との間の接着性と電池特性の間にバランスが失われる。   Further, when the ratio of the amount of the reactive polymer supported on the porous film is smaller than 0.1, the amount of the reactive polymer supported on the positive electrode-side porous film is too small, and the positive electrode and the porous film ( Adhesion with the separator) is insufficient. However, when the ratio of the amount of the reactive polymer supported on the porous film is larger than 1.0, a balance is lost between the adhesion between the electrode and the porous film (separator) and the battery characteristics.

このような正極/反応性ポリマー担持多孔質フィルム/負極積層体の調製に際して、多孔質フィルムの正極を積層する側(正極側)と負極を積層する側(負極側)とに反応性ポリマーを同じ割合で担持させるとき、このような積層体を用いて得られるリチウムイオン二次電池においては、正極活物質として用いられる粒状物質と負極活物質として用いられる粒状物質の粒子径の相違に起因して、反応性ポリマー担持多孔質フィルムと負極との間の接着性が反応性ポリマー担持多孔質フィルムと正極との間の接着性よりも低い。   In preparing such a positive electrode / reactive polymer-supported porous film / negative electrode laminate, the reactive polymer is the same on the positive electrode side (positive electrode side) and negative electrode side (negative electrode side) of the porous film. In a lithium ion secondary battery obtained using such a laminate when supported at a ratio, due to the difference in particle diameter between the granular material used as the positive electrode active material and the granular material used as the negative electrode active material The adhesiveness between the reactive polymer-supported porous film and the negative electrode is lower than the adhesiveness between the reactive polymer-supporting porous film and the positive electrode.

即ち、リチウムイオン二次電池においては、代表的には、正極活物質としてコバルト酸リチウムが用いられ、負極活物質として種々の炭素質材料が用いられるが、ここに、正極活物質として用いられるコバルト酸リチウムは、平均粒子径が1〜10μm、好ましくは、3〜5μm程度の粒状物質であり、他方、負極活物質として用いられる炭素質材料は、平均粒子径が15〜100μm程度、好ましくは、20〜50μm程度の粒状物質であり、このように、負極活物質として用いられる炭素質材料は、正極活物質として用いられるコバルト酸リチウムに比べて、平均粒子径が大きい。   That is, in lithium ion secondary batteries, lithium cobaltate is typically used as the positive electrode active material, and various carbonaceous materials are used as the negative electrode active material. Here, cobalt used as the positive electrode active material is used. Lithium acid is a granular material having an average particle size of 1 to 10 μm, preferably about 3 to 5 μm. On the other hand, the carbonaceous material used as the negative electrode active material has an average particle size of about 15 to 100 μm, preferably The carbonaceous material used as the negative electrode active material has a larger average particle diameter than the lithium cobaltate used as the positive electrode active material.

リチウムイオンの拡散速度が炭素におけるよりもコバルト酸リチウムにおいて著しく小さいことや、また、最初に充電されたリチウムイオンの一部が負極活物質である炭素質材料の表面で被膜を形成して、放電に用いられず、不可逆容量が生じる等の理由から、従来、リチウムイオン二次電池においては、正極活物質として用いるコバルト酸リチウムとしては、平均粒子径が小さいものを用いて、リチウムイオンの拡散を促進すると共に、負極活物質である炭素質材料は、平均粒子径の大きいものを用いることによって、リチウムイオンによって形成される被膜の表面積をできるだけ小さくするような対策が講じられている。   Lithium ion diffusion rate is significantly lower in lithium cobaltate than in carbon, and some of the initially charged lithium ions form a film on the surface of the carbonaceous material that is the negative electrode active material and discharge Conventionally, in lithium ion secondary batteries, lithium cobaltate used as a positive electrode active material has a small average particle diameter, and lithium ions are diffused. While promoting, the carbonaceous material which is a negative electrode active material has taken the countermeasure which makes the surface area of the film formed by lithium ion as small as possible by using a thing with a large average particle diameter.

他方、本発明によれば、得られた電池において、多孔質フィルム(セパレータ)に担持させた反応性ポリマーは、正極又は負極と多孔質フィルム(セパレータ)の界面の付近においてのみ、ゲル状態の層をなしており、この反応性ポリマーの層は、リチウムイオンの拡散に対して抵抗層を形成している。前述したように、リチウムイオンの拡散速度は、炭素におけるよりもコバルト酸リチウムにおいて小さいので、正極側にある反応性ポリマーの層はリチウムイオンの拡散を阻害して、電池特性の低下を招く。しかし、負極側にある反応性ポリマーの層は、炭素質材料中へのリチウムイオンの拡散が速いので、電池特性に大幅な影響を与えない。   On the other hand, according to the present invention, in the obtained battery, the reactive polymer supported on the porous film (separator) is a gel layer only in the vicinity of the interface between the positive electrode or the negative electrode and the porous film (separator). The reactive polymer layer forms a resistance layer against lithium ion diffusion. As described above, since the diffusion rate of lithium ions is smaller in lithium cobaltate than in carbon, the reactive polymer layer on the positive electrode side inhibits the diffusion of lithium ions, leading to deterioration of battery characteristics. However, the reactive polymer layer on the negative electrode side does not significantly affect the battery characteristics because the diffusion of lithium ions into the carbonaceous material is fast.

そこで、本発明によれば、電極の多孔質フィルム(セパレータ)への反応性ポリマーによる接着は、ゲル状態の反応性ポリマーの電極の細孔中へのアンカー効果によることを考慮して、上記正極活物質と負極活物質の平均粒子径の相違に基づいて、負極側での反応性ポリマーの担持量を正極側での反応性ポリマーの担持量よりも所定の範囲で大きくすると共に、反応性ポリマー担持多孔質フィルムの片面当たりの反応性ポリマーの担持量を所定の範囲とすることによって、得られる電池の特性の低下を招くことなく、正極と多孔質フィルムとの間と負極と多孔質フィルムとの間に同じ程度の接着力を与えることができるのである。   Therefore, according to the present invention, considering that the adhesion of the electrode to the porous film (separator) by the reactive polymer is due to the anchor effect of the reactive polymer in the gel state into the pores of the electrode, the positive electrode Based on the difference in the average particle size of the active material and the negative electrode active material, the amount of the reactive polymer supported on the negative electrode side is made larger than the amount of the reactive polymer supported on the positive electrode side within a predetermined range, and the reactive polymer By setting the loading amount of the reactive polymer per one side of the supported porous film within a predetermined range, the negative electrode and the porous film are formed between the positive electrode and the porous film without causing deterioration of the characteristics of the obtained battery. The same degree of adhesive strength can be given during the period.

即ち、本発明によれば、正極/反応性ポリマー担持多孔質フィルム/負極積層体において、多孔質フィルムの片面当たりの反応性ポリマーの担持量と共に、反応性ポリマー担持量比をそれぞれ所定の範囲とすることによって、得られる電池において、その特性と電極と多孔質フィルム(セパレータ)との間の接着特性との間に適切なバランスを有せしめることができる。   That is, according to the present invention, in the positive electrode / reactive polymer-supported porous film / negative electrode laminate, the reactive polymer support amount per one side of the porous film and the reactive polymer support ratio are set within a predetermined range, respectively. By doing so, the obtained battery can have an appropriate balance between the characteristics and the adhesive characteristics between the electrode and the porous film (separator).

特に、本発明によれば、多孔質フィルム(セパレータ)との間の接着性と得られる電池の特性との間のバランスがすぐれるように、電極/多孔質フィルム積層体において、多孔質フィルム上の反応性ポリマーの担持量比を0.3〜0.9の範囲とすると共に、反応性ポリマー担持多孔質フィルムの片面当たりの反応性ポリマーの担持量を0.5〜3.0g/m2 の範囲にすることが好ましい。 In particular, according to the present invention, in the electrode / porous film laminate, the adhesion between the porous film (separator) and the characteristics of the obtained battery is excellent. The amount of the reactive polymer supported is within the range of 0.3 to 0.9, and the amount of the reactive polymer supported per side of the reactive polymer-supported porous film is 0.5 to 3.0 g / m 2. It is preferable to be in the range.

本発明において、正極活物質の具体例として、例えば、コバルト酸リチウムのほか、コバルト、ニッケル及びマンガンから選ばれる少なくとも1種とリチウムの複合酸化物を挙げることができ、更に、このような複合酸化物は、種々の遷移金属等を含むものであってもよい。また、負極活物質である炭素質材料の具体例として、例えば、コークス、黒鉛、メソカーボンマイクロビーズ等を挙げることができる。しかし、本発明において、リチウムイオン二次電池の正極活物質及び負極活物質は、上記例示に限定されるものではなく、従来、知られているものであれば、いずれでもそれぞれ適宜に用いることができる。   In the present invention, specific examples of the positive electrode active material can include, for example, lithium cobalt oxide, lithium complex oxide of at least one selected from cobalt, nickel and manganese, and such complex oxidation. The product may contain various transition metals and the like. Specific examples of the carbonaceous material that is the negative electrode active material include coke, graphite, and mesocarbon microbeads. However, in the present invention, the positive electrode active material and the negative electrode active material of the lithium ion secondary battery are not limited to the above examples, and any known materials can be used as appropriate. it can.

このように、本発明による電極/多孔質フィルム積層体は、特に、リチウムイオン二次電池を製造するための電極/多孔質フィルム積層体として好適に用いることができる。   Thus, the electrode / porous film laminate according to the present invention can be suitably used particularly as an electrode / porous film laminate for producing a lithium ion secondary battery.

本発明によれば、このような電極/多孔質フィルム積層体を金属缶やラミネートフィルム等からなる電池容器内に仕込み、端子の溶接等が必要な場合にはこれを行った後、この電池容器内に多官能イソシアネートを溶解させた電解液を所定量注入し、電池容器を密封、封口して、電極/多孔質フィルム積層体中の多孔質フィルムに担持させた反応性ポリマーを少なくとも多孔質フィルムと電極との界面の近傍にて、その少なくとも一部を電解液中で膨潤させ、又は電解液中に溶出、拡散させて、反応性ポリマーの有する未反応の反応性基を多官能イソシアネートと反応させ、架橋させ、電解液の少なくとも一部をゲル化させて、電極を多孔質フィルムと接着し、かくして、多孔質フィルムをセパレータとし、このセパレータに電極が強固に接着された電池を得ることができる。   According to the present invention, such an electrode / porous film laminate is charged into a battery container made of a metal can, a laminate film, or the like, and when terminal welding or the like is necessary, A predetermined amount of an electrolyte solution in which polyfunctional isocyanate is dissolved is injected, and the battery container is sealed and sealed, and at least the reactive polymer supported on the porous film in the electrode / porous film laminate is at least a porous film. In the vicinity of the interface between the electrode and the electrode, at least a part thereof is swollen in the electrolytic solution, or eluted and diffused in the electrolytic solution to react the unreacted reactive group of the reactive polymer with the polyfunctional isocyanate. Cross-linking, gelling at least a part of the electrolyte, and bonding the electrode to the porous film, thus using the porous film as a separator, and the electrode firmly contacting the separator It can be obtained by the battery.

即ち、本発明によれば、このようにして、電極を多孔質フィルムにいわば本接着させて、電極/多孔質フィルム接合体を形成するので、多孔質フィルムと電極が強固に接着されている。しかも、本発明によれば、部分架橋させた反応性ポリマーは、前記範囲のゲル分率を有し、従って、電解液中に浸漬されても、電解液中への溶出、拡散が防止され、又は低減されて、電極と多孔質フィルムとの接着に有効に用いられるので、比較的少量の反応性ポリマーの使用によって、電極と多孔質フィルムとを安定して、しかも、より強固に接着することができる。   That is, according to the present invention, since the electrode is bonded to the porous film in this manner to form an electrode / porous film assembly, the porous film and the electrode are firmly bonded. Moreover, according to the present invention, the partially cross-linked reactive polymer has a gel fraction in the above range, and therefore, even when immersed in the electrolytic solution, elution and diffusion into the electrolytic solution are prevented, Or it can be reduced and effectively used for adhesion between the electrode and the porous film, so that the electrode and the porous film can be bonded stably and more firmly by using a relatively small amount of the reactive polymer. Can do.

このように、本発明においては、反応性ポリマーは、その残存する未反応の反応性基によって、電解液中の多官能イソシアネートと反応、架橋し、少なくとも多孔質フィルムと電極との界面の近傍にて電解液をゲル化させて、電極と多孔質フィルムとを接着するように機能する。   Thus, in the present invention, the reactive polymer reacts and crosslinks with the polyfunctional isocyanate in the electrolytic solution by the remaining unreacted reactive groups, and at least in the vicinity of the interface between the porous film and the electrode. Thus, the electrolyte solution is gelled and functions to adhere the electrode and the porous film.

電解液中の多官能イソシアネートの割合は、多孔質フィルムに担持させた反応性ポリマー100重量部に対して、通常、0.1〜20重量部の範囲である。多官能イソシアネートの割合が多孔質フィルムに担持させた反応性ポリマー100重量部に対して、0.1重量部よりも少ないときは、反応性ポリマーの多官能イソシアネートによる架橋が不十分であって、得られる電極/セパレータ接合体において、電極とセパレータとの間に強固な接着を得ることができない。しかし、多官能イソシアネートの割合が反応性ポリマー100重量部に対して20重量部よりも多いときは、架橋後の接着剤が硬すぎて、セパレータと電極間の密着性を阻害することがある。   The proportion of the polyfunctional isocyanate in the electrolytic solution is usually in the range of 0.1 to 20 parts by weight with respect to 100 parts by weight of the reactive polymer supported on the porous film. When the proportion of the polyfunctional isocyanate is less than 0.1 parts by weight relative to 100 parts by weight of the reactive polymer supported on the porous film, crosslinking of the reactive polymer with the polyfunctional isocyanate is insufficient, In the obtained electrode / separator assembly, strong adhesion cannot be obtained between the electrode and the separator. However, when the proportion of the polyfunctional isocyanate is more than 20 parts by weight with respect to 100 parts by weight of the reactive polymer, the adhesive after cross-linking may be too hard to inhibit the adhesion between the separator and the electrode.

このようにして得られる電極/多孔質フィルム接合体における多孔質フィルムは、電池に組み込まれた後は、セパレータとして機能する。ここに、本発明によるこのような電極/多孔質フィルム接合体においては、多孔質フィルム(即ち、セパレータ)は、高温下においても面積熱収縮率が小さく、通常、20%以下であり、好ましくは、15%以下である。   The porous film in the electrode / porous film assembly thus obtained functions as a separator after being incorporated into a battery. Here, in such an electrode / porous film assembly according to the present invention, the porous film (that is, the separator) has a small area heat shrinkage even at high temperatures, and is usually 20% or less, preferably 15% or less.

上記電解液は、電解質塩を適宜の溶媒に溶解してなる溶液である。上記電解質塩としては、水素、リチウム、ナトリウム、カリウム等アルカリ金属、カルシウム、ストロンチウム等のアルカリ土類金属、第三級又は第四級アンモニウム塩等をカチオン成分とし、塩酸、硝酸、リン酸、硫酸、ホウフッ化水素酸、フッ化水素酸、ヘキサフルオロリン酸、過塩素酸等の無機酸、カルボン酸、有機スルホン酸又はフッ素置換有機スルホン酸等の有機酸をアニオン成分とする塩を用いることができる。これらのなかでは、特に、アルカリ金属イオンをカチオン成分とする電解質塩が好ましく用いられる。   The electrolytic solution is a solution obtained by dissolving an electrolyte salt in an appropriate solvent. Examples of the electrolyte salt include alkali metals such as hydrogen, lithium, sodium, and potassium, alkaline earth metals such as calcium and strontium, tertiary or quaternary ammonium salts, and the like as cationic components, hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid A salt containing an anionic component of an inorganic acid such as borohydrofluoric acid, hydrofluoric acid, hexafluorophosphoric acid or perchloric acid, or an organic acid such as carboxylic acid, organic sulfonic acid or fluorine-substituted organic sulfonic acid. it can. Among these, an electrolyte salt containing an alkali metal ion as a cation component is particularly preferably used.

このようなアルカリ金属イオンをカチオン成分とする電解質塩の具体例としては、例えば、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カリウム等の過塩素酸アルカリ金属、テトラフルオロホウ酸リチウム、テトラフルオロホウ酸ナトリウム、テトラフルオロホウ酸カリウム等のテトラフルオロホウ酸アルカリ金属、ヘキサフルオロリン酸リチウム、ヘキサフルオロリン酸カリウム等のへキサフルオロリン酸アルカリ金属、トリフルオロ酢酸リチウム等のトリフルオロ酢酸アルカリ金属、トリフルオロメタンスルホン酸リチウム等のトリフルオロメタンスルホン酸アルカリ金属を挙げることができる。   Specific examples of the electrolyte salt having such an alkali metal ion as a cation component include, for example, alkali perchlorate such as lithium perchlorate, sodium perchlorate, potassium perchlorate, lithium tetrafluoroborate, tetra Alkali metal tetrafluoroborate such as sodium fluoroborate and potassium tetrafluoroborate, alkali metal hexafluorophosphate such as lithium hexafluorophosphate and potassium hexafluorophosphate, alkali trifluoroacetate such as lithium trifluoroacetate Mention may be made of metals and alkali metals of trifluoromethane sulfonate such as lithium trifluoromethane sulfonate.

特に、本発明に従って、リチウムイオン二次電池を得る場合には、電解質塩としては、例えば、ヘキサフルオロリン酸リチウム、テトラフルオロホウ酸リチウム、過塩素酸リチウム等が好適に用いられる。   In particular, when obtaining a lithium ion secondary battery according to the present invention, as the electrolyte salt, for example, lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate and the like are preferably used.

更に、本発明において用いる上記電解質塩のための溶媒としては、上記電解質塩を溶解するものであればどのようなものでも用いることができるが、非水系の溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン等の環状エステル類や、テトラヒドロフラン、ジメトキシエタン等のエーテル類や、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状エステル類を単独で、又は2種以上の混合物として用いることができる。   Furthermore, as the solvent for the electrolyte salt used in the present invention, any solvent can be used as long as it dissolves the electrolyte salt. Examples of the non-aqueous solvent include ethylene carbonate, propylene carbonate, Use cyclic esters such as butylene carbonate and γ-butyrolactone, ethers such as tetrahydrofuran and dimethoxyethane, and chain esters such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate alone or as a mixture of two or more. be able to.

また、上記電解質塩は、用いる溶媒の種類や量に応じて適宜に決定されるが、通常、得られるゲル電解質において、1〜50重量%の濃度となる量が用いられる。   Moreover, although the said electrolyte salt is suitably determined according to the kind and quantity of the solvent to be used, normally the quantity used as the density | concentration of 1 to 50 weight% is used in the gel electrolyte obtained.

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。以下において、基材多孔質フィルムの物性と電池特性は以下のようにして評価した。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In the following, the physical properties and battery characteristics of the substrate porous film were evaluated as follows.

(多孔質フィルムの厚み)
1/10000mmシックネスゲージによる測定と多孔質フィルムの断面の10000倍走査型電子頭微鏡写真に基づいて求めた。
(Thickness of porous film)
It was determined based on a measurement with a 1/10000 mm thickness gauge and a 10,000 times scanning electronic microscopic photograph of the cross section of the porous film.

(多孔質フィルムの空孔率)
多孔質フィルムの単位面積S(cm2)当たりの重量W(g)、平均厚みt(cm)及び多孔質フィルムを構成する樹脂の密度d(g/cm3)から下式にて算出した。
(Porosity of porous film)
The weight was calculated from the weight W (g) per unit area S (cm 2 ) of the porous film, the average thickness t (cm), and the density d (g / cm 3 ) of the resin constituting the porous film by the following equation.

空孔率(%)=(1−(W/S/t/d))×100   Porosity (%) = (1− (W / S / t / d)) × 100

(反応性ポリマーのゲル分率)
多孔質フィルムに架橋性ポリマーA重量部と多官能イソシアネートB重量部を担持させ、反応させて、架橋性ポリマーを一部、架橋させて、反応性ポリマーとした後、この多孔質フィルムを温度23℃にて酢酸エチルに7日間浸漬し、次いで、乾燥させた後、多孔質フィルム上に残存する反応性ポリマーをC重量部とするとき、反応性ポリマーのゲル分率を(C/(A+B))×100(%)として求めた。
(Reaction polymer gel fraction)
A porous film is loaded with a crosslinkable polymer A part by weight and a polyfunctional isocyanate B part by weight and reacted to partially crosslink the crosslinkable polymer to form a reactive polymer. When the reactive polymer remaining on the porous film is C parts by weight after being immersed in ethyl acetate at 7 ° C. for 7 days and then dried, the gel fraction of the reactive polymer is (C / (A + B) ) × 100 (%).

(多孔質フィルム上の反応性ポリマーの担持量と正極側と負極側での反応性ポリマーの担持量の比)
多孔質フィルムに担持させた架橋性ポリマーと多官能イソシアネートの合計量を反応性ポリマーの担持量とし、多孔質フィルムに架橋性ポリマーと多官能イソシアネートを担持させた後、その重量から多孔質フィルムの重量を減じて、担持量を求めた。また、多孔質フィルムの正極側と負極側において、それぞれ上述したようにして担持量を求め、これより担持量の比を求めた。
(Ratio of the amount of the reactive polymer supported on the porous film and the amount of the reactive polymer supported on the positive electrode side and the negative electrode side)
The total amount of the crosslinkable polymer and polyfunctional isocyanate supported on the porous film is defined as the amount of the reactive polymer supported. After the crosslinkable polymer and polyfunctional isocyanate are supported on the porous film, the weight of the porous film The load was determined by reducing the weight. In addition, on the positive electrode side and the negative electrode side of the porous film, the carrying amount was obtained as described above, and the carrying amount ratio was obtained from this.

参考例1
(電極シートの調製)
正極活物質であるコバルト酸リチウム(日本化学工業(株)製セルシードC−5H、平均粒径5μm)85重量部と導電助剤であるアセチレンブラック(電気化学工業(株)製デンカブラック)10重量部とバインダーであるフッ化ビニリデン樹脂(呉羽化学工業(株)製KFポリマーL#1120)5重量部を混合し、これを固形分濃度15重量%となるように、N−メチル−2−ピロリドンを用いてスラリーとした。このスラリーを厚み20μmのアルミニウム箔(集電体)上に厚み200μmに塗布し、80℃で1時間、120℃で2時間真空乾燥した後、ロールプレスにて加圧して、活物質層の厚みが100μmの正極シートを調製した。
Reference example 1
(Preparation of electrode sheet)
85 parts by weight of lithium cobaltate (Nippon Chemical Industry Co., Ltd. cell seed C-5H, average particle size 5 μm) and acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive additive N-methyl-2-pyrrolidone was mixed with 5 parts by weight of a binder and 5 parts by weight of vinylidene fluoride resin (KF Polymer L # 1120 manufactured by Kureha Chemical Industry Co., Ltd.) so that the solid concentration was 15% by weight. To make a slurry. The slurry was applied to an aluminum foil (current collector) having a thickness of 20 μm to a thickness of 200 μm, vacuum-dried at 80 ° C. for 1 hour, and 120 ° C. for 2 hours, and then pressed by a roll press to obtain a thickness of the active material layer. A positive electrode sheet having a thickness of 100 μm was prepared.

また、負極活物質であるメソカーボンマイクロビーズ(大阪ガスケミカル(株)製MCMB25−28、平均粒径25μm)80重量部と導電助剤であるアセチレンブラック(電気化学工業(株)製デンカブラック)10重量部とバインダーであるフッ化ビニリデン樹脂(呉羽化学工業(株)製KFポリマーL#1120)10重量部を混合し、これを固形分濃度15重量%となるように、N−メチル−2−ピロリドンを用いてスラリーとした。このスラリーを厚み20μmの銅箔(集電体)上に厚み200μmに塗布し、80℃で1時間乾燥し、120℃で2時間乾燥した後、ロールプレスにて加圧して、活物質層の厚みが100μmの負極シートを調製した。   Also, 80 parts by weight of mesocarbon microbeads (MCMB25-28 manufactured by Osaka Gas Chemical Co., Ltd., average particle size 25 μm) as negative electrode active material and acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive auxiliary agent. 10 parts by weight and 10 parts by weight of a vinylidene fluoride resin (KF Polymer L # 1120 manufactured by Kureha Chemical Industry Co., Ltd.) as a binder are mixed, and this is mixed with N-methyl-2 so that the solid content concentration becomes 15% by weight. -It was made into a slurry using pyrrolidone. This slurry was applied to a copper foil (current collector) having a thickness of 20 μm to a thickness of 200 μm, dried at 80 ° C. for 1 hour, dried at 120 ° C. for 2 hours, and then pressed by a roll press to form an active material layer. A negative electrode sheet having a thickness of 100 μm was prepared.

参考例2
(架橋性ポリマーAの調製)
N,N−ジエチルアクリルアミド50重量部、ブチルアクリレート32重量部、アクリロニトリル15重量部及び4−ヒドロキシブチルアクリレート3重量部をN,N’−アゾビスイソブチロニトリル0.2重量部と共に酢酸エチル150重量部に溶解させて、モノマー混合物の溶液を調製した。このモノマー混合物の溶液を攪拌機と窒素導入管とコンデンサを備えた四つ口フラスコに仕込み、攪拌下にフラスコ内を窒素置換した。次いで、温水浴中、攪拌しながら、60℃に加温して、ラジカル共重合を24時間行い、この後、更に、75℃に昇温して、この温度で4時間ラジカル共重合を行った。反応終了後、得られた反応混合物を室温まで冷却し、これに酢酸エチルを加えて、架橋性ポリマーAの酢酸エチル溶液(濃度25重量%)を得た。この架橋性ポリマーAは、GPCによる分子量測定の結果、重量平均分子量は492000、数平均分子量は95000であった。
Reference example 2
(Preparation of crosslinkable polymer A)
150 parts by weight of N, N-diethylacrylamide, 32 parts by weight of butyl acrylate, 15 parts by weight of acrylonitrile and 3 parts by weight of 4-hydroxybutyl acrylate together with 0.2 parts by weight of N, N′-azobisisobutyronitrile 150 A solution of the monomer mixture was prepared by dissolving in parts by weight. The monomer mixture solution was charged into a four-necked flask equipped with a stirrer, a nitrogen inlet tube and a condenser, and the inside of the flask was purged with nitrogen under stirring. Next, the mixture was heated to 60 ° C. with stirring in a warm water bath, and radical copolymerization was performed for 24 hours. Thereafter, the temperature was further raised to 75 ° C., and radical copolymerization was performed at this temperature for 4 hours. . After completion of the reaction, the resulting reaction mixture was cooled to room temperature, and ethyl acetate was added thereto to obtain an ethyl acetate solution of crosslinkable polymer A (concentration 25% by weight). As a result of molecular weight measurement by GPC, this crosslinkable polymer A was found to have a weight average molecular weight of 492000 and a number average molecular weight of 95,000.

参考例3
(架橋性ポリマーBの調製)
N−アクリロイルモルホリン40重量部、ブチルアクリレート42重量部、アクリロニトリル15重量部及び4−ヒドロキシブチルアクリレート3重量部をN,N’−アゾビスイソブチロニトリル0.2重量部と共に酢酸エチル150重量部に溶解させて、モノマー混合物の溶液を調製した。このモノマー混合物の溶液を用いた以外は、参考例2と同様にして、架橋性ポリマーBの酢酸エチル溶液(濃度25重量%)を得た。この架橋性ポリマーBは、GPCによる分子量測定の結果、重量平均分子量は396000、数平均分子量は93700であった。
Reference example 3
(Preparation of crosslinkable polymer B)
150 parts by weight of ethyl acetate together with 40 parts by weight of N-acryloylmorpholine, 42 parts by weight of butyl acrylate, 15 parts by weight of acrylonitrile and 3 parts by weight of 4-hydroxybutyl acrylate together with 0.2 parts by weight of N, N′-azobisisobutyronitrile To prepare a solution of the monomer mixture. An ethyl acetate solution (concentration of 25% by weight) of the crosslinkable polymer B was obtained in the same manner as in Reference Example 2, except that this monomer mixture solution was used. As a result of measuring the molecular weight by GPC, the crosslinkable polymer B had a weight average molecular weight of 396,000 and a number average molecular weight of 93700.

実施例1
参考例2で得た架橋性ポリマーAの酢酸エチル溶液を固形分10重量%濃度に希釈した。この架橋性ポリマーAの酢酸エチル溶液150gに架橋剤(多官能イソシアネート)としてヘキサメチレンジイソシアネート/トリメチロールプロパンアダクト体、酢酸エチル溶液、固形分75%、日本ポリウレタン工業(株)製コロネートHL)0.1gを加え、室温で攪拌し、溶解させて、上記架橋性ポリマーAと多官能イソシアネートとを含む溶液を調製した。
Example 1
The ethyl acetate solution of the crosslinkable polymer A obtained in Reference Example 2 was diluted to a solid content of 10% by weight. 150 g of the ethyl acetate solution of the crosslinkable polymer A was added to the hexamethylene diisocyanate / trimethylolpropane adduct as a crosslinking agent (polyfunctional isocyanate), ethyl acetate solution, solid content 75%, Coronate HL manufactured by Nippon Polyurethane Industry Co., Ltd. 1 g was added, stirred at room temperature and dissolved to prepare a solution containing the crosslinkable polymer A and a polyfunctional isocyanate.

この架橋性ポリマーと多官能イソシアネートとを含む溶液を延伸ポリプロピレンフィルターからなる剥離性シート上にワイヤーバーにて所定量を塗布し、50℃で1分間加熱乾燥させて、剥離性シート上に架橋性ポリマーと多官能イソシアネートとからなる層を形成させた。次いで、この架橋性ポリマーと多官能イソシアネートとからなる層をポリエチレン樹脂多孔質フィルム(膜厚17μm、空孔率42%)の表裏両面に転写して、架橋性ポリマー担持多孔質フィルムを得た。   A predetermined amount of the solution containing the crosslinkable polymer and the polyfunctional isocyanate is coated on a peelable sheet made of a stretched polypropylene filter with a wire bar, and heated and dried at 50 ° C. for 1 minute, so that the crosslinkable property is formed on the peelable sheet. A layer composed of a polymer and a polyfunctional isocyanate was formed. Subsequently, the layer which consists of this crosslinkable polymer and polyfunctional isocyanate was transcribe | transferred to the front and back both surfaces of a polyethylene resin porous film (film thickness of 17 micrometers, porosity 42%), and the crosslinkable polymer carrying | support porous film was obtained.

次いで、この架橋性ポリマー担持多孔質フィルムを50℃の恒温器に7日間投入して、多孔質フィルムに担持させた上記架橋性ポリマーを多官能イソシアネートと反応させ、上記架橋性ポリマーを一部、架橋させて、かくして、反応性ポリマー担持多孔質フィルムを得た。この反応性ポリマー担持多孔質フィルムにおいて、反応性ポリマーのゲル分率は43%であり、また、多孔質フィルム上の正極側の反応性ポリマーの担持量は0.76g/m2、負極側の反応性ポリマーの担持量は1.7g/m2、多孔質フィルム上の反応性ポリマーの担持量比は0.48であった。 Next, the crosslinkable polymer-supported porous film is put into a thermostat at 50 ° C. for 7 days, the crosslinkable polymer supported on the porous film is reacted with a polyfunctional isocyanate, and a part of the crosslinkable polymer is obtained. Crosslinking was thus obtained to obtain a reactive polymer-supported porous film. In this reactive polymer-supported porous film, the gel fraction of the reactive polymer is 43%, and the amount of the reactive polymer supported on the positive electrode side on the porous film is 0.76 g / m 2 , The loading amount of the reactive polymer was 1.7 g / m 2 , and the loading amount ratio of the reactive polymer on the porous film was 0.48.

前記参考例1で得た負極シート、上記反応性ポリマー担持多孔質フィルム及び前記参考例1で得た正極シートをこの順序に積層して、温度80℃、圧力5kg/cm2 にて1分間プレス圧着して、正極/反応性ポリマー担持多孔質フィルム/負極積層体とした。 The negative electrode sheet obtained in Reference Example 1, the reactive polymer-supported porous film, and the positive electrode sheet obtained in Reference Example 1 were laminated in this order and pressed at a temperature of 80 ° C. and a pressure of 5 kg / cm 2 for 1 minute. Crimping was performed to obtain a positive electrode / reactive polymer-supported porous film / negative electrode laminate.

アルゴン置換したグローブボックス中、エチレンカーボネート/エチルメチルカーボネート混合溶媒(容量比1/2)に1.2モル/L濃度となるようにヘキサフルオロリン酸リチウム(LiPF6) を溶解させて電解液を調製した。更に、この電解液100重量部に前記と同じ多官能イソシアネート1重量部を溶解させて、架橋剤含有電解液を調製した。 In a glove box substituted with argon, lithium hexafluorophosphate (LiPF 6 ) was dissolved in an ethylene carbonate / ethyl methyl carbonate mixed solvent (volume ratio 1/2) so as to have a concentration of 1.2 mol / L. Prepared. Furthermore, 1 part by weight of the same polyfunctional isocyanate as described above was dissolved in 100 parts by weight of the electrolytic solution to prepare a crosslinking agent-containing electrolytic solution.

上記正極/反応性ポリマー担持多孔質フィルム/負極積層体を正負極板を兼ねる2016サイズのコイン型電池用缶に仕込み、次に、この電池用缶中に上記架橋剤含有電解液を注入した後、電池缶を封口した。この後、50℃で2日間加熱して、上記反応性ポリマー中の未反応の反応性基と多官能イソシアネートを反応させ、架橋させて、電極シートを多孔質フィルム(セパレータ)に接着すると共に、電解液を一部、ゲル化させて、コイン型電池を得た。   After charging the positive electrode / reactive polymer-supported porous film / negative electrode laminate into a 2016 size coin-type battery can that also serves as a positive and negative electrode plate, and then injecting the cross-linking agent-containing electrolyte into the battery can The battery can was sealed. Thereafter, heating at 50 ° C. for 2 days, the unreacted reactive group in the reactive polymer and the polyfunctional isocyanate are reacted and crosslinked to bond the electrode sheet to the porous film (separator). A part of the electrolytic solution was gelled to obtain a coin-type battery.

この電池について、0.2CmAのレートにて3回充放電を行って、この3回目の放電において放電容量を求めた後に、1.0CmAのレートにて放電して、1.0CmAのレートでの放電容量を求め、1.0CmAのレートでの放電容量/0.2CmAのレートでの放電容量の比にて放電容量維持率を評価したところ、96%であった。   This battery was charged and discharged three times at a rate of 0.2 CmA, and after determining the discharge capacity in the third discharge, the battery was discharged at a rate of 1.0 CmA, and at a rate of 1.0 CmA. The discharge capacity was determined, and the discharge capacity retention rate was evaluated by the ratio of discharge capacity at a rate of 1.0 CmA / discharge capacity at a rate of 0.2 CmA.

また、この電池を分解して、電極シートとセパレータとの間の接着力を測定したところ、正極では0.10N/cm、負極では0.15N/cmであった。   Moreover, when this battery was disassembled and the adhesive force between the electrode sheet and the separator was measured, it was 0.10 N / cm for the positive electrode and 0.15 N / cm for the negative electrode.

更に、上で得た正極/反応性ポリマー担持多孔質フィルム/負極積層体に前記架橋剤含有電解液を含浸させた後、ガラス板の缶に挟み、電解液の揮発を抑制するために、この積層体をフッ素樹脂シートで包んだ。このようにフッ素樹脂シートで包んだ正極/反応性ポリマー担持多孔質フィルム/負極積層体の上に100gの錘を載せて、温度50℃の恒温室内に2日間投入して、正極/反応性ポリマー担持多孔質フィルム/負極積層体中の多孔質フィルムの担持する反応性ポリマーを反応、架橋させ、正負の電極を多孔質フィルムに接着させて、正極/多孔質フィルム/負極接合体を得た。   Further, after impregnating the positive electrode / reactive polymer-supported porous film / negative electrode laminate obtained above with the above-mentioned cross-linking agent-containing electrolytic solution, it is sandwiched between glass plate cans to suppress volatilization of the electrolytic solution. The laminate was wrapped with a fluororesin sheet. Thus, a positive electrode / reactive polymer-supported porous film / negative electrode laminate wrapped with 100 g of weight is placed on the positive electrode / reactive polymer-supported porous film / negative electrode laminate, and placed in a thermostatic chamber at a temperature of 50 ° C. for 2 days. The reactive polymer carried by the porous film in the carried porous film / negative electrode laminate was reacted and crosslinked, and positive and negative electrodes were adhered to the porous film to obtain a positive electrode / porous film / negative electrode assembly.

この後、この正極/多孔質フィルム/負極接合体をガラス板の間に挟んだまま、温度150℃の乾燥機中に1時間投入した。次いで、この正極/多孔質フィルム/負極接合体をガラス板の間から取り出した後、この接合体の正負の電極から多孔質フィルムを剥がし、これをスキャナで読み込んで、最初に電極/多孔質フィルム積層体の調製に用いた多孔質フィルムの面積と比較して、面積熱収縮率を求めたところ、12%であった。   Thereafter, the positive electrode / porous film / negative electrode assembly was sandwiched between glass plates and placed in a dryer at a temperature of 150 ° C. for 1 hour. Next, after this positive electrode / porous film / negative electrode assembly was taken out from between the glass plates, the porous film was peeled off from the positive and negative electrodes of this assembly, and this was read with a scanner. The area heat shrinkage rate was determined to be 12% in comparison with the area of the porous film used for the preparation of the above.

実施例2
実施例1において、多孔質フィルムへの反応性ポリマーの担持量を正極側0.95g/m2 、負極側1.2g/m2 、反応性ポリマー担持量比0.79とした以外は、実施例1と同様にして、反応性ポリマー担持多孔質フィルムを得た。この反応性ポリマー担持多孔質フィルムを用いて、実施例1と同様にして、コイン型電池を得、1.0CmA/0.2CmA放電容量維持率を求めたところ、92%であった。また、この電池を分解して、電極シートとセパレータとの間の接着力を測定したところ、正極では0.16N/cm、負極では0.12N/cmであった。また、実施例1と同様にして求めた多孔質フィルムの面積熱収縮率は9%であった。
Example 2
In Example 1, the porous positive electrode side 0.95 g / m 2 the supporting amount of the reactive polymer to the film, the negative 1.2 g / m 2, except that the reactive polymer-supported amount ratio 0.79 is carried out In the same manner as in Example 1, a reactive polymer-supported porous film was obtained. Using this reactive polymer-supported porous film, a coin-type battery was obtained in the same manner as in Example 1, and the 1.0 CmA / 0.2 CmA discharge capacity retention rate was found to be 92%. Moreover, when this battery was disassembled and the adhesive force between the electrode sheet and the separator was measured, it was 0.16 N / cm for the positive electrode and 0.12 N / cm for the negative electrode. Further, the area heat shrinkage rate of the porous film obtained in the same manner as in Example 1 was 9%.

実施例3
実施例1において、多孔質フィルムへの反応性ポリマーの担持量を正極側0.56g/m2 、負極側2.0g/m2 、反応性ポリマー担持量比0.28とした以外は、実施例1と同様にして、反応性ポリマー担持多孔質フィルムを得た。この反応性ポリマー担持多孔質フィルムを用いて、実施例1と同様にして、コイン型電池を得、1.0CmA/0.2CmA放電容量維持率を求めたところ、94%であった。また、この電池を分解して、電極シートとセパレータとの間の接着力を測定したところ、正極では0.09N/cm、負極では0.19N/cmであった。また、実施例1と同様にして求めた多孔質フィルムの面積熱収縮率は2%であった。
Example 3
In Example 1, the porous positive electrode side 0.56 g / m 2 the supporting amount of the reactive polymer to the film, the negative 2.0 g / m 2, except that the reactive polymer-supported amount ratio 0.28, performed In the same manner as in Example 1, a reactive polymer-supported porous film was obtained. Using this reactive polymer-supported porous film, a coin-type battery was obtained in the same manner as in Example 1, and the 1.0 CmA / 0.2 CmA discharge capacity retention rate was determined to be 94%. Moreover, when this battery was disassembled and the adhesive force between the electrode sheet and the separator was measured, it was 0.09 N / cm for the positive electrode and 0.19 N / cm for the negative electrode. The area heat shrinkage rate of the porous film obtained in the same manner as in Example 1 was 2%.

実施例4
参考例3で得た架橋性ポリマーBの酢酸エチル溶液を固形分10重量%濃度に希釈した。この架橋性ポリマーBの酢酸エチル溶液150gに架橋剤(多官能イソシアネート)としてヘキサメチレンジイソシアネート/トリメチロールプロパンアダクト体、酢酸エチル溶液、固形分75%、日本ポリウレタン工業(株)製コロネートHL)0.1gを加え、室温で攪拌し、溶解させて、上記架橋性ポリマーBと多官能イソシアネートとを含む溶液を調製した。
Example 4
The ethyl acetate solution of the crosslinkable polymer B obtained in Reference Example 3 was diluted to a solid content of 10% by weight. 150 g of the ethyl acetate solution of the crosslinkable polymer B was added to a hexamethylene diisocyanate / trimethylolpropane adduct as a crosslinking agent (polyfunctional isocyanate), an ethyl acetate solution, a solid content of 75%, Coronate HL manufactured by Nippon Polyurethane Industry Co., Ltd. 1 g was added, stirred at room temperature and dissolved to prepare a solution containing the crosslinkable polymer B and polyfunctional isocyanate.

この架橋性ポリマーと多官能イソシアネートとを含む溶液を延伸ポリプロピレンフィルターからなる剥離性シート上にワイヤーバーにて所定量を塗布し、50℃で1分間加熱乾燥させて、剥離性シート上に架橋性ポリマーと多官能イソシアネートとからなる層を形成させた。次いで、この架橋性ポリマーと多官能イソシアネートとからなる層をポリエチレン樹脂多孔質フィルム(膜厚17μm、空孔率42%)の表裏両面に転写して、架橋性ポリマー担持多孔質フィルムを得た。   A predetermined amount of the solution containing the crosslinkable polymer and the polyfunctional isocyanate is coated on a peelable sheet made of a stretched polypropylene filter with a wire bar, and heated and dried at 50 ° C. for 1 minute, so that the crosslinkable property is formed on the peelable sheet. A layer composed of a polymer and a polyfunctional isocyanate was formed. Subsequently, the layer which consists of this crosslinkable polymer and polyfunctional isocyanate was transcribe | transferred to the front and back both surfaces of a polyethylene resin porous film (film thickness of 17 micrometers, porosity 42%), and the crosslinkable polymer carrying | support porous film was obtained.

次いで、この架橋性ポリマー担持多孔質フィルムを50℃の恒温器に7日間投入して、多孔質フィルムに担持させた上記架橋性ポリマーを多官能イソシアネートと反応させ、上記架橋性ポリマーを一部、架橋させて、かくして、反応性ポリマー担持多孔質フィルムを得た。この反応性ポリマー担持多孔質フィルムにおいて、反応性ポリマーのゲル分率は53%であり、また、多孔質フィルム上の正極側の反応性ポリマーの担持量は0.72g/m2、負極側の反応性ポリマーの担持量は1.8g/m2、多孔質フィルム上の反応性ポリマーの担持量比は0.40であった。 Next, the crosslinkable polymer-supported porous film is put into a thermostat at 50 ° C. for 7 days, the crosslinkable polymer supported on the porous film is reacted with a polyfunctional isocyanate, and a part of the crosslinkable polymer is obtained. Crosslinking was thus obtained to obtain a reactive polymer-supported porous film. In this reactive polymer-supported porous film, the gel fraction of the reactive polymer is 53%, and the amount of the reactive polymer supported on the positive electrode side on the porous film is 0.72 g / m 2 . The loading amount of the reactive polymer was 1.8 g / m 2 , and the loading amount ratio of the reactive polymer on the porous film was 0.40.

このようにして得た反応性ポリマー担持多孔質フィルムを用いて、実施例1と同様にして、コイン型電池を得、1.0CmA/0.2CmA放電容量維持率を求めたところ、95%であった。また、この電池を分解して、電極シートとセパレータとの間の接着力を測定したところ、正極では0.10N/cm、負極では0.19N/cmであった。また、実施例1と同様にして求めた多孔質フィルムの面積熱収縮率は15%であった。   Using the reactive polymer-supported porous film thus obtained, a coin-type battery was obtained in the same manner as in Example 1, and the 1.0 CmA / 0.2 CmA discharge capacity retention rate was determined to be 95%. there were. Moreover, when this battery was disassembled and the adhesive force between the electrode sheet and the separator was measured, it was 0.10 N / cm for the positive electrode and 0.19 N / cm for the negative electrode. The area heat shrinkage rate of the porous film obtained in the same manner as in Example 1 was 15%.

比較例1
実施例1において、多孔質フィルムに架橋性ポリマーを担持させることなく、そのままを用いて、実施例1と同様にして、コイン型電池を得た。この電池の1.0CmA/0.2CmA放電容量維持率は97%であった。また、実施例1と同様にして求めた多孔質フィルムの面積熱収縮率は81%であった。
Comparative Example 1
In Example 1, a coin-type battery was obtained in the same manner as in Example 1 using the porous film as it was without supporting the crosslinkable polymer. The 1.0 CmA / 0.2 CmA discharge capacity retention rate of this battery was 97%. The area heat shrinkage rate of the porous film obtained in the same manner as in Example 1 was 81%.

比較例2
実施例1において、多孔質フィルムへの反応性ポリマーの担持量を正極側2.2g/m2 、負極側0.80g/m2 、反応性ポリマー担持量比2.75とした以外は、実施例1と同様にして、反応性ポリマー担持多孔質フィルムを得た。この反応性ポリマー担持多孔質フィルムを用いて、実施例1と同様にして、コイン型電池を得、1.0CmA/0.2CmA放電容量維持率を求めたところ、68%であった。また、この電池を分解して、電極シートとセパレータとの間の接着力を測定したところ、正極では0.32N/cm、負極では0.04N/cmであった。また、実施例1と同様にして求めた多孔質フィルムの面積熱収縮率は3%であった。

Comparative Example 2
In Example 1, the porous positive electrode side 2.2 g / m 2 the supporting amount of the reactive polymer to the film, the negative 0.80 g / m 2, except that the reactive polymer-supported amount ratio 2.75 is carried out In the same manner as in Example 1, a reactive polymer-supported porous film was obtained. Using this reactive polymer-supported porous film, a coin-type battery was obtained in the same manner as in Example 1, and the 1.0 CmA / 0.2 CmA discharge capacity retention rate was determined to be 68%. Moreover, when this battery was disassembled and the adhesive force between the electrode sheet and the separator was measured, it was 0.32 N / cm for the positive electrode and 0.04 N / cm for the negative electrode. Further, the area heat shrinkage rate of the porous film obtained in the same manner as in Example 1 was 3%.

Claims (7)

分子中に活性水素をもつ反応性基を有し、この反応性基に多官能イソシアネートを反応させることによって架橋し得る架橋性ポリマーを用意し、この架橋性ポリマーを多官能イソシアネートと反応させ、一部、架橋させて、反応性ポリマーとして、多孔質フィルムに担持させてなる反応性ポリマー担持多孔質フィルムとなし、この反応性ポリマー担持多孔質フィルムにこれを挟んで正極と負極を積層してなる正極/反応性ポリマー担持多孔質フィルム/負極積層体において、上記反応性ポリマー担持多孔質フィルムの片面当たりの反応性ポリマーの担持量が0.3〜5.0g/m2 の範囲にあると共に、正極側の多孔質フィルム上の反応性ポリマーの担持量/負極側の多孔質フィルム上の反応性ポリマーの担持量の比が0.1〜1.0の範囲にあることを特徴とする電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体。 A crosslinkable polymer having a reactive group having an active hydrogen in the molecule and capable of crosslinking by reacting the reactive group with a polyfunctional isocyanate is prepared, and the crosslinkable polymer is reacted with the polyfunctional isocyanate. This is a reactive polymer-supported porous film that is crosslinked and supported on a porous film as a reactive polymer, and is formed by laminating a positive electrode and a negative electrode with this reactive polymer-supported porous film sandwiched between them. In the positive electrode / reactive polymer-supported porous film / negative electrode laminate, the amount of the reactive polymer supported on one side of the reactive polymer-supported porous film is in the range of 0.3 to 5.0 g / m 2 , The ratio of the loading amount of the reactive polymer on the porous film on the positive electrode side / the loading amount of the reactive polymer on the porous film on the negative electrode side is in the range of 0.1 to 1.0. Positive electrode / reactive polymer-supported porous film / negative electrode laminate for battery, characterized in that. 架橋性ポリマーが反応性基としてヒドロキシル基又はカルボキシル基を有するポリマーである請求項1に記載の電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体。   The battery positive electrode / reactive polymer-supported porous film / negative electrode laminate according to claim 1, wherein the crosslinkable polymer is a polymer having a hydroxyl group or a carboxyl group as a reactive group. 反応性ポリマーがゲル分率5〜90%を有するものである請求項1又は2に記載の電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体。   The battery positive electrode / reactive polymer-supported porous film / negative electrode laminate according to claim 1 or 2, wherein the reactive polymer has a gel fraction of 5 to 90%. 正極活物質としてリチウムの複合酸化物からなる粒状物質を用いると共に、負極活物質として炭素質材料からなる粒状物質を用いるリチウムイオン二次電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体であって、分子中に活性水素をもつ反応性基を有し、この反応性基に多官能イソシアネートを反応させることによって架橋し得る架橋性ポリマーを用意し、この架橋性ポリマーを多官能イソシアネートと反応させ、一部、架橋させて、反応性ポリマーとして、多孔質フィルムに担持させてなる反応性ポリマー担持多孔質フィルムとなし、この反応性ポリマー担持多孔質フィルムにこれを挟んで正極と負極を積層してなる正極/反応性ポリマー担持多孔質フィルム/負極積層体において、上記反応性ポリマー担持多孔質フィルムの片面当たりの反応性ポリマーの担持量が0.3〜5.0g/m2 の範囲にあると共に、正極側の多孔質フィルム上の反応性ポリマーの担持量/負極側の多孔質フィルム上の反応性ポリマーの担持量の比が0.1〜1.0の範囲にあることを特徴とする電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体。 Positive electrode for lithium ion secondary battery / reactive polymer-supported porous film / negative electrode laminate using a granular material composed of a lithium composite oxide as a positive electrode active material and a granular material composed of a carbonaceous material as a negative electrode active material A crosslinkable polymer having a reactive group having an active hydrogen in the molecule and capable of crosslinking by reacting the reactive group with a polyfunctional isocyanate is prepared, and the crosslinkable polymer is reacted with the polyfunctional isocyanate. Partly cross-linked to form a reactive polymer-supported porous film supported on a porous film as a reactive polymer, and a positive electrode and a negative electrode are laminated with this reactive polymer-supported porous film sandwiched between them In the positive electrode / reactive polymer-supported porous film / negative electrode laminate, the reactive polymer-supported porous film With the supported amount of the reactive polymer per surface is in the range of 0.3 to 5.0 g / m 2, the support amount / negative electrode side of the reactive polymer on the porous film of the positive-side porous film on the reaction A battery positive electrode / reactive polymer-supported porous film / negative electrode laminate, wherein the ratio of the loading amount of the reactive polymer is in the range of 0.1 to 1.0. 請求項1から4のいずれかに記載の電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体中の反応性ポリマーを更に多官能イソシアネートと反応させ、架橋させて、電極と多孔質フィルムとを接着させてなる電池用正極/反応性ポリマー担持多孔質フィルム/負極接合体。   Reactive polymer in the battery positive electrode / reactive polymer-supported porous film / negative electrode laminate according to any one of claims 1 to 4 is further reacted with a polyfunctional isocyanate and crosslinked to form an electrode, a porous film, Battery positive electrode / reactive polymer-supported porous film / negative electrode assembly. 多孔質フィルムが150℃で1時間加熱した後の面積熱収縮率が20%以下である請求項5に記載の電池用正極/反応性ポリマー担持多孔質フィルム/負極接合体。   The battery positive electrode / reactive polymer-supported porous film / negative electrode assembly according to claim 5, wherein the area heat shrinkage ratio after the porous film is heated at 150 ° C. for 1 hour is 20% or less. 請求項1から4のいずれかに記載の電池用正極/反応性ポリマー担持多孔質フィルム/負極積層体を電池容器内に仕込んだ後、多官能イソシアネートを含む電解液を上記電池容器内に注入して、少なくとも多孔質フィルムと電極との界面の近傍にて、上記反応性ポリマーの少なくとも一部を電解液中で膨潤させ、又は電解液中に溶出させ、多官能イソシアネートと反応、架橋させて、電解液の少なくとも一部をゲル化させて、多孔質フィルムと電極を接着することを特徴とする電池の製造方法。

The battery positive electrode / reactive polymer-supported porous film / negative electrode laminate according to any one of claims 1 to 4 is charged into a battery container, and then an electrolytic solution containing polyfunctional isocyanate is injected into the battery container. Then, at least in the vicinity of the interface between the porous film and the electrode, at least a part of the reactive polymer is swollen in the electrolytic solution, or eluted in the electrolytic solution, reacted with a polyfunctional isocyanate, crosslinked, A method for producing a battery, comprising gelling at least a part of an electrolytic solution to adhere a porous film and an electrode.

JP2004186922A 2004-06-24 2004-06-24 Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate Expired - Fee Related JP4601338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004186922A JP4601338B2 (en) 2004-06-24 2004-06-24 Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004186922A JP4601338B2 (en) 2004-06-24 2004-06-24 Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate

Publications (2)

Publication Number Publication Date
JP2006012561A JP2006012561A (en) 2006-01-12
JP4601338B2 true JP4601338B2 (en) 2010-12-22

Family

ID=35779568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004186922A Expired - Fee Related JP4601338B2 (en) 2004-06-24 2004-06-24 Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate

Country Status (1)

Country Link
JP (1) JP4601338B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5337549B2 (en) * 2008-03-31 2013-11-06 日東電工株式会社 Battery separator and battery using the same
JP5337550B2 (en) * 2008-03-31 2013-11-06 日東電工株式会社 Battery separator and battery using the same
JP5422088B2 (en) * 2009-09-07 2014-02-19 日東電工株式会社 Battery separator and battery using the same
KR101187767B1 (en) 2010-03-17 2012-10-05 주식회사 엘지화학 A separator and electrochemical device containing the same
EP3570358A4 (en) * 2017-03-16 2020-03-18 LG Chem, Ltd. Electrode assembly for all-solid battery and method for fabricating same
JP6971105B2 (en) * 2017-09-21 2021-11-24 第一工業製薬株式会社 Gel electrolytes, hard gel electrolytes, and electrochemical devices

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992254A (en) * 1995-09-21 1997-04-04 Dainippon Printing Co Ltd Battery separator and its manufacture
JPH10172537A (en) * 1996-12-17 1998-06-26 Mitsubishi Electric Corp Lithium ion secondary battery and its manufacture
JPH11157006A (en) * 1997-11-27 1999-06-15 Nisshin Steel Co Ltd Polyolefin resin film laminated metal plate
JP2000306569A (en) * 1999-04-23 2000-11-02 Nec Corp Electrode separator layered product, manufacture thereof and battery used therewith
JP2001006739A (en) * 1999-06-23 2001-01-12 Ube Ind Ltd High polymer electrolyte support, and battery using same
JP2001243936A (en) * 2000-02-29 2001-09-07 Osaka Gas Co Ltd Non-aqueous secondary cell
JP2003059479A (en) * 2001-08-10 2003-02-28 Nitto Denko Corp Electrolyte component carrying separator, its utilization, and its manufacture
JP2003249206A (en) * 2002-02-25 2003-09-05 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004047439A (en) * 2002-05-17 2004-02-12 Nitto Denko Corp Separator for battery held on adhesive component, and electrode/separator laminate obtained by using same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992254A (en) * 1995-09-21 1997-04-04 Dainippon Printing Co Ltd Battery separator and its manufacture
JPH10172537A (en) * 1996-12-17 1998-06-26 Mitsubishi Electric Corp Lithium ion secondary battery and its manufacture
JPH11157006A (en) * 1997-11-27 1999-06-15 Nisshin Steel Co Ltd Polyolefin resin film laminated metal plate
JP2000306569A (en) * 1999-04-23 2000-11-02 Nec Corp Electrode separator layered product, manufacture thereof and battery used therewith
JP2001006739A (en) * 1999-06-23 2001-01-12 Ube Ind Ltd High polymer electrolyte support, and battery using same
JP2001243936A (en) * 2000-02-29 2001-09-07 Osaka Gas Co Ltd Non-aqueous secondary cell
JP2003059479A (en) * 2001-08-10 2003-02-28 Nitto Denko Corp Electrolyte component carrying separator, its utilization, and its manufacture
JP2003249206A (en) * 2002-02-25 2003-09-05 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004047439A (en) * 2002-05-17 2004-02-12 Nitto Denko Corp Separator for battery held on adhesive component, and electrode/separator laminate obtained by using same

Also Published As

Publication number Publication date
JP2006012561A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
EP1432054B1 (en) Partially crosslinked adhesive-supported porous film for battery separator and its use
JP5337550B2 (en) Battery separator and battery using the same
EP1650818B1 (en) Adhesive-carrying porous film for cell separator and its application
EP2330658B1 (en) Battery separator and method for producing same, and lithium ion secondary battery and method for producing same
JP5337549B2 (en) Battery separator and battery using the same
EP1365461A2 (en) Adhesive composition-supporting separator for battery and electrode/separator laminate obtained by using the same
WO2006038362A1 (en) Reactive-polymer-carrying porous film and process for producing the same
US20100325877A1 (en) Porous film having reactive polymer layer thereon for use in battery separator, and use of the porous film
JP5260075B2 (en) Reactive polymer-supported porous film for battery separator and electrode / separator assembly obtained therefrom
EP2159863B1 (en) Crosslinking polymer-supported porous film for battery separator and use thereof
JP2007157569A (en) Manufacturing method of reactant polymer carrying porous film for battery separator and battery using the same
JP4601338B2 (en) Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate
JP4718816B2 (en) Reactive polymer-supported porous film for battery separator and battery manufacturing method using the same
JP4564240B2 (en) Reactive polymer-supported porous film for battery separator and battery manufacturing method using the same
JP4456422B2 (en) Battery positive electrode / reactive polymer-supported porous film / negative electrode laminate
JP4537736B2 (en) battery
JP4718800B2 (en) Reactive polymer-supported porous film for battery separator and battery manufacturing method using the same
JP4601323B2 (en) Electrode element for large-sized lithium ion secondary battery and manufacturing method thereof
JP2009193743A (en) Cross-linked polymer supporting porous film for separator for battery and separator for battery and electrode/separator assembly obtained therefrom
JP5260073B2 (en) Battery separator and electrode / separator assembly obtained therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4601338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20161008

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees