JP5398016B2 - Microporous membrane, method for producing the same, and separator for non-aqueous electrolyte secondary battery - Google Patents

Microporous membrane, method for producing the same, and separator for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5398016B2
JP5398016B2 JP2010149257A JP2010149257A JP5398016B2 JP 5398016 B2 JP5398016 B2 JP 5398016B2 JP 2010149257 A JP2010149257 A JP 2010149257A JP 2010149257 A JP2010149257 A JP 2010149257A JP 5398016 B2 JP5398016 B2 JP 5398016B2
Authority
JP
Japan
Prior art keywords
microporous membrane
polyethylene
polypropylene
molecular weight
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010149257A
Other languages
Japanese (ja)
Other versions
JP2012014914A (en
Inventor
譲 榊原
圭太郎 飴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2010149257A priority Critical patent/JP5398016B2/en
Publication of JP2012014914A publication Critical patent/JP2012014914A/en
Application granted granted Critical
Publication of JP5398016B2 publication Critical patent/JP5398016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、微多孔膜、特に、リチウムイオン二次電池等の非水電解質2次電池用セパレータとして好適な微多孔膜及びその製造方法に関する。   The present invention relates to a microporous membrane, particularly a microporous membrane suitable as a separator for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, and a method for producing the same.

微多孔膜は、包装フィルム、精密濾過膜、電池用セパレータ、コンデンサー用セパレータ、燃料電池用材料等に使用されており、電池用セパレータとしては特にリチウムイオン二次電池用セパレータとして使用されている。近年、リチウムイオン二次電池は、携帯電話、ノート型パソコン等の小型電子機器だけでなく、さらにはハイブリッドカー、プラグインハイブリッドカー、電気自動車、小型電動バイク等への応用も図られている。特に、今後も全世界的に急速に市場が拡大していく車載用途、特に電気自動車向けや、民生用途でも高容量のパソコン用途等には、高度な安全性、サイクル性、電池作成のしやすさが求められており、これらの要求を満たすためにセパレータにも安全性、サイクル性、電池の捲回性等の作成のしやすさ、さらにはセパレータ自体の生産性の向上が求められている。特に、サイクル性に関しては高温における使用下での安定的な性能が、安全性に関しては耐電圧特性の向上が、また電池の捲回性やセパレータ自体の生産性に関しては適度な表面の滑り性が求められている。   The microporous membrane is used as a packaging film, a microfiltration membrane, a battery separator, a capacitor separator, a fuel cell material, and the like, and is particularly used as a lithium ion secondary battery separator. In recent years, lithium ion secondary batteries have been applied not only to small electronic devices such as mobile phones and notebook computers, but also to hybrid cars, plug-in hybrid cars, electric vehicles, small electric motorcycles, and the like. In particular, it will be highly safe, cycleable, and easy to create batteries for in-vehicle applications that will continue to expand rapidly worldwide, especially for electric vehicles and consumer computers. In order to satisfy these requirements, separators are also required to be easy to make, such as safety, cycleability, battery winding property, etc., and to improve the productivity of the separator itself. . In particular, with regard to cycle performance, stable performance under high temperature use is achieved, with regard to safety, withstand voltage characteristics are improved, and with regard to battery winding performance and productivity of the separator itself, there is moderate surface slipperiness. It has been demanded.

従来、微多孔膜、特にリチウムイオン二次電池用セパレータとしては、その成形のしやすさと化学的な安定性にすぐれたポリエチレン製の微多孔膜が用いられてきた。また、ポリエチレン微多孔膜への耐熱性付与や、高温での変質を防ぐ目的で、ポリエチレンよりも融点の高いポリプロピレン製のセパレータも用いられており、さらにはこれらを複合した多層セパレータも提案されている。   Conventionally, as a microporous membrane, particularly a separator for a lithium ion secondary battery, a microporous membrane made of polyethylene excellent in ease of molding and chemical stability has been used. In addition, for the purpose of imparting heat resistance to polyethylene microporous membranes and preventing deterioration at high temperatures, polypropylene separators having a melting point higher than that of polyethylene are also used, and multilayer separators combining these are also proposed. Yes.

例えば、特許文献1には、共押出法にて3層の多孔質膜を製造する方法が記載されている。この文献には、表面層はポリプロピレンが主体で、中間層はポリエチレンが主体である技術が開示されている。しかしながら、表面にポリプロピレンを配置する微多孔膜は一般に摩擦が高く、金属ピンやロールとの滑りが悪く、電池の捲回性や、製膜現場でのセパレータ自体の生産性に悪影響を及ぼしていた。
このような影響を排除する技術として、例えば、特許文献1〜7には、セパレータの表面に滑り性のよい物質からなる層を配置したり、塗布したりする方法が提案されている。
For example, Patent Document 1 describes a method for producing a three-layer porous film by a coextrusion method. This document discloses a technique in which the surface layer is mainly made of polypropylene and the intermediate layer is mainly made of polyethylene. However, microporous membranes with polypropylene on the surface generally have high friction and poor sliding with metal pins and rolls, which adversely affects the winding performance of the battery and the productivity of the separator itself at the film production site. .
As a technique for eliminating such influences, for example, Patent Documents 1 to 7 propose a method of arranging or applying a layer made of a material having good slipperiness on the surface of a separator.

特開平09−219184号公報JP 09-219184 A 特許第3483846号公報Japanese Patent No. 3483846 特許第3235669号公報Japanese Patent No. 3235669 特許第3422496号公報Japanese Patent No. 342296 特許第4052495号公報Japanese Patent No. 4052495 特開2000−204174号公報JP 2000-204174 A 特開平07−216118号公報JP 07-216118 A

しかしながら、上記特許文献に記載されたセパレータは、いずれも高温でのサイクル性、安全性、生産性、電池捲回性の観点から、未だ改良の余地を有するものである。これらのセパレータは、滑り性の改良のために、滑り剤を塗布したり、滑り性のよい樹脂からなる層を設けたりする方法により得られるものであり、前者は生産性が悪く、また塗布剤による微多孔の目詰まりを生ずるという問題があり、後者は高温サイクル性を相殺するという問題を有している。また、特許文献6等では低分子量の酸化防止剤を混合し、それによる滑り効果を狙ったものも開示されているが、単に低分子量の酸化防止剤を混合しただけでは滑り性の改善効果はほとんどなく、実施例の結果からも、摩擦係数の低下は極めて僅かであることが分かる。
上記事情に鑑み、本発明は、特にセパレータとして使用した際の、高温サイクル性、生産性、電池捲回性に優れた微多孔膜及びその製造方法を提供することを目的とする。
However, all of the separators described in the above-mentioned patent documents still have room for improvement from the viewpoints of cycle performance at high temperatures, safety, productivity, and battery winding performance. These separators are obtained by a method of applying a slip agent or providing a layer made of a resin having a good slip property in order to improve the slip property. There is a problem that microporous clogging is caused by the above, and the latter has a problem of canceling out high temperature cycle characteristics. In addition, Patent Document 6 and the like disclose that a low molecular weight antioxidant is mixed and a sliding effect is aimed at, but simply adding a low molecular weight antioxidant does not improve the slipping effect. It can be seen that there is almost no decrease in the coefficient of friction from the results of the examples.
In view of the above circumstances, an object of the present invention is to provide a microporous membrane excellent in high-temperature cycle performance, productivity, and battery winding property when used as a separator, and a method for producing the same.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、ポリプロピレンを特定量含む単層の微多孔膜であって、表面の動摩擦係数が特定の範囲に調整された微多孔膜を用いることにより、上記課題を解決できること、さらには、この単層の微多孔膜を含む多層の微多孔膜を用いることにより、さらにその性能が向上することを見出した。また、そのような微多孔膜の製造方法を見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention are single-layer microporous membranes containing a specific amount of polypropylene, the surface of which has a dynamic friction coefficient adjusted to a specific range. The present inventors have found that the above-mentioned problems can be solved by using, and that the performance is further improved by using a multilayer microporous membrane including this single-layer microporous membrane. Moreover, the manufacturing method of such a microporous film was discovered and it came to complete this invention.

すなわち、本発明は以下の通りである。
[1]
ポリプロピレンとポリエチレンとの混合物を主成分として含有する樹脂組成物を含む微多孔膜であって、
前記ポリプロピレンが前記混合物中に占める割合が50質量%以上であり、
表面の動摩擦係数が0.55以下である微多孔膜。
[2]
表面のポリプロピレン含有率が60質量%以下であり、かつ(全体のポリプロピレン含有率)−(表面のポリプロピレン含有率)≧10質量%である、上記[1]記載の微多孔膜。
[3]
上記[1]又は[2]記載の微多孔膜を表面層として備える多層微多孔膜。
[4]
上記[1]又は[2]記載の微多孔膜の製造方法であって、
(1)ポリプロピレンと、分子量(Mw)が1万未満のポリエチレン成分を含むポリエチレンとを混合して混合物を作製する工程、
(2)前記混合物を押出機で押出後、キャスト法によりシートを成形する際に、前記分子量(Mw)が1万未満のポリエチレン成分を前記シートの表面にブリードさせる工程、
を含む製造方法。
[5]
前記(1)の工程が、ポリプロピレンと、分子量(Mw)が1万未満のポリエチレン成分を含むポリエチレンとの混合物に、可塑剤と低分子量ポリエチレンとの混合物を加える工程を更に含む、上記[4]記載の製造方法。
[6]
上記[1]又は[2]記載の微多孔膜又は上記[3]記載の多層微多孔膜を含む非水電解質2次電池用セパレータ。
That is, the present invention is as follows.
[1]
A microporous membrane comprising a resin composition containing a mixture of polypropylene and polyethylene as a main component,
The proportion of the polypropylene in the mixture is 50% by mass or more,
A microporous membrane having a surface dynamic friction coefficient of 0.55 or less.
[2]
The microporous membrane according to the above [1], wherein the polypropylene content on the surface is 60% by mass or less and (total polypropylene content) − (polypropylene content on the surface) ≧ 10% by mass.
[3]
A multilayer microporous membrane comprising the microporous membrane according to [1] or [2] as a surface layer.
[4]
A method for producing a microporous membrane according to the above [1] or [2],
(1) A step of preparing a mixture by mixing polypropylene and polyethylene containing a polyethylene component having a molecular weight (Mw) of less than 10,000,
(2) a step of bleeding the polyethylene component having a molecular weight (Mw) of less than 10,000 on the surface of the sheet when the sheet is formed by a casting method after the mixture is extruded by an extruder.
Manufacturing method.
[5]
[4] The above step (4), wherein the step (1) further comprises a step of adding a mixture of a plasticizer and a low molecular weight polyethylene to a mixture of polypropylene and a polyethylene component having a molecular weight (Mw) of less than 10,000. The manufacturing method as described.
[6]
A separator for a nonaqueous electrolyte secondary battery comprising the microporous membrane according to [1] or [2] or the multilayer microporous membrane according to [3].

本発明によれば、特にセパレータとして使用した際の、高温サイクル性、生産性、電池捲回性に優れた微多孔膜及びその製造方法が提供される。   According to the present invention, a microporous membrane excellent in high-temperature cycle performance, productivity, and battery winding property, particularly when used as a separator, and a method for producing the same are provided.

実施例で用いたダイスの側面断面図を示す。Side surface sectional drawing of the die | dye used in the Example is shown. 実施例で用いたダイスの上面断面図を示す。The upper surface sectional drawing of the die | dye used in the Example is shown. 電池捲回性の評価治具の概略図を示す。The schematic of a battery winding property evaluation jig is shown.

以下、本発明を実施するための形態(以下、「本実施の形態」と略記する。)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, a mode for carrying out the present invention (hereinafter abbreviated as “the present embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.

本実施の形態の微多孔膜は、
ポリプロピレンとポリエチレンとの混合物を主成分として含有する樹脂組成物を含む微多孔膜であって、
前記ポリプロピレンが前記混合物中に占める割合が50質量%以上であり、
表面の動摩擦係数が0.55以下である。
本実施の形態の微多孔膜は、単層の微多孔膜であり、他の微多孔膜と積層することで多層微多孔膜とすることができる。
The microporous membrane of the present embodiment is
A microporous membrane comprising a resin composition containing a mixture of polypropylene and polyethylene as a main component,
The proportion of the polypropylene in the mixture is 50% by mass or more,
The surface dynamic friction coefficient is 0.55 or less.
The microporous membrane of the present embodiment is a single-layer microporous membrane, and can be formed into a multilayer microporous membrane by stacking with other microporous membranes.

本実施の形態において「主成分」とは、特定成分がマトリックス成分中に占める割合として、好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは90質量%以上であり、実質的に100質量%であってもよいことを意味する。   In the present embodiment, the “main component” is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 90% by mass or more as a proportion of the specific component in the matrix component. This means that it may be 100% by mass.

ポリプロピレンは、微多孔膜をリチウムイオン二次電池のセパレータとして使用した際に、高温でのサイクル性と安全性を付与することに寄与し得るものであり、ポリプロピレンとポリエチレンとの混合物中に50質量%以上含有される。リチウムイオン二次電池のサイクル性をより改善する観点からは61質量%以上含有されることが好ましく、リチウムイオン二次電池の高温保存後の安全性を改善する観点からは71質量%以上含有されることが好ましい。   Polypropylene can contribute to providing high temperature cycleability and safety when the microporous membrane is used as a separator of a lithium ion secondary battery, and 50 mass in a mixture of polypropylene and polyethylene. % Or more. From the viewpoint of further improving the cycle performance of the lithium ion secondary battery, it is preferably contained in an amount of 61% by mass or more, and from the viewpoint of improving the safety of the lithium ion secondary battery after high temperature storage, it is contained by 71% by mass or more. It is preferable.

ポリプロピレンとしては、特に限定されるものではなく、例えば、アイソタクティックポリプロピレン(IPP)、シンジオタクティックポリプロピレン、アタクティックポリプロピレン等のプロピレンのホモ重合体や、プロピレンと、エチレンやブテン、炭素数5以上のα−オレフィンといったコモノマーとを共重合させて得られるランダム共重合体(RPP)やブロック共重合体(BPP)、ターポリマー等が挙げられる。上記の中でも、耐熱性を付与したい場合には、結晶性の高いIPPが好ましく、強度付与の観点からは、延伸の容易なRPPやBPPが好ましい。   The polypropylene is not particularly limited. For example, propylene homopolymers such as isotactic polypropylene (IPP), syndiotactic polypropylene, and atactic polypropylene, propylene, ethylene, butene, and carbon number of 5 or more. And a random copolymer (RPP), a block copolymer (BPP), a terpolymer and the like obtained by copolymerizing with a comonomer such as α-olefin. Among these, when it is desired to impart heat resistance, IPP having high crystallinity is preferable, and RPP and BPP that are easily stretched are preferable from the viewpoint of imparting strength.

ポリプロピレンの粘度平均分子量(Mv)としては、溶融混練が容易となり、その結果、樹脂組成物を微多孔膜としたときにフィッシュアイ状の欠陥が改善される傾向にあるため、好ましくは100万以下、より好ましくは70万以下、さらに好ましくは60万以下である。また強度の観点から、ポリプロピレンの粘度平均分子量は10万以上、より好ましくは20万以上である。
ここで、フィッシュアイとは、ポリマー編集委員会著、ポリマー辞典、大成社、平成12年、増刷6版、337頁等に定義されているように、フィルム状又はシート状の製品中に生じる小さな球状の塊を言い、魚の眼のような透明性を示すものが多いことからこのような名前が付けられた。フィッシュアイは、その生成要因から区別して、成形材料の混練不足から来る未溶融の塊、原料の一部がゲル化したための塊、成形中の材料の部分的劣化による塊、異物を核としたものなど、種々のものが挙げられる。ただし、本明細書においてフィッシュアイは、微多孔膜の原料として用いた材料に起因するものであり、異物を核にしたものは除外する。なお、その異物とは、例えば、セルロース、塵、金属片、樹脂の炭化物、種類の異なるプラスチック、糸屑、紙切れが挙げられる。
As the viscosity average molecular weight (Mv) of polypropylene, melt kneading is facilitated, and as a result, fisheye defects tend to be improved when the resin composition is made into a microporous film. More preferably, it is 700,000 or less, More preferably, it is 600,000 or less. From the viewpoint of strength, the viscosity average molecular weight of polypropylene is 100,000 or more, more preferably 200,000 or more.
Here, the fish eye is a small amount generated in a film-like or sheet-like product as defined in Polymer Editorial Board, Polymer Dictionary, Taiseisha, 2000, 6th edition, 337 pages, etc. This name was given because it is a spherical lump, and many of them show transparency like fish eyes. Fisheye is distinguished from its production factors, with unmelted lumps resulting from insufficient kneading of molding materials, lumps due to part of the raw material gelling, lumps due to partial deterioration of the material being molded, and foreign matter as the core. Various things, such as a thing, are mentioned. However, in this specification, the fish eye originates from the material used as the raw material for the microporous membrane, and excludes those having foreign matter as the core. In addition, the foreign material includes, for example, cellulose, dust, metal pieces, resin carbide, plastics of different types, lint, and pieces of paper.

また、メタロセン触媒等を利用して立体規則性を低下させたポリプロピレンや、BPP、RPPを、IPPに対して0.5〜30質量%ブレンドした樹脂組成物も好ましい。このようなポリプロピレンを用いることにより、後述する湿式法にて微多孔膜を成形する際に、透過性が改良される傾向にある。   Also preferred is a resin composition obtained by blending 0.5-30% by mass of polypropylene, BPP, or RPP with reduced stereoregularity using a metallocene catalyst or the like with respect to IPP. By using such polypropylene, the permeability tends to be improved when a microporous film is formed by a wet method described later.

本実施の形態の微多孔膜は、樹脂成分として、ポリエチレンを含むことが必要である。ポリエチレンが、ポリプロピレンとポリエチレンとの混合物中に占める割合としては、高温サイクル性改善の観点から、50質量%未満であり、さらに安全性の観点からは35質量%以下であることが好ましい。一方、ポリエチレンは微多孔膜の生産性を上げる作用があり、この観点からは、ポリエチレンの割合は15質量%以上であることが好ましく、20質量%以上であることがより好ましい。   The microporous membrane of the present embodiment needs to contain polyethylene as a resin component. The proportion of polyethylene in the mixture of polypropylene and polyethylene is less than 50% by mass from the viewpoint of improving high-temperature cycle performance, and is preferably 35% by mass or less from the viewpoint of safety. On the other hand, polyethylene has the effect of increasing the productivity of the microporous membrane. From this viewpoint, the ratio of polyethylene is preferably 15% by mass or more, and more preferably 20% by mass or more.

ポリエチレンとしては、例えば、高密度ポリエチレン、超高分子量ポリエチレン、線状低密度ポリエチレン、高圧法低密度ポリエチレン、及びこれらの混合物等が挙げられる。また、メタロセン触媒を利用した分子量分布の狭いポリエチレンや、高密度ポリエチレンでも多段重合によるポリエチレンでもよい。上記の中でも、微多孔膜をセパレータとして用いた場合の熱収縮を低減する観点から、イオン重合による線状の高密度ポリエチレン、超高分子量ポリエチレン、あるいはこれらの混合物を使用することが好ましい。ここでいう超高分子量ポリエチレンとは、粘度平均分子量が50万以上のポリエチレンを指す。超高分子量ポリエチレンが全ポリエチレン中に占める割合としては、好ましくは5〜50質量%であり、分散性の観点から、より好ましくは9〜40質量%である。   Examples of the polyethylene include high density polyethylene, ultra high molecular weight polyethylene, linear low density polyethylene, high pressure method low density polyethylene, and mixtures thereof. Further, polyethylene having a narrow molecular weight distribution using a metallocene catalyst, high-density polyethylene, or polyethylene by multistage polymerization may be used. Among these, from the viewpoint of reducing thermal shrinkage when a microporous membrane is used as a separator, it is preferable to use linear high-density polyethylene, ultrahigh molecular weight polyethylene, or a mixture thereof by ion polymerization. The ultra high molecular weight polyethylene here refers to polyethylene having a viscosity average molecular weight of 500,000 or more. The proportion of ultra high molecular weight polyethylene in the total polyethylene is preferably 5 to 50% by mass, and more preferably 9 to 40% by mass from the viewpoint of dispersibility.

ポリエチレンの粘度平均分子量(Mv)(複数種のポリエチレンを用いる場合には、その全体の粘度平均分子量)としては、微多孔膜の強度を向上させる観点から、好ましくは20万以上であり、より好ましくは30万以上である。粘度平均分子量(Mv)の上限としては、押出成形性、延伸性の観点から、好ましくは1000万以下、より好ましくは500万以下である。   The viscosity average molecular weight (Mv) of polyethylene (when using a plurality of types of polyethylene, the total viscosity average molecular weight) is preferably 200,000 or more, more preferably from the viewpoint of improving the strength of the microporous membrane. Is over 300,000. The upper limit of the viscosity average molecular weight (Mv) is preferably 10 million or less, more preferably 5 million or less, from the viewpoints of extrusion moldability and stretchability.

ポリエチレンの分子量分布(Mw/Mn)は、無機フィラー等を混合して混練する場合にその混練性を向上させ、無機フィラーが二次凝集した粒状の欠点が発生することを抑制する観点からは、好ましくは5以上であり、より好ましくは8以上である。   The molecular weight distribution of polyethylene (Mw / Mn) improves the kneadability when mixing and kneading inorganic fillers, etc., and from the viewpoint of suppressing the occurrence of granular defects in which the inorganic filler is secondarily aggregated, Preferably it is 5 or more, More preferably, it is 8 or more.

本実施の形態の微多孔膜に用いられるポリエチレンは、分子量が1万未満のポリエチレン成分を含むことが好ましい。ここでいう分子量1万未満のポリエチレン成分とはゲルパーミエーションクロマトグラフィー(GPC)法にて測定される分子量分布のチャートにおける分子量1万未満の部分であって、その割合はチャート上の面積比から求めることができる。分子量1万未満のポリエチレン成分は、特定の条件で製膜すると、その一部が微多孔膜の表面に移動し、その結果、表面のポリプロピレン量を低下させる作用を持つ。このような分子量1万未満のポリエチレン成分をポリエチレンへ含有させる方法としては、ポリエチレンの重合時に低分子量成分を多く含むように重合条件を設定して作製してもよいし、通常のポリエチレンに重量平均分子量が1万未満のポリエチレン成分を混合して作製してもよい。   The polyethylene used for the microporous membrane of the present embodiment preferably contains a polyethylene component having a molecular weight of less than 10,000. Here, the polyethylene component having a molecular weight of less than 10,000 is a portion having a molecular weight of less than 10,000 in a molecular weight distribution chart measured by a gel permeation chromatography (GPC) method, and the ratio is determined from the area ratio on the chart. Can be sought. When a polyethylene component having a molecular weight of less than 10,000 is formed under a specific condition, a part of the polyethylene component moves to the surface of the microporous membrane, and as a result, has an action of reducing the amount of polypropylene on the surface. As a method of incorporating such a polyethylene component having a molecular weight of less than 10,000 into the polyethylene, it may be prepared by setting polymerization conditions so as to contain a large amount of low molecular weight components during the polymerization of polyethylene. You may mix and produce the polyethylene component whose molecular weight is less than 10,000.

分子量1万未満のポリエチレン成分の含有量は、全ポリエチレン量に対して好ましくは5質量%以上であり、この範囲内であると、微多孔膜の製膜中に摩擦が軽減され、微多孔膜の生産性が向上する傾向にある。より好ましくは10質量%以上であり、この範囲内であると、微多孔膜をリチウムイオン二次電池用セパレータとして使用した際に、電池の捲回性が向上する傾向にある。さらに20質量%以上であると、より一層高速の捲回が可能となり、電池の生産性が向上する傾向にある。一方、微多孔膜の強度を改善する観点からは、50質量%以下であることが好ましい。また、摩擦低減をさらに改善する観点からは、分子量が1000未満のポリエチレン成分を1質量%以上で含むことが好ましい。   The content of the polyethylene component having a molecular weight of less than 10,000 is preferably 5% by mass or more with respect to the total polyethylene amount. If the content is within this range, friction is reduced during the formation of the microporous membrane, and the microporous membrane is reduced. Productivity tends to improve. More preferably, the content is 10% by mass or more. When the content is within this range, the winding property of the battery tends to be improved when the microporous membrane is used as a separator for a lithium ion secondary battery. Furthermore, when it is 20% by mass or more, winding at higher speed becomes possible, and the productivity of the battery tends to be improved. On the other hand, from the viewpoint of improving the strength of the microporous membrane, it is preferably 50% by mass or less. Further, from the viewpoint of further improving friction reduction, it is preferable that the polyethylene component having a molecular weight of less than 1000 is contained at 1% by mass or more.

本実施の形態における樹脂組成物には、ポリプロピレンやポリエチレンに加えて、他の樹脂成分、無機フィラー、酸化防止剤、分散助剤、帯電防止剤、加工安定剤、結晶核剤等の添加剤、有機フィラー等の添加物等が混合されていてもよい。これらの各成分が樹脂組成物中に占める割合としては、好ましくは5質量%以下、より好ましくは2質量%以下であり、実質的に0質量%であってもよい。   In addition to polypropylene and polyethylene, the resin composition in the present embodiment includes other resin components, inorganic fillers, antioxidants, dispersing aids, antistatic agents, processing stabilizers, additives such as crystal nucleating agents, Additives such as organic fillers may be mixed. The proportion of these components in the resin composition is preferably 5% by mass or less, more preferably 2% by mass or less, and may be substantially 0% by mass.

本実施の形態の微多孔膜には、ポリプロピレン、ポリエチレン以外の樹脂として、製膜性を改善する目的で、ポリブテン−1樹脂や、プロピレン系、エチレン系のエラストマー、特にプロピレンとエチレンのランダム共重合体エラストマーを混合してもよい。ポリメチルペンテン−1樹脂を用いることも可能であり、メルトフローレート(MFR)が0.1〜10g/10分のものが好適に用いられる。   In the microporous membrane of this embodiment, as a resin other than polypropylene and polyethylene, for the purpose of improving the film-forming property, polybutene-1 resin, propylene-based and ethylene-based elastomers, particularly random copolymerization of propylene and ethylene A combined elastomer may be mixed. Polymethylpentene-1 resin can also be used, and those having a melt flow rate (MFR) of 0.1 to 10 g / 10 min are preferably used.

上記以外にも、ポリフェニレンエーテル等のエンプラ樹脂、ナイロン6、ナイロン6−12、アラミド樹脂等のポリアミド樹脂、ポリイミド系樹脂、PET、PBT等のポリエステル系樹脂、ポリカーボネート系樹脂、ポリフッ化ビニリデン(PVDF)等のフッ素系樹脂、エチレンとビニルアルコールの共重合体、C2〜C12のα−オレフィンと一酸化炭素の共重合体及びその水添物、スチレン系重合体の水添物、スチレンとα−オレフィンとの共重合体及びその水添物、スチレンと脂肪族モノ不飽和脂肪酸との共重合体、アクリル酸及び同誘導体系重合体、スチレンと共役ジエン系不飽和単量体との共重合体及びこれらの水添物から選択される熱可塑性樹脂等を用いることができる。   Other than the above, engineering plastic resins such as polyphenylene ether, polyamide resins such as nylon 6, nylon 6-12, and aramid resin, polyimide resins, polyester resins such as PET and PBT, polycarbonate resins, and polyvinylidene fluoride (PVDF) Fluorine-based resins, copolymers of ethylene and vinyl alcohol, copolymers of C2-C12 α-olefin and carbon monoxide and hydrogenated products thereof, hydrogenated products of styrene-based polymers, styrene and α-olefins A copolymer of styrene and an aliphatic monounsaturated fatty acid, a copolymer of acrylic acid and its derivatives, a copolymer of styrene and a conjugated diene unsaturated monomer, and A thermoplastic resin selected from these hydrogenated materials can be used.

本実施の形態においては、上記の樹脂成分に無機フィラーを混合してもよい。用いることが可能な無機フィラーとしては、例えば、アルミナ(例えば、α−アルミナ等)、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄等の酸化物系セラミックス;窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス;シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、チタン酸カリウム、タルク、カオリンクレー、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂等のセラミックス;ガラス繊維等が挙げられ、これらを単独で用いてもよいし、複数を混合して用いてもよい。   In this Embodiment, you may mix an inorganic filler with said resin component. Examples of the inorganic filler that can be used include alumina (for example, α-alumina), silica, titania, zirconia, magnesia, ceria, yttria, zinc oxide, iron oxide, and other oxide ceramics; silicon nitride, nitriding Nitride ceramics such as titanium and boron nitride; silicon carbide, calcium carbonate, aluminum sulfate, aluminum hydroxide, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, mica, candy Ceramics such as sight, bentonite, asbestos, zeolite, calcium silicate, magnesium silicate, diatomaceous earth, and silica sand; glass fiber etc. may be used, and these may be used alone or in combination. Also good.

無機フィラーが、樹脂組成物中に占める割合としては、好ましくは10〜90質量%、より好ましくは20〜55質量%である。   The proportion of the inorganic filler in the resin composition is preferably 10 to 90% by mass, more preferably 20 to 55% by mass.

無機フィラーの粒子径としては特に限定されないが、目的によって種々のものを用いることができる。例えば、有機溶媒との濡れ性を高めるために、疎水性の無機フィラー等を用いる場合は、樹脂への分散性や表面積を向上させるため、比較的平均粒子径の小さいもの、例えば5nm〜1μm、好ましくは5〜100nm程度のものが用いられる。一方、平均粒子径が1μm〜10μmの平均粒子径を有する無機フィラーを用いると、フィルムの強度が向上する傾向にあり、さらに1.5μm〜5μmの平均粒子径を有する無機フィラーを用いると、製膜時の偏肉が向上する傾向にある。   Although it does not specifically limit as a particle diameter of an inorganic filler, A various thing can be used according to the objective. For example, in order to improve wettability with an organic solvent, when using a hydrophobic inorganic filler or the like, in order to improve the dispersibility in the resin and the surface area, those having a relatively small average particle diameter, for example, 5 nm to 1 μm, Preferably about 5-100 nm is used. On the other hand, when an inorganic filler having an average particle diameter of 1 μm to 10 μm is used, the strength of the film tends to be improved, and when an inorganic filler having an average particle diameter of 1.5 μm to 5 μm is used, The uneven thickness at the time of film tends to improve.

酸化防止剤としては、例えば、「イルガノックス1010」、「イルガノックス1076」、「BHT」(いずれも商標、チバスペシャリティーケミカルズ社製)等のフェノール系酸化防止剤や、リン系、イオウ系の二次酸化防止剤、ヒンダードアミン系の耐候剤等を、単独又は目的に応じて複数用いることができる。特にフェノール系酸化防止剤とリン系酸化防止剤の組合せが好適に用いられる。具体的には、ペンタエリスリチル−テトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−t−ブチルヒドロキシフェニル)プロピオネート、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチルヒドロキシベンジル)ベンゼン、トリス(2,4−ジ−t−ブチルフェニル)フォスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4’−ビフェニレンフォスファイト等が好ましい。また、6−[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロポキシ]−2,4,8,10−テトラ−t−ブチルジベンゾ[d,f][1,3,2]ジオキシフォスフェピン等も好適である。酸化防止剤の配合量は、微多孔膜を構成する樹脂に対して好ましくは100ppm〜10000ppmであり、フェノール系酸化防止剤とリン系酸化防止剤を併用する場合には、フェノール系/リン系の比は好ましくは1/3〜3/1である。   Examples of the antioxidant include phenolic antioxidants such as “Irganox 1010”, “Irganox 1076”, and “BHT” (both are trademarks, manufactured by Ciba Specialty Chemicals), phosphorus-based and sulfur-based antioxidants. A secondary antioxidant, a hindered amine weathering agent, and the like can be used alone or in accordance with the purpose. In particular, a combination of a phenolic antioxidant and a phosphorus antioxidant is preferably used. Specifically, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butylhydroxyphenyl) propionate 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butylhydroxybenzyl) benzene, tris (2,4-di-t-butylphenyl) phosphite, tetrakis (2 , 4-di-t-butylphenyl) -4,4′-biphenylene phosphite is preferred. In addition, 6- [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-t-butyldibenzo [d, f] [1,3, 2] Dioxyphosphine and the like are also suitable. The blending amount of the antioxidant is preferably 100 ppm to 10000 ppm with respect to the resin constituting the microporous membrane. When the phenolic antioxidant and the phosphorus antioxidant are used in combination, the phenolic / phosphorous type is used. The ratio is preferably 1/3 to 3/1.

本実施の形態においては、ポリプロピレンの結晶性を制御し微多孔の形成を制御することを目的として結晶核剤を使用することが好ましく、特に押出成形により微多孔膜を製造する場合に好ましい。結晶核剤の種類としては、特に限定されないが、一般のベンジルソルビトール系(「ゲルオール」(商標 新日本理化社製))、リン酸金属塩、t−ブチル安息香酸アルミニウム等のカルボン酸金属塩等が挙げられる。その具体例としては、ビス(p−エチルベンジリデン)ソルビトール,ビス(4−メチルベンジリデン)ソルビトール、ビス(3,4−ジメチルベンジリデン)ソルビトール、ビスベンジリデンソルビトール等である。結晶核剤の配合量としては、所望の結晶化条件にもよるが、結晶化が迅速に進み、成形性が容易となる観点から、ポリプロピレンの量に対して100ppm以上であることが好ましく、過剰の結晶核剤によるブリード過多を防止する観点から、10,000ppm以下であることが好ましい。より好ましい結晶核剤の配合量は、ポリプロピレンに対して100〜2,000ppmである。通常の可塑剤を用いた微多孔膜の製造においては、流動パラフィンや、フタル酸エステル系の可塑剤を用いた場合、ポリエチレンを用いた微多孔膜は透過性が発揮されやすいが、ポリプロピレンはポリエチレンに比べ孔が小さくなり、透過性が劣る傾向にある。このポリプロピレンの透過性を解消する手段として、孔を適当な大きさに調整する方法が効果的であり、結晶核剤の利用により相分離速度が調整され、適当な孔構造の形成が容易となる。   In the present embodiment, it is preferable to use a crystal nucleating agent for the purpose of controlling the crystallinity of polypropylene and controlling the formation of micropores, particularly when a microporous membrane is produced by extrusion. Although it does not specifically limit as a kind of crystal nucleating agent, Carboxylic acid metal salts, such as general benzyl sorbitol type | system | group ("Gerol" (trademark made by Shin Nippon Rika Co., Ltd.)), phosphoric acid metal salt, aluminum t-butylbenzoate Is mentioned. Specific examples thereof include bis (p-ethylbenzylidene) sorbitol, bis (4-methylbenzylidene) sorbitol, bis (3,4-dimethylbenzylidene) sorbitol, bisbenzylidenesorbitol, and the like. The compounding amount of the crystal nucleating agent is preferably 100 ppm or more based on the amount of polypropylene, from the viewpoint that crystallization proceeds rapidly and moldability is easy, although it depends on the desired crystallization conditions. From the viewpoint of preventing excessive bleeding due to the crystal nucleating agent, it is preferably 10,000 ppm or less. A more preferable amount of the crystal nucleating agent is 100 to 2,000 ppm with respect to polypropylene. In the production of microporous membranes using ordinary plasticizers, when liquid paraffin or phthalate ester plasticizers are used, microporous membranes using polyethylene tend to exhibit permeability, but polypropylene is polyethylene. As compared with, the pores become smaller and the permeability tends to be inferior. As a means for eliminating the permeability of this polypropylene, a method of adjusting the pores to an appropriate size is effective, and the phase separation rate is adjusted by using a crystal nucleating agent, so that an appropriate pore structure can be easily formed. .

その他、ポリプロピレンとポリエチレンの分散助剤として、例えば、水添したスチレン−ブタジエン系エラストマーや、エチレンとプロピレンを共重合したエラストマー等も必要に応じて用いることができる。これらの分散助剤の配合量としては、特には限定されないが、ポリプロピレンとポリエチレンの合計量100質量部に対して、好ましくは1〜10質量部である。   In addition, as a dispersion aid for polypropylene and polyethylene, for example, a hydrogenated styrene-butadiene elastomer, an elastomer copolymerized with ethylene and propylene, or the like can be used as necessary. The amount of these dispersing aids is not particularly limited, but is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the total amount of polypropylene and polyethylene.

さらに、帯電防止剤としては、アルキルジエタノールアミンやヒドロキシアルキルエタノールアミン等のアミン系、ステアリルジエタノールアミンモノ脂肪酸エステル等のアミンエステル類、ラウリン酸ジエタノールアミドやステアリン酸ジエタノールアミド等のアルキローアミド類、グリセリンやジグリセリンのモノ脂肪酸エステル類、アルキルベンゼンスルホン酸等のアニオン系帯電防止剤、ポリオキシエチレンアルキルエーテル類等が挙げられ、これらは単独で用いても、複数用いてもよい。帯電防止剤の配合量としては、特に限定されないが、好ましくは微多孔膜を構成する樹脂に対して500〜10000ppm程度である。   Antistatic agents include amines such as alkyldiethanolamine and hydroxyalkylethanolamine, amine esters such as stearyl diethanolamine monofatty acid ester, alkyloamides such as lauric acid diethanolamide and stearic acid diethanolamide, glycerin and diethanolamine. Examples include glycerin mono-fatty acid esters, anionic antistatic agents such as alkylbenzene sulfonic acid, and polyoxyethylene alkyl ethers. These may be used alone or in combination. The blending amount of the antistatic agent is not particularly limited, but is preferably about 500 to 10,000 ppm with respect to the resin constituting the microporous membrane.

本実施の形態の微多孔膜は表面の動摩擦係数が0.55以下に調整されており、この範囲内であると、電池の捲回性や、製膜現場でのセパレータ自体の生産性が改善され、さらにリチウムイオン二次電池のセパレータとして使用した際の安全性が改善される。安全性改善のメカニズムは明かではないが、摩擦が低減することで、製膜工程や電池捲回中に、静電気が発生し難くなり、静電気によるシワや、異物付着等が極めて少なくなるためと推定される。動摩擦係数は、好ましくは、0.45以下であり、この範囲であると安全性がさらに改善される。動摩擦係数は、さらに好ましくは、0.35以下であり、この範囲であると電池の捲回の速度を上げることができる。   The microporous membrane of the present embodiment has a surface dynamic friction coefficient adjusted to 0.55 or less, and if it is within this range, the winding property of the battery and the productivity of the separator itself at the film forming site are improved. In addition, safety when used as a separator of a lithium ion secondary battery is improved. The mechanism of safety improvement is not clear, but it is estimated that the friction reduces, making it difficult for static electricity to occur during the film-forming process and battery winding, and reducing wrinkles and adhesion of foreign objects due to static electricity. Is done. The dynamic friction coefficient is preferably 0.45 or less, and safety is further improved when the coefficient is in this range. The dynamic friction coefficient is more preferably 0.35 or less, and the battery winding speed can be increased within this range.

本実施の形態の微多孔膜は、表面のポリプロピレン含有率が60質量%以下であることが好ましい。表面のポリプロピレン含有率がこの範囲であると、表面の摩擦が低減し、安全性や、生産性、捲回性が改善される傾向にある。表面のポリプロピレン含有率は、より好ましくは45質量%以下であり、捲回性の観点から、さらに好ましくは30質量%以下である。さらに本実施の形態の微多孔膜においては、微多孔膜の樹脂成分として含有する全体のポリプロピレン含有率(含有PP量)と表面のポリプロピレン含有率(表面PP量)の差が(含有PP量)−(表面PP量)≧10質量%であることが好ましい。(含有PP量)−(表面PP量)がこの範囲内であると、微多孔膜に対して高温での安全性とサイクル性を付与するのに充分なPP量を有すると同時に、表面のPP量が少ないために摩擦が低減し、微多孔膜の生産性に優れる傾向にある。さらに好ましくは、(含有PP量)−(表面PP量)≧30質量%であり、この範囲であると、微多孔膜をリチウムイオン二次電池のセパレータとして使用した際の、電池捲回性に極めて優れる傾向にある。特に好ましくは(含有PP量)−(表面PP量)≧50質量%であり、この範囲であると、電池の高速捲回性に優れる傾向にある。
ここで、表面のポリプロピレン含有率は、後述する実施例において記載されているように、微多孔膜の表面の動摩擦係数の値を用いて求めることができる。
The microporous membrane of the present embodiment preferably has a surface polypropylene content of 60% by mass or less. When the polypropylene content on the surface is within this range, the friction on the surface is reduced, and the safety, productivity, and winding property tend to be improved. The polypropylene content on the surface is more preferably 45% by mass or less, and further preferably 30% by mass or less from the viewpoint of winding property. Further, in the microporous membrane of the present embodiment, the difference between the total polypropylene content (containing PP amount) contained as a resin component of the microporous membrane and the surface polypropylene content (surface PP amount) is (containing PP amount). − (Surface PP amount) ≧ 10% by mass is preferable. When the (containing PP amount)-(surface PP amount) is within this range, the PP amount on the surface is sufficient while at the same time having a PP amount sufficient to impart high temperature safety and cycleability to the microporous membrane. Since the amount is small, friction is reduced and the productivity of the microporous membrane tends to be excellent. More preferably, (the amount of PP contained) − (the amount of PP on the surface) ≧ 30% by mass, and in this range, when the microporous membrane is used as a separator of a lithium ion secondary battery, It tends to be very good. Particularly preferably, (contained PP amount) − (surface PP amount) ≧ 50 mass%, and within this range, the battery tends to be excellent in high-speed winding property.
Here, the polypropylene content on the surface can be determined by using the value of the dynamic friction coefficient on the surface of the microporous membrane, as described in Examples described later.

本実施の形態の微多孔膜の製造方法としては、特に限定されないが、
(1)ポリプロピレンと、分子量(Mw)が1万未満のポリエチレン成分を含むポリエチレンとを混合して混合物を作製する工程、
(2)前記混合物を押出機で押出後、キャスト法によりシートを成形する際に、前記分子量が1万未満のポリエチレン成分を前記シートの表面にブリードさせる工程、
を含む方法が好ましい。
The method for producing the microporous membrane of the present embodiment is not particularly limited,
(1) A step of preparing a mixture by mixing polypropylene and polyethylene containing a polyethylene component having a molecular weight (Mw) of less than 10,000,
(2) A step of bleeding the polyethylene component having a molecular weight of less than 10,000 on the surface of the sheet when the sheet is formed by a casting method after the mixture is extruded by an extruder.
Is preferred.

ここでいうブリードとは、微多孔膜の表面に樹脂の低分子量成分が移動する現象のことで、結果として微多孔膜の表面の低分子量成分の量が、内部に比べて増加する。   Bleed here is a phenomenon in which the low molecular weight component of the resin moves to the surface of the microporous membrane, and as a result, the amount of the low molecular weight component on the surface of the microporous membrane increases compared to the inside.

ここでいう分子量(Mw)が1万未満のポリエチレン成分を含むポリエチレンとは、好ましくは重合時に副生する低分子量成分をそのまま含むものが好ましい。これにより、低分子量成分の混合時の分散性が良好となり、微多孔膜の強度低下が抑制される。ここで、分子量(Mw)が1万未満のポリエチレン成分とは、ポリエチレンのGPCチャートにおいて、1万未満の部分の重量が占める割合である。この分子量1万未満のポリエチレン成分を含むポリエチレンとしては、上記のほかに、重量平均分子量が1万未満のポリエチレンやエチレン重合体、市販のワックス等の低分子量ポリエチレンを、通常のポリエチレンに混合したものでもよい。特に、ポリプロピレンと分子量(Mw)が1万未満の成分を含むポリエチレンとの混合物に、可塑剤と低分子量ポリエチレンとの混合物を加えて押出機で押出後、キャスト法によりシートを成形する際に、分子量1万未満のポリエチレン成分をシートの表面にブリードさせる方法が簡便であり、さらにこの方法によると、微多孔膜の表面に分子量1万未満のポリエチレン成分が移動しやすく、表面のポリプロピレン量を抑えることができるため、本発明の目的を達成しやすくなる。
ブリードを促進させるには、キャスト法により成形されたシートを、低分子量成分がシートの表面に移動しやすい温度雰囲気に一定時間暴露することが好ましい。例えば、キャスト成形時にダイスから出たシートを冷却固化後、樹脂膜の温度が樹脂の融点−50℃を下回らない温度で、一定時間、例えば10秒以上保持することで促進される。この保持温度や時間は、樹脂の性状やシートの厚み、製膜環境温度により多少変化する。また、製膜後でも、常温に数日エージングすることでブリードは促進される。
Here, the polyethylene containing a polyethylene component having a molecular weight (Mw) of less than 10,000 preferably contains a low molecular weight component as a by-product during polymerization. Thereby, the dispersibility at the time of mixing a low molecular weight component becomes favorable, and the strength reduction of a microporous film is suppressed. Here, the polyethylene component having a molecular weight (Mw) of less than 10,000 is the ratio of the weight of less than 10,000 in the polyethylene GPC chart. In addition to the above, the polyethylene containing a polyethylene component having a molecular weight of less than 10,000 is a mixture of a polyethylene having a weight average molecular weight of less than 10,000, a low molecular weight polyethylene such as an ethylene polymer, a commercially available wax, or the like with ordinary polyethylene. But you can. In particular, when a sheet is formed by a cast method after adding a mixture of a plasticizer and a low molecular weight polyethylene to a mixture of polypropylene and polyethylene containing a component having a molecular weight (Mw) of less than 10,000 and extruding with an extruder. A method of bleeding a polyethylene component having a molecular weight of less than 10,000 on the surface of the sheet is simple. Further, according to this method, a polyethylene component having a molecular weight of less than 10,000 is easily transferred to the surface of the microporous membrane, thereby suppressing the amount of polypropylene on the surface. Therefore, the object of the present invention can be easily achieved.
In order to promote bleeding, it is preferable to expose the sheet formed by the casting method to a temperature atmosphere in which low molecular weight components easily move to the surface of the sheet for a certain period of time. For example, after cooling and solidifying the sheet coming out of the die at the time of cast molding, it is promoted by holding the resin film at a temperature not lower than the melting point of the resin −50 ° C. for a certain time, for example, 10 seconds or more. The holding temperature and time vary somewhat depending on the properties of the resin, the thickness of the sheet, and the film forming environment temperature. Even after film formation, bleeding is promoted by aging at room temperature for several days.

分子量(Mw)が1万未満のポリエチレン成分の量としては、樹脂成分全体に対して1〜20質量%であることが、電池捲回性と、過剰の低分子量成分による強度低下防止の観点から好ましい。さらには、分子量が1万未満のポリエチレン成分の量が樹脂成分全体に対して5〜10質量%であることが、高速電池捲回性と、ブリード過多による膜の汚れ防止の観点から好ましい。   The amount of the polyethylene component having a molecular weight (Mw) of less than 10,000 is 1 to 20% by mass based on the entire resin component, from the viewpoint of battery winding property and prevention of strength reduction due to an excessive low molecular weight component. preferable. Furthermore, it is preferable that the amount of the polyethylene component having a molecular weight of less than 10,000 is 5 to 10% by mass with respect to the entire resin component from the viewpoint of high-speed battery winding property and prevention of film contamination due to excessive bleeding.

また、ポリプロピレン、ポリエチレン等の樹脂成分に、フタル酸エステル、流動パラフィン等の可塑剤と低分子量ポリエチレンとの混合物を加え押出機で押出後、キャスト成形したシートを、1軸又は2軸に延伸する工程、可塑剤を除去する工程、可塑剤除去後に延伸する工程、熱固定する工程を経て微多孔膜を形成する湿式法においては、重量平均分子量が1万未満のポリエチレン成分を、可塑剤に溶解又は膨潤分散させたものを、混合してもよい。この方法であれば、ポリエチレンの低分子量成分を微多孔膜の表面に配置(ブリード)させることが容易になる。   Also, after adding a mixture of a plasticizer such as phthalate ester and liquid paraffin and low molecular weight polyethylene to a resin component such as polypropylene and polyethylene and extruding with an extruder, the cast sheet is stretched uniaxially or biaxially. In the wet method of forming a microporous film through a process, a process of removing a plasticizer, a process of stretching after removing the plasticizer, and a process of heat setting, a polyethylene component having a weight average molecular weight of less than 10,000 is dissolved in the plasticizer. Or what was swell-dispersed may be mixed. With this method, it becomes easy to dispose (bleed) the low molecular weight component of polyethylene on the surface of the microporous membrane.

本実施の形態における多層微多孔膜は、上述した本実施の形態の微多孔膜を表面層として備えるものであり、例えば、本実施の形態の微多孔膜を(A層)とすると、他の任意の(B層)や(C層)と積合した、(A層)/(B層)の2層構造、(A層)/(B層)/(A層)や(A層)/(B層)/(C層)の3層構造、(A層)/(B層)/(C層)/(B層)/(A層)の5層構造等の任意の層構成をとりうる。ここで(B層)や(C層)の層組成としては特に特定されず、たとえば(B層)及び(C層)として、高密度ポリエチレンや、超高分子量ポリエチレン、ポリプロピレン等の(A層)に用いられる樹脂を単独又は混合した組成物、さらにこれにフィラーや添加剤を混合した組成物が好適に用いられる。
上記の中でも、(B層)にMvが10万以上の高密度ポリエチレンや、高密度ポリエチレンを主体とし、超高分子量ポリエチレン、ポリプロピレンを少量混合した組成物を用いると、微多孔膜の強度が向上し、ハンドリングが非常に良くなる。
The multilayer microporous membrane in the present embodiment includes the microporous membrane in the present embodiment described above as a surface layer. For example, when the microporous membrane in the present embodiment is (A layer), Combined with any (B layer) or (C layer), (A layer) / (B layer) two-layer structure, (A layer) / (B layer) / (A layer) or (A layer) / Arbitrary layer structures such as a three-layer structure of (B layer) / (C layer) and a five-layer structure of (A layer) / (B layer) / (C layer) / (B layer) / (A layer) sell. Here, the layer composition of (B layer) or (C layer) is not particularly specified. For example, (B layer) and (C layer) include (A layer) such as high-density polyethylene, ultrahigh molecular weight polyethylene, and polypropylene. A composition in which a resin used in the above is singly or mixed, and a composition in which a filler or an additive is further mixed are suitably used.
Among these, the strength of the microporous membrane is improved by using a high-density polyethylene with a Mv of 100,000 or more in the (B layer) or a composition containing mainly high-density polyethylene and a small amount of ultra-high molecular weight polyethylene and polypropylene. And handling becomes very good.

本実施の形態の多層微多孔膜の製造方法は、共押出法、各層を個別に押出した後にラミネートする方法等の公知の方法を用いればよいが、上述した(A層)及び(B層)を含む多層微多孔膜である場合、好ましくは以下の(工程1)及び(工程2)を含む方法により製造する。
(工程1)(A層)の樹脂組成物Aと、(B層)の樹脂組成物Bとを共に溶融状態で押出し、(A層)と(B層)とが多層された多層膜を形成する多層膜形成工程
(工程2)前記多層膜形成工程の後、前記(A層)及び(B層)を共に微多孔化する多層微多孔膜形成工程
ここで、工程1については(A層)(B層)以外に第3の(C層)を含んでいてもよい。
The method for producing the multilayer microporous membrane of the present embodiment may be a known method such as a co-extrusion method, a method of laminating each layer individually and then laminating them, and the above-described (A layer) and (B layer). In the case of a multi-layer microporous film containing, preferably, it is produced by a method comprising the following (Step 1) and (Step 2).
(Step 1) The resin composition A of (A layer) and the resin composition B of (B layer) are extruded together in a molten state to form a multilayer film in which (A layer) and (B layer) are multilayered. Multilayer film forming step (Step 2) After the multilayer film forming step, a multilayer microporous film forming step in which both the (A layer) and (B layer) are microporous. Here, for step 1, (A layer) In addition to (B layer), a third (C layer) may be included.

(工程1)の例を挙げる。例えば(A層)の樹脂組成物Aと、(B層)の樹脂組成物Bとがそれぞれ別個の押出機で混練される。樹脂組成物A又はBを混練する方法としては、あらかじめ原料樹脂と場合により可塑剤をヘンシェルミキサーやタンブラーミキサー等で事前混練する工程を経て、該混練物を押出機に投入し、押出機中で加熱溶融させながら必要に応じて任意の比率で所定量になるまで可塑剤を導入し、さらに混練する方法が挙げられる。このような方法は、樹脂組成の分散性がより良好なシートを得ることができる傾向にあり、各層が、高倍率でも破膜することなく延伸することができる観点から好ましい。前記(工程2)が、樹脂組成物Aと樹脂組成物Bにそれぞれ可塑剤や無機フィラーを配合し、製膜後に可塑剤や無機フィラーを抽出して多層微多孔膜を形成する工程(湿式法)である場合には、樹脂組成物A、樹脂組成物Bに可塑剤や無機フィラーを配合すればよい。前記(工程2)が、樹脂組成物Aと樹脂組成物Bの結晶界面や無機フィラーと樹脂組成物との界面を利用して開孔する工程(乾式法)である場合には、樹脂組成物A、樹脂組成物Bに可塑剤を配合しなくても開孔を実施し得る。
(工程1)において別の好ましい実施の形態は、A層、B層とも同じ組成の樹脂組成物を用いる場合であり、一台の押出機で押出された溶融樹脂流を2つ以上の樹脂流に分割し、かつ各々の溶融樹脂流が、ダイス内のコートハンガー部で広がった膜状態で、各膜をダイス内で積合させて多層状態とし、リップ口よりダイス外に押し出すことを含む製法である。この場合は、1台の押出機で多層フィルムが得られるため、熱劣化防止や経済性の面で優れる傾向にある。
An example of (Step 1) is given. For example, the resin composition A of (A layer) and the resin composition B of (B layer) are kneaded by separate extruders. As a method of kneading the resin composition A or B, the raw material resin and, optionally, a plasticizer is preliminarily kneaded with a Henschel mixer, a tumbler mixer or the like, and the kneaded product is put into an extruder, Examples of the method include introducing a plasticizer at a desired ratio as required, while heating and melting, and further kneading. Such a method tends to be able to obtain a sheet having a better dispersibility of the resin composition, and is preferable from the viewpoint that each layer can be stretched without breaking even at a high magnification. (Step 2) is a step (wet method) in which a plasticizer and an inorganic filler are blended in the resin composition A and the resin composition B, respectively, and a plasticizer and an inorganic filler are extracted after film formation to form a multilayer microporous film. ), A plasticizer and an inorganic filler may be added to the resin composition A and the resin composition B. In the case where (Step 2) is a step of opening using a crystal interface between the resin composition A and the resin composition B or an interface between the inorganic filler and the resin composition (dry method), the resin composition Opening can be carried out without adding a plasticizer to A and the resin composition B.
Another preferred embodiment in (Step 1) is a case where the resin composition having the same composition is used for both the A layer and the B layer, and the molten resin stream extruded by one extruder is used as two or more resin streams. And a method in which each molten resin flow is spread in the coat hanger part in the die, and the respective films are stacked in the die to form a multilayer state and pushed out of the die from the lip port. It is. In this case, since a multilayer film can be obtained with one extruder, it tends to be excellent in terms of prevention of thermal deterioration and economy.

本実施の形態の多層微多孔膜の積合方法としては特に限定はなく、通常の複数の押出機と1つのダイスを用いた共押出法でもよいし、特表2009−543711に記載された方法を用いてもよい。また、クローレン社製のスーパーナノレイヤーと称する製造装置を用いてもよいが、上述したように、1台の押出機から押出された溶融樹脂流を2つ以上の樹脂流に分割し、かつ各々の溶融樹脂流が、ダイス内のコートハンガー部で広がった膜状態で、各膜をダイス内で積合させ多層状態とし、リップ口よりダイス外に押し出すこと含む製法が好ましい。この方法によると、装置も簡便で、製造コストが抑えられる。この方法の具体的な例は、図1及び2に示すように、溶融樹脂流を、2つ以上の樹脂流に分割する分配部1と、分割された各々の溶融樹脂流が流れの交差方向にコートハンガー状に広げる拡張部2と、各膜を金型内で積合させ多層状態とする積合部3からなる装置を用い、ついで押出金型リップ口4よりダイス外に排出する方法であり、この方法によると、装置の簡便さに加え、マルチマニホールド式の共押出ダイスと同様に各層の合流が、樹脂が膜状に広がった後で行なわれるため、偏肉性に優れ、また流路が単純であるため、樹脂の滞留等による劣化ゲルの発生も少ないという利点を有する。
なお、図1は上記方法に用いられるダイスの側面断面図を示し、図2は上面断面図(図1のX−X断面図)を示す。
The method for stacking the multilayer microporous membrane of the present embodiment is not particularly limited, and may be a co-extrusion method using a plurality of ordinary extruders and one die, or a method described in JP-T 2009-543711 May be used. In addition, a production apparatus called a super nanolayer manufactured by Clawren may be used, but as described above, the molten resin stream extruded from one extruder is divided into two or more resin streams, and each In the film state in which the molten resin flow spreads in the coat hanger portion in the die, the respective films are stacked in the die to form a multilayer state, and the manufacturing method including pushing out from the die through the lip port is preferable. According to this method, the apparatus is simple and the manufacturing cost can be reduced. As shown in FIGS. 1 and 2, a specific example of this method includes a distribution unit 1 that divides a molten resin flow into two or more resin flows, and a crossing direction of the divided molten resin flows. In the method of using a device comprising an expansion portion 2 that spreads in a coat hanger shape and a stacking portion 3 in which the respective films are stacked in a mold to form a multilayer state, and then discharged out of the die from the extrusion mold lip port 4. According to this method, in addition to the simplicity of the apparatus, the joining of the layers is performed after the resin spreads in the same manner as in the multi-manifold type coextrusion die, so that the uneven thickness is excellent and the flow is excellent. Since the path is simple, there is an advantage that there is little generation of deteriorated gel due to resin retention or the like.
1 shows a side sectional view of a die used in the above method, and FIG. 2 shows a top sectional view (XX sectional view of FIG. 1).

前記樹脂組成物A及び前記樹脂組成物Bが可塑剤を含有する場合、樹脂組成物A中の樹脂成分濃度は好ましくは25〜50質量%、前記樹脂組成物B中の樹脂成分濃度は好ましくは30〜55質量%である。(なお、樹脂成分濃度を「PC」(ポリマー濃度)と略記することがある。)(B層)のPCと(A層)のPCの差(PCB−PCA)は、好ましくは3〜30質量%である。当該比を上記範囲に設定することは、多層微多孔膜の物性を後述する特定範囲に調整する観点から好ましい。
前記(工程1)において用いられる溶融押出機としては、二軸押出機を用いることが好ましく、これにより強度のせん断が付与できるため分散性が一層向上する。より好ましくは、二軸押出機のスクリューのL/Dが20〜70程度であり、より好ましくは25〜55である。スクリューにはフルフライトの部分と、一般にニーディングディスクやローター等の混練部分を配していてもよい。
When the resin composition A and the resin composition B contain a plasticizer, the resin component concentration in the resin composition A is preferably 25 to 50% by mass, and the resin component concentration in the resin composition B is preferably 30 to 55% by mass. (The resin component concentration may be abbreviated as “PC” (polymer concentration).) The difference between the PC of (B layer) and the PC of (A layer) (PCB−PCA) is preferably 3 to 30 mass. %. Setting the ratio in the above range is preferable from the viewpoint of adjusting the physical properties of the multilayer microporous membrane to a specific range described later.
As the melt extruder used in the above (Step 1), it is preferable to use a twin-screw extruder, which can impart a strong shear, thereby further improving dispersibility. More preferably, L / D of the screw of a twin screw extruder is about 20-70, More preferably, it is 25-55. The screw may be provided with a full flight portion and generally a kneading portion such as a kneading disk or a rotor.

多層膜を得る(工程1)においては共押出用ダイを用いることが好ましく、Tダイの場合は、ダイスの内部で溶融樹脂を膜状に広げてから各層を合流せしめるコートハンガー式のマルチマニホールドダイスを用いるのが、厚み制御の観点から特に好ましい。ただし、フィードブロックダイや、クロスヘッド式のダイスも用いることは可能である。サーキュラーダイスの場合はスパイラル式ダイや、多層フィルムでも5層以上の場合はスタック式のダイスが熱劣化防止の観点から好ましく、各層間の接着強度を大きくしたい場合には特に好ましい。   In obtaining the multilayer film (step 1), it is preferable to use a die for coextrusion. In the case of a T die, a coat hanger type multi-manifold die in which the molten resin is spread in a film shape inside the die and then the layers are joined together Is particularly preferable from the viewpoint of thickness control. However, it is also possible to use a feed block die or a crosshead die. In the case of a circular die, a spiral die, and in the case of a multilayer film having five or more layers, a stack die is preferable from the viewpoint of preventing thermal deterioration, and is particularly preferable when it is desired to increase the adhesive strength between layers.

前記(工程1)においては、樹脂組成物Aと、樹脂組成物Bとが共に溶融状態で押出され、両者を積合し多層化するのは好ましくはダイス内であるが、ダイス外で多層化されてもよい。   In the above (Step 1), the resin composition A and the resin composition B are both extruded in a molten state, and it is preferable that they are stacked and multilayered in the die, but multilayered outside the die. May be.

押出機先端に装着されるダイスとしては、特に限定されないが、サーキュラーダイス、Tダイス等が用いられる。無機フィラーを用いる場合や、劣化し易い樹脂組成物を用いる場合には、それによる摩耗や付着を抑制する対策を講じたもの、例えば、流路やリップに、テフロン(登録商標)加工、セラミック加工、ニッケル加工、モリブデン加工、ハードクロムコートしたものが好適に用いられる。
ここで、前記(工程1)において、樹脂組成物A及び樹脂組成物Bが共に溶融状態で押出される際の、樹脂組成物Aの押出し温度での溶融粘度Aと、樹脂組成物Bの押出し温度での溶融粘度Bとの比としては、溶融粘度A/溶融粘度Bとして、好ましくは1/5〜5/1、より好ましくは1/2〜2/1である。当該比を上記範囲に設定することは、樹脂合流時の界面乱れ等を抑制し、偏肉を抑制する観点から好ましい。
The die attached to the tip of the extruder is not particularly limited, but a circular die, a T die, or the like is used. When using an inorganic filler or a resin composition that easily deteriorates, measures that prevent wear and adhesion caused by it, for example, Teflon (registered trademark) processing, ceramic processing on the flow path and lip Nickel processing, molybdenum processing, and hard chrome coating are preferably used.
Here, in (Step 1), when the resin composition A and the resin composition B are both extruded in a molten state, the melt viscosity A at the extrusion temperature of the resin composition A and the extrusion of the resin composition B The ratio of melt viscosity B at temperature is preferably 1/5 to 5/1, more preferably 1/2 to 2/1, as melt viscosity A / melt viscosity B. Setting the ratio in the above range is preferable from the viewpoint of suppressing interface disturbance at the time of resin merging and suppressing uneven thickness.

ダイスより押し出された溶融樹脂は、例えば、キャスト装置に導入されるが、バンク成形でもバンクなしの成形でもよい。キャスト工程で得られた厚手の原反を延伸前の原反とすることができる。その後、高機械強度、縦横の物性バランス付与のため延伸されるが、その際の延伸方法としては、二軸延伸が好ましく、より好ましくは同時二軸延伸、逐次二軸延伸である。延伸温度は、使用する樹脂組成物により異なるが、一般に主体となる樹脂のヴィカット軟化点から融点の間の範囲の温度である。延伸倍率は、膜強度の観点から、好ましくは面積倍率で3〜200倍、好ましくは20〜60倍の範囲内である。   The molten resin extruded from the die is introduced into, for example, a casting apparatus, but may be formed by bank molding or bankless molding. The thick original fabric obtained in the casting process can be used as the original fabric before stretching. Thereafter, the film is stretched for imparting high mechanical strength and a balance between physical and longitudinal properties. As the stretching method, biaxial stretching is preferable, and simultaneous biaxial stretching and sequential biaxial stretching are more preferable. The stretching temperature varies depending on the resin composition used, but is generally a temperature in the range between the Vicat softening point and the melting point of the main resin. From the viewpoint of film strength, the draw ratio is preferably in the range of 3 to 200 times, preferably 20 to 60 times in terms of area magnification.

(工程2)は、多層膜形成工程の後、前記(A層)及び(B層)を共に微多孔化する多層微多孔膜形成工程であり、上述したように、湿式法もしくは乾式法により行う。可塑剤や無機フィラーの抽出は、膜を抽出溶媒に浸漬することにより行い、その後膜を十分乾燥させればよい。可塑剤のみを抽出する場合の抽出溶媒としては、ポリオレフィン、無機フィラーに対して貧溶媒であり、かつ可塑剤に対しては良溶媒であり、沸点がポリオレフィンの融点よりも低い溶媒が好ましい。このような抽出溶媒としては、例えば、塩化メチレン、1,1,1−トリクロロエタン等の塩素系溶剤;メチルエチルケトン、アセトン等のケトン類;ヒドロフルオロカーボン、ヒドロフルオロエーテル、環状ヒドロフルオロカーボン、ペルオロカーボン、ペルフルオロエーテル等のハロゲン系有機溶剤;ジエチルエーテル、テトラヒドロフラン等のエーテル類;n−ヘキサン、シクロヘキサン等の炭化水素類;メタノール、イソプロピルアルコール等のアルコール類が挙げられる。上記の中でも、特に塩化メチレンが好ましい。またこれらの抽出溶媒を2種類以上使用してもよい。抽出工程は延伸工程の前でも後でもよく、複数の抽出槽による多段抽出でもよい。無機フィラーの抽出溶媒としては、例えば、アルカリ水等が挙げられる。   (Process 2) is a multilayer microporous film forming process in which both the (A layer) and (B layer) are microporous after the multilayer film forming process, and is performed by a wet method or a dry method as described above. . The extraction of the plasticizer and the inorganic filler may be performed by immersing the film in an extraction solvent and then sufficiently drying the film. As the extraction solvent in the case of extracting only the plasticizer, a solvent that is a poor solvent for the polyolefin and the inorganic filler, a good solvent for the plasticizer, and a boiling point lower than the melting point of the polyolefin is preferable. Examples of such extraction solvents include chlorinated solvents such as methylene chloride and 1,1,1-trichloroethane; ketones such as methyl ethyl ketone and acetone; hydrofluorocarbons, hydrofluoroethers, cyclic hydrofluorocarbons, perocarbons, perfluoros. Halogenous organic solvents such as ether; ethers such as diethyl ether and tetrahydrofuran; hydrocarbons such as n-hexane and cyclohexane; alcohols such as methanol and isopropyl alcohol. Among the above, methylene chloride is particularly preferable. Two or more of these extraction solvents may be used. The extraction step may be before or after the stretching step, or may be multistage extraction using a plurality of extraction tanks. Examples of the extraction solvent for the inorganic filler include alkaline water.

また、膜厚、透気度等の膜物性の調整、或いはフィルムの熱収縮防止のため、必要に応じて加熱延伸による熱固定を加えてもよい。可塑剤及び無機フィラー抽出後の延伸としては、一軸延伸、同時二軸延伸、逐次二軸延伸が挙げられ、好ましくは同時二軸延伸、逐次二軸延伸である。延伸温度は、使用する樹脂組成物により異なるが、一般に主体となる樹脂のヴィカット軟化点から融点の間の範囲の温度である。延伸倍率は、好ましくは面積倍率で1倍を超えて10倍以下である。   Moreover, you may add heat fixation by heating extending | stretching as needed for adjustment of film | membrane physical properties, such as a film thickness and an air permeability, or the heat shrink prevention of a film. Examples of the stretching after extraction of the plasticizer and the inorganic filler include uniaxial stretching, simultaneous biaxial stretching, and sequential biaxial stretching, and simultaneous biaxial stretching and sequential biaxial stretching are preferable. The stretching temperature varies depending on the resin composition used, but is generally a temperature in the range between the Vicat softening point and the melting point of the main resin. The draw ratio is preferably more than 1 time and 10 times or less in terms of area magnification.

さらに、寸法安定化のための熱処理を行う場合は、高温雰囲気下での膜収縮を低減する観点から、例えば、二軸延伸機、一軸延伸機、あるいは両方を用いて、100℃以上150℃以下で熱処理を行うことができる。好ましくは、主体となる樹脂の融点以下の温度で、幅方向、長さ方向、あるいは両方向に、その倍率及び/又は応力を緩和することにより行う。   Further, when heat treatment for dimensional stabilization is performed, from the viewpoint of reducing film shrinkage in a high temperature atmosphere, for example, using a biaxial stretching machine, a uniaxial stretching machine, or both, 100 ° C. or more and 150 ° C. or less. Heat treatment can be performed. Preferably, it is carried out by relaxing the magnification and / or stress in the width direction, the length direction, or both directions at a temperature below the melting point of the main resin.

このようにして得られた多層微多孔膜には、適宜、コロナ処理、電子線架橋処理を施してもよく、無機層や有機層を塗工してもよい。   The multilayer microporous film thus obtained may be appropriately subjected to corona treatment or electron beam crosslinking treatment, and may be coated with an inorganic layer or an organic layer.

本実施の形態の多層微多孔膜は、孔が三次元的に入り組んでいる三次元網目構造を有していることが好ましい。三次元網目構造とは、表面が葉脈状であり、任意の三次元座標軸方向からの断面の膜構造がスポンジ状である構造を意味する。葉脈状とはフィブリルが網状構造を形成している状態である。これらは走査型電子顕微鏡で表面及び断面を観察することにより確認できる。三次元網目構造のフィブリル径は、0.01μm以上0.3μm以下であることが好ましく、これも走査型電子顕微鏡で観察することができる。   The multilayer microporous film of the present embodiment preferably has a three-dimensional network structure in which pores are three-dimensionally complicated. The three-dimensional network structure means a structure in which the surface has a vein shape and the film structure of a cross section from an arbitrary three-dimensional coordinate axis direction is a sponge shape. Leaf vein is a state in which fibrils form a network structure. These can be confirmed by observing the surface and cross section with a scanning electron microscope. The fibril diameter of the three-dimensional network structure is preferably 0.01 μm or more and 0.3 μm or less, and this can also be observed with a scanning electron microscope.

以下、本実施の形態の微多孔膜、及び微多孔膜を表面層として備える多層微多孔膜の物性について述べる。
本実施の形態の微多孔膜を、単層膜として利用する場合及び多層微多孔膜の表面層として用いる場合の膜厚みとしては、最終的な微多孔膜全体として、5〜50μmであることが好ましい。最終的な微多孔膜全体として、透気度は好ましくは500秒/100cc以下、突刺し強度は好ましくは150g以上である。透気度及び突刺し強度が上記範囲内であると、セパレータとして使用した際に電池のサイクル性と膜強度が両立する。
ここで、「最終的な微多孔膜全体」とは、微多孔膜が単層である場合には単層の、微多孔膜が多層の多層微多孔膜である場合には多層全体のことを意味する。
Hereinafter, the physical properties of the microporous membrane of the present embodiment and the multilayer microporous membrane including the microporous membrane as a surface layer will be described.
When the microporous membrane of the present embodiment is used as a single layer membrane and as the surface layer of a multilayer microporous membrane, the thickness of the final microporous membrane as a whole is 5 to 50 μm. preferable. The air permeability of the final microporous membrane as a whole is preferably 500 seconds / 100 cc or less, and the puncture strength is preferably 150 g or more. When the air permeability and puncture strength are within the above ranges, the battery cycle and film strength are compatible when used as a separator.
Here, the “final microporous membrane” means a single layer when the microporous membrane is a single layer, and the entire multilayer when the microporous membrane is a multilayer multilayer microporous membrane. means.

最終的な微多孔膜全体として、透気度は、機械強度、自己放電の観点から、好ましくは30秒/100cc以上であり、電池のサイクル特性、レート特性の観点から、好ましくは400秒/100cc以下である。透気度は、より好ましくは70秒/100cc以上230秒/100cc以下、さらに好ましくは100秒/100cc以上230秒/100cc以下である。ここで、透気度は、JIS P−8117に準拠し、ガーレー式透気度計「G−B2」(東洋精機製作所(株)製、商標)で測定した値をいう。また、透気度を上記範囲に調整する方法としては、微多孔膜の製法により異なるが、原料として樹脂と可塑剤を用い、製膜後に可塑剤を抽出して多孔化させる「湿式法」の場合は、樹脂と可塑剤の混合比を調整する方法や、製膜工程中の延伸倍率や温度、或いは熱固定工程における延伸倍率や温度を調整する方法等が挙げられる。また、可塑剤を使わずに、結晶性樹脂を用い、ラメラ間の非晶部分の界面や、樹脂と炭酸カルシウム等の無機フィラーの界面を、低温での縦延伸により開裂させて多孔化する「乾式法」の場合は、ドラフト比や延伸速度を調整することによりラメラの結晶化を制御する方法等が挙げられる。   The air permeability of the final microporous film as a whole is preferably 30 seconds / 100 cc or more from the viewpoint of mechanical strength and self-discharge, and preferably 400 seconds / 100 cc from the viewpoint of battery cycle characteristics and rate characteristics. It is as follows. The air permeability is more preferably 70 seconds / 100 cc or more and 230 seconds / 100 cc or less, and further preferably 100 seconds / 100 cc or more and 230 seconds / 100 cc or less. Here, the air permeability refers to a value measured with a Gurley air permeability meter “G-B2” (trademark, manufactured by Toyo Seiki Seisakusho Co., Ltd.) in accordance with JIS P-8117. In addition, the method for adjusting the air permeability to the above range depends on the production method of the microporous membrane, but the “wet method” in which a resin and a plasticizer are used as raw materials and the plasticizer is extracted and made porous after the film formation. In this case, a method of adjusting the mixing ratio of the resin and the plasticizer, a stretching ratio and temperature in the film forming process, a method of adjusting the stretching ratio and temperature in the heat setting process, and the like can be given. In addition, using a crystalline resin without using a plasticizer, the interface of the amorphous part between lamellae and the interface of the resin and an inorganic filler such as calcium carbonate are cleaved by longitudinal stretching at low temperature to make it porous. In the case of the “dry method”, a method of controlling the crystallization of the lamella by adjusting the draft ratio and the stretching speed can be mentioned.

最終的な微多孔膜全体として、突刺強度は、電池の組立時の強度の観点から、好ましくは150g以上であり、より好ましくは300g以上、さらに好ましくは500g以上である。ここで、突刺強度は、ハンディー圧縮試験器「KES−G5」(カトーテック製、商標)を用いて、針先端の曲率半径0.5mm、突刺速度2mm/secの条件で突刺試験を行うことにより求めた値をいう。また、突刺強度を上記範囲に調整する方法としては、例えば、微多孔膜の配向状態を変化させる方法が挙げられ、具体的には、湿式法、乾式法のいずれの場合でも、延伸倍率や温度を調整する方法が挙げられる。また別の方法としては、原料樹脂自体に強度の高い樹脂を用いることが挙げられ、例えば、ポリオレフィンであれば重量平均分子量が50万以上、好ましくは100万以上の超高分子量ポリエチレンを混合すること等が挙げられる。   The final microporous membrane as a whole has a pin puncture strength of preferably 150 g or more, more preferably 300 g or more, and even more preferably 500 g or more, from the viewpoint of strength during battery assembly. Here, the puncture strength is obtained by conducting a puncture test using a handy compression tester “KES-G5” (trade name, manufactured by Kato Tech Co., Ltd.) under the conditions of a radius of curvature of the needle tip of 0.5 mm and a puncture speed of 2 mm / sec. This is the calculated value. Examples of the method for adjusting the puncture strength to the above range include a method of changing the orientation state of the microporous film. Specifically, in either case of the wet method or the dry method, the draw ratio or temperature The method of adjusting is mentioned. Another method is to use a high-strength resin as the raw material resin itself. For example, in the case of polyolefin, mixing ultrahigh molecular weight polyethylene having a weight average molecular weight of 500,000 or more, preferably 1,000,000 or more. Etc.

最終的な微多孔膜全体として、気孔率は、25〜69%の範囲内にあることが好ましい。気孔率が上記範囲内であれば、膜強度と透過性のバランスがより良好となる傾向にある。特に、二次電池等のセパレータとして使用した際の自己放電性の抑止効果、微短絡防止、及びサイクル特性のバランスが良好となる。さらに、気孔率は、膜強度の観点から、好ましくは30〜59%であり、微短絡抑止の観点から、好ましくは30〜49%の範囲内である。気孔率を上記範囲に調整する方法としては、湿式法の場合は、原料樹脂と可塑剤の混合比を調整する方法、乾式法の場合は延伸倍率を調整する方法等が挙げられる。   The porosity of the final microporous membrane as a whole is preferably in the range of 25 to 69%. If the porosity is within the above range, the balance between membrane strength and permeability tends to be better. In particular, the balance of self-discharge suppression effect, prevention of fine short-circuiting, and cycle characteristics when used as a separator for a secondary battery or the like is good. Furthermore, the porosity is preferably 30 to 59% from the viewpoint of film strength, and preferably 30 to 49% from the viewpoint of suppressing fine short-circuiting. Examples of the method for adjusting the porosity within the above range include a method for adjusting the mixing ratio of the raw material resin and the plasticizer in the case of the wet method, and a method for adjusting the draw ratio in the case of the dry method.

最終的な微多孔膜全体として、平均孔径Dは、イオン透過性と微短絡防止性が両立される観点から、好ましくは0.02μm以上0.1μm以下である。平均孔径Dは、イオン透過性、電解液の吸液性の観点から、より好ましくは0.03μm以上であり、微短絡防止性の観点から、より好ましくは0.09μm以下である。平均孔径を上記範囲に調整する方法としては、湿式法の場合は、樹脂と可塑剤の組合せを調整し、より可塑剤の分散径が大きくなるようなものを用いる方法や、相溶性の悪い貧溶媒を用いる方法等が挙げられ、製膜条件としては、延伸工程の際に延伸倍率を調整する方法等が挙げられる。
さらに、多層微多孔膜が、(A)/(B)の2層構造、又は(A)/(B)/(A)の3層構造である場合、A層の平均孔径DA、B層の平均孔径DBとしては、特に規定はないが、電気抵抗を下げる観点からはDAとDBの差が0.03μm以内であることが好ましい。
The average pore diameter D of the final microporous membrane as a whole is preferably 0.02 μm or more and 0.1 μm or less from the viewpoint of achieving both ion permeability and microshort-circuit prevention. The average pore diameter D is more preferably 0.03 μm or more from the viewpoints of ion permeability and electrolyte absorbability, and more preferably 0.09 μm or less from the viewpoint of prevention of slight short circuit. As a method for adjusting the average pore size to the above range, in the case of a wet method, a combination of a resin and a plasticizer is adjusted, and a method in which the dispersion diameter of the plasticizer is increased or a poor compatibility is poor. Examples include a method using a solvent, and examples of the film forming conditions include a method of adjusting the draw ratio during the stretching step.
Furthermore, when the multilayer microporous membrane has a two-layer structure of (A) / (B) or a three-layer structure of (A) / (B) / (A), the average pore diameter DA of the A layer, The average pore diameter DB is not particularly specified, but the difference between DA and DB is preferably within 0.03 μm from the viewpoint of reducing the electrical resistance.

最終的な微多孔膜全体として、曲路率の範囲は、好ましくは1.0〜3.0であり、この範囲内であれば、サイクル性と安全性のバランスが良好となる傾向にある。曲路率の範囲は、より好ましくは1.5〜2.5である。曲路率を上記範囲に調整する方法としては、湿式法の場合は、延伸倍率、延伸温度等の延伸条件を調整する方法や、樹脂と可塑剤の組合せを適宜選択する方法等が挙げられる。
ここで、平均孔径及び曲路率は以下のとおりに測定することができる。
キャピラリー内部の流体は、流体の平均自由工程がキャピラリーの孔径より大きいときはクヌーセンの流れに、小さい時はポアズイユの流れに従うことが知られている。そこで、微多孔膜の透気度測定における空気の流れがクヌーセンの流れに、また微多孔膜の透水度測定における水の流れがポアズイユの流れに従うと仮定する。
この場合、平均孔径D(μm)と曲路率T(無次元)は、空気の透過速度定数Rgas(m3/(m2・sec・Pa))、水の透過速度定数Rliq(m3/(m2・sec・Pa))、空気の分子速度ν(m/sec)、水の粘度η(Pa・sec)、標準圧力Ps(=101325Pa)、気孔率ε(%)、膜厚L(μm)から、次式を用いて求めた。
D=2ν×(Rliq/Rgas)×(16η/3Ps)×106
T=(D×(ε/100)×ν/(3L×Ps×Rgas))1/2
ここで、Rgasは透気度(sec)から次式を用いて求められる。
Rgas=0.0001/(透気度×(6.424×10-4)×(0.01276×101325))
また、Rliqは透水度(cm3/(cm2・sec・Pa))から次式を用いて求められる。
Rliq=透水度/100
なお、透水度は次のように求められる。直径41mmのステンレス製の透液セルに、あらかじめアルコールに浸しておいた微多孔膜をセットし、該膜のアルコールを水で洗浄した後、約50000Paの差圧で水を透過させ、120sec間経過した際の透水量(cm3)より単位時間・単位圧力・単位面積当たりの透水量を計算し、これを透水度とした。
また、νは気体定数R(=8.314)、絶対温度T(K)、円周率π、空気の平均分子量M(=2.896×10-2kg/mol)から次式を用いて求められる。
ν=((8R×T)/(π×M))1/2
As a whole of the final microporous membrane, the range of the curvature is preferably 1.0 to 3.0, and if it is within this range, the balance between cycle performance and safety tends to be good. The range of the curvature is more preferably 1.5 to 2.5. As a method for adjusting the curvature to the above range, in the case of a wet method, a method for adjusting stretching conditions such as a stretching ratio and a stretching temperature, a method for appropriately selecting a combination of a resin and a plasticizer, and the like can be given.
Here, the average pore diameter and the curvature can be measured as follows.
It is known that the fluid inside the capillary follows the Knudsen flow when the mean free path of the fluid is larger than the pore size of the capillary, and the Poiseuille flow when it is small. Therefore, it is assumed that the air flow in the measurement of the permeability of the microporous membrane follows the Knudsen flow, and the water flow in the measurement of the permeability of the microporous membrane follows the Poiseuille flow.
In this case, the average pore diameter D (μm) and the curvature T (dimensionless) are the air permeation rate constant Rgas (m 3 / (m 2 · sec · Pa)) and the water permeation rate constant Rliq (m 3 / (M 2 · sec · Pa)), air molecular velocity ν (m / sec), water viscosity η (Pa · sec), standard pressure Ps (= 101325 Pa), porosity ε (%), film thickness L ( [mu] m) using the following formula.
D = 2ν × (Rliq / Rgas) × (16η / 3Ps) × 106
T = (D × (ε / 100) × ν / (3L × Ps × Rgas)) 1/2
Here, Rgas is obtained from the air permeability (sec) using the following equation.
Rgas = 0.0001 / (air permeability × (6.424 × 10 −4 ) × (0.01276 × 101325))
Rliq is obtained from the water permeability (cm 3 / (cm 2 · sec · Pa)) using the following equation.
Rliq = water permeability / 100
In addition, water permeability is calculated | required as follows. A microporous membrane previously immersed in alcohol is set in a stainless steel permeation cell having a diameter of 41 mm, and after the alcohol in the membrane is washed with water, water is allowed to permeate at a differential pressure of about 50000 Pa, and 120 seconds have elapsed. The water permeation amount per unit time, unit pressure, and unit area was calculated from the water permeation amount (cm 3 ) at the time, and this was taken as water permeability.
Ν is a gas constant R (= 8.314), an absolute temperature T (K), a circumference ratio π, and an average molecular weight M of air (= 2.896 × 10 −2 kg / mol), using the following formula. Desired.
ν = ((8R × T) / (π × M)) 1/2

本実施の形態の微多孔膜、及び本実施の形態の微多孔膜を表面層として備える多層微多孔膜は、非水電解質2次電池用セパレータ等に好適に利用される他、各種の分離膜としても用いることができる。   The microporous membrane according to the present embodiment and the multilayer microporous membrane including the microporous membrane according to the present embodiment as a surface layer are suitably used for a separator for a nonaqueous electrolyte secondary battery and the like, as well as various separation membranes. Can also be used.

なお、上述した各種パラメータについては、特に断りのない限り、後述する実施例における測定法に準じて測定される。   In addition, about the various parameters mentioned above, unless otherwise indicated, it measures according to the measuring method in the Example mentioned later.

次に、実施例及び比較例を挙げて本実施の形態をより具体的に説明するが、本実施の形態はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例中の物性は以下の方法により測定した。判定は必用項目において行い、◎、○を合格とし、×を不合格とした。   Next, the present embodiment will be described more specifically with reference to examples and comparative examples. However, the present embodiment is not limited to the following examples unless it exceeds the gist. In addition, the physical property in an Example was measured with the following method. Judgment was performed on necessary items, and ◎ and ○ were accepted and × was rejected.

(1)各層の厚み、及び合計厚み(μm)
一般の走査型電子顕微鏡((株)日立製作所製 S4100)による断面観察により、多層微多孔膜を構成する各層の厚みを測定した。
各層の厚みの総和を合計厚みとした。
(1) The thickness of each layer and the total thickness (μm)
The thickness of each layer constituting the multilayer microporous film was measured by cross-sectional observation with a general scanning electron microscope (S4100, manufactured by Hitachi, Ltd.).
The total thickness of each layer was taken as the total thickness.

(2)動摩擦係数
カトーテック株式会社製、KES−SE摩擦試験機を用い、荷重50g、接触子面積10×10=100mm2(0.5mmφの硬質ステンレス線SUS304製ピアノ線を互いに隙間なく、かつ、重ならないように20本巻きつけたもの)、接触子送りスピード1mm/sec、張力6kPa、温度25℃、湿度50%の条件にて幅50mm×測定方向200mmのサンプルサイズについてMD、TD方向に各3回ずつ測定し、その平均を求めた。なお、表1中の動摩擦係数の値は電池作成時に負極に接する面の値を表記した。
(2) Coefficient of dynamic friction Using a KES-SE friction tester manufactured by Kato Tech Co., Ltd., load 50 g, contact area 10 × 10 = 100 mm 2 (0.5 mmφ hard stainless steel wire SUS304 piano wires without any gaps, and , 20 wound so as not to overlap), sample size of width 50 mm x measuring direction 200 mm in the MD and TD directions under the conditions of contact feed speed 1 mm / sec, tension 6 kPa, temperature 25 ° C., humidity 50% Each measurement was performed three times, and the average was obtained. In addition, the value of the dynamic friction coefficient in Table 1 represents the value of the surface in contact with the negative electrode when the battery was produced.

(3)表面ポリプロピレン含有率
本実施の形態の微多孔膜の表面のポリプロピレン含有率は、微多孔膜の動摩擦係数(μd)を用いて下記式により求めた。
表面のポリプロピレン含有率[%]=[(微多孔膜のμd−PEμd)/(PPμd―PEμd)]*100
ここで微多孔膜のμdは上記(2)で測定した。またPPμdとはポリプロピレン単体膜のμdであり0.85を用いた。またPEμdとはポリエチレン単体膜のμdであり0.25を用いた。
(3) Surface Polypropylene Content The polypropylene content on the surface of the microporous membrane of the present embodiment was determined by the following formula using the dynamic friction coefficient (μd) of the microporous membrane.
Surface polypropylene content [%] = [(μd−PEμd of microporous membrane) / (PPμd−PEμd)] * 100
Here, μd of the microporous membrane was measured in the above (2). PPμd is μd of a single polypropylene film, and 0.85 was used. PEμd is μd of a single polyethylene film, and 0.25 is used.

(4)気孔率(%)
100mm四方の微多孔膜のサンプルの質量から目付けW(g/cm2)及び微多孔膜を構成する成分(樹脂及び添加剤)の平均密度ρ(g/cm3)を算出し、微多孔膜の厚みd(cm)から下記式にて計算した。
全層気孔率=(100−W/(d*ρ))*100(%))
(4) Porosity (%)
The weight per unit area W (g / cm 2 ) and the average density ρ (g / cm 3 ) of the components (resin and additive) constituting the microporous membrane were calculated from the mass of the 100 mm square microporous membrane sample. The following formula was calculated from the thickness d (cm).
Total layer porosity = (100−W / (d * ρ)) * 100 (%))

(5)透気度 (秒/100cc)
JIS P−8117に準拠し、ガーレー式透気度計「G−B2」(東洋精機製作所(株)製、商標)で測定した。
なお、表中の値は、合計厚みを基準とした比例計算により算出した、20μm換算の透気度である。
(5) Air permeability (sec / 100cc)
Based on JIS P-8117, it was measured with a Gurley type air permeability meter “G-B2” (trademark, manufactured by Toyo Seiki Seisakusho Co., Ltd.).
In addition, the value in a table | surface is the air permeability of 20 micrometers conversion calculated by the proportional calculation on the basis of total thickness.

(6)突刺し強度(g)
ハンディー圧縮試験器「KES−G5」(カトーテック製、商標)を用いて、針先端の曲率半径0.5mm、突刺速度2mm/secの条件で突刺試験を行うことにより求めた。
なお、表中の値は、合計厚みを基準とした比例計算により算出した、20μm換算の突刺し強度である。
(6) Puncture strength (g)
Using a handy compression tester “KES-G5” (trade name, manufactured by Kato Tech Co., Ltd.), the puncture test was performed under the conditions of a radius of curvature of the needle tip of 0.5 mm and a puncture speed of 2 mm / sec.
In addition, the value in a table | surface is the puncture strength of 20 micrometers conversion calculated by the proportional calculation on the basis of total thickness.

(7)安全性
表面を清浄にしたΦ35mmの電極に、50mm*50mmのフィルムサンプルを挟み、電極に電圧を掛け上昇させていき、0.5mAの電流が流れてスパークする際の電圧値を測定し、安全性の指標とした。この測定を、サンプルフィルムの面内で少なくとも15回測定し、その平均値を記録した。平均値が1.8KV以上を◎、1.0KV以上を○、0.8KV以上を△、0.8KV未満を×とした。
(7) Safety A Φ35mm electrode with a clean surface is sandwiched between a 50mm * 50mm film sample, and a voltage is applied to the electrode to raise it. The voltage value when a 0.5mA current flows and sparks is measured. And used as a safety indicator. This measurement was measured at least 15 times in the plane of the sample film, and the average value was recorded. An average value of 1.8 KV or more was rated as ◎, 1.0 KV or more as ◯, 0.8 KV or more as Δ, and less than 0.8 KV as x.

(8)サイクル性
電極、電解液を以下に示すように作製した後、それを用いて評価用電池を作製し、そのサイクル特性を評価した。
(i)正極の作製
正極活物質として、リチウムコバルト複合酸化物LiCoO2を100質量部、導電剤としてリン片状グラファイトとアセチレンブラックをそれぞれ2.5質量部、バインダーとしてポリフッ化ビニリデン(PVDF)3.5質量部をN−メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の両面にダイコーターで塗布し、130℃で3分間乾燥後、ロールプレス機で圧縮成形した。この時、正極の活物質塗布量は250g/m2、活物質嵩密度は3.00g/cm3となるようにした。これを電池幅に合わせて切断し、帯状にした。
(ii)負極の作製
負極活物質として、グラファイト化したメソフェーズピッチカーボンファイバー(MCF)90質量部とリン片状グラファイト10質量部、バインダーとしてカルボキシメチルセルロースのアンモニウム塩1.4質量部とスチレン−ブタジエン共重合体ラテックス1.8質量部を精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の両面にダイコーターで塗布し、120℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、負極の活物質塗布量は106g/m2、活物質嵩密度は1.35g/cm3となるようにした。これを電池幅に合わせて切断し、帯状にした。
(iii)非水電解液の調製
エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPF6を濃度1.0mol/リットルとなるように溶解させて調製した。
(iv)評価用電池の作製
評価する微多孔膜セパレーター、帯状正極、及び帯状負極を、帯状負極、セパレーター、帯状正極、セパレーターの順に重ねて渦巻状に複数回捲回することで電極版多層体を作製した。この電極板多層体を平面状にプレスした後、アルミニウム製容器に収納し、アルミニウム製リードを正極集電体から導出して電池蓋に、ニッケル製リードを負極集電体から導出して容器底に溶接し、電池捲回体を作製した。
(v)サイクル特性
上記のように作製した評価用電池捲回体に、前述した非水電解液を注入して封口し、リチウムイオン電池を作製した。
この電池を温度40℃の条件下で、充電電流1Aで充電終止電圧4.2Vまで充電を行い、充電電流1Aで放電終止電圧3Vまで放電を行った。これを1サイクルとして充放電を繰り返し、初期容量に対する500サイクル後の容量保持率をサイクル特性として表し、下記のとおりに評価した。容量保持率が◎:90%以上、○:90%未満60%以上、×:60%未満。
(8) Cyclicity After producing an electrode and an electrolytic solution as shown below, an evaluation battery was produced using the electrode and an electrolytic solution, and its cycle characteristics were evaluated.
(I) Production of positive electrode 100 parts by mass of lithium cobalt composite oxide LiCoO 2 as a positive electrode active material, 2.5 parts by mass of flake graphite and acetylene black as a conductive agent, and polyvinylidene fluoride (PVDF) 3 as a binder A slurry was prepared by dispersing 5 parts by mass in N-methylpyrrolidone (NMP). This slurry was applied to both surfaces of a 20 μm thick aluminum foil serving as a positive electrode current collector with a die coater, dried at 130 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material coating amount of the positive electrode was 250 g / m 2 and the active material bulk density was 3.00 g / cm 3 . This was cut in accordance with the battery width to form a strip.
(Ii) Production of negative electrode As a negative electrode active material, 90 parts by mass of graphitized mesophase pitch carbon fiber (MCF) and 10 parts by mass of flake graphite, 1.4 parts by mass of ammonium salt of carboxymethyl cellulose as a binder and styrene-butadiene A slurry was prepared by dispersing 1.8 parts by mass of polymer latex in purified water. This slurry was applied to both sides of a 12 μm thick copper foil serving as a negative electrode current collector with a die coater, dried at 120 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material application amount of the negative electrode was 106 g / m 2 , and the active material bulk density was 1.35 g / cm 3 . This was cut in accordance with the battery width to form a strip.
(Iii) Preparation of Nonaqueous Electrolyte Solution It was prepared by dissolving LiPF 6 as a solute in a mixed solvent of ethylene carbonate: ethyl methyl carbonate = 1: 2 (volume ratio) to a concentration of 1.0 mol / liter.
(Iv) Production of battery for evaluation Electrode plate multilayer body by winding microporous membrane separator to be evaluated, strip-shaped positive electrode, and strip-shaped negative electrode in a spiral shape by overlapping the strip-shaped negative electrode, separator, strip-shaped positive electrode and separator in this order. Was made. The electrode plate multilayer body is pressed into a flat shape, and then accommodated in an aluminum container. The aluminum lead is led out from the positive electrode current collector, and the nickel lead is led out from the negative electrode current collector to the bottom of the container. The battery wound body was fabricated by welding to a battery.
(V) Cycle characteristics The above-described non-aqueous electrolyte solution was injected into the battery roll for evaluation produced as described above and sealed to produce a lithium ion battery.
This battery was charged to a charge end voltage of 4.2 V with a charge current of 1 A under a temperature of 40 ° C., and discharged to a discharge end voltage of 3 V with a charge current of 1 A. Charging / discharging was repeated with this as one cycle, and the capacity retention after 500 cycles with respect to the initial capacity was expressed as cycle characteristics and evaluated as follows. The capacity retention is :: 90% or more, ◯: less than 90%, 60% or more, and x: less than 60%.

(9)重量平均分子量
重量平均分子量Mw、数平均分子量Mn、分子量分布Mw/Mn
Waters社製 ALC/GPC 150C型(商標)を用い、以下の条件で測定し、標準ポリスチレンを用いて較正曲線を作成した。これの各分子量成分に0.43(ポリエチレンのQファクター/ポリスチレンのQファクター=17.7/41.3)を乗じることによりポリエチレン換算の分子量分布曲線を得た。
カラム:東ソー製 GMH6−HT(商標)2本+GMH6−HTL(商標)2本
移動相:o−ジクロロベンゼン
検出器:示差屈折計
流速 :1.0ml/min
カラム温度:140℃
(9) Weight average molecular weight Weight average molecular weight Mw, number average molecular weight Mn, molecular weight distribution Mw / Mn
Measurement was performed under the following conditions using ALC / GPC 150C (trademark) manufactured by Waters, and a calibration curve was prepared using standard polystyrene. A molecular weight distribution curve in terms of polyethylene was obtained by multiplying each molecular weight component by 0.43 (Q factor of polyethylene / Q factor of polystyrene = 17.7 / 41.3).
Column: Tosoh GMH 6 -HT (trademark) 2 + GMH 6 -HTL (trademark) 2 Mobile phase: o-dichlorobenzene Detector: Differential refractometer Flow rate: 1.0 ml / min
Column temperature: 140 ° C

(10)電池捲回性
捲回タイプの電池を模して、長さ50mm、幅10mm、厚さ1mmでの角を面取りしたステンレス板の長手方向の30mmの区間に、サンプルとなる幅60mm、長さ100mmの多孔膜を長手方向に5周巻きつけた。これに磁石板で図3のようにはさんで、A端とB端を引張り試験機にとりつけた。これを、引張り速度100mm/minで引張り、ステンレス板が抜ける際の抵抗力の値をもって電池捲回性とした。引きぬく際に、巻きつけた多孔膜がタケノコ状に引き出されるが、その引張り方向に5mm以上引き出されるものを×とし、1mm以上5mm未満を○とし、1mm未満を◎とした。
(10) Battery winding property In a 30 mm section in the longitudinal direction of a stainless plate chamfered at a length of 50 mm, a width of 10 mm, and a thickness of 1 mm, imitating a wound type battery, a width of 60 mm as a sample, A porous membrane having a length of 100 mm was wound 5 times in the longitudinal direction. The A end and the B end were attached to a tensile tester with a magnet plate interposed between them as shown in FIG. This was pulled at a pulling speed of 100 mm / min, and the value of resistance when the stainless steel plate was pulled out was regarded as battery winding property. At the time of pulling, the wound porous film is drawn out in a bamboo shoot shape, where x is taken out by 5 mm or more in the pulling direction, ◯ is from 1 mm to less than 5 mm, and ◎ is less than 1 mm.

(11)微多孔膜生産性
実施例1の方法で微多孔膜を製造する設備において、最終の巻取機で製品をターレットを使って巻きかえる段階で、微多孔膜を横方向にカットする際に、カットした製品ロール側の膜端が、静電気等により製品ロールに折れた状態で付着した場合を×とし、折れずにきれいな捲回体が得られた場合を○とした。
(11) Microporous membrane productivity When the microporous membrane is cut in the transverse direction at the stage of rewinding the product using a turret in the final winder in the facility for producing the microporous membrane by the method of Example 1. In addition, the case where the film end on the cut product roll side adhered to the product roll due to static electricity or the like was rated as x, and the case where a clean wound body was obtained without breaking was marked as ◯.

実施例及び比較例において用いた樹脂及び無機フィラーは以下のとおりである。
PP1 サンアロマー社製 PB270A
PE1 旭化成社製サンファインSH810に、旭化成社製低分子量ポリエチレン(重量平均分子量=1000 非市販)を5質量%混合したもの。
PE2 旭化成社製サンファインSH810に、旭化成社製低分子量ポリエチレン(重量平均分子量=1000 非市販)を10質量%混合したもの。
PE3 旭化成社製サンファインSH810に、旭化成社製低分子量ポリエチレン(重量平均分子量=1000 非市販)を30質量%混合したもの。
PE4 旭化成社製 サンファインSH810 重量平均分子量=250000
フィラー1 日本アエロジル社製フュームドシリカR974
Resins and inorganic fillers used in Examples and Comparative Examples are as follows.
PP1 Sun Allomer PB270A
PE1 A blend of 5% by mass of Asahi Kasei Sunfine SH810 with low molecular weight polyethylene (weight average molecular weight = 1000 not commercially available) manufactured by Asahi Kasei.
PE2 10% by mass of Asahi Kasei Sun Fine SH810 mixed with Asahi Kasei low molecular weight polyethylene (weight average molecular weight = 1000 not commercially available).
PE3 30% by mass of Asahi Kasei Sunfine SH810 mixed with Asahi Kasei low molecular weight polyethylene (weight average molecular weight = 1000 not commercially available).
PE4 Sun Fine SH810 manufactured by Asahi Kasei Corporation Weight average molecular weight = 250,000
Filler 1 Fumed silica R974 manufactured by Nippon Aerosil Co., Ltd.

[実施例1]
(A層)/(B層)/(A層)=5/10/5μmの3層構成を有する多層微多孔膜の製造例を示す。
表1に示す配合割合(質量部)にて原料樹脂(樹脂成分)及び無機フィラーを配合した。当該原料樹脂100質量部に対し、結晶核剤としてビス(P−エチルベンジリデン)ソルビトールを0.5質量部、酸化防止剤としてテトラキス−[メチレン−(3’、5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタンを0.3質量部、可塑剤として流動パラフィン(37.8℃における動粘度75.90cSt、密度868kg/m3)を10質量部配合した。これらの原料をヘンシェルミキサーで攪拌し原料を調製した。
次に、(A層)の原料、(B層)の原料をそれぞれ別個の二軸押出機(口径41mm、L/D=49)に投入した。両押出機のシリンダーの途中部分に、流動パラフィンを、(A層)に65質量%、(B層)に64質量%になるように注入した。ここでの質量%は、流動パラフィンと樹脂原料、添加剤、フィラー等を含めた全組成に対する流動パラフィンの割合である。
両表面層(A層)、内層(B層)の押出量を調整し、共押出ダイスを用い、ダイス出口で(A層)と(B層)の厚み比が表1に記載の厚み比となるように設定した。
なお、押出機とダイスとの間には、250メッシュのスクリーンを配した。ダイスはマルチマニホールド式の共押出が可能なTダイを用いた。ダイス内では、表面層がほぼ均等に等分され、内層の両側に積合された。ダイスから出た溶融フィルム原反は、キャストロールで冷却固化させた。
このシートを同時二軸延伸機で120℃の条件で面積倍率45倍に延伸した後、塩化メチレンに浸漬して、流動パラフィンを抽出除去後、乾燥し、さらにテンター延伸機により125℃の条件で横方向に1.8倍延伸し、この延伸シートを120℃で10%幅方向に緩和して熱処理を行った。これにより、三層構造を有する多層微多孔膜を得た。得られた多層微多孔膜の物性を表1に示す。さらに、ポリエチレンの低分子量成分のブリード促進のために、この多層微多孔膜を40℃の温度下で48時間以上エージングした。
この多層微多孔膜はセパレータとして使用すると、電池捲回性、サイクル性、安全性、セパレータ生産性に極めて優れていた。
[Example 1]
A production example of a multilayer microporous membrane having a three-layer structure of (A layer) / (B layer) / (A layer) = 5/10/5 μm is shown.
The raw material resin (resin component) and the inorganic filler were blended at the blending ratio (parts by mass) shown in Table 1. 0.5 parts by mass of bis (P-ethylbenzylidene) sorbitol as a crystal nucleating agent and tetrakis- [methylene- (3 ′, 5′-di-t-butyl-) as an antioxidant with respect to 100 parts by mass of the raw material resin 4′-hydroxyphenyl) propionate] 0.3 parts by mass of methane, and 10 parts by mass of liquid paraffin (dynamic viscosity at 37.8 ° C., 75.90 cSt, density 868 kg / m 3 ) as a plasticizer. These raw materials were stirred with a Henschel mixer to prepare the raw materials.
Next, the raw material of (A layer) and the raw material of (B layer) were put into separate twin-screw extruders (41 mm in diameter, L / D = 49). Liquid paraffin was injected into the middle part of the cylinders of both extruders so as to be 65% by mass in (A layer) and 64% by mass in (B layer). The mass% here is the ratio of liquid paraffin to the total composition including liquid paraffin and resin raw materials, additives, fillers and the like.
Adjusting the extrusion amount of both surface layers (A layer) and inner layer (B layer), using a co-extrusion die, the thickness ratio of (A layer) and (B layer) at the die outlet is as shown in Table 1. Was set to be.
A 250 mesh screen was disposed between the extruder and the die. The die used was a T-die capable of multi-manifold coextrusion. In the die, the surface layer was divided into approximately equal parts and stacked on both sides of the inner layer. The melted film raw material coming out of the die was cooled and solidified with a cast roll.
The sheet was stretched by a simultaneous biaxial stretching machine at 120 ° C. at an area magnification of 45 times, then immersed in methylene chloride, extracted after removing liquid paraffin, dried, and further subjected to 125 ° C. by a tenter stretching machine. The film was stretched 1.8 times in the transverse direction, and the stretched sheet was relaxed in the 10% width direction at 120 ° C. and heat-treated. Thereby, a multilayer microporous film having a three-layer structure was obtained. The physical properties of the obtained multilayer microporous film are shown in Table 1. Further, this multilayer microporous membrane was aged at a temperature of 40 ° C. for 48 hours or more in order to promote bleeding of low molecular weight components of polyethylene.
When this multilayer microporous membrane was used as a separator, it was extremely excellent in battery winding performance, cycle performance, safety, and separator productivity.

[実施例2〜13、比較例1〜5]
表1及び2に記載した各層構成、構造因子を変化させて、実施例1と同様の方法により多層微多孔膜を成形し評価した。添加した流動パラフィンの量は、各例で異なるが40質量%〜80質量%の範囲内であった。同時二軸延伸機の条件は115℃〜130℃の範囲内、面積倍率45倍に延伸した。流動パラフィンを抽出除去後、乾燥し、さらにテンター延伸機により120〜130℃の条件で横方向に1.1〜2.0倍延伸し、この延伸シートを130℃で10%幅方向に緩和して熱処理を行った。得られた多層微多孔膜の物性を表1及び2に示す。実施例2、4、5は表面層に充分なポリプロピレン量が配されていてサイクル性に優れているにも拘わらず、表面のポリプロピレン含有率が小さいため、電池捲回性に特に優れており、静電気の発生も少ないため、安全性にも特に優れていた。比較例1〜4は従来の技術であり、サイクル性はよいが、表面のポリプロピレン含有率が大きいため、サイクル性に劣っていた。一方、比較例5は電池捲回性が良好であるもののサイクル性に劣っていた。このように本実施の形態の多層微多孔膜では従来の技術で実現不可能であった、サイクル性、安全性、電池捲回性、セパレータ生産性の両立が図れるものであった。
[Examples 2 to 13, Comparative Examples 1 to 5]
A multilayer microporous membrane was molded and evaluated by the same method as in Example 1 while changing each layer configuration and structural factors described in Tables 1 and 2. The amount of liquid paraffin added was in the range of 40% by mass to 80% by mass although it was different in each example. The simultaneous biaxial stretching machine was stretched at an area magnification of 45 times within a range of 115 ° C to 130 ° C. The liquid paraffin is extracted and dried, then dried, and further stretched 1.1 to 2.0 times in the transverse direction under the condition of 120 to 130 ° C by a tenter stretching machine, and this stretched sheet is relaxed in the width direction by 10% at 130 ° C. The heat treatment was performed. The physical properties of the obtained multilayer microporous film are shown in Tables 1 and 2. Although Examples 2, 4, and 5 have a sufficient amount of polypropylene disposed on the surface layer and excellent cycleability, the polypropylene content on the surface is small, so the battery winding property is particularly excellent. Since there was little generation of static electricity, it was particularly excellent in safety. Comparative Examples 1 to 4 are conventional techniques, which have good cycle characteristics, but have poor cycle characteristics because of the large polypropylene content on the surface. On the other hand, although the comparative example 5 had favorable battery winding property, it was inferior to cycling property. As described above, the multilayer microporous membrane of the present embodiment can achieve both cycle performance, safety, battery winding performance, and separator productivity, which cannot be realized by the conventional technology.

本実施の形態の微多孔膜は、サイクル性、安全性、電池捲回性、セパレータ生産性の両立が可能な、リチウムイオン二次電池等のセパレータとしての産業上利用可能性を有する。   The microporous membrane of the present embodiment has industrial applicability as a separator such as a lithium ion secondary battery capable of achieving both cycle performance, safety, battery winding performance, and separator productivity.

Claims (5)

ポリプロピレンとポリエチレンとの混合物を主成分として含有する樹脂組成物を含む微
多孔膜であって、
前記ポリプロピレンが前記混合物中に占める割合が50質量%以上であり、
表面の動摩擦係数が0.55以下であり、
表面のポリプロピレン含有率が60質量%以下であり、かつ(全体のポリプロピレン含有率)−(表面のポリプロピレン含有率)≧10質量%であって、
前記表面のポリプロピレン含有率が下記式により求められた値である微多孔膜。
表面のポリプロピレン含有率[%]=[(微多孔膜のμd−PEμd)/(PPμd−PEμd)]*100
(ここで微多孔膜の動摩擦係数(μd)はカトーテック株式会社製、KES−SE摩擦試験機を用い、荷重50g、接触子面積10×10=100mm 2 (0.5mmφの硬質ステンレス線SUS304製ピアノ線を互いに隙間なく、かつ、重ならないように20本巻きつけたもの)、接触子送りスピード1mm/sec、張力6kPa、温度25℃、湿度50%の条件にて幅50mm×測定方向200mmのサンプルサイズについてMD、TD方向に各3回ずつ測定し、その平均により求められる値であり、PPμdはポリプロピレン単体膜の動摩擦係数であり0.85を用いた。PEμdはポリエチレン単体膜の動摩擦係数であり0.25を用いた。)
A microporous membrane comprising a resin composition containing a mixture of polypropylene and polyethylene as a main component,
The proportion of the polypropylene in the mixture is 50% by mass or more,
Dynamic friction coefficient of the surface Ri der 0.55 or less,
The surface polypropylene content is 60% by mass or less, and (total polypropylene content) − (surface polypropylene content) ≧ 10% by mass,
Microporous membrane polypropylene content of the surface Ru value der obtained by the following equation.
Surface Polypropylene Content [%] = [(μd−PEμd of Microporous Film) / (PPμd−PEμd)] * 100
(Here, the dynamic friction coefficient (μd) of the microporous film is a load of 50 g, contact area 10 × 10 = 100 mm 2 (made by hard stainless steel wire SUS304 of 0.5 mmφ, manufactured by Kato Tech Co., Ltd., KES-SE friction tester) . 20 piano wires wound so as not to overlap each other and not to overlap each other), contact feed speed 1 mm / sec, tension 6 kPa, temperature 25 ° C., humidity 50%, width 50 mm × measurement direction 200 mm The sample size was measured three times in the MD and TD directions, and the average value was obtained, and PPμd was a dynamic friction coefficient of a single polypropylene film, and 0.85 was used, and PEμd was a dynamic friction coefficient of a single polyethylene film. Yes, 0.25 was used.)
請求項記載の微多孔膜を表面層として備える多層微多孔膜。 A multilayer microporous membrane comprising the microporous membrane according to claim 1 as a surface layer. 請求項記載の微多孔膜の製造方法であって、
(1)ポリプロピレンと、分子量(Mw)が1万未満のポリエチレン成分を含むポリエチレンとを混合して混合物を作製する工程、
(2)前記混合物を押出機で押出後、キャスト法によりシートを成形する際に、前記分子量(Mw)が1万未満のポリエチレン成分を前記シートの表面にブリードさせる工程、
を含む製造方法。
A method for producing a microporous membrane according to claim 1 ,
(1) A step of preparing a mixture by mixing polypropylene and polyethylene containing a polyethylene component having a molecular weight (Mw) of less than 10,000,
(2) a step of bleeding the polyethylene component having a molecular weight (Mw) of less than 10,000 on the surface of the sheet when the sheet is formed by a casting method after the mixture is extruded by an extruder.
Manufacturing method.
前記(1)の工程が、ポリプロピレンと、分子量(Mw)が1万未満のポリエチレン成分を含むポリエチレンとの混合物に、
可塑剤と重量平均分子量が1万未満のポリエチレン成分との混合物を加える工程を更に含む、請求項記載の製造方法。
In the step (1), a mixture of polypropylene and polyethylene containing a polyethylene component having a molecular weight (Mw) of less than 10,000,
The method according to claim 3 , further comprising the step of adding a mixture of a plasticizer and a polyethylene component having a weight average molecular weight of less than 10,000 .
請求項記載の微多孔膜又は請求項記載の多層微多孔膜を含む非水電解質2次電池用セパレータ。
Claim 1 microporous membrane or a non-aqueous electrolyte secondary battery separator comprising a multi-layer, microporous membrane of claim 2 wherein the description.
JP2010149257A 2010-06-30 2010-06-30 Microporous membrane, method for producing the same, and separator for non-aqueous electrolyte secondary battery Active JP5398016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010149257A JP5398016B2 (en) 2010-06-30 2010-06-30 Microporous membrane, method for producing the same, and separator for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010149257A JP5398016B2 (en) 2010-06-30 2010-06-30 Microporous membrane, method for producing the same, and separator for non-aqueous electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013199886A Division JP2014012857A (en) 2013-09-26 2013-09-26 Microporous film, method for producing the same, and separator for nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2012014914A JP2012014914A (en) 2012-01-19
JP5398016B2 true JP5398016B2 (en) 2014-01-29

Family

ID=45601113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010149257A Active JP5398016B2 (en) 2010-06-30 2010-06-30 Microporous membrane, method for producing the same, and separator for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5398016B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4216248A4 (en) * 2020-09-18 2024-04-24 Asahi Kasei Kabushiki Kaisha Separator for power storage device, and power storage device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021293A1 (en) * 2012-07-30 2014-02-06 帝人株式会社 Separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
WO2014047126A1 (en) 2012-09-20 2014-03-27 Celgard, Llc Thin battery separators and methods
CN106104851B (en) * 2014-03-14 2019-12-17 东京应化工业株式会社 Porous separator for secondary battery and secondary battery using same
JP6486620B2 (en) * 2014-07-22 2019-03-20 旭化成株式会社 Laminated microporous film, method for producing the same, and battery separator
JP6486621B2 (en) * 2014-07-22 2019-03-20 旭化成株式会社 Laminated microporous film, method for producing the same, and battery separator
JP6642214B2 (en) * 2015-04-01 2020-02-05 三菱ケミカル株式会社 Laminated porous film, battery separator, and battery
JP6627616B2 (en) * 2015-04-15 2020-01-08 三菱ケミカル株式会社 Laminated porous film, battery separator, and battery
JP6598911B2 (en) * 2018-03-22 2019-10-30 旭化成株式会社 Manufacturing method of polyolefin microporous membrane, battery separator, and non-aqueous electrolyte secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195215A (en) * 1997-01-10 1998-07-28 Nitto Denko Corp Porous film, separator for battery or cell and battery or cell
JP2009185093A (en) * 2008-02-01 2009-08-20 Asahi Kasei E-Materials Corp Polyolefin microporous film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4216248A4 (en) * 2020-09-18 2024-04-24 Asahi Kasei Kabushiki Kaisha Separator for power storage device, and power storage device

Also Published As

Publication number Publication date
JP2012014914A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP5717302B2 (en) Laminated microporous membrane and separator for non-aqueous electrolyte secondary battery
JP5398016B2 (en) Microporous membrane, method for producing the same, and separator for non-aqueous electrolyte secondary battery
JP4902455B2 (en) Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
US9853272B2 (en) Laminated polyolefin microporous membrane including propylene-α-olefin copolymer and method of producing the same
JP5202949B2 (en) Polyolefin multilayer microporous membrane and battery separator
KR101858968B1 (en) Multilayered microporous polyolefin film
JP5450929B2 (en) Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
WO2019093184A1 (en) Polyolefin composite porous film, method for producing same, battery separator, and battery
JP2014012857A (en) Microporous film, method for producing the same, and separator for nonaqueous electrolyte secondary battery
JP2009185093A (en) Polyolefin microporous film
JP5092072B2 (en) Polyolefin resin porous film and non-aqueous electrolyte battery separator using the same
JPWO2015194504A1 (en) Polyolefin microporous membrane, battery separator and battery
WO2009136648A1 (en) Separator for high power density lithium‑ion secondary cell
KR102518673B1 (en) Polyolefin microporous membrane
JP2010036355A (en) Manufacturing method of multilayer microporous membrane and separator for nonaqueous electrolyte secondary battery
JP2019143142A (en) Porous polyolefin film
JP2018076476A (en) High temperature low heat shrinkable polyolefin multilayer microporous film and method for producing the same
JP5450944B2 (en) Polyolefin microporous membrane, battery separator and battery
JP2018076475A (en) High temperature low heat shrinkable polyolefin monolayer microporous film and method for producing the same
JP5560119B2 (en) Laminated porous film and method for producing the same
JP2018076474A (en) High temperature low heat shrinkable polyolefin monolayer microporous film and method for producing the same
US20230056490A1 (en) Microporous Film, and Method for Producing Same
JP5649210B2 (en) Polyolefin microporous membrane
JPWO2018164055A1 (en) Polyolefin microporous membrane
JP5676285B2 (en) Polyolefin microporous membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131018

R150 Certificate of patent or registration of utility model

Ref document number: 5398016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350