JPS5964339A - Oriented polymer - Google Patents

Oriented polymer

Info

Publication number
JPS5964339A
JPS5964339A JP58133564A JP13356483A JPS5964339A JP S5964339 A JPS5964339 A JP S5964339A JP 58133564 A JP58133564 A JP 58133564A JP 13356483 A JP13356483 A JP 13356483A JP S5964339 A JPS5964339 A JP S5964339A
Authority
JP
Japan
Prior art keywords
polymer
extrusion
polyethylene
molecular weight
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58133564A
Other languages
Japanese (ja)
Inventor
イ−アン・マクミラン・ウオアルド
ア−サ−・ジエフリ−・ギブソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Development Corp UK
National Research Development Corp of India
Original Assignee
National Research Development Corp UK
National Research Development Corp of India
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Development Corp UK, National Research Development Corp of India filed Critical National Research Development Corp UK
Publication of JPS5964339A publication Critical patent/JPS5964339A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/30Drawing through a die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2059/00Use of polyacetals, e.g. POM, i.e. polyoxymethylene or derivatives thereof, as moulding material

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 理的性質を有する配回したポIJマー(以下配回ポリマ
ーと称す。)4→ト胎曝に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coordinated polymer having physical properties (hereinafter referred to as a coordinated polymer).

ポリマー7こ固体的変形を生じさせる方法についてはよ
く知られている。例えばポリマーをシリンダー中で滑動
するピストンまたはラムを用い一融点以下の温度でダイ
スから押出すとーある配向度を有する押出成型品が得ら
れる。この配回は押出成形品の機械的性質を改良するこ
とになる。更に均一な配向性は静水圧押出によって得る
ことができーこの場合にはポリマーを静水圧により融点
以下の温度でダイスを通して流出せしめればよい。
Methods for producing solid-state deformation of polymers 7 are well known. For example, when a polymer is extruded from a die at a temperature below one melting point using a piston or ram sliding in a cylinder, an extruded product having a certain degree of orientation is obtained. This arrangement will improve the mechanical properties of the extrudate. More uniform orientation can be obtained by isostatic extrusion, in which case the polymer is forced to flow through a die under hydrostatic pressure at a temperature below its melting point.

しかしながら、これらの方法ではポIJマーの機械的性
質を改良するのに限界があることが知られている。
However, it is known that these methods have limitations in improving the mechanical properties of polymers.

しかるに、高い自然延伸比を有する出発物質を選定すれ
ば物理的性質の著るしく改良されたポリマーが得られる
事実が見出された。
However, it has been found that selecting starting materials with high natural draw ratios results in polymers with significantly improved physical properties.

本発明は6以上の自然延伸比を有する配回可能なポリマ
ーに固体的菱形処理を施して物理的性質を改良した配回
性ポυマー物質う噸→→壬提供するものである。
The present invention provides a routable polymer material film having improved physical properties by subjecting a routable polymer having a natural stretch ratio of 6 or more to solid diamond treatment.

本明細書において「固体的変形」と言う語は一ポリマー
を融点以下の温度で加圧下に変形することを意味し、押
出しゃ圧延などの処理を含むものである。たゾし、特に
静水圧押出の適用が好ましいので、この観点より以下便
宜上これに限定して説明を行うが、他の成形方法、例え
ばピストン、ラム、ローリングなども採用し得ることは
当然に理解されるべきである。
As used herein, the term "solid deformation" means deformation of a polymer under pressure at a temperature below its melting point, and includes treatments such as extrusion and rolling. However, since it is particularly preferable to apply isostatic extrusion, the following explanation will be limited to this for convenience, but it is of course understood that other molding methods, such as piston, ram, and rolling, may also be employed. It should be.

不発明はまた最小外寸0.25 mm以上、ヤング率3
×101ON/η72 以上の延伸高密度ポリエチレン
物体全供給するものである。
Non-invention also requires a minimum outer dimension of 0.25 mm or more and a Young's modulus of 3.
All drawn high-density polyethylene objects with a diameter of ×101 ON/η72 or more are supplied.

本発明は更に最小外寸025間以上、ヤング率]×]0
1ON/m2以上の延伸ポリオキシメチレン物体を供給
する。
The present invention further provides a minimum outer dimension of 025 or more, Young's modulus]×]0
A stretched polyoxymethylene body of 1 ON/m2 or more is provided.

本発明は、分子配向が固体的変形によって惹起されるよ
うな全ての半結晶性ポリマーに適用することができる。
The invention is applicable to all semicrystalline polymers in which molecular orientation is induced by solid-state deformation.

実質上直鎖ポリマー、即ちポリマ一単位1000個に1
つ以下の分岐を有するポリマーが好ましい。特に高密度
ポリエチレンで良い結果が得られる。
Substantially linear polymer, i.e. 1 in 1000 polymer units
Polymers with no more than three branches are preferred. Particularly good results are obtained with high-density polyethylene.

(以下、余白) ここに面密度ポリエチレンとは“、実質上直線のエチレ
ンホモポリマーまたはエチレンk 重it テ少なくと
も95%含有しているコポリマーであって、密度が0.
85〜1. OQ /cyn3ノも’7−)(例tハ、
遷移金属触媒の存在下でエチレンを重合させたもののご
とく、プリティッシュ・スタンタート・スベシフィケイ
ションA、3412(1,966)にもとづいて調mし
た試料ヲ同じくプリティッシュ・スタンタート・スベシ
フィヶイション&、2.782 (1970)記載の方
法で測定)を言う。
(Hereinafter, in the margins) Herein, areal density polyethylene is defined as "a substantially linear ethylene homopolymer or copolymer containing at least 95% ethylene and having a density of 0.
85-1. OQ /cyn3ノalso'7-)(Example tha,
A sample prepared according to Prittisch Stantat Subification A, 3412 (1,966), as well as one prepared by polymerizing ethylene in the presence of a transition metal catalyst, was also prepared by Prittisch Stantat Subification A, 3412 (1,966). &, 2.782 (1970)).

ポリマーの自然延伸比は試料の最初の長さに対するこれ
を自由に延伸して得られる最長の長さの比または延伸前
後の試料の断面積比のいずれがとして定義できる。高密
度ポリエチレンに対しては、例えば試料を75°C19
0秒曲、10α/分の割合でインストロン引張−:験機
で延伸することにより決められる。ポリマーの自然延伸
比はその重量(以下、余白) 平均分子8月W、数平均分子量inおよび最初の形態に
依存する。
The natural stretch ratio of a polymer can be defined as either the ratio of the longest length obtained by freely stretching the sample to its initial length, or the ratio of the cross-sectional area of the sample before and after stretching. For high-density polyethylene, for example, sample at 75°C19
0 second bend, Instron tension at a rate of 10 α/min: Determined by stretching on a testing machine. The natural stretch ratio of a polymer depends on its weight (hereinafter margin) average molecular weight W, number average molecular weight in and initial morphology.

ポリマーの重量平均分子量は好ましくは200.000
以下、最も好ましくは50,000〜150.000−
数平均分子量は好ましくは20,000以下、最も好ま
しくは5.000〜15.000である。更にポリマー
が比較的狭い分子■分布を有し、かつM n ) l 
Q4のときMw/M nが8以下、好ましくは6以下で
あり−Mnく104のときW w / M nが20以
下、好ましくは15以下であるのがよい。
The weight average molecular weight of the polymer is preferably 200.000
Below, most preferably 50,000 to 150,000-
The number average molecular weight is preferably 20,000 or less, most preferably 5.000 to 15.000. Furthermore, the polymer has a relatively narrow molecular ■ distribution and M n ) l
When Q4, Mw/Mn is 8 or less, preferably 6 or less, and when -Mn is 104, Ww/Mn is 20 or less, preferably 15 or less.

実際上、重量平均分子量10.lX104、数平均分子
量6−2×103のIJジデツクス50(Rigide
x 5 Q ;ビー争ピーΦケミカルス・リミテッド製
ポリエチレン重合体)を用いることにより卓越した効果
が得られる。なお、本明細書で引用スル分子量はゲルパ
ーミエイションクロマトグラフイーで測定したものであ
る。
In practice, the weight average molecular weight is 10. lX104, IJ Zydex 50 (Rigide) with number average molecular weight 6-2x103
Excellent effects can be obtained by using x 5 Q; polyethylene polymer manufactured by B.P.PHI. Chemicals Ltd.). Note that the molecular weights cited herein are those measured by gel permeation chromatography.

高密度ポリエチレンにつき−好ましいポリマーはメルト
フロー値が01〜16−特に25〜7.5のものである
For high density polyethylene - preferred polymers are those with melt flow values of 01 to 16 - especially 25 to 7.5.

ポリマーの形態もまた自然延伸比に影響し、実質上断面
を横切って一定の形態を有するポリマーが好ましい。し
かしながら静水圧押出に用いられるビレットの如く断面
が比較的厚いものでは、溶融状態からポリマーを冷却す
る速度を変えることによっては形態を十分改良すること
は不可能である。冷却速度は、一般には物質の厚さとポ
リマーの熱伝導性に依存し、多くの場合01〜b分程度
の低速度であってよい。これより速い速度で冷却すると
一一般には断面を横切って望ましくない不均一な結晶構
造が生ずる。周囲の条件にあわせて、通常の冷却速度で
溶融ポIJマーを冷却し、適当な分子量を選定して、均
一な結晶構造を得るのがよい。本発明に使用するに適し
た高い自然延伸比を有するポリマーを製造する方法にぼ
、例えば圧縮成形−溶融鋳造、押出、押出成形などが包
含される。
The morphology of the polymer also affects the natural draw ratio, and polymers having substantially constant morphology across the cross section are preferred. However, for billets used in isostatic extrusion that have relatively thick cross-sections, it is impossible to sufficiently improve the morphology by changing the rate at which the polymer is cooled from the molten state. The cooling rate generally depends on the thickness of the material and the thermal conductivity of the polymer, and can often be as slow as 01-b minutes. Cooling at faster rates generally results in an undesirable non-uniform crystal structure across the cross section. It is preferable to cool the molten polymer at a normal cooling rate depending on the surrounding conditions and select an appropriate molecular weight to obtain a uniform crystal structure. Methods for producing polymers with high natural draw ratios suitable for use in the present invention include, for example, compression molding-melt casting, extrusion, extrusion molding, and the like.

分子量や熱処理の適当な選定によって非常に高い自然延
伸比を得ることができる。好ましくはポリマーの自然延
伸比は10以上であり、たとえは高密度ポリエチレンの
自然延伸比は20以上、場合によっては38のものも得
られる。
By appropriate selection of molecular weight and heat treatment, very high natural draw ratios can be obtained. Preferably, the natural stretch ratio of the polymer is 10 or more; for example, the natural stretch ratio of high-density polyethylene is 20 or more, and in some cases, a natural stretch ratio of 38 can be obtained.

本発明にもとづ(好ましい方法は、例えば静水圧下でダ
イスのオリフィスを通してポリマーを押出すことである
。たとえば棒状押出の場合には、押出機のコニカルダイ
スに対し液密となるようポリマー・ビレットの端を機械
にかける。加圧下水圧流体をビレットの周囲に導入し−
ダイ・オリフィスを通してポリマーを押出し、押出棒を
形成せしめる静水圧は約0.2〜3キロバールの範囲が
好ましい。
In accordance with the present invention, a preferred method is to extrude the polymer through an orifice of a die, e.g. under hydrostatic pressure. For example, in the case of rod extrusion, the polymer is The ends of the billet are machined. Pressurized hydraulic fluid is introduced around the billet.
The hydrostatic pressure to extrude the polymer through the die orifice and form the extruded rod is preferably in the range of about 0.2 to 3 kilobars.

押出ポリマーの配向性、即ち物理的性質は、変形比、即
ち押出後の断面積に対する押出前の断面積の比率の増加
にともなって改良されることがわかる。得られる変形比
には限界がある。この限界値に近づくにつれ、付加圧力
に対する押出速度は実用不可能な低い値となる。このよ
うな条件のもとでは、更に圧力を増加しても押出速度は
玉杯せす一結局的には生成物が破砕することになろう。
It can be seen that the orientation, ie, the physical properties, of the extruded polymer improves with increasing deformation ratio, ie, the ratio of the cross-sectional area before extrusion to the cross-sectional area after extrusion. There is a limit to the deformation ratio that can be obtained. As this limit value is approached, the extrusion speed relative to the applied pressure becomes an impractically low value. Under these conditions, even further increases in pressure would limit the extrusion rate and eventually result in product fragmentation.

押出速度が経済的でない値まで低下したときの限界菱形
比は等方性ポリマーの自然延伸比と関連がある。変形比
が約10まで、適用ポリマーによっては10〜2 Fl
)Sのを使用すると良い結果が得られる。
The critical rhombic ratio, when the extrusion speed is reduced to an uneconomical value, is related to the natural stretch ratio of isotropic polymers. Deformation ratio up to about 10, depending on the applied polymer 10-2 Fl
) S gives good results.

低い変形比の場合には、押出成形体がダイスのオリフィ
スを出た後−膨張し、変形比を制限すると共に配向度を
低下させる傾向が認められる。この現象は押出成形体に
引張引取力を加えることにより小さくすることができる
。この引張引取力は通常少くとも001キロバールで、
押出物の引張強度によってはそれよりかなり大きくても
良い。
At low deformation ratios, the extrudate tends to expand after leaving the orifice of the die, limiting the deformation ratio and reducing the degree of orientation. This phenomenon can be reduced by applying a tensile pulling force to the extrudate. This tensile pull-off force is usually at least 0.001 kbar;
It may be considerably greater depending on the tensile strength of the extrudate.

しかしながら変形比が8〜10の範囲以上にポリマーを
押出したときは、膨張は通常化じないし、押出生成物を
まっすぐにしておくために使用する以外引張引取は必要
でない。
However, when the polymer is extruded above the deformation ratio range of 8 to 10, expansion is normal and no tensile pulling is necessary except for use to keep the extrusion product straight.

押出温度は用いるポリマーの種類によって成る程度決定
されるが、一般にはポリマーの融点の50℃以内である
。高密度ポリエチレンの押出温度は80℃から融点まで
の範囲である。
The extrusion temperature is determined to a certain extent by the type of polymer used, but is generally within 50° C. of the melting point of the polymer. The extrusion temperature of high density polyethylene ranges from 80°C to the melting point.

本発明の方法は一従来得られなかった物理的性質を備え
た配回ポリマーの製造を可能にし−とりわけ一押出断面
で非常に高い伸長率を備えた配回ポリマーを得ることを
可能にする。
The process of the invention makes it possible to produce a structured polymer with physical properties not previously available - in particular it makes it possible to obtain a structured polymer with a very high elongation in one extrusion cross-section.

例えば本発明分法は、最小外寸2.5 mm以上、ヤン
グ率3.5 X 101ON/m?以上を有する延伸高
密度ポリエチレン物体の製造を可能にする。
For example, the method of the present invention has a minimum outer dimension of 2.5 mm or more and a Young's modulus of 3.5 x 101 ON/m? It is possible to produce stretched high-density polyethylene objects having the following properties.

本明細書において、ヤング率は伸び率10=−近似伸び
速度3X10−3MIN”、温度21℃において伸び計
にかけたときの割線モジュラスとして定義される。
As used herein, Young's modulus is defined as the secant modulus when applied to an extensometer at an elongation rate of 10=-approximate elongation rate of 3X10-3 MIN'' and a temperature of 21C.

本発明によって得られる高モジユラスポリエチレン物体
は通常透明であり一100℃以下の温度での熱安定性を
改良することができる。これらは構造体として用いるこ
とができ、特に管状のものを作るのに適している。
The high modulus polyethylene bodies obtained by this invention are usually transparent and can have improved thermal stability at temperatures below -100°C. These can be used as structures and are particularly suitable for making tubular objects.

変形前に粒状または繊維状の充填剤をポリマーに配合す
ることにより押出ポリマーのヤング率を一層改良するこ
ともてきる。
The Young's modulus of the extruded polymer can be further improved by incorporating particulate or fibrous fillers into the polymer before deformation.

下記実施例により本発明を更に具体的に説明する。The present invention will be explained in more detail with reference to the following examples.

実施例1 本実施例は本発明4H4yに従って高い自然延伸比を有
するポリエチレンから高い伸長率を有するポリエチレン
棒を製造する場合の例であって一比較のため低い自然延
伸比のポリエチレンから同様の棒を製造する場合を併記
する。
Example 1 This example is an example of manufacturing a polyethylene rod having a high elongation rate from polyethylene having a high natural draw ratio according to the present invention 4H4y.For comparison, a similar rod was manufactured from polyethylene having a low natural draw ratio. Also indicate if it is manufactured.

リジデックス50は次の物理的性質を有する市販の高密
度ポリエチレンである: 密   度               0.96重
量平均分子量       10.lX104数平均分
子量         6.2X10”自然延伸比(1
60℃から急冷)10 引張弾性率(T’:xtcntional modul
us)1.6X10”N/rrf、(S’Fり本物質の
ビレットを圧縮成形し、室温に冷却する。冷後のビレッ
トの比重は0973であり、ポリマーの自然延伸比は2
3である。このビレットをセミアングル15°、孔径2
.54 rmnのダイスにより静水圧1.3+cバール
、100℃で静水圧押出する。引張引取力は75Nであ
る。
Rigidex 50 is a commercially available high density polyethylene with the following physical properties: Density 0.96 Weight average molecular weight 10. lX104 Number average molecular weight 6.2X10” Natural stretch ratio (1
(quenched from 60°C) 10 Tensile modulus (T': xtcntional modulus
us) 1.6X10"N/rrf, (S'F) A billet of this material is compression molded and cooled to room temperature. The specific gravity of the billet after cooling is 0973, and the natural stretch ratio of the polymer is 2.
It is 3. This billet has a semi-angle of 15° and a hole diameter of 2.
.. Isostatically extruded through a die of 54 rmn at a hydrostatic pressure of 1.3+c bar and 100°C. The tensile pulling force is 75N.

変形比16のものが得られ一押出棒の配向度は複屈折率
が0.060−引張弾性率が2.7 X 101ON/
 nlであって等方性材料に比べ約18倍になることが
わかる。
A deformation ratio of 16 was obtained, and the degree of orientation of one extruded rod was such that the birefringence was 0.060 - the tensile modulus was 2.7 x 101ON/
nl, which is about 18 times that of an isotropic material.

比較のため、次の物理的性質を有する他の市販高密度ポ
リエチレン:ホスタレン(tlostalen )OU
Rを用いてこの試験を繰返した: 密   度            094重量平均分
子遣      3.5−4X106数平均分子量  
     1.00.000以下自然延伸比     
   4 引張弾性率   1.2X108N/イ(等方性)得ら
れた最大変形比5.0、複屈接率0.040、引張弾性
率1.2XIO”N/dであって、このこと1ま分子配
向度が達成されても自然延伸比が6以下のポリエチレン
を用いたのでは剛性において改良されないことを示して
いる。
For comparison, another commercially available high-density polyethylene with the following physical properties: tlostalen OU
This test was repeated using R: Density 094 Weight average molecular weight 3.5-4X106 Number average molecular weight
1.00.000 or less natural stretch ratio
4 Tensile modulus 1.2X108N/i (isotropic) The maximum deformation ratio obtained is 5.0, the birefringence tangent is 0.040, and the tensile modulus is 1.2XIO''N/d. This shows that even if the degree of molecular orientation is achieved, if polyethylene with a natural stretch ratio of 6 or less is used, the rigidity will not be improved.

実施例2 本実施例はポリエチレンポリマーおよびコポリマーから
高い引張弾性率の押出生成物を製造する場合の例である
Example 2 This example illustrates the production of high tensile modulus extrudates from polyethylene polymers and copolymers.

ポリマーのビレットを溶融鋳造し一01〜10℃/分の
割合でゆっくり室温まで冷却する。このビレツl−は実
施例1に記載の方法で100℃、静水圧下、O,001
cm/分の割合で押出す。結果を表1に示す。自然延伸
比は一溶融物から約り℃/分の割合で冷却したシートか
ら切り取った試料を延伸して測定する。
A billet of polymer is melt cast and slowly cooled to room temperature at a rate of 101-10°C/min. This billet l- was prepared by the method described in Example 1 at 100°C under hydrostatic pressure at O,001
Extrude at a rate of cm/min. The results are shown in Table 1. The natural stretch ratio is measured by stretching a sample cut from a sheet cooled from the melt at a rate of approximately 1°C/min.

上表からエチレンホモポリマーは延伸率に非常に高い結
果を与え、エチレンコポリマーリジデツクス2000は
側鎖を有するため低い結果を与えることが理解される。
It can be seen from the above table that the ethylene homopolymer gives very high results in the draw ratio, and the ethylene copolymer Rigidex 2000 gives a low result because it has side chains.

実施例3 本実施例はポリオキシメチレンポリマーから高い引張弾
性率を有する押出生成物を製造する場合の例である。
Example 3 This example is an example of producing an extruded product having a high tensile modulus from a polyoxymethylene polymer.

二種類のポリメチレンホモポリマー、デルリン(1)e
lrin )500とデルリン150(いずれもデュ・
ボン社製)を200℃で棒状に圧縮成形し、約り℃/分
の割合で冷却する。更にこの棒を機材でビレットとし、
静水圧下、163℃で押出す。
Two types of polymethylene homopolymers, Delrin (1) e
lrin) 500 and Delrin 150 (both Du.
(manufactured by Bonn) was compression molded into a rod shape at 200°C and cooled at a rate of approximately 1°C/min. Furthermore, this rod is made into a billet using equipment,
Extrude at 163° C. under hydrostatic pressure.

押出速度は0.025cm/分、ダイスの孔径1.、8
 mrbセミアングル15°である。結果を表2に示す
The extrusion speed was 0.025 cm/min, and the die hole diameter was 1. , 8
The mrb semi-angle is 15°. The results are shown in Table 2.

以下本発明の技術的範囲に包含される具体的な態様を例
示する。
Specific embodiments falling within the technical scope of the present invention will be illustrated below.

1.6以」−の自然延伸比を有する配向可能なポリマー
に固体的変形処理を施すことを特徴とする配向ポリマー
の製造法。
1. A method for producing an oriented polymer, which comprises subjecting an orientable polymer having a natural stretch ratio of 1.6" to a solid-state deformation treatment.

2 固体的変形処理を静水圧押出によって行う」−記1
記載の方法。
2. Solid-state deformation treatment is carried out by isostatic extrusion” - Note 1
Method described.

3 ボIJマーが実質上直鎖のポリマーである上記1ま
たは2記載の方法。
3. The method according to 1 or 2 above, wherein the BoIJmer is a substantially linear polymer.

4 ポリマーとしてビニルポリマーを使用する」−記1
〜3記載の方法。
4. Using a vinyl polymer as the polymer” - note 1
The method described in ~3.

5、ポリマーとして高密度ポリエチレンを使用する上記
1〜4記載の方法。
5. The method described in 1 to 4 above, wherein high density polyethylene is used as the polymer.

6、 ポリマーとしてポリオキシメチレンを使用する上
記1〜4記載の方法。  ′ 7 ポリマーが重量平均分子量5o・ooO〜150.
000を有する上記1〜6記載の方法。
6. The method described in 1 to 4 above, wherein polyoxymethylene is used as the polymer. ' 7 The polymer has a weight average molecular weight of 5o·ooO~150.
7. The method according to any one of the above items 1 to 6, wherein

8 ポリマーが数平均分子量5.000〜15.000
を有する上記1〜7記載の方法。
8 The polymer has a number average molecular weight of 5.000 to 15.000
8. The method described in 1 to 7 above.

9、ポリマーの数平均分子量(Mn)に対する重量平均
分子量Fzの比力(M n  ) 104 のときMw
/ M n 5以下、Mn<104のときMW/Mn 
15以下である上記7〜8記載の方法。
9. When the specific force (M n ) of the weight average molecular weight Fz to the number average molecular weight (Mn) of the polymer is 104, Mw
/ Mn 5 or less, MW/Mn when Mn<104
15 or less, the method described in 7 to 8 above.

10  ポリマーがメルトフロー値01〜16を有する
上記5または6記載の方法。
10. The method according to 5 or 6 above, wherein the polymer has a melt flow value of 01 to 16.

11  ポリマーが断面を横切って実質上一定の形態を
有する上記1〜10記載の方法。
11. The method according to any one of 1 to 10 above, wherein the polymer has a substantially constant morphology across the cross section.

12、ポリマーを固体的菱形前に一融点以上の温度に加
熱し、次いで01〜b 却する上記1〜11記載の方法。
12. The method described in 1 to 11 above, wherein the polymer is heated to a temperature above one melting point before forming into a solid rhombus, and then cooled.

13  ポリマーを圧縮成形、溶融鋳造、押出または押
出成形によって製造する上記12記載の方法。
13. The method according to 12 above, wherein the polymer is produced by compression molding, melt casting, extrusion or extrusion molding.

14  ポリマーが自然延伸比10以上である上記1〜
13記載の方法。
14 1 to 1 above, wherein the polymer has a natural stretch ratio of 10 or more
13. The method described in 13.

15  ポリマーが02〜30キロバールの静水圧下、
ダイス・オIJフイスを通して押し出される上記1〜1
4記載の方法。
15 polymer under hydrostatic pressure of 02 to 30 kbar,
1 to 1 above extruded through a die or IJ
The method described in 4.

16  ポリマーが10〜25の変形比を与えるよう変
形される上記1〜15記載の方法。
16. The method according to any one of 1 to 15 above, wherein the polymer is deformed to give a deformation ratio of 10 to 25.

17、実質」一実施例1に記載したごとく操作する上記
1〜16記載の方法。
17. A method as described in 1 to 16 above, which is operated substantially as described in Example 1.

18  実!l実施例2または3に記載したごとく操作
する上記1〜16記載の方法。
18 Fruit! 1. The method of claims 1 to 16 above, operated as described in Examples 2 or 3.

19、実質上」−に記載した如く配向ポリマーを製造す
る方法。
19. A method for producing an oriented polymer substantially as described in 19.

20  上記1〜19の方法で製造された配回ポリマー
20 A coordinating polymer produced by the methods 1 to 19 above.

0 21、最小外寸0.25 mm以上、ヤング率3X1(
IN / m?以上を有する延伸高密度ポリエチレン物
体。
0 21, minimum outer dimension 0.25 mm or more, Young's modulus 3X1 (
IN/m? A stretched high-density polyethylene object comprising:

22  ポリエチレンが重量平均分子量so、oo。22 Polyethylene has a weight average molecular weight of so and oo.

〜150,000を有する上記21記載のポリエチレン
物体。
22. The polyethylene object of claim 21 above, having a molecular weight of 150,000 to 150,000.

23  ポリエチレンが数平均分子its、ooo〜1
5.000 を有する上記21または22記載のポリエ
チレン物体。
23 Polyethylene has a number average molecule its, ooo ~ 1
5.000.

24  ポリエチレンの数平均分子m (Mn )に対
す15以下である上記21〜23記載のポリエチレン物
体。
24. The polyethylene object according to any one of 21 to 23 above, which has a number average molecular weight m (Mn) of polyethylene of 15 or less.

25  ポリエチレンのメルトフローインデックスカ0
.1〜16の上記21〜24記載のポリエチレン物体。
25 Melt flow index of polyethylene 0
.. 1-16, the polyethylene object described in 21-24 above.

26  最小外寸2.5 mm以上、ヤアグ率3.刈0
1ON/d以上を有する上記21〜25に記載のポリエ
チレン物体。
26 Minimum outer dimension 2.5 mm or more, YAG ratio 3. Mowing 0
26. The polyethylene object according to any one of 21 to 25 above, having a power of 1 ON/d or more.

27、実、賃上−上記に該当するポリエチレン物体。27. Actually, wages - Polyethylene objects that fall under the above.

28、 f&小外寸0.25 mmR上、ヤニ/ り率
IXI 01ON/ tri以上を有する延伸ポリオキ
シメチレン物体。
28. Stretched polyoxymethylene object having an f&minor outer dimension of 0.25 mmR and a tar/reflection rate of IXI 01ON/tri or more.

29  実質上、上記に該当するポリオキシメチレン物
体。
29 Polyoxymethylene objects substantially as described above.

特許出願人   ナショナル・リサーチ・テイベロップ
メント・コーポレイション228−
Patent applicant: National Research Development Corporation 228-

Claims (1)

【特許請求の範囲】 ]、 固層で押出して得られる3×101ON/ゴ以上
のヤング率を有する高密度ポリエtレン延伸体。 2、固層で押出して得られるI X 101ON/ d
以上のヤング率を有するポリオキシメチレン延伸体。
[Claims] ], A high-density polyethylene stretched product having a Young's modulus of 3×10 1 ON/g or more obtained by extrusion in a solid phase. 2.I x 101ON/d obtained by extrusion in solid phase
A stretched polyoxymethylene body having a Young's modulus of the above.
JP58133564A 1973-06-28 1983-07-20 Oriented polymer Pending JPS5964339A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB30823/73A GB1480479A (en) 1973-06-28 1973-06-28 Process for the production of polymer materials
GB30823/73 1973-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1205547A Division JPH02192927A (en) 1973-06-28 1989-08-07 Polymer drawn molded product

Publications (1)

Publication Number Publication Date
JPS5964339A true JPS5964339A (en) 1984-04-12

Family

ID=10313696

Family Applications (3)

Application Number Title Priority Date Filing Date
JP49073749A Pending JPS5034353A (en) 1973-06-28 1974-06-26
JP58133564A Pending JPS5964339A (en) 1973-06-28 1983-07-20 Oriented polymer
JP1205547A Granted JPH02192927A (en) 1973-06-28 1989-08-07 Polymer drawn molded product

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP49073749A Pending JPS5034353A (en) 1973-06-28 1974-06-26

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP1205547A Granted JPH02192927A (en) 1973-06-28 1989-08-07 Polymer drawn molded product

Country Status (5)

Country Link
JP (3) JPS5034353A (en)
DE (1) DE2430772C2 (en)
FR (1) FR2234982B1 (en)
GB (1) GB1480479A (en)
IT (1) IT1014402B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294356A (en) * 1988-09-30 1990-04-05 Asahi Chem Ind Co Ltd Polyethylene microporous film for lithium battery separator

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1506565A (en) 1974-03-05 1978-04-05 Nat Res Dev Production of polyethylene filaments
GB1568964A (en) 1975-11-05 1980-06-11 Nat Res Dev Oriented polymer materials
WO1980000550A1 (en) * 1978-09-08 1980-04-03 Bethlehem Steel Corp An oriented,semi-crystalline polymer product and method and apparatus for producing such product
DE3133897A1 (en) * 1981-08-27 1983-03-10 Deutsche Solvay-Werke Gmbh, 5650 Solingen "METHOD AND DEVICE FOR THE PRODUCTION OF PLASTIC PANELS, FILMS, COATINGS, STRIPS, RODS, MOLDED PARTS, OBJECTS OR PROFILES OF HIGH MECHANICAL STRENGTH FROM THERMOPLASTICS"
DE3578399D1 (en) * 1984-04-13 1990-08-02 Nat Res Dev PROCESS FOR DEFORMING IN A SOLID STATE.
WO1989000493A1 (en) * 1987-07-10 1989-01-26 The Broken Hill Proprietary Company Limited Oriented polymer articles
GB2207436B (en) * 1987-07-24 1991-07-24 Nat Research And Dev Corp The Solid phase deformation process
US4882230A (en) * 1987-10-30 1989-11-21 Kimberly-Clark Corporation Multilayer polymeric film having dead bend characteristics
KR890017063A (en) * 1988-05-04 1989-12-15 제이.유.뉴컴 Injection process and device
US5169587A (en) * 1990-06-15 1992-12-08 Symplastics Limited Process for extruding large oriented polymer shapes
US5204045A (en) * 1990-06-15 1993-04-20 Symplastics Limited Process for extruding polymer shapes with smooth, unbroken surface
JPH06114507A (en) * 1992-10-09 1994-04-26 Nippon Steel Corp Brushing device for continuous casting roll
GB9522477D0 (en) 1995-11-02 1996-01-03 Howmedica Method of improving the wear quality of ultra-high molecular weight polyethylene

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1031957B (en) * 1956-03-17 1958-06-12 Huels Chemische Werke Ag Process for the non-cutting deformation of polyethylene
BE576348A (en) * 1958-03-04
DE1264750B (en) * 1965-09-03 1968-03-28 Bayer Ag Use of certain trioxane copolymers for extrusion or deep drawing
NL6605242A (en) * 1966-04-20 1967-10-23
US3733383A (en) * 1970-07-09 1973-05-15 Ici Ltd Deformation of polymeric materials
JPS5017106B1 (en) * 1970-12-16 1975-06-18
GB1382697A (en) * 1971-10-05 1975-02-05 Sanyo Kokusaku Pulp Co Method for producing a thermoplastic synthetic polymer film
JPS5213230B2 (en) * 1972-10-31 1977-04-13

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294356A (en) * 1988-09-30 1990-04-05 Asahi Chem Ind Co Ltd Polyethylene microporous film for lithium battery separator

Also Published As

Publication number Publication date
GB1480479A (en) 1977-07-20
JPS5034353A (en) 1975-04-02
JPH0572250B2 (en) 1993-10-08
IT1014402B (en) 1977-04-20
DE2430772A1 (en) 1975-01-23
FR2234982B1 (en) 1978-03-24
FR2234982A1 (en) 1975-01-24
JPH02192927A (en) 1990-07-30
DE2430772C2 (en) 1984-11-29

Similar Documents

Publication Publication Date Title
JPS5964339A (en) Oriented polymer
EP0161802B1 (en) Solid phase deformation process
Capaccio et al. The drawing behavior of linear polyethylene. I. Rate of drawing as a function of polymer molecular weight and initial thermal treatment
US4569983A (en) Polymer materials
US5049347A (en) Method for producing doubly oriented polymers
JPH0661813B2 (en) Extrusion method
JPS62183326A (en) Method and device for manufacturing biaxial oriented polymersheet and polymer sheet manufactured by said method
US3962205A (en) Polymer materials
CN1578720B (en) Process for manufacturing a shaped part of ultra high molecular weight polyethylene
US3642976A (en) Solid phase hydrostatic extrusion of a filled thermoplastic billet to produce orientation
US3108851A (en) Method of biaxially stretching thermoplastic material
Jarecki et al. Ultra-high modulus polyethylene. 1 Effect of drawing temperature
US6207091B1 (en) Process for producing the drawn molded article of a fluoroplastic
JPS6216813B2 (en)
Lu et al. The anisotropy of slow crack growth in polyethylene pipes
AU616557B2 (en) Process for the preparation of fibers of stereoregular polystyrene
US8262976B2 (en) Solid state deformation processing of crosslinked high molecular weight polymeric materials
US2183602A (en) Fabricating vjntlidene chloride
Porter et al. Uniaxial extension and order development in flexible chain polymers
US5171815A (en) Method for producing doubly oriented polymers
JPS6312767B2 (en)
Inoue et al. Hydrostatic extrusion of amorphous polymers and properties of extrudates
JPH0250817A (en) Method and device for manufacturing plastic continuum
Yeh et al. Drawing properties of ultrahigh molecular weight polyethylene fibers prepared at varying formation temperatures
Kanamoto et al. Solid‐state coextrusion of high‐density polyethylene. I. Effects of geometric factors