JP5219099B2 - Battery separator material, battery separator manufacturing method, battery separator, and secondary battery - Google Patents

Battery separator material, battery separator manufacturing method, battery separator, and secondary battery Download PDF

Info

Publication number
JP5219099B2
JP5219099B2 JP2010134658A JP2010134658A JP5219099B2 JP 5219099 B2 JP5219099 B2 JP 5219099B2 JP 2010134658 A JP2010134658 A JP 2010134658A JP 2010134658 A JP2010134658 A JP 2010134658A JP 5219099 B2 JP5219099 B2 JP 5219099B2
Authority
JP
Japan
Prior art keywords
battery separator
battery
porous membrane
separator
polyurethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010134658A
Other languages
Japanese (ja)
Other versions
JP2012003841A5 (en
JP2012003841A (en
Inventor
明 浅野
正樹 折内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiramatsu Sangyo Co Ltd
Original Assignee
Hiramatsu Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiramatsu Sangyo Co Ltd filed Critical Hiramatsu Sangyo Co Ltd
Priority to JP2010134658A priority Critical patent/JP5219099B2/en
Publication of JP2012003841A publication Critical patent/JP2012003841A/en
Publication of JP2012003841A5 publication Critical patent/JP2012003841A5/ja
Application granted granted Critical
Publication of JP5219099B2 publication Critical patent/JP5219099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Description

本発明は、特に、電池用セパレータに関する。   The present invention particularly relates to a battery separator.

二次電池は正極と負極とセパレータとで構成されている。前記セパレータは、これまで、ポリエチレン微多孔質膜またはポリプロピレン微多孔質膜を用いて構成されて来た。   The secondary battery is composed of a positive electrode, a negative electrode, and a separator. The separator has heretofore been configured using a polyethylene microporous membrane or a polypropylene microporous membrane.

特公平6−104736号公報Japanese Patent Publication No. 6-104736 特開平5−222236号公報JP-A-5-222236 特開平5−222237号公報JP-A-5-222237 特開平4−261441号公報JP-A-4-261441 特開平8−12799号公報JP-A-8-12799 特開平11−279324公報JP-A-11-279324

セパレータとして要求される物性としては、下記の如きの物性が挙げられる。   The physical properties required as a separator include the following physical properties.

機械的強度(突刺強度)が、電池の組立特性の観点から、必要である。特に、リチウムイオン二次電池用セパレータの場合には、高い機械的強度(突刺強度)が必要と言われている。   Mechanical strength (puncture strength) is necessary from the viewpoint of battery assembly characteristics. In particular, in the case of a lithium ion secondary battery separator, it is said that high mechanical strength (puncture strength) is required.

高いイオン透過性が、電池の出力特性の観点から、必要である。尚、電池の出力特性とは、電流特性(例えば、大電流での放電性能や低温での放電性能)や、寿命特性(例えば、サイクル性や高温保存特性)である。このような特性は、セパレータのイオン透過性が高い程、良好である。   High ion permeability is necessary from the viewpoint of the output characteristics of the battery. The output characteristics of the battery are current characteristics (for example, discharge performance at a large current and discharge performance at low temperature) and life characteristics (for example, cycle characteristics and high temperature storage characteristics). Such characteristics are better as the ion permeability of the separator is higher.

二次電池は、高出力、大容量化して来ている。この為、二次電池には、安全性に富むことが要求されるようになった。この安全性の観点から、セパレータには、次の特性が求められる。すなわち、電池内部が過熱した際、セパレータが溶融し、これにより電極が覆われるようになる特性である。つまり、セパレータの溶融によって電極が覆われたならば、電流が遮断される。従って、発熱が抑制され、安全性が確保される。   Secondary batteries have increased in output and capacity. For this reason, secondary batteries are required to have high safety. From the viewpoint of safety, the separator is required to have the following characteristics. That is, when the inside of the battery is overheated, the separator is melted, thereby covering the electrode. That is, if the electrode is covered by melting of the separator, the current is interrupted. Therefore, heat generation is suppressed and safety is ensured.

電気自動車、特にハイブリッド型電気自動車の電池には、高出力が求められる。高出力化の為には、イオン透過性が高いことが望まれる。その為には、セパレータ(微多孔質膜)の孔径が大きなこと、空隙率が大きなことが望まれる。しかしながら、孔径を大きくしたり、空隙率を大きくすることは、自己放電によって容量低下が起きたり、上記の発熱時における電流遮断性能が低下する欠点が生じる。   High power is required for batteries of electric vehicles, particularly hybrid electric vehicles. For high output, high ion permeability is desired. For this purpose, it is desired that the separator (microporous membrane) has a large pore size and a large porosity. However, enlarging the hole diameter or increasing the porosity causes a disadvantage that the capacity is reduced due to self-discharge or the current interruption performance during the heat generation is reduced.

電池製造の電解液注入は困難な工程である。なぜならば、電池缶内に空隙が殆ど無い為、電解液を均一・迅速に注入することが難しい。しかしながら、電解液の均一・迅速な注入も大事な要件である。   Electrolyte injection for battery manufacturing is a difficult process. Because there are almost no voids in the battery can, it is difficult to inject the electrolyte uniformly and rapidly. However, uniform and rapid injection of the electrolyte is also an important requirement.

本発明が解決しようとする課題は上記要件を満足するセパレータを提供することである。すなわち、機械的強度(突刺強度)に富み、イオン透過性に優れ、電池の出力特性、安全性、生産性に優れたセパレータを低廉なコストで提供することである。   The problem to be solved by the present invention is to provide a separator that satisfies the above requirements. That is, to provide a separator having high mechanical strength (puncture strength), excellent ion permeability, and excellent battery output characteristics, safety, and productivity at a low cost.

前記課題を解決する為の研究を鋭意推し進めて行く中に、即ち、数々の樹脂膜で作製したセパレータを非水二次電池に組み込んで前記特性を調べて行く中に、ポリウレタン多孔質膜製のセパレータはポリエチレン多孔質膜製のセパレータやポリプロピレン多孔質膜製のセパレータに比べて、遥かに優れた特長を奏するものであることを見出すに至った。   While eagerly pursuing research to solve the above problems, that is, while investigating the above characteristics by incorporating a separator made of a number of resin films into a non-aqueous secondary battery, As a result, it has been found that the separator exhibits far superior features as compared with a separator made of polyethylene porous membrane or a separator made of polypropylene porous membrane.

上記知見を基にして本発明が達成されたものである。   The present invention has been achieved based on the above findings.

すなわち、前記の課題は、
電池用セパレータの材料であって、
前記材料はポリウレタン多孔質膜である
ことを特徴とする電池用セパレータ材料によって解決される。
That is, the above problem is
A battery separator material,
The material is a battery separator material characterized in that it is a polyurethane porous membrane.

上記の電池用セパレータ材料であって、好ましくは、平均孔径が5μm以下であることを特徴とする電池用セパレータ材料によって解決される。   This battery separator material is preferably solved by a battery separator material having an average pore diameter of 5 μm or less.

上記の電池用セパレータ材料であって、好ましくは、透水量が0〜2000L/m・hr・atmであることを特徴とする電池用セパレータ材料によって解決される。 The battery separator material is preferably a battery separator material having a water permeability of 0 to 2000 L / m 2 · hr · atm.

上記の電池用セパレータ材料であって、好ましくは、透気度が50〜400secであることを特徴とする電池用セパレータ材料によって解決される。   This battery separator material is preferably solved by a battery separator material having an air permeability of 50 to 400 sec.

上記の電池用セパレータ材料であって、好ましくは、気孔率が5〜60%であることを特徴とする電池用セパレータ材料によって解決される。   This battery separator material is preferably solved by a battery separator material having a porosity of 5 to 60%.

上記の電池用セパレータ材料であって、好ましくは、突刺強度が300g以上であることを特徴とする電池用セパレータ材料によって解決される。   This battery separator material is preferably solved by a battery separator material having a puncture strength of 300 g or more.

前記の課題は、
電池用セパレータの製造方法であって、
上記のポリウレタン多孔質膜を用いて電池用セパレータを製造する
ことを特徴とする電池用セパレータの製造方法によって解決される。
The above issues are
A method for manufacturing a battery separator,
The battery separator is manufactured using the polyurethane porous membrane, and the battery separator manufacturing method is used.

前記の課題は、
電池用セパレータであって、
上記のポリウレタン多孔質膜を用いて構成されてなる
ことを特徴とする電池用セパレータによって解決される。
The above issues are
A battery separator,
It solves by the separator for batteries characterized by comprising using the above-mentioned polyurethane porous membrane.

前記の課題は、
正極と、
負極と、
上記の電池用セパレータ
とを具備してなることを特徴とする二次電池によって解決される。
The above issues are
A positive electrode;
A negative electrode,
This is solved by a secondary battery comprising the battery separator.

上記の二次電池であって、好ましくは、非水二次電池であることを特徴とする二次電池によって解決される。   The above-mentioned secondary battery, preferably a non-aqueous secondary battery, is solved by the secondary battery.

機械的強度(突刺強度)に富み、イオン透過性に優れ、電池の出力特性、安全性、生産性に優れたセパレータであって、高性能な二次電池が低廉なコストで得られる。   A separator with high mechanical strength (puncture strength), excellent ion permeability, and excellent battery output characteristics, safety, and productivity. A high-performance secondary battery can be obtained at low cost.

第1の本発明は電池用セパレータの材料である。この材料はポリウレタン多孔質膜である。   The first aspect of the present invention is a material for a battery separator. This material is a polyurethane porous membrane.

好ましいポリウレタン多孔質膜は、平均孔径が5μm以下(より好ましくは3μm以下。更に好ましくは2μm以下。特に好ましくは1μm以下。そして、より好ましくは0.01μm以上。更に好ましくは0.1μm以上。特に好ましくは0.3μm以上。)のポリウレタン多孔質膜であった。ここで、平均孔径は、水銀圧入法によって測定された値である。得られた細孔分布データから、10μm以下で 圧入体積の最も大きい点(モード径)を平均孔径とした。尚、特許文献6は、平均孔径が0.25μmよりも大きい場合には、例えばリチウムイオン二次電池用セパレータとして用いた場合、電流集中による金属リチウムの析出が起こり易いことを指摘している。ところが、驚くべきことに、ポリウレタン多孔質膜を用いた場合、0.25μmを越えるような値であっても、好ましかった。この差は、ポリウレタン多孔質膜特有の化学結合の構造や細孔構造に起因すると考えられた。   A preferred polyurethane porous membrane has an average pore size of 5 μm or less (more preferably 3 μm or less, more preferably 2 μm or less, particularly preferably 1 μm or less, more preferably 0.01 μm or more, still more preferably 0.1 μm or more, particularly. The polyurethane porous membrane was preferably 0.3 μm or more. Here, the average pore diameter is a value measured by a mercury intrusion method. From the obtained pore distribution data, the point (mode diameter) having the largest injection volume at 10 μm or less was defined as the average pore diameter. Patent Document 6 points out that when the average pore diameter is larger than 0.25 μm, for example, when used as a separator for a lithium ion secondary battery, precipitation of metallic lithium due to current concentration tends to occur. However, surprisingly, when a polyurethane porous membrane was used, even a value exceeding 0.25 μm was preferred. This difference was thought to be due to the chemical bond structure and pore structure unique to the polyurethane porous membrane.

好ましいポリウレタン多孔質膜は、気孔率が5〜60%(より好ましくは55%以下。更に好ましくは40%以下。15%以上。)のポリウレタン多孔質膜であった。ここで、気孔率は、20cm角のサンプルを用意し、その体積と重量から式[気孔率(%)=(体積(cm)−重量(g)/膜の密度)/体積(cm)×100]を用いて計算した。気孔率が小さ過ぎると、イオン等の透過性が十分ではなく、電池セパレータとしての機能が奏され難い。逆に、気孔率が大き過ぎると、機械的強度が弱いものとなってしまい、電池セパレータとしての安全性が低下した。このようなことから、上記値の気孔率のポリウレタン多孔質膜が好ましかった。 A preferred polyurethane porous membrane was a polyurethane porous membrane having a porosity of 5 to 60% (more preferably 55% or less, more preferably 40% or less, 15% or more). Here, a 20 cm square sample is prepared for the porosity, and the formula [porosity (%) = (volume (cm 3 ) −weight (g) / membrane density) / volume (cm 3 )] from the volume and weight. × 100]. If the porosity is too small, the permeability of ions and the like is not sufficient, and the function as a battery separator is difficult to be achieved. On the other hand, when the porosity is too large, the mechanical strength becomes weak and the safety as a battery separator is lowered. For this reason, a polyurethane porous membrane having the above-mentioned porosity was preferred.

好ましいポリウレタン多孔質膜は、透水量が0〜2000L/m・hr・atm(より好ましくは900L/m・hr・atm以下。更に好ましくは500L/m・hr・atm以下。もっと好ましくは200L/m・hr・atm以下。特に、50L/m・hr・atm以下。)のポリウレタン多孔質膜であった。透水量は、微多孔質膜の単位時間、単位圧力、単位面積、厚み25μm当たりの透水量である。ここで、透水量は、直径42mmのステンレス製の透液セルに多孔質膜をセットし、0.5atmの差圧で水
を濾過させ、120秒間経過した際の透水量(cm)から単位時間、単位圧力、単位面積当たりの透水量を計算し、
これに膜厚(μm)/25(μm)を乗じることによって25μm換算透水量(L/m・hr・atm)とし た。透水量が大き過ぎると、電解液の保液性が悪化し、電池の出力性能が低下した。そして、透水量が小さい程、大電流時における放電容量が大きなものであった。このようなことから、上記値の透水量のポリウレタン多孔質膜が好ましかった。
Preferred polyurethane porous membrane, the water permeability is 0~2000L / m 2 · hr · atm ( more preferably 900L / m 2 · hr · atm or less. More preferably 500L / m 2 · hr · atm or less. More preferably 200 L / m 2 · hr · atm or less, in particular 50 L / m 2 · hr · atm or less). The water permeation amount is the water permeation amount per unit time, unit pressure, unit area, and thickness of 25 μm of the microporous membrane. Here, the water permeation amount is a unit based on the water permeation amount (cm 3 ) when 120 seconds have passed after a porous membrane is set in a stainless steel permeation cell having a diameter of 42 mm and water is filtered at a differential pressure of 0.5 atm. Calculate the amount of water per time, unit pressure, unit area,
This was multiplied by the film thickness (μm) / 25 (μm) to obtain a water permeability of 25 μm (L / m 2 · hr · atm). When the amount of water permeation was too large, the liquid retaining property of the electrolytic solution deteriorated and the output performance of the battery deteriorated. And the discharge capacity at the time of a large current was so large that the amount of water permeation was small. For these reasons, a polyurethane porous membrane having a water permeability of the above value was preferred.

好ましいポリウレタン多孔質膜は、透気度が50〜400sec(より好ましくは60sec以上。更に好ましくは70sec以上。より好ましくは200sec以下。更に好ましくは150sec以下。)のポリウレタン多孔質膜であった。ここで、透気度は、JIS P−8117準拠のガーレー式透気度計にて測定された値であって、厚み25μm当たりに換算した値である。すなわち、透気度が小さ過ぎた場合、正極と負極との間で短絡が起こり易かった。逆に、透気度が大き過ぎた場合、低温における放電容量が低下する傾向があった。このようなことから、上記値の透気度のポリウレタン多孔質膜が好ましかった。   A preferable polyurethane porous membrane was a polyurethane porous membrane having an air permeability of 50 to 400 sec (more preferably 60 sec or more, more preferably 70 sec or more, more preferably 200 sec or less, and further preferably 150 sec or less). Here, the air permeability is a value measured by a Gurley type air permeability meter according to JIS P-8117, and is a value converted per thickness of 25 μm. That is, when the air permeability is too small, a short circuit is likely to occur between the positive electrode and the negative electrode. Conversely, when the air permeability is too high, the discharge capacity at low temperatures tends to decrease. For this reason, a polyurethane porous membrane having the above-mentioned air permeability was preferred.

好ましいポリウレタン多孔質膜は、透過性指数が0〜20(より好ましくは15以下。更に好ましくは5以下。)のポリウレタン多孔質膜であった。透過性指数は、透水量(L/m・hr・atm)/透気度(sec)で表される指数である。透過性指数が大き過ぎた場合、過充電時の温度上昇が急激であり、好ましくなかった。 A preferred polyurethane porous membrane was a polyurethane porous membrane having a permeability index of 0 to 20 (more preferably 15 or less, still more preferably 5 or less). The permeability index is an index expressed by water permeability (L / m 2 · hr · atm) / air permeability (sec). When the permeability index was too large, the temperature increase at the time of overcharging was abrupt, which was not preferable.

好ましいポリウレタン多孔質膜は、突刺強度が300g以上(上限値に格別な制約は無いが、現実的には、1000g以下。より好ましくは600g以下。)のポリウレタン多孔質膜であった。突刺強度が小さ過ぎた場合、ポリウレタン多孔質膜(セパレータ)が破れ易い。破れた場合、短絡が起きる恐れが有る。従って、安全性の点から、上記値の突刺強度のポリウレタン多孔質膜が好ましかった。   A preferable polyurethane porous membrane is a polyurethane porous membrane having a puncture strength of 300 g or more (there is no particular limitation on the upper limit value, but in reality, 1000 g or less, more preferably 600 g or less). When the puncture strength is too small, the polyurethane porous membrane (separator) is easily broken. If it breaks, there is a risk of a short circuit. Therefore, from the viewpoint of safety, a polyurethane porous membrane having the above-mentioned puncture strength was preferred.

第2の本発明は電池用セパレータの製造方法である。電池用セパレータはポリウレタンを用いることによって製造される。特に、上記特徴のポリウレタンを用いることによって製造される。このようにして得られた電池用セパレータを構成するポリウレタン多孔質膜は上記特徴のものである。   The second aspect of the present invention is a method for producing a battery separator. The battery separator is manufactured by using polyurethane. In particular, it is produced by using the polyurethane having the above characteristics. The polyurethane porous membrane constituting the battery separator thus obtained has the above characteristics.

第3の本発明は電池用セパレータである。本電池用セパレータは上記ポリウレタン多孔質膜を用いて構成されたものである。   The third aspect of the present invention is a battery separator. The battery separator is constructed using the polyurethane porous membrane.

第4の本発明は電池である。本電池は正極と負極と上記の電池用セパレータとを具備する。この電池は、例えば非水二次電池である。   The fourth aspect of the present invention is a battery. The battery includes a positive electrode, a negative electrode, and the battery separator. This battery is, for example, a non-aqueous secondary battery.

本発明の電池用セパレータ(多孔質膜)はポリウレタンで構成される。前記ポリウレタンは、好ましくは、2官能以上のイソシアネート成分と、2以上の活性水素をもつポリオール成分と、鎖伸長成分とを具備する。   The battery separator (porous membrane) of the present invention is made of polyurethane. The polyurethane preferably comprises a bifunctional or higher functional isocyanate component, a polyol component having two or more active hydrogens, and a chain extension component.

前記イソシアネート成分(化合物)としては、例えば4,4’−ジフェニルメタンジイソシアネート、2,4’−ジフェニルメタンジイソシアネート、2,4−トルエンジイソシアネート、2,6−トルエンジイソシアネート、ナフタレンジイソシアネート、1,4−フェニレンジイソシアネート、エチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、1,6−ヘキサメチレンジイソシアネート、水素添加4,4’−ジフェニルメタンジイソシアネート、4―シクロヘキサンジイソシアネート、イソフォロンジイソシアネート、キシリレンジイソシアネート、テトラエチルキシリレンジイソシアネートが挙げられる。この他にも、3官能以上の多官能ポリイソシアネート化合物であっても良い。   Examples of the isocyanate component (compound) include 4,4′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, naphthalene diisocyanate, 1,4-phenylene diisocyanate, Ethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 1,6-hexamethylene diisocyanate, hydrogenated 4,4′-diphenylmethane diisocyanate, 4-cyclohexane diisocyanate, isophorone diisocyanate, xylylene diisocyanate, tetraethyl xylylene diisocyanate Can be mentioned. In addition, a polyfunctional polyisocyanate compound having three or more functions may be used.

前記ポリオール成分(化合物)としては、例えばポリエーテルポリオール類、ポリエステルポリオール類、アクリルポリオール類などが挙げられる。   Examples of the polyol component (compound) include polyether polyols, polyester polyols, and acrylic polyols.

ポリエーテルポリオール類としては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、グリセンリン、トリメチロールプロパン等の多価アルコールの1種又は2種以上にプロピレンオキサイドを付加して得られるポリオキシプロピレンポリオール類、エチレンオキサイドを付加して得られるポリオキシエチレンポリオール類、スチレンオキサイド又はブチレンオキサイド等を付加して得られるポリオール類、或いは前記多価アルコールにテトラヒドロフランを開環重合させて得られるポリオキシテトラメチレンポリオール類、若しくは上記の環状エーテルを2種以上を使用した共重合体などが挙げられる。   Polyether propylene polyols obtained by adding propylene oxide to one or more polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, glycerin and trimethylolpropane Polyoxyethylene polyols obtained by adding ethylene oxide, polyols obtained by adding styrene oxide or butylene oxide, or polyoxytetramethylene polyol obtained by ring-opening polymerization of tetrahydrofuran to the polyhydric alcohol Or a copolymer using two or more of the above cyclic ethers.

前記ポリエステルポリオール類としては、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、シクロヘキサンジオール、グリセリン、トリメチロールプロパン、ペンタエスリトール、その他の低分子量多価アルコールの1種以上と、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、テレフタル酸、イソフタル酸、ダイマー酸、水添ダイマー酸、その他の低分子量ジカルボン酸またはオリゴマー酸の1種以上との縮合重合体、プロピオンラクトン、カプロラクトン、バレロラクトン等の環状エステル類の開環重合体等のポリオール類が挙げられる。   Examples of the polyester polyols include ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, cyclohexanediol, glycerin, trimethylolpropane, pentaesitol, other low molecular weight polyhydric alcohols, and glutar Condensation polymers with one or more of acid, adipic acid, pimelic acid, suberic acid, sebacic acid, terephthalic acid, isophthalic acid, dimer acid, hydrogenated dimer acid, other low molecular weight dicarboxylic acid or oligomeric acid, propionlactone, Examples thereof include polyols such as ring-opening polymers of cyclic esters such as caprolactone and valerolactone.

前記アクリルポリオール類としては、フェノールレジンポリオール、エポキシポリオール、ポリブタジエンポリオール、ポリイソプレンポリオール、ポリエステルーポリエーテルポリオール、アクロロニトリル系ポリオール、ポリカーボネートポリオール等が挙げられる。   Examples of the acrylic polyols include phenol resin polyols, epoxy polyols, polybutadiene polyols, polyisoprene polyols, polyester-polyether polyols, acrylonitrile-based polyols, and polycarbonate polyols.

前記鎖伸長成分、特に、活性水素を有する鎖伸長成分(鎖伸長剤)としては、分子量が500程度以下の化合物が挙げられる。例えば、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、トリメチロールプロパン等に代表される脂肪族系低分子ジオール、トリオール類、メチレンビス−o−クロロアニリン、シクロへキシルメタン−4,4’−ジアミン等の芳香族ジアミン類、1,4−ビスヒドロキシエトキシベンゼン等の芳香族ジオール等が挙げられる。   Examples of the chain extending component, particularly a chain extending component having an active hydrogen (chain extending agent) include compounds having a molecular weight of about 500 or less. For example, aliphatic low molecular diols typified by ethylene glycol, propylene glycol, 1,4-butanediol, trimethylolpropane and the like, triols, methylenebis-o-chloroaniline, cyclohexylmethane-4,4′-diamine Aromatic diamines such as 1,4-bishydroxyethoxybenzene and the like.

上記ポリウレタンを用いて本発明の電池用セパレータ(多孔質膜)を製造する手法としては、各種の手法を採用できる。例えば、公知な湿式成形法を用いて多孔質膜を得ることが出来る。或いは、発泡剤を添加した手法を用いて多孔質膜を得ることが出来る。ポリウレタン多孔質膜製の電池用セパレータを得る手法として前記湿式成形法は好適である。すなわち、上記ポリウレタン組成物を水中で凝固させ、洗浄・乾燥を経ることによって、ポリウレタン微多孔質膜が簡単に得られる。   Various methods can be adopted as a method for producing the battery separator (porous membrane) of the present invention using the polyurethane. For example, a porous film can be obtained using a known wet molding method. Alternatively, a porous film can be obtained by using a technique in which a foaming agent is added. The wet molding method is suitable as a method of obtaining a battery separator made of a polyurethane porous membrane. That is, a polyurethane microporous membrane can be easily obtained by coagulating the polyurethane composition in water, followed by washing and drying.

電池用セパレータを構成するポリウレタン多孔質膜はポリウレタン組成物の形態からなるものでも良い。すなわち、ポリウレタン多孔質膜は各種の添加剤を含有するものでも良い。添加剤としては、例えば架橋剤、撥水剤、顔料、濡れ性向上剤、消泡剤、酸化防止剤、紫外線防止剤などが挙げられる。   The polyurethane porous membrane constituting the battery separator may be in the form of a polyurethane composition. That is, the polyurethane porous membrane may contain various additives. Examples of the additive include a crosslinking agent, a water repellent, a pigment, a wettability improver, an antifoaming agent, an antioxidant, and an ultraviolet ray preventing agent.

前記架橋剤としては、例えばポリイソシアネート系架橋剤、カルボジイミド系架橋剤、エポキシ系架橋剤、エチレンイミン系架橋剤、オキサゾリン系架橋剤などが挙げられる。カルシウムやマグネシウムなどの多価金属塩であっても良い。   Examples of the crosslinking agent include a polyisocyanate crosslinking agent, a carbodiimide crosslinking agent, an epoxy crosslinking agent, an ethyleneimine crosslinking agent, and an oxazoline crosslinking agent. Polyvalent metal salts such as calcium and magnesium may be used.

前記撥水剤としては、例えばフッ素系撥水剤が挙げられる。撥水剤の含有は、ポリウレタン多孔質膜(電池用セパレータ)における透水量を少なくすることから、好ましい。前記フッ素系撥水剤の代表例としてパーフルオロアルキル基を有する化合物が挙げられる。例えば、パーフルオロアルキル基を有するアクリル酸(メタアクリル酸)の如きのフルオロアルキル基含有の重合性化合物と、エチレン、酢酸ビニル、弗化ビニル、スチレン、アクリル酸(メタクリル酸)や、そのアルキルエステル、無水マレイン酸、クロロプレン、ブタジエン、ビニルアルキルケトン、ビニルアルキルエーテル、アクリルアミド、メタアクリルアミド、グリシジルアクリレート等の一種または二種以上との共重合体などが挙げられる。   As said water repellent, a fluorine-type water repellent is mentioned, for example. The inclusion of a water repellent is preferable because it reduces the amount of water permeation in the polyurethane porous membrane (battery separator). A typical example of the fluorine-based water repellent is a compound having a perfluoroalkyl group. For example, a fluoroalkyl group-containing polymerizable compound such as acrylic acid (methacrylic acid) having a perfluoroalkyl group, ethylene, vinyl acetate, vinyl fluoride, styrene, acrylic acid (methacrylic acid), and alkyl esters thereof And copolymers with one or more of maleic anhydride, chloroprene, butadiene, vinyl alkyl ketone, vinyl alkyl ether, acrylamide, methacrylamide, glycidyl acrylate, and the like.

前記ポリウレタン組成物は、無機系もしくは有機系の微粒子を含有しても良い。例えば、シリカ、シリカゾル、コロイダルシリカ、アルミナ、アルミナゾル、酸化亜鉛、硼素、酸化硼素、酸化カルシウム、酸化マグネシウム、酸化バリウム等の無機系微粒子を含有していても良い。或いは、ポリエチレン、アクリル系ポリマー、ポリスチレン、シリコーンポリマー等の有機系微粒子を含有していても良い。   The polyurethane composition may contain inorganic or organic fine particles. For example, inorganic fine particles such as silica, silica sol, colloidal silica, alumina, alumina sol, zinc oxide, boron, boron oxide, calcium oxide, magnesium oxide, and barium oxide may be contained. Alternatively, organic fine particles such as polyethylene, acrylic polymer, polystyrene, and silicone polymer may be contained.

電池セパレータは、正極と負極とを隔離するだけでは無く、電解液を保持して正極と負極との間のイオン伝導性を確保する機能を有する。前記電解液は、一般に、支持塩と溶媒とから構成される。リチウム二次電池における支持塩はリチウム塩が主として用いられる。このリチウム塩としては、例えば、LiClO,LiBF,LiPF,LiCFSO,LiCFCO,LiAsF,LiSbF,LiB10Cl10、低級脂肪族カルボン酸リチウム、LiAlCl,LiCl、LiBr、LiI、クロロボランリチウム、四フェニルホウ酸リチウム等が挙げられる。勿論、一種のみならず、二種以上のものが混合されても良い。尚、LiBF,LiPFは特に好ましいリチウム塩である。支持塩の濃度は、特に限定されないが、電解液1L当たり0.2〜3モルが好ましい。電解液を構成する溶媒は、例えばプロピレンカ−ボネ−ト、エチレンカーボネ−ト、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、ギ酸メチル、酢酸メチル、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、ジオキサン、アセトニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンサルトンなどの非プロトン性有機溶媒が挙げられる。勿論、一種のみならず、二種以上のものが混合されても良い。尚、カーボネート系の溶媒は特に好ましい。中でも、環状カーボネートと非環状カーボネートの混合物は特に好ましい。環状カーボネートとしては、例えばエチレンカーボネート、プロピレンカーボネートが好ましい例である。非環状カーボネートとしては、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネートが好ましい例である。電解液は、全量を1回で注入してもよいが、2回以上に分けて注入することは好ましい。2回以上に分けて注入する場合、各々の液は同じ組成でも、違う組成(例えば、非水溶媒あるいは非水溶媒にリチウム塩を溶解した溶液を注入した後、前記溶媒より粘度の高い非水溶媒あるいは非水溶媒にリチウム塩を溶解した溶液を注入)でも良い。電解液の注入時間の短縮等の為に、電池缶を減圧したり、電池缶に遠心力や超音波を掛ける等を行ってもよい。 The battery separator not only separates the positive electrode and the negative electrode, but also has a function of holding the electrolyte and ensuring ionic conductivity between the positive electrode and the negative electrode. The electrolytic solution is generally composed of a supporting salt and a solvent. Lithium salt is mainly used as the supporting salt in the lithium secondary battery. As the lithium salt, for example, LiClO 4, LiBF 4, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, lower aliphatic lithium carboxylate, LiAlCl 4, LiCl, LiBr, LiI, chloroborane lithium, lithium tetraphenylborate and the like can be mentioned. Of course, not only one type but also two or more types may be mixed. LiBF 4 and LiPF 6 are particularly preferred lithium salts. The concentration of the supporting salt is not particularly limited, but is preferably 0.2 to 3 mol per liter of the electrolytic solution. Solvents constituting the electrolyte include, for example, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, methyl formate, methyl acetate, 1,2-dimethoxy. Ethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, dioxane, acetonitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, 3 -Aprotic properties such as methyl-2-oxazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethyl ether, 1,3-propane sultone Solvents. Of course, not only one type but also two or more types may be mixed. A carbonate-based solvent is particularly preferable. Among these, a mixture of a cyclic carbonate and an acyclic carbonate is particularly preferable. As the cyclic carbonate, for example, ethylene carbonate and propylene carbonate are preferable examples. Preferred examples of the acyclic carbonate include diethyl carbonate, dimethyl carbonate, and methyl ethyl carbonate. The entire amount of the electrolytic solution may be injected once, but it is preferable to inject it in two or more times. When injecting in two or more times, each solution may have the same composition, but a different composition (for example, a non-aqueous solvent or a non-aqueous solvent having a higher viscosity than the solvent after injecting a solution in which a lithium salt is dissolved in the non-aqueous solvent). Or a solution in which a lithium salt is dissolved in a solvent or a non-aqueous solvent may be injected). In order to shorten the time for injecting the electrolyte, the battery can may be decompressed, or centrifugal force or ultrasonic waves may be applied to the battery can.

上記電池用セパレータを用いて電池(二次電池。特に、非水型二次電池。中でも、リチウムイオン二次電池。)が構成される。本電池は、上記の電池用セパレータの他にも、正極と負極とを具備する。前記正極は正極活物質を用いて構成される。前記正極活物質は、リチウム含有遷移金属酸化物が好ましい。リチウム含有遷移金属酸化物は、Ti,V,Cr,Mn,Fe,Co,Ni,Mo,W等の群の中から選ばれる少なくとも一種の遷移金属元素とリチウムとを主として含有する酸化物である。リチウム化合物と遷移金属化合物とを混合・焼成する方法や溶液反応により合成できる。負極はリチウムイオンを吸蔵・放出できる化合物(負極材料)を用いて構成される。このような負極材料としては、例えば金属リチウム、リチウム合金、炭素質化合物、無機酸化物、無機カルコゲン化合物、金属錯体、有機高分子化合物などが挙げられる。単独あるいは複数のものを組み合わせて用いることが出来る。本発明の合剤に使用される導電剤は、構成された電池において化学変化を起こさない電子伝導性材料であれば何でもよい。具体例としては、鱗状黒鉛、鱗片状黒鉛、土状黒鉛等の天然黒鉛、石油コークス、石炭コークス、セルロース類、糖類、メソフェーズピッチ等の高温焼成体、気相成長黒鉛等の人工黒鉛等のグラファイト類、アセチレンブラック、ファーネスブラック、ケッチェンブラック、チャンネルブラック、ランプブラック、サーマルブラック等のカーボンブラック類、アスファルトピッチ、コールタール、活性炭、メソフューズピッチ、ポリアセン等の炭素材料、金属繊維等の導電性繊維類、銅、ニッケル、アルミニウム、銀等の金属粉類、酸化亜鉛、チタン酸カリウム等の導電性ウィスカー類、酸化チタン等の導電性金属酸化物などを挙げることが出来る。本発明では、電極合剤を保持する為、結着剤が用いられる。結着剤としては、多糖類、熱可塑性樹脂、或いはゴム弾性を有するポリマー等が挙げられる。   A battery (secondary battery, in particular, a non-aqueous secondary battery, in particular, a lithium ion secondary battery) is configured using the battery separator. In addition to the battery separator, the battery includes a positive electrode and a negative electrode. The positive electrode is configured using a positive electrode active material. The positive electrode active material is preferably a lithium-containing transition metal oxide. The lithium-containing transition metal oxide is an oxide mainly containing lithium and at least one transition metal element selected from the group of Ti, V, Cr, Mn, Fe, Co, Ni, Mo, W and the like. . It can be synthesized by a method of mixing and firing a lithium compound and a transition metal compound or by a solution reaction. The negative electrode is composed of a compound (negative electrode material) that can occlude and release lithium ions. Examples of such a negative electrode material include metal lithium, lithium alloy, carbonaceous compound, inorganic oxide, inorganic chalcogen compound, metal complex, and organic polymer compound. These can be used alone or in combination. The conductive agent used in the mixture of the present invention may be anything as long as it is an electron conductive material that does not cause a chemical change in the constructed battery. Specific examples include natural graphite such as scaly graphite, scaly graphite and earthy graphite, high-temperature fired bodies such as petroleum coke, coal coke, celluloses, saccharides and mesophase pitch, and graphite such as artificial graphite such as vapor-grown graphite. , Carbon blacks such as acetylene black, furnace black, ketjen black, channel black, lamp black, thermal black, etc., carbon materials such as asphalt pitch, coal tar, activated carbon, mesofuse pitch, polyacene, conductivity of metal fibers, etc. Examples thereof include fibers, metal powders such as copper, nickel, aluminum, and silver, conductive whiskers such as zinc oxide and potassium titanate, and conductive metal oxides such as titanium oxide. In the present invention, a binder is used to hold the electrode mixture. Examples of the binder include polysaccharides, thermoplastic resins, and polymers having rubber elasticity.

以下、具体的な実施例を挙げて具体的に説明する。   Hereinafter, specific examples will be given and described in detail.

[実施例1]
〔電解液の調製〕
EC(エチレンカーボネート):DEC(ジエチルカーボネート)=50:50(重量比)の非水溶媒を調製した。この溶媒にLiPFを溶解させた。そして、電解液(LiPF濃度:1M)が得られた。
〔リチウム二次電池〕
80重量部のLiCoO(正極活物質)と、10重量部のアセチレンブラック(導電剤)と、10重量部のポリフッ化ビニリデン(結着剤)とを混合した。これに、1−メチル−2−ピロリドンを加えてスラリー状にした。このスラリー状物をアルミ箔上に塗布した。この後、乾燥し、加圧成型して正極を構成した。
90重量部の天然黒鉛(負極活物質)と、10重量部のポリフッ化ビニリデン(結着剤)とを混合した。これに、1−メチル−2−ピロリドンを加えてスラリー状にした。このスラリー状物を銅箔上に塗布した。この後、乾燥し、加圧成型して負極を構成した。
セパレータとして微多孔質ポリウレタンフィルム(平松産業株式会社製のルストレFGX:ルストレは登録商標)を用意した。これに上記電解液を注入し、コイン型電池(直径20mm、厚さ3.2mm)を作製した。
[Example 1]
(Preparation of electrolyte)
A non-aqueous solvent of EC (ethylene carbonate): DEC (diethyl carbonate) = 50: 50 (weight ratio) was prepared. LiPF 6 was dissolved in this solvent. Then, an electrolyte (LiPF 6 concentration: 1M) was obtained.
[Lithium secondary battery]
80 parts by weight of LiCoO 2 (positive electrode active material), 10 parts by weight of acetylene black (conductive agent), and 10 parts by weight of polyvinylidene fluoride (binder) were mixed. To this, 1-methyl-2-pyrrolidone was added to form a slurry. This slurry was applied on an aluminum foil. Then, it dried and pressure-molded and comprised the positive electrode.
90 parts by weight of natural graphite (negative electrode active material) and 10 parts by weight of polyvinylidene fluoride (binder) were mixed. To this, 1-methyl-2-pyrrolidone was added to form a slurry. This slurry was applied on a copper foil. Then, it dried and pressure-molded and comprised the negative electrode.
A microporous polyurethane film (Rustre FGX manufactured by Hiramatsu Sangyo Co., Ltd .: Rustre is a registered trademark) was prepared as a separator. The electrolyte solution was poured into this to produce a coin-type battery (diameter 20 mm, thickness 3.2 mm).

[比較例1]
上記実施例1において、微多孔質ポリウレタンフィルムの代わりに、微多孔質ポリプロピレン(CELGARD Inc.製のセルガード)を用いた以外は同様に行い、コイン型電池(直径20mm、厚さ3.2mm)を作製した。
[Comparative Example 1]
In Example 1, a coin-type battery (diameter 20 mm, thickness 3.2 mm) was prepared in the same manner except that microporous polypropylene (Celgard Inc. cell guard) was used instead of the microporous polyurethane film. Produced.

[特性]
上記各例のコイン電池を用いて、室温(20℃)下、0.8mAの定電流定電圧で、終止電圧4.2Vまで5時間充電し、次いで0.8mAの定電流下、終止電圧2.7Vまで放電した。その後、同一条件で、充放電し、放電容量を測定した後、放電電流のみ4.0mAとして放電容量を測定した。その結果が表−1に示される。
表−1
実施例1 比較例1
多孔質フィルム 多孔質ポリウレタンフィルム 多孔質ポリプロピレンフィルム
膜厚(μm) 25 25
突刺強度(g) 350 340
平均孔径(μm) 0.8 0.15
気孔率(%) 30 44
透気度(sec) 120 130
透水量(L/m・hr・atm) 0 920
透過性指数 0 8.4
相対放電容量(0.8mA) 100 100
相対放電容量(4.0mA) 80 60

この表−1から判る通り、本発明になるものは、ハイレート時の相対放電容量が大きい。
[Characteristic]
Using the coin battery of each of the above examples, it was charged at a constant current constant voltage of 0.8 mA at room temperature (20 ° C.) for 5 hours to a final voltage of 4.2 V, and then at a constant current of 0.8 mA, a final voltage of 2 Discharged to 7V. Then, after charging and discharging under the same conditions and measuring the discharge capacity, the discharge capacity was measured by setting only the discharge current to 4.0 mA. The results are shown in Table-1.
Table-1
Example 1 Comparative Example 1
Porous film Porous polyurethane film Porous polypropylene film thickness (μm) 25 25
Puncture strength (g) 350 340
Average pore diameter (μm) 0.8 0.15
Porosity (%) 30 44
Air permeability (sec) 120 130
Water permeability (L / m 2 · hr · atm) 0 920
Permeability index 0 8.4
Relative discharge capacity (0.8 mA) 100 100
Relative discharge capacity (4.0 mA) 80 60

As can be seen from Table 1, the present invention has a large relative discharge capacity at the high rate.

[実施例2]
EC(エチレンカーボネート):DEC(ジエチルカーボネート)=50:50(重量比)の非水溶媒を調製した。
セパレータ材料である微多孔質ポリウレタンフィルム(平松産業株式会社製のルストレFGX:ルストレは登録商標)を用意した。該フィルムを5×50mmの短冊状に切断し、上記溶媒の液面に対して垂直に先端から10mmを浸漬した。浸漬直後からキャピラリー効果によって上記溶媒がフィルムを伝って5mm上昇するまでの時間を測定した。
[Example 2]
A non-aqueous solvent of EC (ethylene carbonate): DEC (diethyl carbonate) = 50: 50 (weight ratio) was prepared.
A microporous polyurethane film (Rustre FGX manufactured by Hiramatsu Sangyo Co., Ltd .: Rustre is a registered trademark) as a separator material was prepared. The film was cut into 5 × 50 mm strips, and 10 mm from the tip was immersed perpendicularly to the liquid surface of the solvent. The time from immediately after immersion until the above-mentioned solvent rose 5 mm along the film was measured by the capillary effect.

[比較例2]
上記実施例2において、微多孔質ポリウレタンフィルムの代わりに、微多孔質ポリプロピレン(CELGARD Inc.製のセルガード)を用いた以外は同様に行い、溶剤の上昇時間を測定した。
[Comparative Example 2]
In Example 2, the same procedure was performed except that microporous polypropylene (Celgard Inc. cell guard) was used instead of the microporous polyurethane film, and the solvent rising time was measured.

[特性]
表−2
実施例2 比較例2
溶媒上昇時間(sec) 487 1200以上

この表−2から判る通り、本発明になるものは、溶媒との親和性が高く、電解液の注入が迅速である。
[Characteristic]
Table-2
Example 2 Comparative Example 2
Solvent rise time (sec) 487 1200 or more

As can be seen from Table-2, the present invention has a high affinity with the solvent, and the injection of the electrolytic solution is quick.

Claims (10)

電池用セパレータの材料であって、
前記材料は、透水量が0〜50L/m・hr・atm、透気度が50〜400sec、前記透水量/前記透気度で表される透過性指数が0〜20、気孔率が5〜60%、平均孔径が0.01〜5μmのポリウレタン多孔質膜である
ことを特徴とする電池用セパレータ材料。
A battery separator material,
The material has a water permeability of 0 to 50 L / m 2 · hr · atm , an air permeability of 50 to 400 sec, a permeability index represented by the water permeability / the air permeability of 0 to 20, and a porosity of A battery separator material, characterized by being a polyurethane porous membrane having an average pore diameter of 5 to 60% and an average pore size of 0.01 to 5 μm .
透気度が70〜150secである
ことを特徴とする請求項1の電池用セパレータ材料。
The battery separator material according to claim 1, wherein the air permeability is 70 to 150 sec.
前記透過性指数が0〜である
ことを特徴とする請求項1又は請求項2の電池用セパレータ材料。
The battery separator material according to claim 1 or claim 2, wherein the permeability index is 0-5.
気孔率が15〜40%である
ことを特徴とする請求項1〜請求項3いずれかの電池用セパレータ材料。
4. The battery separator material according to claim 1, wherein the porosity is 15 to 40% .
平均孔径が0.3〜2μmである
ことを特徴とする請求項1〜請求項4いずれかの電池用セパレータ材料。
The battery separator material according to any one of claims 1 to 4, wherein an average pore diameter is 0.3 to 2 µm.
突刺強度が300〜1000gである
ことを特徴とする請求項1〜請求項5いずれかの電池用セパレータ材料。
6. The battery separator material according to claim 1, wherein the puncture strength is 300 to 1000 g.
電池用セパレータの製造方法であって、
請求項1〜請求項6いずれかのポリウレタン多孔質膜を用いて電池用セパレータを製造する
ことを特徴とする電池用セパレータの製造方法。
A method for manufacturing a battery separator,
A battery separator is produced using the polyurethane porous membrane according to any one of claims 1 to 6. A method for producing a battery separator.
電池用セパレータであって、
請求項1〜請求項6いずれかのポリウレタン多孔質膜を用いて構成されてなる
ことを特徴とする電池用セパレータ。
A battery separator,
A battery separator comprising the polyurethane porous membrane according to any one of claims 1 to 6.
正極と、
負極と、
請求項8の電池用セパレータ
とを具備してなることを特徴とする二次電池。
A positive electrode;
A negative electrode,
A secondary battery comprising the battery separator according to claim 8.
非水二次電池である
ことを特徴とする請求項9の二次電池。
The secondary battery according to claim 9, wherein the secondary battery is a non-aqueous secondary battery.
JP2010134658A 2010-06-14 2010-06-14 Battery separator material, battery separator manufacturing method, battery separator, and secondary battery Active JP5219099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010134658A JP5219099B2 (en) 2010-06-14 2010-06-14 Battery separator material, battery separator manufacturing method, battery separator, and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010134658A JP5219099B2 (en) 2010-06-14 2010-06-14 Battery separator material, battery separator manufacturing method, battery separator, and secondary battery

Publications (3)

Publication Number Publication Date
JP2012003841A JP2012003841A (en) 2012-01-05
JP2012003841A5 JP2012003841A5 (en) 2012-07-05
JP5219099B2 true JP5219099B2 (en) 2013-06-26

Family

ID=45535642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010134658A Active JP5219099B2 (en) 2010-06-14 2010-06-14 Battery separator material, battery separator manufacturing method, battery separator, and secondary battery

Country Status (1)

Country Link
JP (1) JP5219099B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5913528B2 (en) * 2013-11-12 2016-04-27 三洋化成工業株式会社 Organic solvent absorption foam
JP5988344B1 (en) * 2016-04-20 2016-09-07 第一工業製薬株式会社 Polyurethane resin aqueous dispersion for secondary battery separator, secondary battery separator and secondary battery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310989A (en) * 1992-04-30 1993-11-22 Mitsubishi Kasei Corp Polyethylenic porous film
JPH1186909A (en) * 1997-09-05 1999-03-30 Asahi Chem Ind Co Ltd Electrolyte impregnated film
JP4227209B2 (en) * 1998-01-28 2009-02-18 旭化成ケミカルズ株式会社 Non-aqueous secondary battery
JP4033546B2 (en) * 1998-03-30 2008-01-16 旭化成ケミカルズ株式会社 Method for producing separator for lithium ion secondary battery
JP4209986B2 (en) * 1999-01-22 2009-01-14 旭化成ケミカルズ株式会社 Polyolefin microporous membrane secondary battery separator
JP4606532B2 (en) * 1999-09-17 2011-01-05 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
JP2002050394A (en) * 2000-08-07 2002-02-15 Sumitomo Chem Co Ltd Battery and its manufacturing method
KR100599898B1 (en) * 2002-08-28 2006-07-19 아사히 가세이 케미칼즈 가부시키가이샤 Polyolefin Microporous Membrane and Method of Evaluating The Same
JP4220329B2 (en) * 2003-04-11 2009-02-04 旭化成ケミカルズ株式会社 Polyolefin microporous membrane and method for producing the same
US20070148552A1 (en) * 2003-12-24 2007-06-28 Takashi Ikemoto Microporous membrane made from polyolefin
WO2010004918A1 (en) * 2008-07-11 2010-01-14 Tonen Chemical Corporation Microporous membranes and methods for producing and using such membranes

Also Published As

Publication number Publication date
JP2012003841A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
KR101904296B1 (en) A separator comprising porous bonding layer and an electrochemical battery comprising the separator
JP6318099B2 (en) Solid electrolyte composition, battery electrode sheet using the same, battery electrode sheet and method for producing all-solid secondary battery
KR101708359B1 (en) Binder for electrode of lithium battery and lithium battery containing the binder
EP2631974B1 (en) Lithium battery
KR102222117B1 (en) Composite binder composition for secondary battery, cathode and lithium battery containing the binder
KR101532815B1 (en) Binder for separator of non-aqueous electrolyte battery comprising 2-cyanoethyl group-containing polymer and separator and battery using the same
KR101634416B1 (en) Binder for separator of non-aqueous electrolyte battery comprising 2-cyanoethyl group-containing polymer and separator and battery using the same
KR101730671B1 (en) Binder for separator of non-aqueous electrolyte battery comprising 2-cyanoethyl group-containing polymer and separator and battery using the same
KR102501467B1 (en) Composite separator, preparing method thereof, and secondary battery including the same
JP6450480B2 (en) Non-aqueous electrolyte secondary battery negative electrode carbonaceous material
KR100768836B1 (en) Lithium polymer secondary cell and the method for manufacture thereof
KR101570977B1 (en) Lithium Secondary Battery
JP5187720B2 (en) Lithium ion polymer battery
KR101570975B1 (en) The Lithium Secondary Battery
CN111837258B (en) Method for manufacturing electrode containing polymer solid electrolyte and electrode obtained by same
KR102234294B1 (en) Composite binder composition for secondary battery, cathode and lithium battery containing the binder
JP2004111272A (en) Lithium polymer battery and its manufacturing method
KR20200074552A (en) Negative electrode active material for secondary battery, negative electrode including same and manufacturing method thereof
JP5219099B2 (en) Battery separator material, battery separator manufacturing method, battery separator, and secondary battery
WO2008032699A1 (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2008071624A (en) Lithium polymer battery
KR101679367B1 (en) Carbon-silicon composite structure and preparing method of the same
KR102488679B1 (en) Aqueous binder for a lithium-ion secondary battery, anode comprising the same, lithium-ion secondary battery comprising the anode, and method for polymerizing copolymer comprised in the binder
KR101558863B1 (en) The Lithium Secondary Battery
KR102071593B1 (en) Composition for gel polymer electrolyte and lithium secondary battery comprising the gel polymer electrolyte formed therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5219099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250