JPH09259858A - Polyethylene micro-porous film for separator, and manufacture thereof - Google Patents

Polyethylene micro-porous film for separator, and manufacture thereof

Info

Publication number
JPH09259858A
JPH09259858A JP8092020A JP9202096A JPH09259858A JP H09259858 A JPH09259858 A JP H09259858A JP 8092020 A JP8092020 A JP 8092020A JP 9202096 A JP9202096 A JP 9202096A JP H09259858 A JPH09259858 A JP H09259858A
Authority
JP
Japan
Prior art keywords
polyethylene
weight
composition
molecular weight
microporous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8092020A
Other languages
Japanese (ja)
Inventor
Kotaro Takita
耕太郎 滝田
Koichi Kono
公一 河野
Norimitsu Kaimai
教充 開米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen Chemical Corp
Original Assignee
Tonen Sekiyu Kagaku KK
Tonen Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Sekiyu Kagaku KK, Tonen Chemical Corp filed Critical Tonen Sekiyu Kagaku KK
Priority to JP8092020A priority Critical patent/JPH09259858A/en
Publication of JPH09259858A publication Critical patent/JPH09259858A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a polyethylene micro-porous film having excellent permeability performance and mechanical strength, and a low-temperature shutdown function. SOLUTION: For this porous film, a polyethylene micro-porous film for a separator comprising polyethylene of a weight-averaged molar weight of 5×10<5> or more, or a polyethylene composition of it by 70-90wt.%, and low molar weight polyethylene of a weight-averaged polar weight of 1000-4000 and a fusing point of 80-130 deg.C by 1-30wt.% is blended with solution of a composition comprising above polyethylene or its composition and above low molar weight polyethylene by 10-80wt.%, and solvent by 20-90wt.%. Obtained matter is cooled to form a gelatinized composition, and it is drawn at a temperature of the fusing point of the polyethylene composition plus 10 deg.C or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電池用セパレータ
ー及び電解コンデンサー用セパレーター等に使用され、
特にリチウム電池等の非水溶媒電池に対応するセパレー
ターとして使用される、透過性能及び機械的強度に優れ
るとともに、低温で透過性を遮断する機能を有するセパ
レーター用ポリエチレン微多孔膜及びその製造方法に関
するものである。
TECHNICAL FIELD The present invention is used in battery separators, electrolytic capacitor separators, and the like.
Particularly used as a separator corresponding to a non-aqueous solvent battery such as a lithium battery, and relates to a polyethylene microporous membrane for a separator having excellent permeability and mechanical strength and having a function of blocking permeability at low temperature, and a method for producing the same. Is.

【0002】[0002]

【従来の技術】微多孔膜は、各種の分離膜や、電池用セ
パレーター、電解コンデンサー用セパレーター等に使用
されている。特にリチウム電池においては、リチウム金
属、リチウムイオンが用いられているために非プロトン
性極性有機溶媒が電解液溶媒として用いられ、また、電
解質としては、リチウム塩を用いている。したがって正
極と負極との間に設置するセパレーターには、有機溶媒
に不溶であり、かつ、電解質や電極活物質に対して安定
なポリエチレン、ポリプロピレンなどのポリオレフィン
系材料を微多孔膜や不織布に加工したものをセパレータ
ーとして用いている。
2. Description of the Related Art Microporous membranes are used in various separation membranes, battery separators, electrolytic capacitor separators and the like. Particularly in a lithium battery, since a lithium metal and lithium ion are used, an aprotic polar organic solvent is used as an electrolytic solution solvent, and a lithium salt is used as an electrolyte. Therefore, for the separator installed between the positive electrode and the negative electrode, a polyolefin-based material such as polyethylene or polypropylene, which is insoluble in an organic solvent and is stable to the electrolyte and the electrode active material, is processed into a microporous membrane or a non-woven fabric. The thing is used as a separator.

【0003】最近、超高分子量のポリオレフィンを用い
て高強度及び高弾性の微多孔膜が開発されてきている。
例えば、重量平均分子量が7×105 以上の超高分子量
ポリオレフィンを溶媒中で加熱溶解した溶液からゲル状
シートを成形し、前記ゲル状シート中の溶媒量を脱溶媒
処理により調整し、次いで加熱延伸した後、残留溶媒を
除去することにより、微多孔膜を製造する方法が提案さ
れている(例えば特開昭60−242035号)。ま
た、超高分子量ポリオレフィンの高濃度溶液からのポリ
オレフィン微多孔膜の製法として超高分子量ポリオレフ
ィンを含有するポリオレフィン組成物の分子量分布を特
定の値にする方法が提案されている(特開平3−643
34号)。
Recently, high-strength and high-elasticity microporous membranes have been developed using ultrahigh molecular weight polyolefins.
For example, a gel-like sheet is formed from a solution obtained by heating and dissolving an ultra-high molecular weight polyolefin having a weight average molecular weight of 7 × 10 5 or more in a solvent, the amount of the solvent in the gel-like sheet is adjusted by desolvation treatment, and then heating is performed. A method for producing a microporous membrane by removing the residual solvent after stretching has been proposed (for example, JP-A-60-242035). Further, as a method for producing a polyolefin microporous film from a high-concentration solution of ultra-high molecular weight polyolefin, a method has been proposed in which the molecular weight distribution of the polyolefin composition containing the ultra-high molecular weight polyolefin is set to a specific value (JP-A-3-643).
34).

【0004】ところで、上記ポリオレフィン微多孔膜を
電池、例えばリチウム電池用セパレーター等に用いる場
合には、電極が短絡して電池内部の温度が上昇した時
に、発火等の事故が生じるのを防止する必要がある。こ
のため、リチウムの発火以前に溶融してその孔を目詰り
させ、電流をシャットダウンさせる機能をセパレーター
に持たせる必要がある。ところが上記各微多孔膜におい
ては微多孔の閉塞による透過性遮断温度が安全性の点で
必ずしも十分に低いものではなく、より一層安全性を向
上させるためには、さらに低い温度で電流のシャットダ
ウンを起こすセパレーターとすることが望ましい。した
がって、低い無孔化温度を有しているほど、かつ、無孔
化温度と膜破れ温度の差が大きいほど、高温特性が良好
で安全性の高い電池用セパレーターになりうると考えら
れる。例えば、特開昭63−308866号公報や、特
開平2−77108号公報では、低融点のポリエチレン
及び高融点のポリプロピレンからなる単膜を積層化する
ことにより、高強度かつ優れた高温特性を有する微孔性
多孔膜を得る方法が開示されているが、積層のため、セ
パレーターの電気抵抗が高くなり、高性能電池用セパレ
ーターとしては不向きのものとなる。さらに、特開平2
−77108号公報では、積層押出という手法をとるた
め、製造工程の複雑化及び製造コストという点で生産性
に劣るものとなる。
By the way, when the microporous polyolefin membrane is used in a battery such as a separator for a lithium battery, it is necessary to prevent an accident such as ignition when the temperature inside the battery rises due to a short circuit between electrodes. There is. For this reason, it is necessary for the separator to have a function of melting before lithium is ignited, clogging the holes, and shutting down the current. However, in each of the above microporous membranes, the permeability cutoff temperature due to microporous occlusion is not necessarily sufficiently low in terms of safety, and in order to further improve safety, the current must be shut down at a lower temperature. It is desirable to use a separator for raising. Therefore, it is considered that a battery separator having better high-temperature characteristics and higher safety can be obtained as it has a lower non-porous temperature and a larger difference between the non-porous temperature and the film breaking temperature. For example, in JP-A-63-308866 and JP-A-2-77108, high strength and excellent high temperature characteristics are obtained by laminating a single film made of low melting point polyethylene and high melting point polypropylene. Although a method for obtaining a microporous membrane has been disclosed, because of the lamination, the electric resistance of the separator becomes high, which makes it unsuitable as a separator for high-performance batteries. Further, Japanese Unexamined Patent Application Publication No.
In Japanese Patent Laid-Open Publication No. 77108, since the method of laminated extrusion is adopted, the productivity is inferior in terms of complication of the manufacturing process and manufacturing cost.

【0005】[0005]

【発明が解決しようとする課題】したがって、本発明の
課題は、透過性能及び機械的強度に優れるとともに、低
温で透過性を遮断する機能を有するセパレーター用微多
孔膜及びその製造方法を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a microporous membrane for a separator, which is excellent in permeation performance and mechanical strength and has a function of blocking permeation at low temperature, and a method for producing the same. Is.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するため、超高分子量ポリエチレンまたはその組成物
に低分子量のポリエチレンを加えることにより、透過性
能及び機械的強度に優れるとともに、低温で透過性を遮
断する微多孔膜が得られることを見いだし、本発明に想
到した。
In order to solve the above-mentioned problems, the present invention provides a high molecular weight polyethylene or a composition thereof with a low-molecular weight polyethylene to provide excellent permeation performance and mechanical strength, and at low temperature. It was found that a microporous membrane that blocks permeability is obtained, and the present invention has been accomplished.

【0007】すなわち、本発明のセパレーター用ポリエ
チレン微多孔膜は、重量平均分子量が5×105 以上の
ポリエチレンまたはそのポリエチレン組成物70〜99
重量%、重量平均分子量が1000〜4000で、融点
が80〜130℃の低分子量ポリエチレン1〜30重量
%からなることを特徴とする。
That is, the polyethylene microporous membrane for a separator of the present invention is a polyethylene having a weight average molecular weight of 5 × 10 5 or more or a polyethylene composition thereof 70 to 99.
It is characterized by being composed of 1 to 30% by weight of low molecular weight polyethylene having a weight percentage of 1000 to 4000 and a melting point of 80 to 130 ° C.

【0008】また、本発明のセパレーター用ポリエチレ
ン微多孔膜の製造方法は、重量平均分子量が5×105
以上のポリエチレンまたはそのポリエチレン組成物70
〜99重量%と、重量平均分子量が1000〜4000
で、融点が80〜130℃の低分子量ポリエチレン1〜
30重量%からなる組成物10〜80重量%と、溶媒2
0〜90重量%とからなる溶液を調製し、前記溶液をダ
イより押出し、冷却してゲル状組成物を形成し、前記ゲ
ル状組成物をポリエチレン組成物の融点+10℃以下の
温度で延伸し、しかる後残存溶媒を除去することを特徴
とする。
The method for producing a polyethylene microporous membrane for a separator of the present invention has a weight average molecular weight of 5 × 10 5.
Polyethylene or polyethylene composition 70 thereof
~ 99 wt% and weight average molecular weight of 1000-4000
And low molecular weight polyethylene having a melting point of 80 to 130 ° C.
10 to 80% by weight of a composition comprising 30% by weight, and a solvent 2
0 to 90% by weight of a solution is prepared, the solution is extruded from a die, cooled to form a gel composition, and the gel composition is stretched at a temperature not higher than the melting point of the polyethylene composition + 10 ° C. After that, the residual solvent is removed.

【0009】[0009]

【発明の実施の形態】本発明においてポリエチレンは、
重量平均分子量が5×105 以上、好ましくは1×10
6 〜15×106 のものである。重量平均分子量が5×
105 未満では、微多孔膜の製造時の延伸工程において
最大延伸倍率が低く、目的の微多孔膜が得られない。一
方、上限は特に限定的でないが15×106 を超えるも
のは、微多孔膜の製造時のゲル状成形物の形成において
成形性に劣る。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, polyethylene is
Weight average molecular weight is 5 × 10 5 or more, preferably 1 × 10 5.
6 to 15 × 10 6 . Weight average molecular weight is 5 ×
When it is less than 10 5 , the maximum draw ratio is low in the drawing step during the production of the microporous film, and the desired microporous film cannot be obtained. On the other hand, the upper limit is not particularly limited, but if it exceeds 15 × 10 6 , the moldability is poor in the formation of a gel-like molded product during the production of the microporous membrane.

【0010】また、本発明においては、後述のポリオレ
フィン溶液の高濃度化と微多孔膜の強度の向上を図るた
めに、重量平均分子量1×106 以上の超高分子量ポリ
エチレンと重量平均分子量1×105 以上1×106
満のポリエチレンとの組成物を用いることができる。超
高分子量ポリエチレンのポリエチレン組成物中の含有量
は、ポリエチレン組成物全体を100重量%として1重
量%以上が好ましく、より好ましくは10〜70重量%
である。
Further, in the present invention, in order to increase the concentration of the polyolefin solution described later and to improve the strength of the microporous membrane, an ultrahigh molecular weight polyethylene having a weight average molecular weight of 1 × 10 6 or more and a weight average molecular weight of 1 × are used. A composition with 10 5 or more and less than 1 × 10 6 polyethylene can be used. The content of ultra high molecular weight polyethylene in the polyethylene composition is preferably 1% by weight or more, more preferably 10 to 70% by weight, based on 100% by weight of the total polyethylene composition.
It is.

【0011】さらに、前記ポリエチレンまたはそのポリ
エチレン組成物の分子量分布の尺度として用いられる重
量平均分子量/数平均分子量は、300以下、好ましく
は5〜50である。
Further, the weight average molecular weight / number average molecular weight used as a measure of the molecular weight distribution of the polyethylene or the polyethylene composition thereof is 300 or less, preferably 5 to 50.

【0012】本発明で用いる低分子量ポリエチレンと
は、分子量が1000〜4000、融点が80〜130
℃のエチレン低重合体であり、密度が0.92〜0.9
7g/cm3 のポリエチレンワックスが好ましい。ポリ
エチレンワックスはエチレンから低圧による直接重合法
によって製造される。
The low molecular weight polyethylene used in the present invention has a molecular weight of 1,000 to 4,000 and a melting point of 80 to 130.
C., an ethylene low polymer having a density of 0.92 to 0.9
A polyethylene wax of 7 g / cm 3 is preferred. Polyethylene wax is produced from ethylene by a low pressure direct polymerization process.

【0013】このポリエチレンワックスをポリエチレン
またはそのポリエチレン組成物に加えることにより、ポ
リエチレン微多孔膜をリチウム電池等のセパレーターと
して用い、電極が短絡して電池内部の温度が上昇した
時、低温でシャットダウンする機能を付与すると同時に
電解液の粘性を上げる機能を付与すると考えられる。し
たがって、低分子量ポリエチレンの分子量が範囲外であ
ると低温でのシャットダウン効果が得られない。低分子
量ポリエチレンの量は、ポリエチレンまたはその組成物
と低分子量ポリエチレンの合計を100重量%として、
1〜30重量%、好ましくは5〜25重量%である。1
重量%以下では低温シャットダウン効果が得られず、3
0重量%以上では得られたポリエチレン微多孔膜の強度
が著しく損なわれる。
By adding this polyethylene wax to polyethylene or a polyethylene composition thereof, a polyethylene microporous membrane is used as a separator for a lithium battery or the like, and when the electrodes short-circuit and the temperature inside the battery rises, it shuts down at a low temperature. It is considered that the function of increasing the viscosity of the electrolytic solution is added at the same time as the application of. Therefore, if the molecular weight of the low-molecular-weight polyethylene is out of the range, the low-temperature shutdown effect cannot be obtained. The amount of low molecular weight polyethylene is 100% by weight of the total of polyethylene or its composition and low molecular weight polyethylene,
It is 1 to 30% by weight, preferably 5 to 25% by weight. 1
If the content is less than 5% by weight, the low temperature shutdown effect cannot be obtained and 3
When it is 0% by weight or more, the strength of the obtained polyethylene microporous membrane is significantly impaired.

【0014】本発明のポリエチレン微多孔膜は、ポリエ
チレンに低分子量ポリエチレンを加えた樹脂成分に有機
液状体または固体を混合し、溶融混練後押出成形し、延
伸、抽出を施すことにより得られる。また、樹脂成分及
び有機液状体または固体の混合物に無機微粉体を添加し
ても何等差し支えない。本発明のポリエチレン微多孔膜
を得る好ましい方法としては、ポリエチレン組成物にポ
リエチレンの良溶媒を供給しポリエチレン組成物の溶液
を調製して、この溶液を押出機のダイよりシート状に押
し出した後、冷却してゲル状組成物を形成して、このゲ
ル状組成物を加熱延伸し、しかる後残存する溶媒を除去
する方法である。
The polyethylene microporous membrane of the present invention can be obtained by mixing an organic liquid or a solid with a resin component obtained by adding low molecular weight polyethylene to polyethylene, melt-kneading the mixture, and then extruding, stretching and extracting. Further, inorganic fine powder may be added to the mixture of the resin component and the organic liquid or solid without any problem. As a preferred method for obtaining the polyethylene microporous membrane of the present invention, a good solvent of polyethylene is supplied to the polyethylene composition to prepare a solution of the polyethylene composition, and the solution is extruded into a sheet form from a die of an extruder, This is a method in which the gel composition is cooled to form a gel composition, the gel composition is heated and stretched, and then the remaining solvent is removed.

【0015】本発明において、原料となるポリエチレン
組成物の溶液は、上述のポリエチレンまたはポリエチレ
ン組成物を、溶媒に加熱溶解することにより調製する。
この溶媒としては、ポリエチレンを十分に溶解できるも
のであれば特に限定されない。例えば、ノナン、デカ
ン、ウンデカン、ドデカン、流動パラフィンなどの脂肪
族または環式の炭化水素、あるいは沸点がこれらに対応
する鉱油留分などがあげられるが、溶媒含有量が安定な
ゲル状成形物を得るためには流動パラフィンのような不
揮発性の溶媒が好ましい。加熱溶解は、ポリエチレンが
完全に溶解する温度で強力に攪拌または押出機で混練し
ながら行う。その温度は、例えば140〜250℃の範
囲が好ましい。また、ポリエチレン溶液の濃度は、10
〜80重量%、好ましくは10〜55重量%である。濃
度が10重量%未満では、使用する溶媒量が多く経済的
でないばかりか、シート状に成形する際に、ダイス出口
でスウェルやネックインが大きくシートの成形が困難と
なる。なお、加熱溶解にあたってはポリエチレンの酸化
を防止するために酸化防止剤を添加するのが好ましい。
In the present invention, a solution of a polyethylene composition as a raw material is prepared by heating and dissolving the above-mentioned polyethylene or polyethylene composition in a solvent.
The solvent is not particularly limited as long as it can sufficiently dissolve polyethylene. Examples thereof include nonane, decane, undecane, dodecane, liquid paraffin and other aliphatic or cyclic hydrocarbons, or mineral oil fractions having a boiling point corresponding to these, etc. In order to obtain it, a non-volatile solvent such as liquid paraffin is preferable. The heating and dissolution are carried out while vigorously stirring or kneading with an extruder at a temperature at which polyethylene is completely dissolved. The temperature is preferably in the range of 140 to 250 ° C, for example. The concentration of polyethylene solution is 10
-80% by weight, preferably 10-55% by weight. If the concentration is less than 10% by weight, not only is the amount of solvent used large and it is not economical, but also when forming into a sheet, swell and neck-in are large at the die outlet, making it difficult to form the sheet. In addition, at the time of heating and dissolving, it is preferable to add an antioxidant to prevent oxidation of polyethylene.

【0016】次に、このポリエチレンの加熱溶液を好ま
しくはダイスから押し出して成形する。ダイスは、通常
長方形の口金形状をしたシートダイスが用いられるが、
2重円筒状のインフレーションダイスなども用いること
ができる。シートダイスを用いた場合のダイスギャップ
は通常0.15〜5mmであり、押し出し成形温度は1
40〜250℃である。この際押し出し速度は、通常2
0〜30cm/分ないし2〜3m/分である。
Next, the heated solution of polyethylene is preferably extruded from a die to be molded. As the die, a sheet die having a rectangular mouthpiece shape is usually used,
A double cylindrical inflation die or the like can also be used. When a sheet die is used, the die gap is usually 0.15 to 5 mm, and the extrusion molding temperature is 1
It is 40-250 degreeC. At this time, the extrusion speed is usually 2
It is 0 to 30 cm / min to 2 to 3 m / min.

【0017】このようにしてダイスから押し出された溶
液は、冷却することによりゲル状組成物に成形される。
冷却は少なくともゲル化温度以下までは50℃/分以上
の速度で行うのが好ましい。一般に冷却速度が遅いと、
得られるゲル状組成物の高次構造が粗くなり、それを形
成する疑似細胞単位も大きなものとなるが、冷却速度が
速いと、密な細胞単位となる。冷却速度が50℃/分未
満では、結晶化度が上昇し、延伸に適したゲル状組成物
となりにくい。冷却方法としては、冷風、冷却水、その
他の冷却媒体に直接接触させる方法、冷媒で冷却したロ
ールに接触させる方法などを用いることができる。な
お、ダイスから押し出された溶液は、冷却前あるいは冷
却中に好ましくは1〜10、より好ましくは1〜5の引
き取り比で引き取ってもよい。引き取り比が10以上に
なるとネックインが大きくなり、また延伸時に破断を起
こしやすくなり好ましくない。
The solution thus extruded from the die is cooled to form a gel composition.
Cooling is preferably performed at a rate of 50 ° C./min or more up to at least the gelation temperature. Generally, if the cooling rate is slow,
The higher-order structure of the obtained gel-like composition becomes coarse and the pseudo-cell units forming it become large, but when the cooling rate is fast, it becomes dense cell units. When the cooling rate is less than 50 ° C./minute, the crystallinity increases and it is difficult to obtain a gel composition suitable for stretching. As a cooling method, a method of directly contacting with cold air, cooling water, or other cooling medium, a method of contacting with a roll cooled with a refrigerant, or the like can be used. The solution extruded from the die may be taken up at a take-up ratio of preferably 1 to 10, more preferably 1 to 5, before or during cooling. When the take-up ratio is 10 or more, neck-in becomes large, and breakage easily occurs during stretching, which is not preferable.

【0018】次に、このゲル状成形物に延伸を行う。延
伸はゲル状成形物を加熱し、通常のテンター法、ロール
法、インフレーション法、圧延法もしくはこれらの方法
の組み合わせによって所定の倍率で行う。延伸は一軸延
伸でも二軸延伸でもよいが、二軸延伸が好ましい。ま
た、二軸延伸の場合は、縦横同時延伸または逐次延伸の
いずれでもよい。延伸温度はポリエチレンの融点+10
℃以下、好ましくはポリエチレンの結晶分散温度から結
晶融点未満の範囲である。また延伸倍率は原反の厚さに
よって異なるが、一軸延伸では2倍以上が好ましく、よ
り好ましくは3〜30倍である。二軸延伸では面倍率で
10倍以上が好ましく、より好ましくは15〜400倍
である。面倍率が10倍未満では延伸が不十分で高弾
性、高強度の微多孔膜が得られない。一方、面倍率が4
00倍を超えると、延伸操作などで制約が生じる。
Next, this gel-like molded product is stretched. The stretching is performed by heating the gel-like molded product and using a normal tenter method, roll method, inflation method, rolling method or a combination of these methods at a predetermined magnification. The stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferred. Further, in the case of biaxial stretching, either vertical and horizontal simultaneous stretching or sequential stretching may be used. Stretching temperature is the melting point of polyethylene +10
C. or less, preferably in the range from the crystal dispersion temperature of polyethylene to less than the crystal melting point. The stretching ratio varies depending on the thickness of the raw fabric, but in uniaxial stretching, it is preferably 2 times or more, more preferably 3 to 30 times. In biaxial stretching, the surface magnification is preferably 10 times or more, more preferably 15 to 400 times. If the surface magnification is less than 10 times, the stretching is insufficient and a highly elastic and high-strength microporous membrane cannot be obtained. On the other hand, the surface magnification is 4
If it exceeds 00 times, restrictions will occur in the stretching operation and the like.

【0019】得られた延伸成形物は、溶剤で洗浄し残留
する溶媒を除去する。洗浄溶剤としては、ペンタン、ヘ
キサン、ヘプタンなどの炭化水素、塩化メチレン、四塩
化炭素などの塩素化炭化水素、三フッ化エタンなどのフ
ッ化炭化水素、ジエチルエーテル、ジオキサンなどのエ
ーテル類などの易揮発性のものを用いることができる。
これらの溶剤は、ポリエチレン組成物の溶解に用いた溶
媒に応じて適宜選択し、単独もしくは混合して用いる。
洗浄方法は、溶剤に浸漬し抽出する方法、溶剤をシャワ
ーする方法、またはこれらの組合せによる方法などによ
り行うことができる。
The obtained stretch molded product is washed with a solvent to remove the remaining solvent. Examples of the cleaning solvent include hydrocarbons such as pentane, hexane, and heptane; chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride; fluorinated hydrocarbons such as ethane trifluoride; and ethers such as diethyl ether and dioxane. Volatile ones can be used.
These solvents are appropriately selected according to the solvent used for dissolving the polyethylene composition, and used alone or as a mixture.
The washing method can be performed by a method of immersing in a solvent for extraction, a method of showering the solvent, a method of a combination thereof, or the like.

【0020】上述のような洗浄は、延伸成形物中の残留
溶剤が1重量%未満になるまで行う。その後洗浄溶剤を
乾燥するが、洗浄溶剤の乾燥方法は加熱乾燥、風乾など
の方法で行うことができる。乾燥した延伸成形物は、結
晶分散温度〜融点の温度範囲で熱固定することが望まし
い。
The above-mentioned washing is carried out until the residual solvent in the stretch-molded product is less than 1% by weight. Thereafter, the washing solvent is dried, and the washing solvent can be dried by a method such as heat drying or air drying. It is desirable that the dried stretch molded product is heat-set at a temperature in the range of the crystal dispersion temperature to the melting point.

【0021】以上のようにして製造したポリエチレン微
多孔膜は、空孔率が35〜95%で平均貫通孔径が0.
001〜0.5μで、かつ破断強度が500kg/cm
2 以上である。また本発明のポリエチレン微多孔膜の厚
さは、用途に応じて適宜選択しうるが、一般に0.1〜
100μであり、好ましくは2〜50μにすることがで
きる。
The polyethylene microporous membrane produced as described above has a porosity of 35 to 95% and an average through-pore diameter of 0.
001-0.5μ, and breaking strength is 500 kg / cm
2 or more. The thickness of the polyethylene microporous membrane of the present invention may be appropriately selected depending on the application, but is generally 0.1 to
It can be 100 μ, and preferably 2 to 50 μ.

【0022】なお、得られたポリエチレン微多孔膜は、
必要に応じてさらに、プラズマ照射、界面活性剤含浸、
表面グラフトなどの親水化処理などの表面修飾を施する
ことができる。
The polyethylene microporous membrane obtained was
If necessary, further plasma irradiation, surfactant impregnation,
Surface modification such as hydrophilization treatment such as surface grafting can be performed.

【0023】[0023]

【実施例】以下に本発明について実施例を挙げてさらに
詳細に説明するが、本発明は実施例に特に限定されるも
のではない。なお、実施例における試験方法は次の通り
である。 (1)膜厚:断面を走査型電子顕微鏡により測定。 (2)破断強度:幅15mm短冊状試験片の破断強度を
ASTM D882に準拠して測定。 (3)透気度:JIS P8117に準拠して測定し
た。 (4)シャットダウン温度:所定温度に加熱することに
よって、透気度が10万sec/100cc以上となる
温度。 (5)メルトダウン温度:所定温度に加熱することによ
って、膜が溶けて破膜する温度。実施例1 重量平均分子量が2×106 の超高分子量ポリエチレン
20重量%と3.3×105 の高密度ポリエチレン80
重量%のポリエチレン組成物100重量部に酸化防止剤
0.375重量部を加えたポリエチレン組成物を得た。
このポリエチレン組成物30重量部とポリエチレンワッ
クス(三井ハイワックス−100P;融点115℃、分
子量1000;三井石油化学製)5重量部を二軸押出機
(58mmφ、L/D=42、強混練タイプ)に投入し
た。また、この二軸押出機のサイドフィーダーから流動
パラフィン70重量部を供給し、200rpmで溶融混
練して、押出機中にてポリエチレン溶液を調製した。
EXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not particularly limited to the examples. In addition, the test method in an Example is as follows. (1) Film thickness: The cross section was measured with a scanning electron microscope. (2) Breaking strength: The breaking strength of a 15 mm wide strip test piece was measured according to ASTM D882. (3) Air permeability: Measured according to JIS P8117. (4) Shutdown temperature: A temperature at which the air permeability becomes 100,000 sec / 100 cc or more when heated to a predetermined temperature. (5) Meltdown temperature: The temperature at which the film melts and ruptures when heated to a predetermined temperature. Example 1 20% by weight of ultra high molecular weight polyethylene having a weight average molecular weight of 2 × 10 6 and high density polyethylene 80 having a weight average molecular weight of 3.3 × 10 5
A polyethylene composition was obtained in which 0.375 parts by weight of an antioxidant was added to 100 parts by weight of the polyethylene composition of wt%.
30 parts by weight of this polyethylene composition and 5 parts by weight of polyethylene wax (Mitsui High Wax-100P; melting point 115 ° C., molecular weight 1000; manufactured by Mitsui Petrochemical) are twin-screw extruder (58 mmφ, L / D = 42, strong kneading type). I put it in. Further, 70 parts by weight of liquid paraffin was supplied from the side feeder of this twin-screw extruder and melt-kneaded at 200 rpm to prepare a polyethylene solution in the extruder.

【0024】続いて、この押出機の先端に設置されたT
ダイから190℃で押し出し、冷却ロールで引取りなが
らゲル状シートを成形した。続いてこのゲル状シート
を、115℃で5×5に同時二軸延伸を行い、延伸膜を
得た。得られた延伸膜を塩化メチレンで洗浄して残留す
る流動パラフィンを押出除去した後、乾燥及び熱処理を
行いポリエチレン微多孔膜を得た。このポリエチレン微
多孔膜の物性評価の結果を第1表に示す。実施例2 実施例1において、ポリエチレンワックスを10重量部
用いた以外は、実施例1と同様にして微多孔膜を得た。
以上のようにして得られた微多孔膜は表1の物性を有し
ていた。実施例3 実施例1において、ポリエチレンワックスとして融点1
00℃、分子量2000の三井ハイワックス200Pを
5重量部用いる以外は実施例1と同様にして微多孔膜を
得た。以上のようにして得られた微多孔膜は表1の物性
を有していた。 実施例4 実施例1において、ポリエチレンワックスとして融点1
25℃、分子量4000の三井ハイワックス400Pを
5重量部用いる以外は実施例1と同様にして微多孔膜を
得た。以上のようにして得られた微多孔膜は表1の物性
を有していた。 実施例5 実施例1におて、ポリエチレンとして重量平均分子量が
1×106 の超高分子量ポリエチレンを30重量部用い
る以外は実施例1と同様にして微多孔膜を得た。以上の
ようにして得られた微多孔膜は表1の物性を有してい
た。実施例6 実施例1におて、ポリエチレンとして重量平均分子量が
5×105 の超高分子量ポリエチレンを50重量部用い
る以外は実施例1と同様にして微多孔膜を得た。以上の
ようにして得られた微多孔膜は表1の物性を有してい
た。比較例1 実施例1において、ポリエチレンワックスを加えない以
外は実施例1と同様にして微多孔膜を得た。以上のよう
にして得られた微多孔膜は表2の物性を有していた。比較例2、3 実施例1において、ポリエチレンワックスの量を20重
量部または0.1重量部にする以外は実施例1と同様に
して微多孔膜を得た。以上のようにして得られた微多孔
膜は表2の物性を有していた。比較例4 実施例1におて、融点132℃、分子量12000のポ
リエチレンワックスを5重量部用いる以外は実施例1と
同様にして微多孔膜を得た。以上のようにして得られた
微多孔膜は表2の物性を有していた。
Subsequently, the T installed at the tip of the extruder
Extrude from the die at 190 ° C and collect with a cooling roll.
To form a gel-like sheet. Then this gel sheet
Was simultaneously biaxially stretched to 5 × 5 at 115 ° C. to obtain a stretched film.
Obtained. The stretched film obtained is washed with methylene chloride and left
After extruding and removing the liquid paraffin, dry and heat treatment
A polyethylene microporous membrane was obtained. This polyethylene fine
The results of physical property evaluation of the porous film are shown in Table 1.Example 2 In Example 1, 10 parts by weight of polyethylene wax
A microporous membrane was obtained in the same manner as in Example 1 except that it was used.
The microporous membrane obtained as described above has the physical properties shown in Table 1.
I wasExample 3 In Example 1, the melting point of polyethylene wax is 1
Mitsui High Wax 200P with a temperature of 00 ° C and a molecular weight of 2000
A microporous membrane was prepared in the same manner as in Example 1 except that 5 parts by weight was used.
Obtained. The microporous membrane obtained as described above has the physical properties shown in Table 1.
Had. Example 4 In Example 1, the melting point of polyethylene wax is 1
Mitsui High Wax 400P with a molecular weight of 4000 at 25 ° C
A microporous membrane was prepared in the same manner as in Example 1 except that 5 parts by weight was used.
Obtained. The microporous membrane obtained as described above has the physical properties shown in Table 1.
Had. Example 5 In Example 1, polyethylene has a weight average molecular weight of
1 × 106 30 parts by weight of ultra high molecular weight polyethylene
A microporous membrane was obtained in the same manner as in Example 1 except for the above. More than
The microporous membrane thus obtained has the physical properties shown in Table 1.
Was.Example 6 In Example 1, polyethylene has a weight average molecular weight of
5 × 10Five 50 parts by weight of ultra high molecular weight polyethylene
A microporous membrane was obtained in the same manner as in Example 1 except for the above. More than
The microporous membrane thus obtained has the physical properties shown in Table 1.
Was.Comparative Example 1 In Example 1, the polyethylene wax was not added.
A microporous membrane was obtained in the same manner as in Example 1 except for the above. As above
The microporous membrane thus obtained had the physical properties shown in Table 2.Comparative Examples 2 and 3 In Example 1, the amount of polyethylene wax was 20
Same as Example 1 except that the amount is 0.1 part by weight or 0.1 part by weight.
A microporous membrane was obtained. Microporosity obtained as described above
The film had the physical properties shown in Table 2.Comparative Example 4 Example 1 has a melting point of 132 ° C. and a molecular weight of 12,000.
Example 1 except that 5 parts by weight of polyethylene wax was used.
A microporous membrane was obtained in the same manner. Obtained as above
The microporous membrane had the physical properties shown in Table 2.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 表1及び表2から明らかなように、実施例1〜6の方法
による本発明のポリエチレン微多孔膜は高破断強度、低
シャットダウン温度を有しており、リチウム電池の電池
セパレーターとして使用される場合の安全性が高い。
[Table 2] As is clear from Tables 1 and 2, the polyethylene microporous membrane of the present invention according to the methods of Examples 1 to 6 has high breaking strength and low shutdown temperature, and is used as a battery separator for lithium batteries. The safety of is high.

【0027】[0027]

【発明の効果】本発明のポリエチレン微多孔膜は、高強
度かつ低シャットダウン特性を有しているため、リチウ
ム電池用セパレーターとして用いる場合は安全性の点で
おおいに信頼できる。
Since the polyethylene microporous membrane of the present invention has high strength and low shutdown characteristics, it is highly reliable in terms of safety when used as a separator for lithium batteries.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量平均分子量が5×105 以上のポリ
エチレンまたはそのポリエチレン組成物70〜99重量
%と、重量平均分子量が1000〜4000で融点が8
0〜130℃の低分子量ポリエチレン1〜30重量%か
らなることを特徴とするセパレーター用ポリエチレン微
多孔膜。
1. Polyethylene having a weight average molecular weight of 5 × 10 5 or more or 70 to 99% by weight of a polyethylene composition thereof, a weight average molecular weight of 1000 to 4000 and a melting point of 8
A polyethylene microporous membrane for a separator, which comprises 1 to 30% by weight of low molecular weight polyethylene at 0 to 130 ° C.
【請求項2】 重量平均分子量が5×105 以上のポリ
エチレンまたはそのポリエチレン組成物70〜99重量
%と、重量平均分子量が1000〜4000で、融点が
80〜130℃の低分子量ポリエチレン1〜30重量%
からなる組成物10〜80重量%と、溶媒20〜90重
量%とからなる溶液を調製し、前記溶液をダイより押出
し、冷却してゲル状組成物を形成し、前記ゲル状組成物
をポリエチレン組成物の融点+10℃以下の温度で延伸
し、しかる後残存溶媒を除去することを特徴とするセパ
レーター用ポリエチレン微多孔膜の製造方法。
2. Polyethylene having a weight average molecular weight of 5 × 10 5 or more or 70 to 99% by weight of a polyethylene composition thereof, low molecular weight polyethylene 1 to 30 having a weight average molecular weight of 1000 to 4000 and a melting point of 80 to 130 ° C. weight%
A composition comprising 10 to 80% by weight of a composition comprising 20 to 90% by weight of a solvent is prepared, the solution is extruded through a die and cooled to form a gel composition, and the gel composition is formed into polyethylene. A method for producing a polyethylene microporous membrane for a separator, which comprises stretching at a temperature not higher than the melting point of the composition + 10 ° C., and then removing the residual solvent.
JP8092020A 1996-03-21 1996-03-21 Polyethylene micro-porous film for separator, and manufacture thereof Pending JPH09259858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8092020A JPH09259858A (en) 1996-03-21 1996-03-21 Polyethylene micro-porous film for separator, and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8092020A JPH09259858A (en) 1996-03-21 1996-03-21 Polyethylene micro-porous film for separator, and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09259858A true JPH09259858A (en) 1997-10-03

Family

ID=14042861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8092020A Pending JPH09259858A (en) 1996-03-21 1996-03-21 Polyethylene micro-porous film for separator, and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09259858A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332531B2 (en) 2004-06-11 2008-02-19 Sk Corporation Microporous high density polyethylene film
US7435761B2 (en) 2004-07-06 2008-10-14 Sk Energy Co., Ltd. Microporous polyethylene film and method of producing the same
US8057718B2 (en) 2005-04-06 2011-11-15 Sk Innovation Co., Ltd. Microporous polyethylene film having excellent physical properties, productivity, and quality consistency, and method of producing same
US8262973B2 (en) 2006-02-14 2012-09-11 Sk Innovation Co., Ltd. Microporous polyolefin film with improved meltdown property and preparing method thereof
US8313678B2 (en) 2005-05-16 2012-11-20 Sk Innovation Co., Ltd. Preparing method of microporous high density polyethylene film
WO2014020545A1 (en) 2012-07-30 2014-02-06 Sabic Innovative Plastics Ip B.V. High temperature melt integrity separator
KR20210147919A (en) 2020-05-28 2021-12-07 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332531B2 (en) 2004-06-11 2008-02-19 Sk Corporation Microporous high density polyethylene film
US7947752B2 (en) 2004-06-11 2011-05-24 Sk Energy Co., Ltd. Method of producing microporous high density polyethylene film
US7435761B2 (en) 2004-07-06 2008-10-14 Sk Energy Co., Ltd. Microporous polyethylene film and method of producing the same
US8057718B2 (en) 2005-04-06 2011-11-15 Sk Innovation Co., Ltd. Microporous polyethylene film having excellent physical properties, productivity, and quality consistency, and method of producing same
US8313678B2 (en) 2005-05-16 2012-11-20 Sk Innovation Co., Ltd. Preparing method of microporous high density polyethylene film
US8262973B2 (en) 2006-02-14 2012-09-11 Sk Innovation Co., Ltd. Microporous polyolefin film with improved meltdown property and preparing method thereof
WO2014020545A1 (en) 2012-07-30 2014-02-06 Sabic Innovative Plastics Ip B.V. High temperature melt integrity separator
KR20210147919A (en) 2020-05-28 2021-12-07 스미또모 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery separator
US11764440B2 (en) 2020-05-28 2023-09-19 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator

Similar Documents

Publication Publication Date Title
JP5497635B2 (en) Polyolefin microporous membrane, method for producing the same, battery separator and battery
KR100667052B1 (en) Microporous Polyolefin Membrane And Method For Producing The Same
JP2657434B2 (en) Polyethylene microporous membrane, method for producing the same, and battery separator using the same
JP4927243B2 (en) Polyolefin microporous membrane
JPWO2007052663A1 (en) Polyolefin microporous membrane and battery separator and battery using the same
JPWO2006137535A1 (en) Method for producing polyolefin microporous membrane
JPWO2007060990A1 (en) Polyolefin microporous membrane and method for producing the same, battery separator and battery
JPWO2007060991A1 (en) Polyolefin microporous membrane and method for producing the same, battery separator and battery
JP3699562B2 (en) Polyolefin microporous membrane and method for producing the same
JPH0753760A (en) Production of microporous polyolefin film
JP2011184671A (en) Heat resistant polyolefin microporous film and manufacturing method thereof
WO2019163935A1 (en) Porous polyolefin film
JP2004149637A (en) Microporous membrane, method for producing the same and use thereof
JP3549290B2 (en) Polyolefin microporous membrane and method for producing the same
JP2000248093A (en) Microporous polyolefin membrane and its production
KR101354708B1 (en) Method of manufacturing a multi-component separator film with ultra high molecule weight polyethylene for lithium secondary battery and a multi-component separator film for lithium secondary battery therefrom
JP3699561B2 (en) Polyolefin microporous membrane and method for producing the same
JP3682120B2 (en) Composite membrane for battery separator and battery separator
JPH11269290A (en) Polyoelfin fine porous membrane
TW201840666A (en) Microporous polyolefin membrane and battery including same
JPH09259858A (en) Polyethylene micro-porous film for separator, and manufacture thereof
JP4280371B2 (en) Polyolefin microporous membrane and method for producing the same
JPH1044348A (en) Polyolefin porous membrane, manufacture thereof, separator for electric cell using membrane
JP3252016B2 (en) Method for producing polyolefin microporous membrane
JP2003105121A (en) Polyolefin minute porous film and method of its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060307