JPH0572250B2 - - Google Patents

Info

Publication number
JPH0572250B2
JPH0572250B2 JP1205547A JP20554789A JPH0572250B2 JP H0572250 B2 JPH0572250 B2 JP H0572250B2 JP 1205547 A JP1205547 A JP 1205547A JP 20554789 A JP20554789 A JP 20554789A JP H0572250 B2 JPH0572250 B2 JP H0572250B2
Authority
JP
Japan
Prior art keywords
polymer
molecular weight
average molecular
polyethylene
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1205547A
Other languages
Japanese (ja)
Other versions
JPH02192927A (en
Inventor
Makumiran Uoarudo Iian
Jefurii Gibuson Aasaa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BTG International Ltd
Original Assignee
British Technology Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British Technology Group Ltd filed Critical British Technology Group Ltd
Publication of JPH02192927A publication Critical patent/JPH02192927A/en
Publication of JPH0572250B2 publication Critical patent/JPH0572250B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/30Drawing through a die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2059/00Use of polyacetals, e.g. POM, i.e. polyoxymethylene or derivatives thereof, as moulding material

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリマーの延伸成形体、とくに改良さ
れた物理的性質を有する配向したポリマー(以下
配向ポリマーと称す。)に関する。 ポリマーに固体的変形を生じさせる方法につい
てはよく知られている。例えばポリマーをシリン
ダー中で滑動するピストンまたはラムを用い、融
点以下の温度でダイスから押出すと、ある配向度
を有する押出成形品が得られる。この配向は押出
成形品の機械的性質を改良することになる。更に
均一な配向性は静水圧押圧によつて得ることがで
き、この場合にはポリマーを静水圧により融点以
下の温度でダイスを通して流出せしめればよい。 しかしながら、これらの方法では高いヤング率
を有するポリマーを得るには限界があることが知
られている。 6以上の自然延伸比を有する配向可能なポリマ
ーに固体的変形処理を施すと物理的性質を改良し
た配向性ポリマー物質を提供することができる。 本明細書において「固体的変形」と言う語は、
ポリマーを融点以下の温度で加圧下に変形するこ
とを意味し、押出しや圧延などの処理を含むもの
である。ただし、とくに静水圧押圧の適用が好ま
しいので、この観点より以下便宜上これに限定し
て説明を行うが、他の成形方法、例えばピスト
ン、ラム、ローリングなども採用し得ることは当
然に理解されるべきである。 本発明はまた最小外寸0.25mm以上、ヤング率3
×1010N/m2以上の延伸高密度ポリエチレン物体
を供給するものである。 本発明は、分子配向が固体的変形によつて惹起
されるような全ての半結晶性ポリマーに適用する
ことができる。実質上直鎖ポリマー、即ちポリマ
ー単位1000個に1つ以下の分岐を有するポリマー
が好ましい。特に高密度ポリエチレンで良い結果
が得られる。 ここに高密度ポリエチレンとは、実質上直線の
エチレンホモポリマーまたはエチレンを重量で少
なくとも95%含有しているコポリマーであつて、
密度が0.85〜1.0g/cm3のもの(例えば、遷移金属
触媒の存在下でエチレンを重合させたもののごと
く、ブリテイツシユ・スタンダード・スペシフイ
ケイシヨンNo.3412(1966)にもとづいて調製した
試料を同じくプリテイツシユ・スタンダード・ス
ペシフイケイシヨンNo.2782(1970)記載の方法で
測定)を言う。 ポリマーの自然延伸比は試料の最初の長さに対
することを自由に延伸して得られる最長の長さの
比または延伸前後の試料の断面積比のいずれかと
して定義できる。高密度ポリエチレンに対して
は、例えば試料を75℃、90秒間、10cm/分の割合
でインストロン引張試験機で延伸することにより
決められる。ポリマーの自然延伸比はその重量平
均分子量w、数平均分子量nおよび最初の形
態に依存する。 ポリマーの重量平均分子量は好ましくは200000
以下、最も好ましくは50000〜150000、数平均分
子量は好ましくは20000以下、最も好ましくは
5000〜15000である。更にポリマーが比較的狭い
分子量分布を有し、かつn>104のときw/
Mnが8以下、好ましくは6以下であり、n<
104のときw/nが20以下、好ましくは15以
下であるのがよい。 実際上、重量平均分子量10.1×104、数平均分
子量6−2×103のリジデツクス50(Rigidex50;
ビー・ピ・ケミカルス・リミテツド製ポリエチレ
ン重合体)を用いることにより卓越した効果が得
られる。なお、本明細書で引用する分了量はゲル
パーミエイシヨンクロマトグラフイーで測定した
ものである。 高密度ポリエチレンにつき、好ましいポリマー
はメルトフロー値が0.1〜16、特に2.5〜7.5のもの
である。 ポリマーの形態もまた自然延伸比に影響し、実
質上断面を横切つて一定の形態を有するポリマー
が好ましい。しかしながら静水圧押出に用いられ
るビレツトの如く断面が比較的厚いものでは、溶
融状態からポリマーを冷却する速度を変えること
によつては形態を十分改良することは不可能であ
る。冷却速度は、一般には物質の厚さとポリマー
の熱伝導性に依存し、多くの場合0.1〜10℃/分
程度の低速度であつてよい。これより速い速度で
冷却すると、一般には断面を横切つて望ましくな
い不均一な結晶構造が生ずる。周囲の条件にあわ
せて、通常の冷却速度で溶融ポリマーを冷却し、
適当な分子量を選定して、均一な結晶構造を得る
のがよい。本発明に使用するに適した高い自然延
比を有するポリマーを製造する方法には、例例え
ば圧縮成形、溶融鋳造、押出、押出成形などが包
含される。 分子量や熱処理の適当な選定によつて非常に高
い自然延伸比を得ることができる。好ましくはポ
リマーの自然延伸比は10以上であり、たとえば高
密度ポリエチレンの自然延伸比は20以上、場合に
よつては38のものも得られる。 本発明にもとづく好ましい方法は、例えば静水
圧下でダイスのオリフイスを通してポリマーを押
出すことである。たとえば棒状押出の場合には、
押出機のコニカルダイスに対し液密となるようポ
リマー・ビレツトの端を機械にかける。加圧下水
圧流体をビレツトの周囲に導入し、ダイ・オリフ
イスを通してポリマーを押圧し、押出棒を形成せ
しめる静水圧は約0.2〜3キロパールの範囲が好
ましい。 押圧ポリマーの配向性、即ち物理的性質は、変
形比、即ち押出後の断面積に対する押出前の断面
積の比率の増加にともなつて改良されることがわ
かる。得られる変形比には限界がある。この限界
値に近づくにつれ、付加圧力に対する押出速度は
実用不可能な低い値となる。このような条件のも
とでは、更に圧力を増加しても押出速度は上昇せ
ず、結局的には生成物が破砕することになろう。
押出速度が経済的でない値まで低下したときの限
界変形比は等方性ポリマーの自然延伸比と関連が
ある。変形比が約10まで、適用ポリマーによつて
は10〜25のものを使用すると良い結果が得られ
る。 低い変形比の場合には、押出成形体がダイスの
オリフイスを出た後、膨張し、変形化を制限する
と共に配向度を低下させる傾向が認められる。こ
の現象は押圧成形体に引張引取力を加えることに
より小さくすることができる。この引張引取力は
通常少くとも0.01キロパールで、押出物の引張強
度によつてはそれよりかなり大きくても良い。 しかしながら変形比が8〜10の範囲以上にポリ
マーを押出したときは、膨張は通常生じないし、
押出生成物をまつすぐにしておくために使用する
以外引張引取は必要でない。 押出温度は用いるポリマーの種類によつて或る
程度決定されるが、一般にはポリマーの融点の50
℃以内である。高密度ポリエチレンの押圧温度は
80℃から融点までの範囲である。 本発明の方法は、従来得られなかつた物理的性
質を備えた配向ポリマーの製造を可能にし、とり
わけ、押圧断面で非常に高い伸長率を備えた配向
ポリマーを得ることを可能にする。 例えば本発明は、最小外寸2.5mm以上、ヤング
率3.5×1010N/m2以上を有する延伸高密度ポリエ
チレン物体の製造を可能にする。 本明細書において、ヤング率は伸び率10-3、近
似伸び速度3×10-3MIN-1、温度21℃において
伸び計にかけたときの割線モジユラスとして定義
される。 本発明によつて得られる高モジユラスポリエチ
レン物体は通常透明であり、100℃以下の温度で
の熱安定性を改良することができる。これらは構
造体として用いることができ、特に管状のものを
作るのに適している。 変形前に粒状または繊維状の充填剤をポリマー
に配合することにより押出ポリマーのヤング率を
一層改良することもできる。 下記実施例により本発明を更に具体的に説明す
る。 実施例 1 本実施例は本発明に従つて高い自然延伸比を有
するポリエチレンから高い伸長率を有するポリエ
チレン棒を製造する場合の例であつて、比較のた
め低い自然延伸比のポリエチレンから同様の棒を
製造する場合を併記する。 リジデツクス50は次の物理的性質を有する市販
の高密度ポリエチレンである: 密 度 0.96 重量平均分子量 10.×104 数平均分子量 6.2×103 自然延伸比(160℃から急冷) 10 引張弾性率(Extentional modulus)
1.6×109N/m2(等方性) 本物質のビレツトを圧縮成形し、室温に冷却す
る。冷後のビレツトの比重は0.973であり、ポリ
マーの自然延伸比は23である。このビレツトをを
セミアングル15゜、孔径2.54mmのダイスにより静
水圧1.3kパール、100℃で静水圧押出する。引張
引取力は75Nである。 変形比16のものが得られ、押出棒の配向度は複
屈折率が0.060、引張弾性率が2.7×1010N/m2
あつて等方性材料に比べ約18倍になることがわか
る。 比較のため、次の物理的性質を有する他の市販
高密度ポリエチレン:ホスタレン(Hostalen)
GURを用いてこの試験を繰返した: 密 度 0.94 重量平均分子量 3.5−4×106 数平均分子量 100000以下 自然延伸比 4 引張弾性率 1.2×108N×m2(等方性) 得られた最大変形比5.0、複屈接率0.040、引張
弾性率1.2×108N/m2であつて、このことは分子
配向度が達成されても自然延伸比が6以下のポリ
エチレンを用いたのでは剛性において改良されな
いことを示している。 実施例 2 本実施例はポリエチレンポリマーおよびコポリ
マーから高い引張弾性率の押出生成物を製造する
場合の例である。 ポリマーのビレツトを溶融鋳造し、0.1〜10
℃/分の割合でゆつくり室温まで冷却する。この
ビレツトは実施例1に記載の方法で100℃、静水
圧下、0.001cm/分の割合で押出す。結果を表1
に示す。自然延伸比は、溶融物から約1℃/分の
割合で冷却したシートから切り取つた試料を延伸
して測定する。
The present invention relates to stretched polymer bodies, particularly oriented polymers having improved physical properties (hereinafter referred to as oriented polymers). Methods for producing solid-state deformations in polymers are well known. For example, if a polymer is extruded through a die using a piston or ram sliding in a cylinder at a temperature below its melting point, an extrudate with a certain degree of orientation is obtained. This orientation will improve the mechanical properties of the extrudate. More uniform orientation can be obtained by isostatic pressing, in which case the polymer is forced to flow through a die under hydrostatic pressure at a temperature below its melting point. However, it is known that these methods have limitations in obtaining polymers with high Young's modulus. Orientable polymers having a natural stretch ratio of 6 or more can be subjected to solid state deformation treatments to provide oriented polymeric materials with improved physical properties. In this specification, the term "solid deformation" means
It means deforming a polymer under pressure at a temperature below its melting point, and includes processes such as extrusion and rolling. However, since it is particularly preferable to apply hydrostatic pressing, the following explanation will be limited to this for convenience, but it is naturally understood that other forming methods, such as piston, ram, and rolling, may also be employed. Should. The present invention also has a minimum external dimension of 0.25 mm or more and a Young's modulus of 3.
×10 10 N/m 2 or more drawn high-density polyethylene objects are supplied. The invention is applicable to all semicrystalline polymers in which molecular orientation is induced by solid-state deformation. Substantially linear polymers, ie, polymers having no more than one branch per 1000 polymer units, are preferred. Particularly good results are obtained with high-density polyethylene. High density polyethylene is defined as a substantially linear ethylene homopolymer or copolymer containing at least 95% ethylene by weight;
A sample prepared according to British Standard Specification No. 3412 (1966) with a density of 0.85 to 1.0 g/ cm3 (e.g., ethylene polymerized in the presence of a transition metal catalyst) (measured using the method described in Prefecture Standard Specification No. 2782 (1970)). The natural stretch ratio of a polymer can be defined as either the ratio of the longest length obtained by free stretching to the initial length of the sample, or the ratio of the cross-sectional area of the sample before and after stretching. For high-density polyethylene, it is determined, for example, by stretching the sample at 75° C. for 90 seconds at a rate of 10 cm/min in an Instron tensile tester. The natural stretch ratio of a polymer depends on its weight average molecular weight w, number average molecular weight n and initial morphology. The weight average molecular weight of the polymer is preferably 200000
below, most preferably 50,000 to 150,000, number average molecular weight preferably below 20,000, most preferably
5000-15000. Furthermore, when the polymer has a relatively narrow molecular weight distribution and n> 104 , w/
Mn is 8 or less, preferably 6 or less, and n<
When 104 , w/n is preferably 20 or less, preferably 15 or less. In practice, Rigidex 50 has a weight average molecular weight of 10.1×10 4 and a number average molecular weight of 6-2×10 3 .
Excellent results can be obtained by using polyethylene polymer manufactured by B.P. Chemicals Limited. Incidentally, the dissolution amounts cited in this specification are those measured by gel permeation chromatography. For high density polyethylene, preferred polymers are those with melt flow values of 0.1 to 16, especially 2.5 to 7.5. The morphology of the polymer also affects the natural draw ratio, and polymers having a substantially constant morphology across the cross section are preferred. However, for billets with relatively thick cross-sections, such as billets used in isostatic extrusion, it is not possible to improve the morphology sufficiently by changing the rate at which the polymer is cooled from the molten state. The cooling rate generally depends on the thickness of the material and the thermal conductivity of the polymer, and can often be as low as 0.1-10°C/min. Cooling at faster rates generally results in an undesirable non-uniform crystal structure across the cross section. Cool the molten polymer at a normal cooling rate depending on the ambient conditions,
It is preferable to select an appropriate molecular weight to obtain a uniform crystal structure. Methods for producing polymers with high natural draw ratios suitable for use in the present invention include, for example, compression molding, melt casting, extrusion, extrusion molding, and the like. By appropriate selection of molecular weight and heat treatment, very high natural draw ratios can be obtained. Preferably, the natural stretch ratio of the polymer is 10 or more; for example, the natural stretch ratio of high-density polyethylene is 20 or more, and in some cases, a natural stretch ratio of 38 can be obtained. A preferred method according to the invention is to extrude the polymer through an orifice of a die, for example under hydrostatic pressure. For example, in the case of rod extrusion,
Machine the end of the polymer billet so that it is liquid tight to the conical die of the extruder. The hydrostatic pressure at which pressurized hydraulic fluid is introduced around the billet and forces the polymer through the die orifice to form the extruded rod is preferably in the range of about 0.2 to 3 kilopars. It can be seen that the orientation, ie, the physical properties, of the pressed polymer improves with increasing deformation ratio, ie, the ratio of the cross-sectional area before extrusion to the cross-sectional area after extrusion. There is a limit to the deformation ratio that can be obtained. As this limit value is approached, the extrusion speed relative to the applied pressure becomes an impractically low value. Under these conditions, further increases in pressure will not increase the extrusion rate and will eventually result in product fragmentation.
The critical strain ratio when the extrusion speed is reduced to an uneconomical value is related to the natural stretch ratio of isotropic polymers. Good results are obtained with deformation ratios up to about 10, and depending on the applied polymer, 10 to 25. At low deformation ratios, the extrudate tends to expand after exiting the die orifice, limiting deformation and reducing the degree of orientation. This phenomenon can be reduced by applying a tensile pulling force to the pressed body. This tensile pull-off force is usually at least 0.01 kilopar and may be considerably greater depending on the tensile strength of the extrudate. However, when the polymer is extruded to a deformation ratio of 8 to 10 or higher, expansion usually does not occur;
No tensile pulling is necessary except for use in keeping the extrudate lashed. The extrusion temperature is determined to some extent by the type of polymer used, but is generally 50° below the melting point of the polymer.
Within ℃. The pressing temperature of high density polyethylene is
It ranges from 80°C to the melting point. The method of the invention makes it possible to produce oriented polymers with physical properties not previously available, and in particular makes it possible to obtain oriented polymers with very high elongation in the pressed cross section. For example, the present invention allows the production of stretched high density polyethylene objects having a minimum external dimension of 2.5 mm or more and a Young's modulus of 3.5×10 10 N/m 2 or more. In this specification, Young's modulus is defined as the secant modulus when applied to an extensometer at an elongation rate of 10 -3 , an approximate elongation rate of 3×10 -3 MIN -1 and a temperature of 21°C. The high modulus polyethylene bodies obtained according to the invention are usually transparent and can have improved thermal stability at temperatures below 100°C. These can be used as structures and are particularly suitable for making tubular objects. The Young's modulus of the extruded polymer can also be further improved by incorporating particulate or fibrous fillers into the polymer before deformation. The present invention will be explained in more detail with reference to the following examples. Example 1 This example is an example of manufacturing a polyethylene rod having a high elongation rate from polyethylene having a high natural draw ratio according to the present invention, and for comparison, a similar rod was manufactured from polyethylene having a low natural draw ratio. Also include the case where the product is manufactured. Rigidex 50 is a commercially available high-density polyethylene with the following physical properties: Density 0.96 Weight average molecular weight 10.×10 4 Number average molecular weight 6.2×10 3 Natural stretch ratio (quenched from 160°C) 10 Tensile modulus ( extensional modulus)
1.6×10 9 N/m 2 (isotropic) A billet of this material is compression molded and cooled to room temperature. The specific gravity of the billet after cooling is 0.973, and the natural stretch ratio of the polymer is 23. This billet is hydrostatically extruded using a die with a semi-angle of 15° and a hole diameter of 2.54 mm at a hydrostatic pressure of 1.3 k perl and 100°C. The tensile pulling force is 75N. A deformation ratio of 16 was obtained, and the degree of orientation of the extruded rod has a birefringence of 0.060 and a tensile modulus of 2.7×10 10 N/m 2 , which is approximately 18 times higher than that of an isotropic material. . For comparison, another commercially available high density polyethylene with the following physical properties: Hostalen
This test was repeated using GUR: Density 0.94 Weight average molecular weight 3.5-4×10 6 Number average molecular weight 100000 or less Natural stretch ratio 4 Tensile modulus 1.2×10 8 N×m 2 (isotropic) Obtained The maximum deformation ratio is 5.0, the birefringence tangent is 0.040, and the tensile modulus is 1.2×10 8 N/m 2 , which means that even if the degree of molecular orientation is achieved, the natural stretch ratio is less than 6. This shows that there is no improvement in stiffness. Example 2 This example illustrates the production of high tensile modulus extrudates from polyethylene polymers and copolymers. Melt cast polymer billet, 0.1~10
Slowly cool to room temperature at a rate of °C/min. This billet is extruded as described in Example 1 at 100 DEG C. under hydrostatic pressure at a rate of 0.001 cm/min. Table 1 shows the results.
Shown below. The natural stretch ratio is measured by stretching a sample cut from a sheet that has been cooled from the melt at a rate of about 1° C./min.

【表】 上表からエチレンホモポリマーは延伸率に非常
に高い結果を与え、エチレンコポリマーリジデツ
クス2000は側鎖を有するため低い結果を与えるこ
とが理解される。 以下本発明の技術的範囲に包含される具体的な
態様を例示する。 1 6以上の自然延伸比を有する配向可能なポリ
マーに固体的変形処理を施すことを特徴とする
配向ポリマーの製造法。 2 固体的変形処理を静水圧押圧によつて行う上
記1記載の方法。 3 ポリマーが実質上直鎖のポリマーである上記
1または2記載の方法。 4 ポリマーとしてビニルポリマーを使用する上
記1〜3記載の方法。 5 ポリマーとして高密度ポリエチレンを使用す
る上記1〜4記載の方法。 6 ポリマーとしてポリオキシメチレンを使用す
る上記1〜4記載の方法。 7 ポリマーが重量平均分子量50000〜150000を
有する上記1〜6記載の方法。 8 ポリマーが数平均分子量5000〜15000を有す
る上記1〜7記載の方法。 9 ポリマーの数平均分子量(n)に対する重
量平均分子量の比がn>104のときw/
n6以下、Mn<104のときw/n15以下であ
る上記7〜8記載の方法。 10 ポリマーがメルトフロー値0.1〜16を有する
上記5または6記載の方法。 11 ポリマーが断面を横切つて実質上一定の形態
を有する上記1〜10記載の方法。 12 ポリマーを固体的変形前に、融点以上の温度
に加熱し、次いで0.1〜10℃/分の割合で冷却
する上記1〜11記載の方法。 13 ポリマーを圧縮成形、溶融鋳造、押出または
押圧成形によつて製造する上記12記載の方法。 14 ポリマーが自然延伸比10以上である上記1〜
13記載の方法。 15 ポリマーが0.2〜3.0のキロバールの静水圧
下、ダイス・オリフイスを通して押し出される
上記1〜14記載の方法。 16 ポリマーが10〜25の変形比を与えるよう変形
される上記1〜15記載の方法。 17 実質上実施例1の記載したごとく操作する上
記1〜16記載の方法。 18 実質上実施例2または3に記載したごとく操
作する上記1〜16記載の方法。 19 実質上上に記載した如く配向ポリマーを製造
する方法。 20 上記1〜19の方法で製造された配向ポリマ
ー。 21 最小外寸0.25mm以上、ヤング率3×1010N/
m2以上を有する延伸高密度ポリエチレン物体。 22 ポリエチレンが重量平均分子量50000〜
150000を有する上記21記載のポリエチレン物
体。 23 ポリエチレンが数平均分子量5000〜15000を
有する上記21または22記載のポリエチレン物
体。 24 ポリエチレンの数平均分子量(n)に対す
る重量平均分子量(n)の比がn>104
ときw/n6以下、n<104のときw/
Mn15以下である上記21〜23記載のポリエチレ
ン物体。 25 ポリエチレンのメルトフローインデツクスが
0.1〜16の上記21〜24記載のポリエチレン物体。 26 最小外寸2.5mm以上、ヤング率3.5×1010N/
m2以上を有する上記21〜25に記載のポリエチレ
ン物体。 27 実質上、上記に該当するポリエチレン物体。 28 最小外寸0.25mm以上、ヤング率1×1010N/
m2以上を有する延伸ポリオキシメチレン物体。 29 実質上、上記に該当するポリオキシメチレン
物体。
[Table] From the above table, it can be seen that ethylene homopolymer gives very high results in stretching ratio, while ethylene copolymer Rigidex 2000 gives low results because it has side chains. Specific embodiments falling within the technical scope of the present invention will be illustrated below. 1. A method for producing an oriented polymer, which comprises subjecting an orientable polymer having a natural stretch ratio of 16 or more to a solid-state deformation treatment. 2. The method according to 1 above, wherein the solid deformation treatment is performed by hydrostatic pressing. 3. The method according to 1 or 2 above, wherein the polymer is a substantially linear polymer. 4. The method described in 1 to 3 above, wherein a vinyl polymer is used as the polymer. 5. The method described in 1 to 4 above, wherein high density polyethylene is used as the polymer. 6. The method described in 1 to 4 above, wherein polyoxymethylene is used as the polymer. 7. The method described in 1 to 6 above, wherein the polymer has a weight average molecular weight of 50,000 to 150,000. 8. The method described in 1 to 7 above, wherein the polymer has a number average molecular weight of 5,000 to 15,000. 9 When the ratio of the weight average molecular weight to the number average molecular weight (n) of the polymer is n> 104 , w/
9. The method described in 7 to 8 above, wherein n6 or less, and when Mn< 104 , w/n15 or less. 10. The method according to 5 or 6 above, wherein the polymer has a melt flow value of 0.1 to 16. 11. The method according to any one of 1 to 10 above, wherein the polymer has a substantially constant morphology across the cross section. 12. The method described in 1 to 11 above, wherein the polymer is heated to a temperature above its melting point and then cooled at a rate of 0.1 to 10°C/min before solid-state deformation. 13. The method according to 12 above, wherein the polymer is produced by compression molding, melt casting, extrusion or press molding. 14 1 to 1 above, wherein the polymer has a natural stretch ratio of 10 or more
Method described in 13. 15. A method according to paragraphs 1 to 14, wherein the polymer is extruded through a die orifice under hydrostatic pressure of 0.2 to 3.0 kilobars. 16. The method according to 1 to 15 above, wherein the polymer is deformed to give a deformation ratio of 10 to 25. 17. The method of claims 1 to 16 above, operating substantially as described in Example 1. 18. The method of claims 1 to 16 above, operating substantially as described in Example 2 or 3. 19 A method of making an oriented polymer substantially as described above. 20 An oriented polymer produced by the methods 1 to 19 above. 21 Minimum outer dimension 0.25mm or more, Young's modulus 3×10 10 N/
Stretched high-density polyethylene objects with m 2 or more. 22 Polyethylene has a weight average molecular weight of 50,000~
150,000 polyethylene object according to 21 above. 23. The polyethylene object according to 21 or 22 above, wherein the polyethylene has a number average molecular weight of 5,000 to 15,000. 24 When the ratio of weight average molecular weight (n) to number average molecular weight (n) of polyethylene is n> 104 , w/n6 or less, when n< 104 , w/
24. The polyethylene object described in 21 to 23 above, which has a Mn of 15 or less. 25 Polyethylene melt flow index
0.1-16 polyethylene object as described in 21-24 above. 26 Minimum outer dimension 2.5mm or more, Young's modulus 3.5×10 10 N/
26. The polyethylene object as described in 21 to 25 above, having a polyethylene object having a diameter of at least m2 . 27 Polyethylene objects substantially as described above. 28 Minimum outer dimension 0.25mm or more, Young's modulus 1×10 10 N/
Stretched polyoxymethylene bodies having m 2 or more. 29 Polyoxymethylene objects substantially as described above.

Claims (1)

【特許請求の範囲】[Claims] 1 重量平均分子量が200000より小、数平均分子
量が20000より小、重量平均分子量wの数平均
分子量nに対する比率がn>104のとき
w/n<8、n104のときMw/Mn20で
あり、ヤング率が3×1010N/m2より大である高
密度ポリエチレン延伸成形体。
1 When the weight average molecular weight is less than 200,000, the number average molecular weight is less than 20,000, and the ratio of the weight average molecular weight w to the number average molecular weight n is n> 104 , w/n<8, and when n104 , Mw/Mn20. , a high-density polyethylene stretched molded body having a Young's modulus of greater than 3×10 10 N/m 2 .
JP1205547A 1973-06-28 1989-08-07 Polymer drawn molded product Granted JPH02192927A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB30823/73A GB1480479A (en) 1973-06-28 1973-06-28 Process for the production of polymer materials
GB30823/73 1973-06-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58133564A Division JPS5964339A (en) 1973-06-28 1983-07-20 Oriented polymer

Publications (2)

Publication Number Publication Date
JPH02192927A JPH02192927A (en) 1990-07-30
JPH0572250B2 true JPH0572250B2 (en) 1993-10-08

Family

ID=10313696

Family Applications (3)

Application Number Title Priority Date Filing Date
JP49073749A Pending JPS5034353A (en) 1973-06-28 1974-06-26
JP58133564A Pending JPS5964339A (en) 1973-06-28 1983-07-20 Oriented polymer
JP1205547A Granted JPH02192927A (en) 1973-06-28 1989-08-07 Polymer drawn molded product

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP49073749A Pending JPS5034353A (en) 1973-06-28 1974-06-26
JP58133564A Pending JPS5964339A (en) 1973-06-28 1983-07-20 Oriented polymer

Country Status (5)

Country Link
JP (3) JPS5034353A (en)
DE (1) DE2430772C2 (en)
FR (1) FR2234982B1 (en)
GB (1) GB1480479A (en)
IT (1) IT1014402B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1506565A (en) 1974-03-05 1978-04-05 Nat Res Dev Production of polyethylene filaments
GB1568964A (en) 1975-11-05 1980-06-11 Nat Res Dev Oriented polymer materials
WO1980000550A1 (en) * 1978-09-08 1980-04-03 Bethlehem Steel Corp An oriented,semi-crystalline polymer product and method and apparatus for producing such product
DE3133897A1 (en) * 1981-08-27 1983-03-10 Deutsche Solvay-Werke Gmbh, 5650 Solingen "METHOD AND DEVICE FOR THE PRODUCTION OF PLASTIC PANELS, FILMS, COATINGS, STRIPS, RODS, MOLDED PARTS, OBJECTS OR PROFILES OF HIGH MECHANICAL STRENGTH FROM THERMOPLASTICS"
DE3578399D1 (en) * 1984-04-13 1990-08-02 Nat Res Dev PROCESS FOR DEFORMING IN A SOLID STATE.
WO1989000493A1 (en) * 1987-07-10 1989-01-26 The Broken Hill Proprietary Company Limited Oriented polymer articles
GB2207436B (en) * 1987-07-24 1991-07-24 Nat Research And Dev Corp The Solid phase deformation process
US4882230A (en) * 1987-10-30 1989-11-21 Kimberly-Clark Corporation Multilayer polymeric film having dead bend characteristics
JPH0216024A (en) * 1988-05-04 1990-01-19 Uk Atomic Energy Authority Extrusion molding method and device for material composed of thermoplastic polymer
JP2794179B2 (en) * 1988-09-30 1998-09-03 旭化成工業株式会社 Polyethylene microporous membrane and lithium battery separator
US5169587A (en) * 1990-06-15 1992-12-08 Symplastics Limited Process for extruding large oriented polymer shapes
US5204045A (en) * 1990-06-15 1993-04-20 Symplastics Limited Process for extruding polymer shapes with smooth, unbroken surface
JPH06114507A (en) * 1992-10-09 1994-04-26 Nippon Steel Corp Brushing device for continuous casting roll
GB9522477D0 (en) 1995-11-02 1996-01-03 Howmedica Method of improving the wear quality of ultra-high molecular weight polyethylene

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4967943A (en) * 1972-10-31 1974-07-02

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1031957B (en) * 1956-03-17 1958-06-12 Huels Chemische Werke Ag Process for the non-cutting deformation of polyethylene
BE576348A (en) * 1958-03-04
DE1570601A1 (en) * 1965-09-03 1970-02-05 Bayer Ag Process for the preparation of nitrogen-containing copolymers of formaldehyde
NL6605242A (en) * 1966-04-20 1967-10-23
US3733383A (en) * 1970-07-09 1973-05-15 Ici Ltd Deformation of polymeric materials
JPS5017106B1 (en) * 1970-12-16 1975-06-18
GB1382697A (en) * 1971-10-05 1975-02-05 Sanyo Kokusaku Pulp Co Method for producing a thermoplastic synthetic polymer film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4967943A (en) * 1972-10-31 1974-07-02

Also Published As

Publication number Publication date
FR2234982B1 (en) 1978-03-24
GB1480479A (en) 1977-07-20
IT1014402B (en) 1977-04-20
JPS5034353A (en) 1975-04-02
DE2430772C2 (en) 1984-11-29
JPS5964339A (en) 1984-04-12
FR2234982A1 (en) 1975-01-24
JPH02192927A (en) 1990-07-30
DE2430772A1 (en) 1975-01-23

Similar Documents

Publication Publication Date Title
JPH0572250B2 (en)
US4629650A (en) Process for producing molded thermoplastic resin
KR100876243B1 (en) Method of Making Cross-Directional Oriented Films of Potential Elasticity
EP0161802B1 (en) Solid phase deformation process
JPH0149611B2 (en)
Gibson et al. The manufacture of ultra-high modulus polyethylenes by drawing through a conical die
US5695698A (en) Production of oriented plastics by roll-drawing
US6207091B1 (en) Process for producing the drawn molded article of a fluoroplastic
US5006296A (en) Process for the preparation of fibers of stereoregular polystyrene
WO2002090082A1 (en) Polyolefin sheet
GB1592936A (en) High modulus filaments
JP3419512B2 (en) Molding method of polyolefin resin composition
EP0285291B1 (en) Method of manufacturing polyacetal resin film
EP0272015A2 (en) Polymer forming process
Bigg et al. Warm hydrostatic extrusion of polyethylene
EP0172750A2 (en) Porous structures
Anton et al. Extrusion processing of ultra-high molecular weight polyethylene; a new method for the production of high performance structures
JPH0250817A (en) Method and device for manufacturing plastic continuum
JPH08132521A (en) Production of fluoroplastic stretched article
JP3688428B2 (en) Production method of difficult-to-mold resin sheet
JPH06102847B2 (en) Plastic wire and method for producing the same
Kanamoto et al. Solid‐state coextrusion of high‐density polyethylene. I. Effects of geometric factors
Ariyama et al. Thermal properties and morphology of hydrostatically extruded polypropylene
JPH0376816B2 (en)
Legros et al. Ram extrusion of high‐density polyethylene and polypropylene in solid state: Process conditions and properties