WO2013080946A1 - Separator for non-aqueous electrolyte cell and non-aqueous electrolyte cell using same - Google Patents

Separator for non-aqueous electrolyte cell and non-aqueous electrolyte cell using same Download PDF

Info

Publication number
WO2013080946A1
WO2013080946A1 PCT/JP2012/080555 JP2012080555W WO2013080946A1 WO 2013080946 A1 WO2013080946 A1 WO 2013080946A1 JP 2012080555 W JP2012080555 W JP 2012080555W WO 2013080946 A1 WO2013080946 A1 WO 2013080946A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
separator
fine particles
resistant
aqueous electrolyte
Prior art date
Application number
PCT/JP2012/080555
Other languages
French (fr)
Japanese (ja)
Inventor
松本修明
神崎壽夫
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Publication of WO2013080946A1 publication Critical patent/WO2013080946A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Abstract

This separator for a non-aqueous electrolyte cell comprises a heat-resistant porous layer on at least one side of a resin porous membrane the primary component of which is a polyolefin having a melting temperature of 80 to 180ºC, and has the resin at the ratio of 50 to 99.9 vol% in the total volume of the structural components of the separator. The heat-resistant porous layer comprises heat-resistant microparticles, a binder, and expandable microparticles that expand in the nonaqueous electrolyte as a result of increased absorbtion of nonaqueous electrolyte when heated. The volume percentage of the expandable microparticles and heat-resistant microparticles is 10:90 to 95:5. The heat-resistant porous layer is characterized as follows: by containing a polymer, as the binder, which has groups having a cyclic structure comprising amide bonds and a skeleton derived from polymerizable double bonds, has a glass transition temperature of 130ºC or higher, and has a weight-average molecular weight of 350,000 or greater; in that the polymer content of the heat-resistant porous layer is 0.1 parts by mass or greater if the total amount of expandable microparticles and heat-resistant microparticles is 100 parts by mass; and in that the heat-resistant porous layer thickness is between 2 and 10 µm.

Description

非水電解液電池用セパレータおよびそれを用いた非水電解液電池Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery using the same
 本発明は、非水電解液電池用セパレータおよびそれを用いた非水電解液電池に関するものである。 The present invention relates to a separator for a non-aqueous electrolyte battery and a non-aqueous electrolyte battery using the same.
 非水電解液電池の一種であるリチウムイオン二次電池は他の電池に比べてエネルギー密度が高く、また、メモリー効果も見られないことから、携帯電話やノート型パーソナルコンピュータなどの携帯機器用電源として幅広く利用されている。また、近年では、地球温暖化防止策として、CO削減を推進する動きが世界規模で展開されているが、その一環として、例えば自動車業界において、電気自動車やハイブリッド電気自動車のモータ駆動用バッテリーとしてのリチウムイオン二次電池の開発が進められている。 Lithium ion secondary batteries, which are a type of non-aqueous electrolyte battery, have a higher energy density than other batteries and do not have a memory effect, so power supplies for mobile devices such as mobile phones and notebook personal computers Is widely used. In recent years, as a measure to prevent global warming, a movement to promote CO 2 reduction has been developed on a global scale. Development of lithium ion secondary batteries is underway.
 現行のリチウムイオン二次電池では、正極と負極の間に介在させるセパレータとして、例えば厚みが15~30μm程度のポリオレフィン系の多孔性フィルムが使用されている。また、セパレータの素材としては、電池の熱暴走温度以下でセパレータの構成樹脂を溶融させて空孔を閉塞させ、これにより電池の内部抵抗を上昇させて短絡の際などに電池の安全性を向上させる所謂シャットダウン効果を確保するため、融点の低いポリエチレンが適用されることがある。 In current lithium ion secondary batteries, a polyolefin-based porous film having a thickness of, for example, about 15 to 30 μm is used as a separator interposed between a positive electrode and a negative electrode. In addition, as separator material, the constituent resin of the separator is melted below the thermal runaway temperature of the battery to close the pores, thereby increasing the internal resistance of the battery and improving the safety of the battery in the event of a short circuit. In order to ensure the so-called shutdown effect, polyethylene having a low melting point may be applied.
 こうしたセパレータとしては、例えば、多孔化と強度向上のために一軸延伸または二軸延伸したフィルムが用いられている。このようなセパレータは、単独で存在する膜として供給されるため、作業性などの点で一定の強度が要求され、これを前記延伸によって確保している。しかし、このような延伸フィルムでは結晶化度が増大しており、シャットダウン温度も、電池の熱暴走温度に近い温度にまで高まっているため、電池の安全性確保のためのマージンが十分とは言い難い。 As such a separator, for example, a uniaxially stretched film or a biaxially stretched film is used for increasing the porosity and improving the strength. Since such a separator is supplied as a single film, a certain strength is required in terms of workability and the like, and this is secured by the stretching. However, with such a stretched film, the degree of crystallinity has increased, and the shutdown temperature has increased to a temperature close to the thermal runaway temperature of the battery. Therefore, it can be said that the margin for ensuring the safety of the battery is sufficient. hard.
 また、前記延伸によってフィルムにはひずみが生じており、これが高温に曝されると、残留応力によって収縮が起こるという問題がある。収縮温度は、シャットダウン温度と非常に近いところに存在する。このため、ポリオレフィン系の多孔性フィルムセパレータを使用するときには、充電異常などによって電池の温度がシャットダウン温度に達すると、電流を直ちに減少させて電池の温度上昇を防止しなければならない。空孔が十分に閉塞せず電流を直ちに減少できなかった場合には、電池の温度は容易にセパレータの収縮温度にまで上昇するため、内部短絡による異常発熱の危険性があるからである。 In addition, the film is distorted by the stretching, and when it is exposed to high temperature, there is a problem that shrinkage occurs due to residual stress. The shrinkage temperature is very close to the shutdown temperature. For this reason, when using a polyolefin-based porous film separator, if the battery temperature reaches the shutdown temperature due to a charging abnormality or the like, the current must be immediately reduced to prevent the battery temperature from rising. This is because if the pores are not sufficiently closed and the current cannot be reduced immediately, the battery temperature easily rises to the shrinkage temperature of the separator, and there is a risk of abnormal heat generation due to an internal short circuit.
 このようなセパレータの熱収縮による短絡を防止し、電池の信頼性を高める技術として、例えば、ベースとなる樹脂製の多孔質膜(微多孔膜)の表面に耐熱性の高い層を形成した多層構造のセパレータが提案されている(例えば、特許文献1~5)。 As a technique for preventing such a short circuit due to thermal contraction of the separator and improving the reliability of the battery, for example, a multilayer in which a layer having high heat resistance is formed on the surface of a resin porous film (microporous film) serving as a base Structured separators have been proposed (for example, Patent Documents 1 to 5).
 また、リチウムイオン二次電池では、例えば製造工程において異物が混入することがあり、このような場合に、セパレータに圧力が加わると、その異物によってセパレータに小さな孔が形成されて内部短絡が起こり、電池の発熱が引き起こされる虞がある。特にポリオレフィン系の多孔性フィルムセパレータは局所的な発熱に弱く、セパレータの短絡箇所の近傍が、短絡電流によって生じる発熱で破膜し、内部短絡が拡大して電池が危険に晒される虞がある。 In addition, in a lithium ion secondary battery, for example, foreign matter may be mixed in the manufacturing process, and in such a case, when pressure is applied to the separator, a small hole is formed in the separator due to the foreign matter, causing an internal short circuit, There is a risk of battery heat generation. In particular, the polyolefin-based porous film separator is vulnerable to local heat generation, and the vicinity of the short-circuited portion of the separator is broken by heat generated by the short-circuit current, so that the internal short circuit is enlarged and the battery may be exposed to danger.
 そこで、こうした問題を解決し、電池の信頼性を高める技術として、正極の表面にカルボキシメチルセルロースの薄膜を形成した電池(特許文献6)や、集電体上に絶縁物を有し、かつこの絶縁物の上に活物質を設けた領域と設けない領域とを形成した電極を用いた電池(特許文献7)が提案されている。 Therefore, as a technique for solving these problems and improving the reliability of the battery, a battery (Patent Document 6) in which a thin film of carboxymethyl cellulose is formed on the surface of the positive electrode, an insulator on the current collector, and this insulation There has been proposed a battery (Patent Document 7) using an electrode in which a region where an active material is provided and a region where no active material is provided on an object.
 また、電極活物質粒子の表面に架橋高分子のコーティング層を形成して、電池の安全性向上と電池性能の低下抑制とを図る技術も提案されている(特許文献8)。 In addition, a technique has been proposed in which a coating layer of a crosslinked polymer is formed on the surface of the electrode active material particles to improve battery safety and suppress deterioration in battery performance (Patent Document 8).
 更に、シャットダウン特性の確保と強度向上とを図るために、シャットダウン特性を確保するための遮断層の両面を、微細多孔質の強度層で挟んだ構成のセパレータも提案されている(特許文献9)。 Furthermore, in order to secure shutdown characteristics and improve strength, a separator having a structure in which both sides of a blocking layer for securing shutdown characteristics are sandwiched between fine porous strength layers has been proposed (Patent Document 9). .
 特許文献1~9の技術によれば、各種の異常事態に遭遇しても、熱暴走などの問題が生じ難い、高い信頼性を有する電池を提供することができる。 According to the techniques of Patent Documents 1 to 9, it is possible to provide a highly reliable battery that hardly causes problems such as thermal runaway even when various abnormal situations are encountered.
特開2006-351386号公報JP 2006-351386 A 特開2007-273123号公報JP 2007-273123 A 特開2007-273443号公報JP 2007-273443 A 特開2007-280911号公報JP 2007-280911 A 国際公開第2009/44741号International Publication No. 2009/44741 特開2000-357505号公報JP 2000-357505 A 特開2008-282799号公報JP 2008-282799 A 特表2008-537293号公報Special table 2008-537293 特開平11-329390号公報JP 11-329390 A
 ところで、特に前記モータ駆動用バッテリーのような大容量で高出力型のリチウムイオン二次電池の場合には、従来のリチウムイオン二次電池にも増して信頼性の向上が要求される。 By the way, particularly in the case of a high-capacity and high-power lithium ion secondary battery such as the motor driving battery, higher reliability is required than the conventional lithium ion secondary battery.
 例えば、特許文献5に記載されているように、シャットダウン機能層として作用する樹脂多孔質膜の表面に、耐熱性微粒子を含有する耐熱層を設けることで、150℃程度の温度でのセパレータの形状安定性を高め、その熱収縮を抑えることが可能である。 For example, as described in Patent Document 5, the shape of the separator at a temperature of about 150 ° C. is provided by providing a heat-resistant layer containing heat-resistant fine particles on the surface of the porous resin film that acts as a shutdown function layer. It is possible to increase the stability and suppress the thermal shrinkage.
 しかしながら、その一方で、これを上回る温度(例えば200℃程度)でのセパレータの熱収縮を抑え、その形状安定性を高めることは必ずしも容易ではなく、電池内がこのような温度となった際の安全性や信頼性を確保する点に関しては、特許文献5に記載の技術も未だ改善の余地を残している。 However, on the other hand, it is not always easy to suppress the thermal shrinkage of the separator at a temperature higher than this (for example, about 200 ° C.) and to improve its shape stability. In terms of ensuring safety and reliability, the technique described in Patent Document 5 still leaves room for improvement.
 また、例えば、特許文献9のように、多数の機能層を形成する手法で、高温下でのセパレータの形状安定性を高めることも考えられるが、その場合、セパレータの製造工程が増大して、製造が煩雑となったり、セパレータ全体が厚くなるために電池容量の低下を引き起こす問題がある。 In addition, for example, as in Patent Document 9, it is conceivable to increase the shape stability of the separator at a high temperature by a method of forming a large number of functional layers, in which case the manufacturing process of the separator increases, There is a problem in that the production becomes complicated and the entire separator becomes thick, resulting in a decrease in battery capacity.
 こうしたことから、耐熱性を高めるための機能層を単一にしてセパレータの厚みの増大を抑えつつ、電池の信頼性をより高め得る技術の開発が求められる。 Therefore, it is necessary to develop a technology that can further improve the reliability of the battery while suppressing an increase in the thickness of the separator by using a single functional layer for improving heat resistance.
 本発明は前記事情に鑑みてなされたものであり、厚みの増大を抑制しつつ優れた耐熱性を確保し得る非水電解液電池用のセパレータと、該セパレータを用いており、高い信頼性を有する非水電解液電池を提供することにある。 The present invention has been made in view of the above circumstances, and uses a separator for a nonaqueous electrolyte battery capable of ensuring excellent heat resistance while suppressing an increase in thickness, and uses the separator, and has high reliability. It is providing the nonaqueous electrolyte battery which has.
 本発明の非水電解液電池用セパレータは、融解温度が80~180℃のポリオレフィンを主成分とする樹脂多孔質膜の少なくとも片面に、耐熱多孔質層を備えた非水電解液電池用セパレータであって、前記セパレータの構成成分の全体積中における樹脂の比率が、50~99.9体積%であり、前記耐熱多孔質層は、非水電解液中において加熱により非水電解液の吸収量が増大して膨潤する膨潤性微粒子と、耐熱性微粒子と、バインダーとを含み、前記膨潤性微粒子と前記耐熱性微粒子との体積比率が、10:90~95:5であり、前記耐熱多孔質層は、前記バインダーとして、アミド結合を含む環状構造を有する基と重合性二重結合由来の骨格とを有しており、ガラス転移温度が130℃以上であり、かつ重量平均分子量が35万以上の重合物を含み、前記膨潤性微粒子と前記耐熱性微粒子の合計量を100質量部としたとき、前記重合物の含有量が0.1質量部以上であり、前記耐熱多孔質層の厚みが、2~10μmであることを特徴とする。 The separator for a non-aqueous electrolyte battery according to the present invention is a separator for a non-aqueous electrolyte battery having a heat-resistant porous layer on at least one surface of a porous resin membrane mainly composed of polyolefin having a melting temperature of 80 to 180 ° C. The ratio of the resin in the total volume of the constituent components of the separator is 50 to 99.9% by volume, and the heat-resistant porous layer absorbs the non-aqueous electrolyte by heating in the non-aqueous electrolyte. The volume ratio of the swellable fine particles to the heat resistant fine particles is 10:90 to 95: 5, and includes the heat resistant porous material. The layer has, as the binder, a group having a cyclic structure containing an amide bond and a skeleton derived from a polymerizable double bond, a glass transition temperature of 130 ° C. or higher, and a weight average molecular weight of 350,000 or higher. When the total amount of the swellable fine particles and the heat-resistant fine particles is 100 parts by mass, including the polymer, the polymer content is 0.1 parts by mass or more, and the heat-resistant porous layer has a thickness of It is characterized by being 2 to 10 μm.
 また、本発明の非水電解液電池は、正極、負極、セパレータおよび非水電解液を含む非水電解液電池であって、前記セパレータが上記本発明の非水電解液電池用セパレータであることを特徴とする。 The non-aqueous electrolyte battery of the present invention is a non-aqueous electrolyte battery including a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte, and the separator is the non-aqueous electrolyte battery separator of the present invention. It is characterized by.
 本発明によれば、厚みの増大を抑制しつつ優れた耐熱性を確保し得る非水電解液電池用のセパレータと、該セパレータを用いており、高い信頼性を有する非水電解液電池を提供することができる。 According to the present invention, a separator for a non-aqueous electrolyte battery that can ensure excellent heat resistance while suppressing an increase in thickness, and a non-aqueous electrolyte battery having high reliability using the separator are provided. can do.
図1は、本発明の非水電解液電池の一例であるリチウムイオン二次電池の断面図である。FIG. 1 is a cross-sectional view of a lithium ion secondary battery which is an example of the nonaqueous electrolyte battery of the present invention.
 本発明の非水電解液電池用セパレータ(以下、単に「セパレータ」という。)は、樹脂多孔質膜の少なくとも片面に耐熱多孔質層を有している。 The nonaqueous electrolyte battery separator of the present invention (hereinafter simply referred to as “separator”) has a heat-resistant porous layer on at least one surface of the resin porous membrane.
 本発明のセパレータにおいて、樹脂多孔質膜は、正極と負極との短絡を防止しつつ、イオンを透過するセパレータ本来の機能を有する層である。 In the separator of the present invention, the porous resin membrane is a layer having the original function of permeating ions while preventing a short circuit between the positive electrode and the negative electrode.
 詳しくは後述するように、樹脂多孔質膜には、例えば、通常のリチウムイオン二次電池などの非水電解液電池用のセパレータと同様に、ポリオレフィンを主成分とする微多孔膜が使用されるが、このような樹脂多孔質膜は、前記の通り、高温環境下で収縮しやすく、高温下での形状安定性が劣っている。 As will be described in detail later, for example, a microporous membrane mainly composed of polyolefin is used for the resin porous membrane, similarly to a separator for a non-aqueous electrolyte battery such as a normal lithium ion secondary battery. However, as described above, such a porous resin membrane easily contracts under a high temperature environment, and has a poor shape stability under a high temperature.
 本発明のセパレータは、前記のような高温下での形状安定性に劣る樹脂(樹脂多孔質膜の含有する樹脂、耐熱多孔質層の含有する膨潤性微粒子およびバインダーを含めた、セパレータの含有する全ての樹脂)の比率を、セパレータの構成成分の全体積中(空孔部分を除く全体積中。以下同じ。)50~99.9体積%として、その比率が非常に多い構成とし、更に樹脂多孔質膜の少なくとも片面に、特定の膨潤性微粒子と耐熱性微粒子とバインダーとを特定の組成比で含有する薄い耐熱多孔質層を形成することで、全体の厚みの増大を抑えつつ、例えば200℃といった高温での形状安定性を高めており、これにより、従来にも増して高温下での信頼性および安全性の高い非水電解液電池(本発明の非水電解液電池)の提供を可能としている。 The separator of the present invention contains a resin having poor shape stability at a high temperature as described above (including the resin contained in the resin porous membrane, the swellable fine particles contained in the heat resistant porous layer, and the binder). The ratio of (all resins) is 50 to 99.9% by volume in the total volume of the constituent components of the separator (in the total volume excluding the voids, the same applies hereinafter), and the ratio is very high. By forming a thin heat-resistant porous layer containing specific swellable fine particles, heat-resistant fine particles, and a binder in a specific composition ratio on at least one surface of the porous film, for example, 200 The shape stability at a high temperature such as ℃ is enhanced, thereby providing a non-aqueous electrolyte battery (non-aqueous electrolyte battery of the present invention) that is more reliable and safer at a higher temperature than ever before. Possible .
 本発明のセパレータに係る耐熱多孔質層の含有する膨潤性微粒子は、通常、電池が使用される温度領域(およそ70℃以下)では、電池の有する非水電解液を吸収しないかまたは吸収量が限られており、従って膨潤の度合いが一定以下であるが、電池内が異常に発熱した際に非水電解液を吸収して大きく膨潤し且つ温度上昇と共に膨潤度が増大するような性質を有する樹脂が用いられる。本発明のセパレータを用いた電池は、通常に使用される温度領域においては、膨潤性微粒子に吸収されない流動可能な非水電解液がセパレータの空孔内に存在するため、セパレータ内部のLi(リチウム)イオンの伝導性が高くなり、良好な特性を有する電池となる。しかし、温度上昇に伴って膨潤度が増大する性質が現れる温度以上に加熱された場合には、耐熱多孔質層に含まれる膨潤性微粒子が、電池内の電非水解液を吸収して膨潤し、セパレータの空孔内部に存在する流動可能な非水電解液、およびセパレータと正極との界面の非水電解液が減少するため、正極と非水電解液の熱暴走反応を良好に抑制できる。 The swellable fine particles contained in the heat-resistant porous layer according to the separator of the present invention usually do not absorb or absorb the non-aqueous electrolyte contained in the battery in the temperature range (approximately 70 ° C. or lower) in which the battery is used. Therefore, the degree of swelling is below a certain level, but when the inside of the battery is abnormally heated, it absorbs the non-aqueous electrolyte and swells greatly, and the degree of swelling increases as the temperature rises. Resin is used. In the battery using the separator of the present invention, in a temperature range that is normally used, a flowable non-aqueous electrolyte that is not absorbed by the swellable fine particles exists in the pores of the separator. ) The ion conductivity is increased, and the battery has good characteristics. However, when heated above the temperature at which the degree of swelling increases as the temperature rises, the swellable fine particles contained in the heat-resistant porous layer swell by absorbing the non-aqueous electrolyte in the battery. Since the flowable non-aqueous electrolyte present in the pores of the separator and the non-aqueous electrolyte at the interface between the separator and the positive electrode are reduced, the thermal runaway reaction between the positive electrode and the non-aqueous electrolyte can be satisfactorily suppressed.
 膨潤性微粒子において、温度上昇に伴って膨潤度が増大する性質(以下、「熱膨潤性」という。)を示し始める温度は、70℃以上であることが好ましく、75℃以上であることがより好ましい。膨潤性微粒子が熱膨潤性を示し始める温度が低すぎると、通常の使用温度域における電池内でのLiイオンの伝導性が低くなりすぎて、機器の使用に支障をきたす場合が生じることがある。また、膨潤性微粒子が熱膨潤性を示し始める温度が高すぎると、電池内での正極と非水電解液との熱暴走反応の抑制作用が発現する温度が高くなりすぎて、電池の安全性および信頼性の向上効果が小さくなる虞がある。よって、膨潤性微粒子において、熱膨潤性を示し始める温度は、150℃以下であることが好ましく、145℃以下であることがより好ましい。 In the swellable fine particles, the temperature at which the degree of swelling increases with increasing temperature (hereinafter referred to as “thermal swellability”) is preferably 70 ° C. or higher, more preferably 75 ° C. or higher. preferable. If the temperature at which the swellable microparticles begin to exhibit thermal swellability is too low, the Li ion conductivity in the battery in the normal operating temperature range may become too low, which may hinder the use of the device. . Also, if the temperature at which the swellable microparticles begin to exhibit thermal swellability is too high, the temperature at which the effect of suppressing the thermal runaway reaction between the positive electrode and the non-aqueous electrolyte in the battery becomes too high, and the battery safety In addition, the reliability improvement effect may be reduced. Therefore, in the swellable fine particles, the temperature at which the thermal swellability starts to be exhibited is preferably 150 ° C. or less, and more preferably 145 ° C. or less.
 耐熱多孔質層が含有する膨潤性微粒子としては、25℃において測定される非水電解液(電池の有する非水電解液)の吸収量が、膨潤性微粒子1gあたり、1.5mL以下であることが好ましく、1mL以下であることがより好ましい。 As the swellable fine particles contained in the heat-resistant porous layer, the absorption amount of the non-aqueous electrolyte (non-aqueous electrolyte of the battery) measured at 25 ° C. is 1.5 mL or less per 1 g of the swellable fine particles. Is preferable, and it is more preferable that it is 1 mL or less.
 膨潤性微粒子が温度上昇により膨潤するメカニズムについては、詳細は明らかではないが、例えば、膨潤性微粒子の一例として挙げられる架橋ポリメチルメタクリレート(PMMA)では、粒子の外郭をなすPMMAのガラス転移点(Tg)が100℃付近にあるため、100℃付近になった際に架橋PMMA粒子が柔軟になって、より多くの非水電解液を吸収して膨潤するといったメカニズムが考えられる。よって、膨潤性微粒子のTgは、例えば70℃以上(より好ましくは80℃以上)130℃以下であることが好ましいと考えられる。 The details of the mechanism by which the swellable fine particles swell when the temperature rises are not clear, but, for example, crosslinked polymethyl methacrylate (PMMA), which is an example of the swellable fine particles, has a glass transition point of PMMA that forms the outer shape of the particles ( Since Tg) is in the vicinity of 100 ° C., a mechanism may be considered in which the cross-linked PMMA particles become flexible when the temperature reaches around 100 ° C., and swells by absorbing more non-aqueous electrolyte. Therefore, it is considered that the Tg of the swellable fine particles is preferably, for example, 70 ° C. or higher (more preferably 80 ° C. or higher) and 130 ° C. or lower.
 そして、膨潤性微粒子は、130℃において測定される非水電解液(電池の有する非水電解液)の吸収量が、膨潤性微粒子1gあたり、2mL以上であることが好ましい。 The swellable fine particles preferably have an absorption amount of a non-aqueous electrolyte (non-aqueous electrolyte of the battery) measured at 130 ° C. of 2 mL or more per gram of swellable fine particles.
 本明細書でいう「膨潤性微粒子の25℃における非水電解液の吸収量」は、以下のようにして求められる値である。膨潤性微粒子(水分散体の場合は、それを1日常温で乾燥させたもの)を乳鉢および乳棒を用いて十分に粉砕して粉末とする。この粉末0.3gをガラス製容器に入れ、ここに、非水電解液(電池に使用する非水電解液)5mLを加え、前記粉末を非水電解液中に25℃で24時間浸漬させる。その後25μm金属メッシュで濾過して粉末と非水電解液とを分離し、得られた非水電解液(前記粉末に吸収されなかった非水電解液)の量を測定し、前記ガラス製容器に入れた非水電解液の量との差から、膨潤性微粒子の25℃における非水電解液の吸収量を求める。 The “absorption amount of the non-aqueous electrolyte solution at 25 ° C. of the swellable fine particles” as used herein is a value obtained as follows. Swellable fine particles (in the case of an aqueous dispersion, those dried for 1 day at room temperature) are sufficiently ground using a mortar and pestle to form a powder. 0.3 g of this powder is put in a glass container, 5 mL of a non-aqueous electrolyte (non-aqueous electrolyte used in a battery) is added thereto, and the powder is immersed in the non-aqueous electrolyte at 25 ° C. for 24 hours. Thereafter, it is filtered through a 25 μm metal mesh to separate the powder and the non-aqueous electrolyte, and the amount of the obtained non-aqueous electrolyte (the non-aqueous electrolyte not absorbed by the powder) is measured. From the difference from the amount of the nonaqueous electrolyte solution added, the absorption amount of the nonaqueous electrolyte solution at 25 ° C. of the swellable fine particles is determined.
 また、本明細書でいう「膨潤性微粒子の130℃における非水電解液の吸収量」は、以下のようにして求められる値である。25℃での吸収量測定の場合と同様にして得られた膨潤性微粒子の粉末0.3gをガラス製容器に入れ、ここに、非水電解液(電池に使用する非水電解液)5mLを加え、前記粉末を非水電解液中に25℃で24時間浸漬させる。その後、ガラス製容器内の非水電解液を130℃に加熱し、130℃に保った状態で25μm金属メッシュで濾過して粉末と非水電解液とを分離し、得られた非水電解液(前記粉末に吸収されなかった非水電解液)の量を測定し、前記ガラス製容器に入れた非水電解液の量との差から、膨潤性微粒子の130℃における非水電解液の吸収量を求める。 Further, the “absorption amount of the non-aqueous electrolyte at 130 ° C. of the swellable fine particles” referred to in the present specification is a value obtained as follows. In a glass container, 0.3 g of a swellable fine particle powder obtained in the same manner as in the case of measuring the amount of absorption at 25 ° C. is added, and 5 mL of a non-aqueous electrolyte (non-aqueous electrolyte used in a battery) is added here. In addition, the powder is immersed in a non-aqueous electrolyte at 25 ° C. for 24 hours. Thereafter, the non-aqueous electrolyte in the glass container is heated to 130 ° C., and filtered with a 25 μm metal mesh while maintaining the temperature at 130 ° C. to separate the powder from the non-aqueous electrolyte, and the obtained non-aqueous electrolyte The amount of (non-aqueous electrolyte not absorbed by the powder) was measured, and from the difference from the amount of non-aqueous electrolyte placed in the glass container, the absorption of the non-aqueous electrolyte at 130 ° C. of the swellable fine particles Find the amount.
 前記の方法による25℃の吸収量測定および130℃の吸収量測定では、濾過に伴う非水電解液のロスや、加熱時の非水電解液溶媒の揮発によるロス(130℃の吸収量測定の場合)が生じ得る。よって、前記の各吸収量は、いずれも、予め非水電解液のみについて前記の各操作を行って測定したロス量を用いて補正する。 In the absorption measurement at 25 ° C. and the absorption measurement at 130 ° C. by the above method, the loss of the non-aqueous electrolyte due to filtration and the loss due to the volatilization of the non-aqueous electrolyte solvent during heating (measurement of the absorption amount at 130 ° C. Case) may occur. Therefore, each of the above absorption amounts is corrected using the loss amount measured by performing each of the above operations on only the non-aqueous electrolyte.
 また、本明細書でいう膨潤性微粒子および後述するバインダー(バインダーとして使用される重合物)のTgは、日本工業規格(JIS)K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される値である。 Further, the Tg of the swellable fine particles and the binder (polymer used as a binder) to be described later is a differential scanning calorimeter (DSC) in accordance with the provisions of Japanese Industrial Standard (JIS) K7121. Is a measured value.
 膨潤性微粒子を構成する材料は、耐熱性および電気絶縁性を有しており、非水電解液に対して安定であり、更に、電池の作動電圧範囲において酸化還元されにくい電気化学的に安定な材料が好ましく、そのような材料としては、例えば、樹脂架橋体が挙げられる。より具体的には、スチレン樹脂〔ポリスチレン(PS)など〕、スチレン・ブタジエン・ラバー(SBR)、アクリル樹脂(PMMAなど)、ポリアルキレンオキシド〔ポリエチレンオキシド(PEO)など〕、フッ素樹脂(PVDFなど)、およびこれらの誘導体よりなる群から選ばれる少なくとも1種の樹脂の架橋体;尿素樹脂;ポリウレタン;などが例示できる。膨潤性微粒子には、前記例示の樹脂を1種単独で用いてもよく、2種以上を併用してもよい。また、膨潤性微粒子は、必要に応じて、樹脂に添加される公知の各種添加剤、例えば、酸化防止剤などを含有していても構わない。 The material constituting the swellable fine particles has heat resistance and electrical insulation, is stable to non-aqueous electrolyte, and is electrochemically stable that is not easily oxidized and reduced in the operating voltage range of the battery. A material is preferable, and examples of such a material include a crosslinked resin. More specifically, styrene resin (polystyrene (PS), etc.), styrene-butadiene rubber (SBR), acrylic resin (PMMA, etc.), polyalkylene oxide (polyethylene oxide (PEO), etc.), fluororesin (PVDF, etc.) And a crosslinked product of at least one resin selected from the group consisting of these derivatives; urea resin; polyurethane; and the like. In the swellable fine particles, the above-exemplified resins may be used alone or in combination of two or more. Further, the swellable fine particles may contain various known additives added to the resin, for example, an antioxidant, if necessary.
 前記膨潤性微粒子の構成材料の中でも、スチレン樹脂架橋体、アクリル樹脂架橋体およびフッ素樹脂架橋体が好ましく、架橋PMMAが特に好ましい。 Among the constituent materials of the swellable fine particles, crosslinked styrene resin, crosslinked acrylic resin and crosslinked fluororesin are preferable, and crosslinked PMMA is particularly preferable.
 膨潤性微粒子は、その微粒子全体が均質な構造を有していてもよく、また、コア部とシェル部とで構成の異なるコアシェル構造を有していてもよい。コアシェル構造を有する膨潤性微粒子としては、例えば、コア部をTgが25℃以下(好ましくは0℃以下)のアクリル樹脂架橋体(好ましくは架橋PMMA)で構成し、シェル部をTgが70℃以上(好ましくは130℃以下)のアクリル樹脂架橋体(好ましくは架橋PMMA)で構成した微粒子が挙げられる。このようなコアシェル構造を有する膨潤性微粒子とした場合、表面の高いTgのアクリル樹脂架橋体で低温時の膨潤を抑制し、内部の低いTgのアクリル樹脂架橋体で、効果的に膨潤させることが可能となる。また、このようなコアシェル構造の膨潤性微粒子を用いた場合、高温下において、セパレータの有する樹脂多孔質膜が収縮しようとする応力を分散することが可能となり、より高温に曝しても収縮し難いセパレータが実現可能となる。 The swellable fine particles may have a homogeneous structure as a whole, or may have a core-shell structure in which the core part and the shell part are different. As the swellable fine particles having a core-shell structure, for example, the core part is composed of an acrylic resin crosslinked body (preferably crosslinked PMMA) having a Tg of 25 ° C. or less (preferably 0 ° C. or less), and the shell part has a Tg of 70 ° C. or more. Fine particles composed of a crosslinked acrylic resin (preferably 130 ° C. or less) (preferably crosslinked PMMA) can be used. When the swellable fine particles having such a core-shell structure are used, it is possible to suppress swelling at low temperatures with a high-Tg acrylic resin crosslinked body and to effectively swell with a low Tg acrylic resin crosslinked body. It becomes possible. In addition, when such swellable fine particles having a core-shell structure are used, it is possible to disperse the stress that the porous resin membrane of the separator tends to contract at high temperatures, and it is difficult to contract even when exposed to higher temperatures. A separator can be realized.
 膨潤性微粒子の平均粒子径は、0.05μm以上であることが好ましく、0.1μm以上であることがより好ましく、0.2μm以上であることが更に好ましく、また、3μm以下であることが好ましく、2μm以下であることがより好ましい。詳しくは後述するが、耐熱多孔質層は、その構成成分を媒体に分散または溶解させた耐熱多孔質層形成用組成物を用いて形成することが好ましい。その場合、膨潤性微粒子の平均粒子径が小さすぎると、その表面積が大きくなって膨潤性微粒子同士が凝集しやすくなり、耐熱多孔質層形成用組成物の媒体に良好に分散させにくくなる虞がある。また、膨潤性微粒子の平均粒子径が大きすぎると、耐熱多孔質層中のリチウムイオンの運動を面方向に関して均一にし難くなり、電池の充放電時のリチウムイオンの移動障壁となる虞がある。 The average particle size of the swellable fine particles is preferably 0.05 μm or more, more preferably 0.1 μm or more, further preferably 0.2 μm or more, and preferably 3 μm or less. More preferably, it is 2 μm or less. As will be described in detail later, the heat-resistant porous layer is preferably formed using a heat-resistant porous layer forming composition in which the constituent components are dispersed or dissolved in a medium. In that case, if the average particle diameter of the swellable fine particles is too small, the surface area becomes large and the swellable fine particles are likely to aggregate with each other, which may make it difficult to disperse well in the medium of the heat-resistant porous layer forming composition. is there. On the other hand, if the average particle diameter of the swellable fine particles is too large, it is difficult to make the movement of lithium ions in the heat-resistant porous layer uniform in the plane direction, which may become a lithium ion migration barrier during charge / discharge of the battery.
 本明細書でいう微粒子(膨潤性微粒子および後記の耐熱性微粒子)の平均粒子径は、例えば、レーザー散乱粒度分布計(例えば、HORIBA社製「LA-920」)を用い、微粒子を溶解したり、微粒子が膨潤したりしない媒体に、微粒子を分散させて測定した体積基準の積算分率における50%での粒径(D50)として規定することができる。 The average particle diameter of the fine particles (swellable fine particles and heat-resistant fine particles described later) referred to in the present specification is obtained by, for example, dissolving the fine particles using a laser scattering particle size distribution meter (for example, “LA-920” manufactured by HORIBA). The particle size (D 50 ) at 50% of the volume-based integrated fraction measured by dispersing the fine particles in a medium in which the fine particles do not swell can be defined.
 耐熱多孔質層は、前記の膨潤性微粒子とともに耐熱性微粒子を含有するが、本明細書でいう耐熱性微粒子における「耐熱性」とは、少なくとも200℃において変形などの形状変化が目視で確認されないことを意味している。耐熱性微粒子の耐熱性を示す耐熱温度は、300℃以上であることがより好ましい。耐熱温度の上限値は特に限定されないが、通常1000℃程度である。 The heat-resistant porous layer contains heat-resistant fine particles together with the above-mentioned swellable fine particles, but “heat resistance” in the heat-resistant fine particles referred to in the present specification does not visually confirm a shape change such as deformation at least at 200 ° C. It means that. The heat-resistant temperature indicating the heat resistance of the heat-resistant fine particles is more preferably 300 ° C. or higher. The upper limit of the heat-resistant temperature is not particularly limited, but is usually about 1000 ° C.
 耐熱性微粒子としては、電気絶縁性を有しており、電気化学的に安定で、更に後述する非水電解液や、耐熱多孔質層形成用組成物に用いる媒体に安定であり、高温状態で非水電解液に溶解しないものであれば、特に制限はない。 The heat-resistant fine particles have electrical insulating properties, are electrochemically stable, and are stable to a medium used for a non-aqueous electrolyte and a heat-resistant porous layer forming composition, which will be described later. If it does not melt | dissolve in a non-aqueous electrolyte, there will be no restriction | limiting in particular.
 このような耐熱性微粒子の具体例としては、例えば、酸化鉄、SiO(シリカ)、Al(アルミナ)、TiO、BaTiO、ZrOなどの酸化物微粒子;窒化アルミニウム、窒化ケイ素などの窒化物微粒子;フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶微粒子;シリコン、ダイヤモンドなどの共有結合性結晶微粒子;タルク、モンモリロナイトなどの粘土微粒子;ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイトなどの鉱物資源由来物質またはそれらの人造物;などの無機微粒子が挙げられる。また、金属微粒子;SnO、スズ-インジウム酸化物(ITO)などの酸化物微粒子;カーボンブラック、グラファイトなどの炭素質微粒子;などの導電性微粒子の表面を、電気絶縁性を有する材料(例えば、前記の電気絶縁性の耐熱性微粒子を構成する材料など)で表面処理することで、電気絶縁性を持たせた微粒子であってもよい。耐熱性微粒子には、これらを1種単独で用いてもよく、2種以上を併用してもよい。耐熱性微粒子としては、シリカ、アルミナ、ベーマイトがより好ましく、ベーマイトが特に好ましい。 Specific examples of such heat-resistant fine particles include, for example, oxide fine particles such as iron oxide, SiO 2 (silica), Al 2 O 3 (alumina), TiO 2 , BaTiO 3 , ZrO 2 ; aluminum nitride, silicon nitride Nitride fine particles such as: Calcium fluoride, barium fluoride, barium sulfate and other poorly soluble ionic crystal fine particles; silicon, diamond and other covalently bonded crystal fine particles; talc, montmorillonite and other clay fine particles; boehmite, zeolite, apatite, Inorganic fine particles such as kaolin, mullite, spinel, olivine, sericite, bentonite and other mineral resource-derived substances or their artificial products; Further, the surface of conductive fine particles such as metal fine particles; oxide fine particles such as SnO 2 and tin-indium oxide (ITO); carbonaceous fine particles such as carbon black and graphite; It may be fine particles that have been made electrically insulating by surface treatment with the above-mentioned materials constituting the electrically insulating heat-resistant fine particles. These heat resistant fine particles may be used alone or in combination of two or more. As the heat-resistant fine particles, silica, alumina, and boehmite are more preferable, and boehmite is particularly preferable.
 耐熱性微粒子の形状については特に制限はなく、球状、粒子状、板状など、いずれの形状であってもよい。 The shape of the heat-resistant fine particles is not particularly limited, and may be any shape such as a spherical shape, a particle shape, or a plate shape.
 耐熱性微粒子の平均粒子径(一次粒子の平均粒子径)は、0.05μm以上であることが好ましく、0.1μm以上であることがより好ましく、0.2μm以上であることが更に好ましく、また、3μm以下であることが好ましく、2μm以下であることがより好ましい。耐熱性微粒子の平均粒子径が小さすぎると、その表面積が大きくなって耐熱性微粒子同士が凝集しやすくなり、耐熱多孔質層形成用組成物の媒体に良好に分散させにくくなる虞がある。また、耐熱性微粒子の平均粒子径が大きすぎると、耐熱多孔質層中のリチウムイオンの運動を面方向に関して均一にし難くなり、電池の充放電時のリチウムイオンの移動障壁となる虞がある。 The average particle size of the heat-resistant fine particles (average particle size of primary particles) is preferably 0.05 μm or more, more preferably 0.1 μm or more, still more preferably 0.2 μm or more, It is preferably 3 μm or less, and more preferably 2 μm or less. If the average particle diameter of the heat-resistant fine particles is too small, the surface area becomes large and the heat-resistant fine particles are likely to aggregate with each other, which may make it difficult to disperse them well in the medium of the heat-resistant porous layer forming composition. Moreover, if the average particle diameter of the heat-resistant fine particles is too large, it is difficult to make the movement of lithium ions in the heat-resistant porous layer uniform in the plane direction, which may become a lithium ion migration barrier during charge / discharge of the battery.
 セパレータに係る耐熱多孔質層は、膨潤性微粒子や耐熱性微粒子といった微粒子同士の密着性を高めたり、耐熱多孔質層と樹脂多孔質膜との密着性を高めたりするために、バインダーを含有している。 The heat-resistant porous layer related to the separator contains a binder in order to improve the adhesion between fine particles such as swellable fine particles and heat-resistant fine particles, and to improve the adhesion between the heat-resistant porous layer and the resin porous membrane. ing.
 耐熱多孔質層のバインダーには、アミド結合を含む環状構造を有する基と重合性二重結合由来の骨格とを有し、ガラス転移温度(Tg)が130℃以上で、重量平均分子量が35万以上の重合物(A)[以下、単に「重合物(A)」という場合がある。]を使用する。 The binder of the heat resistant porous layer has a group having a cyclic structure containing an amide bond and a skeleton derived from a polymerizable double bond, a glass transition temperature (Tg) of 130 ° C. or higher, and a weight average molecular weight of 350,000. The above polymerized product (A) [hereinafter sometimes simply referred to as “polymerized product (A)”. ] Is used.
 非水電解液電池において、高温時の信頼性を高めるには、正極と負極との間に介在する隔離材の収縮が生じ難く、正極と負極との直接の接触が防止されることが重要となる。 In a non-aqueous electrolyte battery, in order to increase the reliability at high temperatures, it is difficult for the separator interposed between the positive electrode and the negative electrode to shrink, and it is important to prevent direct contact between the positive electrode and the negative electrode. Become.
 重合物(A)のTgが130℃以上であれば、電池内が130℃に達するまでは、耐熱多孔質層に係る耐熱性微粒子同士や、耐熱多孔質層と樹脂多孔質膜とが強固に固定された状態を保ち得る。そのため、耐熱多孔質層自体や、耐熱多孔質層と一体化されている樹脂多孔質膜の収縮が抑制できることから、高温下での信頼性に優れた非水電解液電池を構成し得るセパレータを形成することが可能となる。重合物(A)のTgは150℃以上であることがより好ましい。重合物(A)のTgの上限値は特に限定されないが、通常400℃程度である。 If the Tg of the polymer (A) is 130 ° C. or higher, the heat-resistant fine particles related to the heat-resistant porous layer, or the heat-resistant porous layer and the resin porous membrane are firmly formed until the inside of the battery reaches 130 ° C. Can remain fixed. Therefore, since the shrinkage of the heat resistant porous layer itself and the resin porous membrane integrated with the heat resistant porous layer can be suppressed, a separator that can constitute a non-aqueous electrolyte battery excellent in reliability at high temperatures is provided. It becomes possible to form. The Tg of the polymer (A) is more preferably 150 ° C. or higher. Although the upper limit of Tg of a polymer (A) is not specifically limited, Usually, it is about 400 degreeC.
 重合物(A)は、その重量平均分子量が、35万以上であり、40万以上であることが好ましく、100万以上であることがより好ましく、150万以上であることが更に好ましい。一般に、重合性二重結合由来の骨格を有する重合物では、その分子量が大きくなるほど、Tgが高くなり、かつ接着力が強くなる傾向があることから、その重量平均分子量を前記の値とすることで、Tgが前記の値の重合物(A)を得られやすくなり、また、耐熱多孔質層と樹脂多孔質膜との剥離強度を高めることが可能となるため、高温下でのセパレータの収縮を高度に抑制できるようになる。更に、重量平均分子量が前記の値を満たす重合物(A)をバインダーに使用することで、電池内での重合物(A)の分解を抑制できることから、この耐熱多孔質層を有する非水電解液電池の高温貯蔵特性を高めることもできる。 The polymer (A) has a weight average molecular weight of 350,000 or more, preferably 400,000 or more, more preferably 1,000,000 or more, and further preferably 1,500,000 or more. In general, in a polymer having a skeleton derived from a polymerizable double bond, as the molecular weight thereof increases, Tg tends to increase and the adhesive strength tends to increase. Therefore, the weight average molecular weight should be the above value. Thus, the polymer (A) having a Tg of the above value can be easily obtained, and the peel strength between the heat-resistant porous layer and the resin porous film can be increased. Can be suppressed to a high degree. Further, since the decomposition of the polymer (A) in the battery can be suppressed by using the polymer (A) having a weight average molecular weight satisfying the above value as a binder, non-aqueous electrolysis having this heat-resistant porous layer is possible. The high temperature storage characteristics of the liquid battery can also be enhanced.
 バインダーとして使用される重合物(A)は、アミド結合を含む環状構造を有する基と、重合性二重結合由来の骨格を有するものであり、引張強度や引張弾性率が大きいことに加えて、耐熱性微粒子や膨潤性微粒子との接着性が良好である。よって、重合物(A)を使用することで、耐熱多孔質層を構成する耐熱性微粒子や膨潤性微粒子が密に充填されるために耐熱多孔質層の強度が増すことから、耐熱多孔質層を薄くしたり、また、耐熱多孔質層中のバインダー量を特に少なくしたりしても、セパレータの耐熱性(高温下での形状安定性)を高く維持することができる。また、耐熱多孔質層を、耐熱多孔質層形成用組成物を用いて形成する場合、重合物(A)は前記組成物中において増粘剤として機能し、前記組成物中での耐熱性微粒子や膨潤性微粒子の沈降抑制に寄与し得るため、重合物(A)の使用によって、より均質で表面平滑性に優れ、電池内において内部抵抗の斑の原因となり難い耐熱多孔質層を形成できるようになる。 The polymer (A) used as a binder has a cyclic structure containing an amide bond and a skeleton derived from a polymerizable double bond, and in addition to a large tensile strength and tensile modulus, Good adhesion to heat-resistant fine particles and swellable fine particles. Therefore, the use of the polymer (A) increases the strength of the heat-resistant porous layer because the heat-resistant fine particles and the swellable fine particles constituting the heat-resistant porous layer are densely filled. Even if the thickness of the separator is reduced or the amount of the binder in the heat resistant porous layer is particularly reduced, the heat resistance (shape stability at high temperature) of the separator can be maintained high. When the heat-resistant porous layer is formed using the heat-resistant porous layer forming composition, the polymer (A) functions as a thickener in the composition, and the heat-resistant fine particles in the composition As a result, the use of the polymer (A) can form a heat-resistant porous layer that is more uniform and excellent in surface smoothness and is less likely to cause internal resistance spots in the battery. become.
 ただし、重合物(A)の分子量が大きすぎると、耐熱多孔質層形成用組成物の粘度が上昇して塗布性が低下する虞がある。よって、重合物(A)の重量平均分子量は、2000万以下であることが好ましく、1000万以下であることがより好ましく、400万以下であることが更に好ましく、350万以下であることが特に好ましい。 However, if the molecular weight of the polymer (A) is too large, the viscosity of the heat-resistant porous layer-forming composition may increase and the coating properties may decrease. Therefore, the weight average molecular weight of the polymer (A) is preferably 20 million or less, more preferably 10 million or less, further preferably 4 million or less, and particularly preferably 3.5 million or less. preferable.
 本明細書でいう重合物(A)の重量平均分子量は、ゲルパーミエーションクロマトグラフィーを用いて測定される重量平均分子量(ポリスチレン換算値)である。 The weight average molecular weight of the polymer (A) referred to in the present specification is a weight average molecular weight (polystyrene equivalent value) measured using gel permeation chromatography.
 重合物(A)は、アミド結合を含む環状構造を有する基と、重合性二重結合由来の骨格とを、少なくとも一部に有していればよく、アミド結合を含む環状構造を有する基と、重合性二重結合とを有するモノマーを重合して得られる単独重合体または共重合体が挙げられる。重合物(A)を形成するための前記モノマーは、アミド結合を含む環状構造を有する基を、一つだけ有していてもよく、複数有していてもよい。また、アミド結合を含む環状構造を有する基としては、下記化学式(1)で表される基であることがより好ましい。 The polymer (A) may have at least a part of a group having a cyclic structure containing an amide bond and a skeleton derived from a polymerizable double bond, and a group having a cyclic structure containing an amide bond; And a homopolymer or a copolymer obtained by polymerizing a monomer having a polymerizable double bond. The monomer for forming the polymer (A) may have only one or a plurality of groups having a cyclic structure containing an amide bond. The group having a cyclic structure containing an amide bond is more preferably a group represented by the following chemical formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 重合物(A)の具体例としては、N-ビニルカプロラクタムの単独重合体であるポリ(N-ビニルカプロラクタム)、ビニルピロリドンの単独重合体であるポリビニルピロリドン(PVP)などの、アミド結合を含む環状構造を有する基と重合性二重結合とを有するモノマーの単独重合体;アミド結合を含む環状構造を有する基と重合性二重結合とを有するモノマー(N-ビニルカプロラクタム、ビニルピロリドンなど)2種以上の共重合体;アミド結合を含む環状構造を有する基と重合性二重結合とを有するモノマー(N-ビニルカプロラクタム、ビニルピロリドンなど)の1種または2種以上と、他の重合性二重結合を有するモノマー(アミド結合を含む環状構造を有する基と重合性二重結合とを有するモノマー以外のモノマー)の1種または2種以上との共重合体;などが挙げられる。 Specific examples of the polymer (A) include cyclic amide bonds such as poly (N-vinylcaprolactam), which is a homopolymer of N-vinylcaprolactam, and polyvinylpyrrolidone (PVP), which is a homopolymer of vinylpyrrolidone. Monomers of monomers having a group having a structure and a polymerizable double bond; two types of monomers having a cyclic structure containing an amide bond and a polymerizable double bond (N-vinylcaprolactam, vinylpyrrolidone, etc.) One or more of the above copolymers; monomers having a cyclic structure containing an amide bond and a polymerizable double bond (N-vinylcaprolactam, vinylpyrrolidone, etc.) and other polymerizable doubles 1 of a monomer having a bond (a monomer other than a monomer having a cyclic structure containing an amide bond and a polymerizable double bond) Or a copolymer of two or more; and the like.
 アミド結合を含む環状構造を有する基と重合性二重結合とを有するモノマーと、他の重合性二重結合を有するモノマーとの共重合体を構成し得る前記他の重合性二重結合を有するモノマーとしては、例えば、ビニル非環状アミド類、(メタ)アクリル酸およびそのエステル類、(メタ)アクリルアミドおよびその誘導体類[「(メタ)アクリルアミド」とは、アクリルアミドとメタクリルアミドとを含む意味である。]、スチレンおよびその誘導体類、酢酸ビニル等のビニルエステル類、α-オレフィン類、ビニルイミダゾールやビニルピリジン等の塩基性不飽和化合物およびその誘導体類、カルボキシル基含有不飽和化合物およびその酸無水物類、ビニルスルホン酸およびその誘導体、ビニルエチレンカーボネートおよびその誘導体類、ビニルエーテル類、などが挙げられる。 Having the other polymerizable double bond capable of constituting a copolymer of a monomer having a cyclic structure containing an amide bond and a polymerizable double bond and a monomer having another polymerizable double bond Examples of the monomer include vinyl acyclic amides, (meth) acrylic acid and esters thereof, (meth) acrylamide and derivatives thereof [“(meth) acrylamide” means acrylamide and methacrylamide. . ], Styrene and its derivatives, vinyl esters such as vinyl acetate, α-olefins, basic unsaturated compounds such as vinylimidazole and vinylpyridine and derivatives thereof, carboxyl group-containing unsaturated compounds and acid anhydrides thereof Vinyl sulfonic acid and its derivatives, vinyl ethylene carbonate and its derivatives, vinyl ethers, and the like.
 アミド結合を含む環状構造を有する基と重合性二重結合とを有するモノマーと、他の重合性二重結合を有するモノマーとの共重合体におけるアミド結合を含む環状構造を有する基と重合性二重結合とを有するモノマー由来のユニットの含有量は、例えばTgを前記の値に調整することが容易となることから、上記モノマー由来の全ユニット100モル%中、40モル%以上であることが好ましく、60モル%以上であることがより好ましく、80モル%以上であることが更に好ましい。 A group having a cyclic structure containing an amide bond and a group having a cyclic structure containing an amide bond in a copolymer of a monomer having a cyclic structure containing an amide bond and a polymerizable double bond and another monomer having a polymerizable double bond. The content of the unit derived from the monomer having a heavy bond is, for example, easy to adjust Tg to the above value, so that it is 40 mol% or more in 100 mol% of all the units derived from the monomer. Preferably, it is 60 mol% or more, more preferably 80 mol% or more.
 また、バインダーには、重合物(A)とともに、他のバインダーを使用することもできる。このような他のバインダーとしては、例えば、エチレン-酢酸ビニル共重合体、アクリレート共重合体、水溶性ナイロン、ビニルアルコール系ポリマー、ビニルエーテル系ポリマーなどが挙げられる。 Also, other binders can be used together with the polymer (A) as the binder. Examples of such other binders include ethylene-vinyl acetate copolymers, acrylate copolymers, water-soluble nylon, vinyl alcohol polymers, vinyl ether polymers, and the like.
 耐熱多孔質層においては、高温下におけるセパレータの形状安定性を高める観点から、膨潤性微粒子、耐熱性微粒子およびバインダーの組成比を以下のようにする。まず、膨潤性微粒子と耐熱性微粒子との体積比率を、10:90~95:5、好ましくは45:55~70:30とする。また、膨潤性微粒子と耐熱性微粒子との合計量を100質量部としたとき、重合物(A)の含有量を、0.1質量部以上、好ましくは0.15質量部以上、より好ましくは0.2質量部以上とする。 In the heat-resistant porous layer, the composition ratio of the swellable fine particles, the heat-resistant fine particles and the binder is set as follows from the viewpoint of improving the shape stability of the separator at a high temperature. First, the volume ratio of swellable fine particles to heat-resistant fine particles is set to 10:90 to 95: 5, preferably 45:55 to 70:30. Further, when the total amount of the swellable fine particles and the heat-resistant fine particles is 100 parts by mass, the content of the polymer (A) is 0.1 parts by mass or more, preferably 0.15 parts by mass or more, more preferably 0.2 parts by mass or more.
 また、膨潤性微粒子と耐熱性微粒子との合計量100質量部に対して、重合物(A)の量が前記の値となるように耐熱多孔質層形成用組成物を調製することで、これらの微粒子を重合物(A)によって良好に被覆して、組成物中での微粒子の沈降をより良好に抑制し、より均質で表面平滑性に優れた耐熱多孔質層を形成できる。 Moreover, by preparing the composition for forming a heat resistant porous layer such that the amount of the polymer (A) is the above value with respect to 100 parts by mass of the total amount of the swellable fine particles and the heat resistant fine particles, These fine particles can be satisfactorily coated with the polymer (A), and the precipitation of the fine particles in the composition can be suppressed more favorably, and a heat-resistant porous layer having more uniform and excellent surface smoothness can be formed.
 また、耐熱多孔質層における空孔量を適度に維持し、例えば、電池の負荷特性を高める観点からは、膨潤性微粒子と耐熱性微粒子との合計量を100質量部としたとき、バインダーの含有量〔重合物(A)を含むバインダーの総量〕を、15質量部以下とすることが好ましく、5質量部以下とすることがより好ましく、3質量部以下とすることが更に好ましく、1質量部以下とすることが特に好ましい。 In addition, the amount of pores in the heat-resistant porous layer is appropriately maintained. For example, from the viewpoint of improving the load characteristics of the battery, when the total amount of the swellable fine particles and the heat-resistant fine particles is 100 parts by mass, The amount [total amount of binder including polymer (A)] is preferably 15 parts by mass or less, more preferably 5 parts by mass or less, still more preferably 3 parts by mass or less. The following is particularly preferable.
 耐熱多孔質層における膨潤性微粒子の含有量は、耐熱多孔質層の構成成分の全体積(空孔部分の体積を除く全体積。以下同じ。)中、10体積%以上であることが好ましく、45体積%以上であることがより好ましい。耐熱多孔質層中の膨潤性微粒子の含有量を前記のようにすることで、電池発熱時の熱暴走反応を良好に抑制することができる。 The content of the swellable fine particles in the heat-resistant porous layer is preferably 10% by volume or more in the total volume of the constituent components of the heat-resistant porous layer (the total volume excluding the volume of the void portion; the same applies hereinafter), More preferably, it is 45 volume% or more. By setting the content of the swellable fine particles in the heat-resistant porous layer as described above, the thermal runaway reaction during battery heat generation can be satisfactorily suppressed.
 ただし、耐熱多孔質層中に膨潤性微粒子を過度に含有させると、電池の信頼性および安全性の向上が期待できるものの、電池が使用される温度領域での非水電解液の吸収量が増えたり、膨潤性微粒子の凝集によって耐熱多孔質層の表面の平滑性が低下し、内部抵抗がセパレータの位置ごとに変動したりして、電池の負荷特性が低下する虞がある。このような観点から、耐熱多孔質層における膨潤性微粒子の含有量は、例えば、耐熱多孔質層の構成成分の全体積中、95体積%以下であることが好ましく、70体積%以下であることがより好ましい。 However, excessively containing swellable fine particles in the heat-resistant porous layer can be expected to improve the reliability and safety of the battery, but the amount of nonaqueous electrolyte absorbed in the temperature range where the battery is used increases. In addition, the smoothness of the surface of the heat-resistant porous layer may be reduced due to aggregation of the swellable fine particles, and the internal resistance may vary depending on the position of the separator, which may reduce the load characteristics of the battery. From such a viewpoint, the content of the swellable fine particles in the heat resistant porous layer is, for example, preferably 95% by volume or less, and 70% by volume or less in the total volume of the constituent components of the heat resistant porous layer. Is more preferable.
 また、耐熱多孔質層における耐熱性微粒子の含有量は、高温時におけるセパレータの形状安定性をより良好に高め、電池内が高温になった際の熱収縮を良好に抑制するとともに、耐熱多孔質層内での膨潤性微粒子の凝集を抑えて、耐熱多孔質層の表面平滑性を高める観点から、耐熱多孔質層の構成成分の全体積中、5体積%以上であることが好ましく、30体積%以上であることがより好ましい。 In addition, the content of the heat-resistant fine particles in the heat-resistant porous layer enhances the shape stability of the separator at high temperatures, suppresses heat shrinkage when the inside of the battery becomes high temperature, and heat-resistant porous From the viewpoint of suppressing the aggregation of the swellable fine particles in the layer and enhancing the surface smoothness of the heat resistant porous layer, the total volume of the constituent components of the heat resistant porous layer is preferably 5% by volume or more, and 30 volumes. % Or more is more preferable.
 本発明のセパレータは、耐熱多孔質層を樹脂多孔質膜の片面にのみ有していてもよく、両面に有していてもよいが、例えば、セパレータの生産性を高める観点からは、樹脂多孔質膜の片面にのみ耐熱多孔質層を有していることが好ましい。 The separator of the present invention may have a heat-resistant porous layer only on one side of the resin porous membrane or on both sides. For example, from the viewpoint of increasing the productivity of the separator, It is preferable to have a heat-resistant porous layer only on one side of the membrane.
 耐熱多孔質層の厚み(樹脂多孔質膜の両面に耐熱多孔質層が形成されている場合は、両耐熱多孔質層の合計厚み。耐熱多孔質層の厚みについて、以下同じ。)は、セパレータの熱収縮を抑制する耐熱多孔質層の作用を十分に確保する観点から、2μm以上であり、3μm以上であることが好ましい。また、耐熱多孔質層をこのような厚みとすることで、電池内に導電性の異物が混入した場合における内部短絡による異常発熱などを良好に防止することもできる。ただし、耐熱多孔質層の厚みが厚すぎると、セパレータの全厚みが大きくなってしまい、電池の負荷特性の低下が引き起こされたり、電池容量の向上が困難となったりする虞がある。よって、耐熱多孔質層の厚みは、10μm以下であり、5μm以下であることが好ましい。本発明のセパレータでは、このような薄い耐熱多孔質層を1層形成するだけで、例えば200℃といった高温での形状安定性を高めることができる。 The thickness of the heat resistant porous layer (when heat resistant porous layers are formed on both sides of the resin porous membrane, the total thickness of both heat resistant porous layers. The same applies to the thickness of the heat resistant porous layer). From the viewpoint of sufficiently ensuring the action of the heat-resistant porous layer that suppresses thermal shrinkage of the film, it is 2 μm or more, and preferably 3 μm or more. In addition, by setting the heat-resistant porous layer to such a thickness, abnormal heat generation due to an internal short circuit when conductive foreign matter is mixed in the battery can be well prevented. However, if the thickness of the heat-resistant porous layer is too thick, the total thickness of the separator increases, which may cause a reduction in battery load characteristics or make it difficult to improve battery capacity. Therefore, the thickness of the heat resistant porous layer is 10 μm or less, and preferably 5 μm or less. In the separator of the present invention, the shape stability at a high temperature of, for example, 200 ° C. can be enhanced only by forming one thin heat-resistant porous layer.
 本発明のセパレータに係る樹脂多孔質膜は、融解温度、すなわち、JIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度が、80℃以上180℃以下のポリオレフィンを主成分とする樹脂多孔質膜である。樹脂多孔質膜を構成するポリオレフィンとしては、低密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレンなどのポリエチレン(PE);ポリプロピレン(PP);などが挙げられ、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。2種以上のポリオレフィンを用いた樹脂多孔質膜としては、例えば、PE層の両面にPP層を形成した3層構造のポリオレフィン製樹脂多孔質膜が挙げられる。セパレータが、このようなポリオレフィンで構成された樹脂多孔質膜を有していることで、80~180℃でポリオレフィンが軟化してセパレータの空孔が閉塞される、いわゆるシャットダウン特性を確保することができる。樹脂多孔質膜を構成するポリオレフィンの融解温度は、150℃以下であることがより好ましい。 The resin porous membrane according to the separator of the present invention has a melting temperature, that is, a melting temperature measured using a differential scanning calorimeter (DSC) in accordance with JIS K 7121, of 80 ° C. or higher and 180 ° C. or lower. It is a resin porous membrane mainly composed of polyolefin. Examples of the polyolefin constituting the resin porous membrane include polyethylene (PE) such as low density polyethylene, high density polyethylene, and ultrahigh molecular weight polyethylene; polypropylene (PP); and the like, and only one of these is used. Or two or more of them may be used in combination. Examples of the resin porous membrane using two or more types of polyolefin include a polyolefin porous resin membrane having a three-layer structure in which PP layers are formed on both sides of the PE layer. Since the separator has a porous resin film made of such a polyolefin, it can secure a so-called shutdown characteristic in which the polyolefin softens at 80 to 180 ° C. and the pores of the separator are closed. it can. The melting temperature of the polyolefin constituting the resin porous membrane is more preferably 150 ° C. or lower.
 樹脂多孔質膜としては、例えば、従来から知られている溶剤抽出法や、乾式または湿式延伸法などにより形成された孔を多数有するイオン透過性の多孔質膜(電池のセパレータとして汎用されている微多孔膜)を用いることができる。 As the resin porous membrane, for example, an ion-permeable porous membrane having a large number of pores formed by a conventionally known solvent extraction method, dry type or wet drawing method (used widely as a battery separator) A microporous membrane) can be used.
 樹脂多孔質膜における「ポリオレフィンが主成分」とは、樹脂多孔質膜を構成する成分の全体積のうち、ポリオレフィンが50体積%以上であることを意味するが、樹脂多孔質膜においては、シャットダウン特性をより良好に確保する観点から、主成分となるポリオレフィンが、樹脂多孔質膜を構成する成分の全体積のうち、70体積%以上であることが好ましく、80体積%以上であることが更に好ましい(ポリオレフィンが100体積%であってもよい。)。更に、耐熱多孔質層の空孔率が40~70%であり、かつポリオレフィンの体積が、耐熱多孔質層の空孔体積の50%以上であることが好ましい。 “Polyolefin is the main component” in the porous resin membrane means that the polyolefin is 50% by volume or more of the total volume of the components constituting the porous resin membrane. From the viewpoint of ensuring better characteristics, the polyolefin as the main component is preferably 70% by volume or more, more preferably 80% by volume or more, of the total volume of the components constituting the resin porous membrane. Preferred (100% by volume of polyolefin may be used). Further, the porosity of the heat resistant porous layer is preferably 40 to 70%, and the volume of the polyolefin is preferably 50% or more of the pore volume of the heat resistant porous layer.
 樹脂多孔質膜の厚み[セパレータが樹脂多孔質膜を複数有する場合には、その合計厚み。樹脂多孔質膜の厚みについて、以下同じ。]は、電池のシャットダウン特性を良好に確保する観点から、9μm以上であることが好ましく、12μm以上であることがより好ましい。また、セパレータの全厚みを小さくして、電池の容量や出力密度をより向上させる観点から、樹脂多孔質膜の厚みは、35μm以下であることが好ましく、21μm以下であることがより好ましい。 Resin porous membrane thickness [when the separator has a plurality of porous resin membranes, the total thickness. The same applies to the thickness of the porous resin membrane. ] Is preferably 9 μm or more, and more preferably 12 μm or more, from the viewpoint of ensuring good shutdown characteristics of the battery. In addition, from the viewpoint of reducing the total thickness of the separator and further improving the capacity and output density of the battery, the thickness of the resin porous membrane is preferably 35 μm or less, and more preferably 21 μm or less.
 また、本発明のセパレータにおいては、シャットダウン特性および弾性を良好に確保する観点から、セパレータの構成成分の全体積中、樹脂(樹脂多孔質膜の含有する樹脂、耐熱多孔質層の含有する膨潤性微粒子およびバインダーを含めた、セパレータが含有する全ての樹脂。セパレータ中の樹脂の比率に関して、以下同じ。)が、50体積%以上であり、80体積%以上であることが好ましい。ただし、セパレータ中における上記樹脂の比率が大きすぎると、耐熱多孔質層を構成する各成分の量が少なくなって、高温下におけるセパレータの形状安定性が低下するため、セパレータの構成成分の全体積中における樹脂の比率は、99.9体積%以下であることが好ましく、98体積%以下であることがより好ましい。 In the separator of the present invention, from the viewpoint of ensuring good shutdown characteristics and elasticity, the resin (resin contained in the resin porous membrane, swellability contained in the heat resistant porous layer) is included in the total volume of the constituent components of the separator. All resins contained in the separator, including the fine particles and the binder (the same applies hereinafter with respect to the ratio of the resin in the separator)) is preferably 50% by volume or more and preferably 80% by volume or more. However, if the ratio of the resin in the separator is too large, the amount of each component constituting the heat-resistant porous layer decreases, and the shape stability of the separator at high temperatures decreases. The resin ratio in the inside is preferably 99.9% by volume or less, and more preferably 98% by volume or less.
 セパレータの全厚みは、十分な強度を確保する観点から、12μm以上であることが好ましく、21μm以上であることがより好ましい。ただし、セパレータが厚すぎると、電池の高出力化の効果が小さくなる虞があることから、セパレータの全厚みは、45μm以下であることが好ましく、35μm以下であることがより好ましい。 The total thickness of the separator is preferably 12 μm or more, and more preferably 21 μm or more, from the viewpoint of ensuring sufficient strength. However, if the separator is too thick, the effect of increasing the output of the battery may be reduced. Therefore, the total thickness of the separator is preferably 45 μm or less, and more preferably 35 μm or less.
 セパレータの空孔率としては、非水電解液の保液量を確保してイオン透過性を良好にするために、乾燥した状態で、30%以上であることが好ましく、40%以上であることがより好ましい。一方、セパレータ強度の確保と内部短絡の防止の観点から、セパレータの空孔率は、乾燥した状態で、70%以下であることが好ましく、60%以下であることがより好ましい。セパレータの空孔率:P(%)は、セパレータの厚み、面積あたりの質量、構成成分の密度から、下記(2)式を用いて各成分iについての総和を求めることにより計算できる。 The porosity of the separator is preferably 30% or more and 40% or more in a dried state in order to ensure the amount of nonaqueous electrolyte retained and to improve ion permeability. Is more preferable. On the other hand, from the viewpoint of ensuring the strength of the separator and preventing internal short circuit, the porosity of the separator is preferably 70% or less, more preferably 60% or less, in a dry state. The porosity of the separator: P (%) can be calculated by obtaining the sum for each component i using the following equation (2) from the thickness of the separator, the mass per area, and the density of the constituent components.
 P={1-(m/t)/(Σa・ρ)}×100      (2)
 ここで、前記(2)式中、a:全体の質量を1としたときの成分iの比率、ρ:成分iの密度(g/cm)、m:セパレータの単位面積あたりの質量(g/cm)、t:セパレータの厚み(cm)である。
P = {1- (m / t) / (Σa i · ρ i )} × 100 (2)
Here, in the formula (2), a i : the ratio of component i when the total mass is 1, ρ i : density of component i (g / cm 3 ), m: mass per unit area of the separator (G / cm 2 ), t: thickness (cm) of the separator.
 更に、前記(2)式において、mを樹脂多孔質膜の単位面積あたりの質量(g/cm)とし、tを樹脂多孔質膜の厚み(cm)とすることで、前記(2)式を用いて樹脂多孔質膜の空孔率:P(%)を求めることもできる。この方法により求められる樹脂多孔質膜の空孔率は、30~70%であることが好ましい。 Furthermore, in the formula (2), m is the mass per unit area (g / cm 2 ) of the resin porous membrane, and t is the thickness (cm) of the resin porous membrane. Can also be used to determine the porosity of the resin porous membrane: P (%). The porosity of the resin porous membrane obtained by this method is preferably 30 to 70%.
 また、前記(2)式において、mを耐熱多孔質層の単位面積あたりの質量(g/cm)とし、tを耐熱多孔質層の厚み(cm)とすることで、前記(2)式を用いて耐熱多孔質層の空孔率:P(%)を求めることもできる。この方法により求められる耐熱多孔質層の空孔率は、30~75%であることが好ましい。 Further, in the above formula (2), m is the mass per unit area (g / cm 2 ) of the heat resistant porous layer, and t is the thickness (cm) of the heat resistant porous layer. Can also be used to determine the porosity of the heat-resistant porous layer: P (%). The porosity of the heat resistant porous layer obtained by this method is preferably 30 to 75%.
 本発明のセパレータの熱収縮率は、200℃の温度雰囲気下に静置したときの熱収縮率が、5%以下であることが好ましく、0%であることが特に好ましい。セパレータの熱収縮率が大きすぎると、導電性異物が混入することによる内部短絡の発生時における問題の発生を抑制する効果が小さくなる虞がある。セパレータの前記熱収縮率は、セパレータを、これまで説明してきた構成とすることで確保することができる。 The heat shrinkage rate of the separator of the present invention is preferably 5% or less, particularly preferably 0% when left in a 200 ° C. temperature atmosphere. When the thermal contraction rate of the separator is too large, there is a possibility that the effect of suppressing the occurrence of a problem at the time of occurrence of an internal short circuit due to mixing of conductive foreign matters may be reduced. The thermal contraction rate of the separator can be ensured by configuring the separator as described above.
 本明細書でいう「200℃の温度雰囲気下に静置したときのセパレータの熱収縮率」は、具体的には、後述する実施例で用いた方法により測定する。 As used herein, “the thermal contraction rate of the separator when left in a 200 ° C. temperature atmosphere” is specifically measured by the method used in the examples described later.
 本発明のセパレータは、例えば、耐熱多孔質層を構成する膨潤性微粒子、耐熱性微粒子およびバインダーなどを、水や有機溶媒といった媒体に分散させてスラリー状やペースト状の耐熱多孔質層形成用組成物(バインダは、媒体に溶解していてもよい)を調製し、これを樹脂多孔質膜の表面に塗布し、乾燥する方法により製造することができる。 The separator of the present invention is, for example, a composition for forming a heat-resistant porous layer in the form of a slurry or paste by dispersing swellable fine particles, heat-resistant fine particles and a binder constituting the heat-resistant porous layer in a medium such as water or an organic solvent. A product (a binder may be dissolved in a medium) is prepared, applied to the surface of the porous resin membrane, and dried.
 耐熱多孔質層形成用組成物を塗布するにあたっては、例えば、これらの組成物を公知の塗工装置により塗布する方法が採用できる。耐熱多孔質層形成用組成物を塗布する際に使用できる塗工装置としては、例えば、グラビアコーター、ナイフコーター、リバースロールコーター、ダイコーターなどが挙げられる。 In applying the heat-resistant porous layer forming composition, for example, a method of applying these compositions with a known coating apparatus can be employed. Examples of the coating apparatus that can be used when applying the heat-resistant porous layer forming composition include a gravure coater, a knife coater, a reverse roll coater, and a die coater.
 耐熱多孔質層形成用組成物に用いられる媒体は、耐熱性微粒子や膨潤性微粒子などを均一に分散でき、また、バインダーを均一に溶解または分散できるものであればよいが、例えば、トルエンなどの芳香族炭化水素;テトラヒドロフランなどのフラン類;メチルエチルケトン、メチルイソブチルケトンなどのケトン類;など、一般的な有機溶媒が好適に用いられる。これらの媒体に、界面張力を制御する目的で、アルコール(エチレングリコール、プロピレングリコールなど)、または、モノメチルアセテートなどの各種プロピレンオキサイド系グリコールエーテルなどを適宜添加してもよい。また、バインダーが水溶性である場合、エマルジョンとして使用する場合などでは、前記の通り水を媒体としてもよく、この際にもアルコール類(メチルアルコール、エチルアルコール、イソプロピルアルコール、エチレングリコールなど)を適宜加えて界面張力を制御することもできる。 The medium used in the heat-resistant porous layer forming composition may be any medium that can uniformly disperse heat-resistant fine particles and swellable fine particles, and can uniformly dissolve or disperse the binder. Common organic solvents such as aromatic hydrocarbons; furans such as tetrahydrofuran; ketones such as methyl ethyl ketone and methyl isobutyl ketone; are preferably used. In order to control the interfacial tension, alcohols (ethylene glycol, propylene glycol, etc.) or various propylene oxide glycol ethers such as monomethyl acetate may be appropriately added to these media. When the binder is water-soluble or used as an emulsion, water may be used as described above, and alcohols (such as methyl alcohol, ethyl alcohol, isopropyl alcohol, and ethylene glycol) may be used as appropriate. In addition, the interfacial tension can be controlled.
 耐熱多孔質層形成用組成物は、その固形分含量を、例えば10~80質量%とすることが好ましい。 The heat-resistant porous layer forming composition preferably has a solid content of, for example, 10 to 80% by mass.
 樹脂多孔質膜には、耐熱多孔質層との接着性を高めるために、表面改質を行うことができる。ポリオレフィンが主成分の樹脂多孔質膜は表面の接着性が一般に高くないため、表面改質が有効であることが多い。 The resin porous membrane can be subjected to surface modification in order to enhance the adhesion with the heat resistant porous layer. Surface modification is often effective because resin porous membranes composed mainly of polyolefins generally do not have high surface adhesion.
 樹脂多孔質膜の表面改質方法としては、例えば、コロナ放電処理、プラズマ放電処理、紫外線照射処理などが挙げられる。環境問題への対応の観点から、例えば耐熱多孔質層形成用組成物の媒体には水を用いることがより望ましく、このことからも、表面改質によって、樹脂多孔質膜の表面の親水性を高めておくことは非常に好ましい。 Examples of the method for modifying the surface of the resin porous membrane include corona discharge treatment, plasma discharge treatment, and ultraviolet irradiation treatment. From the viewpoint of responding to environmental problems, for example, it is more desirable to use water as the medium for the heat-resistant porous layer forming composition. From this, the hydrophilicity of the surface of the resin porous membrane can be improved by surface modification. It is very preferable to raise it.
 本発明の非水電解液電池は、正極、負極、セパレータおよび非水電解液を備えており、前記セパレータが本発明のセパレータであればよく、その他の構成および構造については特に制限はなく、従来から知られている非水電解液電池で採用されている各種構成および構造を適用することができる。 The non-aqueous electrolyte battery of the present invention includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, and the separator only needs to be the separator of the present invention. Various configurations and structures employed in non-aqueous electrolyte batteries known from US Pat.
 本発明の非水電解液電池には、一次電池と二次電池とが含まれるが、以下には、特に主要な態様である二次電池(リチウムイオン二次電池)の構成について詳細に説明する。 The non-aqueous electrolyte battery of the present invention includes a primary battery and a secondary battery. The configuration of a secondary battery (lithium ion secondary battery) which is a particularly main aspect will be described in detail below. .
 リチウムイオン二次電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。 Examples of the form of the lithium ion secondary battery include a cylindrical shape (such as a rectangular tube shape or a cylindrical shape) using a steel can or an aluminum can as an outer can. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.
 正極としては、従来から知られているリチウムイオン二次電池に用いられている正極であれば特に制限はない。例えば、正極活物質として、Li1+xMO(-0.1<x<0.1、M:Co、Ni、Mnなど)で表されるリチウム含有遷移金属酸化物;LiMnなどのリチウムマンガン酸化物;LiMnのMnの一部を他元素で置換したLiMn(2-x)(0.01<x<0.5、M:Co、Niなど);オリビン型LiMPO(M:Co、Ni、Mn、Fe);LiMn0.5Ni0.5;Li(1+a)MnNiCo(1-x-y)(-0.1<a<0.1、0<x<0.5、0<y<0.5);などを適用することが可能であり、これらの正極活物質に公知の導電助剤(カーボンブラックなどの炭素材料など)やポリフッ化ビニリデン(PVDF)などのバインダーなどを適宜添加した正極合剤を、集電体を芯材として成形体に仕上げたものなどを用いることができる。 The positive electrode is not particularly limited as long as it is a positive electrode used in a conventionally known lithium ion secondary battery. For example, as a positive electrode active material, a lithium-containing transition metal oxide represented by Li 1 + x MO 2 (−0.1 <x <0.1, M: Co, Ni, Mn, etc.); lithium such as LiMn 2 O 4 Manganese oxide: LiMn (2-x) M x O 4 (0.01 <x <0.5, M: Co, Ni, etc.) obtained by substituting a part of Mn of LiMn 2 O 4 with another element; olivine type LiMPO 4 (M: Co, Ni, Mn, Fe); LiMn 0.5 Ni 0.5 O 2 ; Li (1 + a) Mn x Ni y Co (1-xy) O 2 (−0.1 <a <0.1, 0 <x <0.5, 0 <y <0.5); and the like, and known conductive assistants (carbon materials such as carbon black) for these positive electrode active materials Etc.) or a binder such as polyvinylidene fluoride (PVDF) Was positive electrode mixture can be used such as those finished molded article a current collector as a core material.
 正極の集電体としては、アルミニウムなどの金属の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、厚みが10~30μmのアルミニウム箔が好適に用いられる。 As the positive electrode current collector, a metal foil such as aluminum, a punching metal, a net, an expanded metal, or the like can be used, but an aluminum foil having a thickness of 10 to 30 μm is usually preferably used.
 正極側のリード部は、通常、正極作製時に、集電体の一部に正極合剤層を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。ただし、リード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体にアルミニウム製の箔などを後から接続することによって設けてもよい。 The lead part on the positive electrode side is usually provided by leaving the exposed part of the current collector without forming the positive electrode mixture layer on a part of the current collector and forming the lead part at the time of producing the positive electrode. However, the lead portion is not necessarily integrated with the current collector from the beginning, and may be provided by connecting an aluminum foil or the like to the current collector later.
 負極としては、従来から知られているリチウムイオン二次電池に用いられている負極であれば特に制限はない。例えば、負極活物質として、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、リチウムを吸蔵、放出可能な炭素系材料の1種または2種以上の混合物が用いられる。また、Si、Sn、Ge、Bi、Sb、Inなどの元素およびその合金、リチウム含有窒化物またはリチウム含有酸化物などのリチウム金属に近い低電圧で充放電できる化合物、もしくはリチウム金属やリチウム/アルミニウム合金も負極活物質として用いることができる。これらの負極活物質に導電助剤(カーボンブラックなどの炭素材料など)やPVDFなどのバインダーなどを適宜添加した負極合剤を、集電体を芯材として成形体に仕上げたものが用いられる他、上記の各種合金やリチウム金属の箔を単独、もしくは集電体上に形成したものを用いてもよい。 The negative electrode is not particularly limited as long as it is a negative electrode used in a conventionally known lithium ion secondary battery. For example, as a negative electrode active material, lithium, such as graphite, pyrolytic carbons, cokes, glassy carbons, fired organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers, can be occluded and released. One type or a mixture of two or more types of carbon-based materials are used. Further, elements such as Si, Sn, Ge, Bi, Sb, In and alloys thereof, compounds that can be charged and discharged at a low voltage close to lithium metal such as lithium-containing nitrides or lithium-containing oxides, or lithium metal or lithium / aluminum An alloy can also be used as the negative electrode active material. In addition to these negative electrode active materials, a negative electrode mixture prepared by appropriately adding a conductive additive (carbon material such as carbon black) or a binder such as PVDF to a molded body using a current collector as a core is used. The above-mentioned various alloys and lithium metal foils may be used alone or formed on a current collector.
 負極に集電体を用いる場合には、集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は40μmであることが好ましく、また、下限は5μmであることが望ましい。 When a current collector is used for the negative electrode, a copper or nickel foil, a punching metal, a net, an expanded metal, or the like can be used as the current collector, but a copper foil is usually used. In the negative electrode current collector, when the thickness of the entire negative electrode is reduced in order to obtain a battery having a high energy density, the upper limit of the thickness is preferably 40 μm, and the lower limit is preferably 5 μm.
 負極側のリード部も、正極側のリード部と同様に、通常、負極作製時に、集電体の一部に負極剤層(負極活物質を有する層)を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。ただし、この負極側のリード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体に銅製の箔などを後から接続することによって設けてもよい。 Similarly to the lead portion on the positive electrode side, the negative electrode lead portion is usually exposed to the current collector without forming a negative electrode agent layer (a layer having a negative electrode active material) on a part of the current collector during negative electrode fabrication. It is provided by leaving a part and using it as a lead part. However, the lead portion on the negative electrode side is not necessarily integrated with the current collector from the beginning, and may be provided by connecting a copper foil or the like to the current collector later.
 電極は、前記の正極と前記の負極とを、本発明のセパレータを介して積層した積層体や、更にこれを巻回した電極巻回体の形態で用いることができる。 The electrode can be used in the form of a laminate in which the positive electrode and the negative electrode are laminated via the separator of the present invention, or an electrode wound body in which this is wound.
 非水電解液には、例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、プロピオン酸メチル、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、エチレングリコールサルファイト、1,2-ジメトキシエタン、1,3-ジオキソラン、テトラヒドロフラン、2-メチル-テトラヒドロフラン、ジエチルエーテルなどの1種のみからなる有機溶媒、または2種以上の混合溶媒に、例えば、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(2≦n≦7)、LiN(RfOSO〔ここで、Rfはフルオロアルキル基〕などのリチウム塩から選ばれる少なくとも1種を溶解させることによって調製したものが使用される。このリチウム塩の非水電解液中の濃度としては、0.5~1.5mol/Lとすることが好ましく、0.9~1.25mol/Lとすることがより好ましい。 Nonaqueous electrolytes include, for example, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propionate, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, ethylene glycol sulfite, 1,2-dimethoxyethane, 1, 3-dioxolane, tetrahydrofuran, 2-methyl - tetrahydrofuran, organic solvent consists of only one type, such as diethyl ether or in a mixture of two or more solvents, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (2 ≦ n ≦ 7 , LiN (RfOSO 2) 2 [where, Rf is a fluoroalkyl group] which was prepared by dissolving at least one selected from lithium salts such as are used. The concentration of the lithium salt in the non-aqueous electrolyte is preferably 0.5 to 1.5 mol / L, and more preferably 0.9 to 1.25 mol / L.
 また、前記の非水電解液は、ポリマーなどの公知のゲル化剤を加えてゲル状(ゲル状電解質)として用いてもよい。 The non-aqueous electrolyte may be used as a gel (gel electrolyte) by adding a known gelling agent such as a polymer.
 次に、上記リチウムイオン二次電池の一例を図面に基づき説明する。図1は、本発明のリチウムイオン二次電池の一例を示す断面図である。図1において、本発明のリチウムイオン二次電池は、上記で説明した正極活物質を含む正極合剤層を有する正極1と、負極活物質を含む負極合剤層を有する負極2と、本発明のセパレータ3と、非水電解液4とを備えている。正極1と負極2とはセパレータ3を介して渦巻状に巻回され、巻回電極体として非水電解液4と共に円筒形の電池缶5内に収容されている。 Next, an example of the lithium ion secondary battery will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing an example of the lithium ion secondary battery of the present invention. In FIG. 1, a lithium ion secondary battery of the present invention includes a positive electrode 1 having a positive electrode mixture layer containing the positive electrode active material described above, a negative electrode 2 having a negative electrode mixture layer containing a negative electrode active material, and the present invention. The separator 3 and the non-aqueous electrolyte 4 are provided. The positive electrode 1 and the negative electrode 2 are spirally wound via a separator 3 and are housed in a cylindrical battery can 5 together with a nonaqueous electrolyte solution 4 as a wound electrode body.
 ただし、図1においては、煩雑化を避けるため、正極1や負極2の作製にあたり使用した集電体である金属箔などは図示していない。また、セパレータ3は、その切断面を示すが、断面を示すハッチングは付していない。 However, in FIG. 1, in order to avoid complication, the metal foil, which is a current collector used for manufacturing the positive electrode 1 and the negative electrode 2, is not illustrated. Moreover, although the separator 3 shows the cut surface, it does not attach | subject the hatching which shows a cross section.
 電池缶5は、例えば鉄製で表面にニッケルメッキが施されていて、その底部には上記巻回電極体の挿入に先立って、例えばポリプロピレンからなる絶縁体6が配置されている。封口板7は、例えばアルミニウム製で円板状をしていて、その中央部に薄肉部7aが設けられ、かつ薄肉部7aの周囲に電池内圧を防爆弁9に作用させるための圧力導入口7bとしての孔が設けられている。そして、薄肉部7aの上面に防爆弁9の突出部9aが溶接され、溶接部分11を構成している。封口板7に設けた薄肉部7aや防爆弁9の突出部9aなどは、図面上での理解がしやすいように、切断面のみを図示しており、切断面後方の輪郭線は図示を省略している。また、封口板7の薄肉部7aと防爆弁9の突出部9aとの溶接部分11も、図面上での理解が容易なように、実際よりは誇張した状態に図示している。 The battery can 5 is made of, for example, iron and nickel-plated on the surface, and an insulator 6 made of, for example, polypropylene is disposed on the bottom of the battery can 5 prior to the insertion of the wound electrode body. The sealing plate 7 is made of, for example, aluminum and has a disk shape. A thin portion 7a is provided at the center of the sealing plate 7, and a pressure introduction port 7b for allowing the battery internal pressure to act on the explosion-proof valve 9 around the thin portion 7a. As a hole. And the protrusion part 9a of the explosion-proof valve 9 is welded to the upper surface of the thin part 7a, and the welding part 11 is comprised. The thin-walled portion 7a provided on the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9 are shown only on the cut surface for easy understanding on the drawing, and the contour line behind the cut surface is not shown. is doing. In addition, the welded portion 11 between the thin-walled portion 7a of the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9 is also shown in an exaggerated state so as to facilitate understanding on the drawing.
 端子板8は、例えば圧延鋼製で表面にニッケルメッキが施され、周縁部が鍔状になった帽子状をしており、端子板8にはガス排出口8aが設けられている。防爆弁9は、例えばアルミニウム製で円板状をしており、その中央部には発電要素側(図1では、下側)に先端部を有する突出部9aが設けられ、かつ薄肉部9bが設けられ、突出部9aの下面が、上記のように、封口板7の薄肉部7aの上面に溶接され、溶接部分11を形成している。絶縁パッキング10は、例えばポリプロピレン製で環状をしており、封口板7の周縁部の上部に配置され、その上部に防爆弁9が配置されていて、封口板7と防爆弁9とを絶縁するとともに、両者の間から電解液が漏れないように両者の間隙を封止している。環状ガスケット12は、例えばポリプロピレンで形成されている。リード体13は、例えばアルミニウムで形成され、封口板7と正極1とを接続している。巻回電極体の上部には絶縁体14が配置され、負極2と電池缶5の底部とは、例えばニッケル製のリード体15で接続されている。 The terminal plate 8 is made of, for example, rolled steel, has a nickel-plated surface, has a hat-like shape with a peripheral edge portion, and the terminal plate 8 is provided with a gas discharge port 8a. The explosion-proof valve 9 is made of, for example, aluminum and has a disk shape. A projecting portion 9a having a tip portion is provided on the power generation element side (lower side in FIG. 1) at the center, and the thin-walled portion 9b As described above, the lower surface of the protruding portion 9a is welded to the upper surface of the thin-walled portion 7a of the sealing plate 7 to form the welded portion 11. The insulating packing 10 is made of, for example, polypropylene and has an annular shape. The insulating packing 10 is disposed at the upper part of the peripheral edge of the sealing plate 7, and the explosion-proof valve 9 is disposed at the upper portion thereof, so that the sealing plate 7 and the explosion-proof valve 9 are insulated. At the same time, the gap between the two is sealed so that the electrolyte does not leak from between them. The annular gasket 12 is made of, for example, polypropylene. The lead body 13 is made of aluminum, for example, and connects the sealing plate 7 and the positive electrode 1. An insulator 14 is disposed on the upper part of the wound electrode body, and the negative electrode 2 and the bottom of the battery can 5 are connected by a lead body 15 made of nickel, for example.
 図1の電池においては、封口板7の薄肉部7aと防爆弁9の突出部9aとが溶接部分11で接触し、防爆弁9の周縁部と端子板8の周縁部とが接触し、正極1と封口板7とは正極側のリード体13で接続されているので、通常の状態では、正極1と端子板8とは、リード体13、封口板7、防爆弁9およびそれらの溶接部分11によって電気的接続が得られ、電路として正常に機能する。 In the battery of FIG. 1, the thin-walled portion 7a of the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9 are in contact with each other at the welded portion 11, and the peripheral portion of the explosion-proof valve 9 and the peripheral portion of the terminal plate 8 are in contact. 1 and the sealing plate 7 are connected by a lead body 13 on the positive electrode side. Therefore, in a normal state, the positive electrode 1 and the terminal plate 8 are connected to the lead body 13, the sealing plate 7, the explosion-proof valve 9 and their welded parts. The electrical connection is obtained by 11 and functions normally as an electric circuit.
 そして、電池が高温に曝されたり、過充電によって発熱するなど、電池に異常事態が起こり、電池内部にガスが発生して電池の内圧が上昇した場合には、その内圧上昇により、防爆弁9の中央部が内圧方向(図1では、上側の方向)に変形する。それに伴って溶接部分11で一体化されてなる封口板7の薄肉部7aに剪断力が働いて該薄肉部7aが破断するか、または防爆弁9の突出部9aと封口板7の薄肉部7aとの溶接部分11が剥離した後、この防爆弁9に設けられている薄肉部9bが開裂してガスを端子板8のガス排出口8aから電池外部に排出させて電池の破裂を防止することができるように設計されている。 When an abnormal situation occurs in the battery, such as the battery is exposed to high temperature or generates heat due to overcharge, and gas is generated inside the battery and the internal pressure of the battery increases, the explosion-proof valve 9 The center part of the is deformed in the internal pressure direction (the upper direction in FIG. 1). Along with this, a shearing force is applied to the thin portion 7a of the sealing plate 7 integrated at the welded portion 11, and the thin portion 7a is broken, or the projection 9a of the explosion-proof valve 9 and the thin portion 7a of the sealing plate 7 are broken. After the welded portion 11 is peeled off, the thin-walled portion 9b provided in the explosion-proof valve 9 is cleaved to discharge the gas from the gas discharge port 8a of the terminal plate 8 to the outside of the battery, thereby preventing the battery from bursting. Designed to be able to.
 本発明の非水電解液電池は、自動車用途や電動工具、各種電子機器の電源用途などを始めとして、従来から知られている非水電解液電池(非水電解液一次電池、非水電解液二次電池)が用いられている各種用途と同じ用途にも適用することができる。 The non-aqueous electrolyte battery of the present invention is a conventionally known non-aqueous electrolyte battery (non-aqueous electrolyte primary battery, non-aqueous electrolyte solution, including automobile applications, power tools, and power supply applications for various electronic devices). The present invention can also be applied to the same uses as various uses in which secondary batteries are used.
 以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではない。本実施例で用いた耐熱性微粒子および膨潤性微粒子の平均粒子径は、前記の方法により測定した値である。 Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention. The average particle diameter of the heat-resistant fine particles and the swellable fine particles used in this example is a value measured by the above method.
 (実施例1)
 <セパレータの作製>
 水600g中に、耐熱性微粒子である多面体形状のベーマイト合成品(アスペクト比1.4、D50=0.63μm)500gと、バインダーであるPVP(耐熱性微粒子と、後述する膨潤性微粒子との合計100質量部に対して5質量部となる量)とを、スリーワンモーターを用いて1時間攪拌して分散させ、更に膨潤性微粒子である架橋PMMA微粒子(D50=0.5μm、シェル部のTg=105℃、コア部のTg=-40℃)の水分散体(固形分比率40質量%)を、架橋PMMA微粒子とベーマイト合成品との比率が体積比で50:50になるように加え、均一に分散させて耐熱多孔質層形成用組成物を調製した。使用したPVPは、ISPジャパン社製「K-90(商品名)」で、重量平均分子量が160万で、Tgが174℃のものである。
Example 1
<Preparation of separator>
In 600 g of water, 500 g of a polyhedral boehmite synthetic product (aspect ratio 1.4, D 50 = 0.63 μm) as heat-resistant fine particles, PVP (heat-resistant fine particles and swellable fine particles described later) as a binder 5 parts by mass with respect to 100 parts by mass in total) was dispersed by stirring for 1 hour using a three-one motor, and further, crosslinked PMMA fine particles (D 50 = 0.5 μm, shell parts) An aqueous dispersion (solid content ratio 40 mass%) of Tg = 105 ° C. and Tg = −40 ° C. of the core portion was added so that the ratio of the crosslinked PMMA fine particles to the boehmite synthesized product was 50:50 by volume. The composition for heat-resistant porous layer formation was prepared by uniformly dispersing. The PVP used is “K-90 (trade name)” manufactured by ISP Japan, and has a weight average molecular weight of 1,600,000 and a Tg of 174 ° C.
 前記の架橋PMMA微粒子は、前記の方法により測定される25℃および130℃における非水電解液(後述する電池に使用する非水電解液)の吸収量が、それぞれ、膨潤性微粒子1gあたり、0.7mLおよび2.0mLであった。 The crosslinked PMMA fine particles have an absorption amount of non-aqueous electrolyte (non-aqueous electrolyte used in a battery described later) at 25 ° C. and 130 ° C. measured by the above method of 0 per 1 g of swellable fine particles. 0.7 mL and 2.0 mL.
 セパレータ用の樹脂多孔質膜として、厚みが16μm、空孔率が40%で、PE層の両面にPP層を有する三層構造のPP/PE/PP製微多孔膜を用意し(PPの融解温度155℃、PEの融解温度135℃)、その両面にコロナ放電処理を施した。そして、PP/PE/PP製微多孔膜の片面に耐熱多孔質層形成用組成物を、ダイコーターを用いて、乾燥後の厚みが4.0μmになるように均一に塗布し、乾燥して耐熱多孔質層を形成し、セパレータを得た。 As a porous resin membrane for a separator, a three-layer PP / PE / PP microporous membrane having a thickness of 16 μm and a porosity of 40% and having a PP layer on both sides of the PE layer is prepared (melting of PP The temperature was 155 ° C., the melting temperature of PE was 135 ° C.), and both surfaces were subjected to corona discharge treatment. Then, the heat-resistant porous layer forming composition is uniformly applied to one side of the microporous membrane made of PP / PE / PP using a die coater so that the thickness after drying becomes 4.0 μm, and dried. A heat resistant porous layer was formed to obtain a separator.
 前記のセパレータに係る耐熱多孔質層では、ベーマイトの比重を3g/cm、架橋PMMAの比重を1g/cm、バインダーの比重を1g/cmとして算出した膨潤性微粒子の体積比率が45体積%、耐熱性微粒子の体積比率が45体積%であった。また、前記の各比重に加えて、PEの比重を1g/cm、PPの比重を1g/cmとして算出したセパレータ全体中の樹脂(樹脂多孔質膜に係るポリオレフィン、並びに耐熱多孔質層に係る膨潤性微粒子およびバインダー)の体積比率は87体積%であった。 In the heat resistant porous layer according to the separator, the volume ratio of the swellable fine particles calculated by setting the specific gravity of boehmite to 3 g / cm 3 , the specific gravity of crosslinked PMMA to 1 g / cm 3 , and the specific gravity of the binder to 1 g / cm 3 is 45 volumes. %, And the volume ratio of the heat-resistant fine particles was 45% by volume. Further, in addition to the specific gravity described above, the resin in the whole separator was calculated with a specific gravity of PE of 1 g / cm 3 and a specific gravity of PP of 1 g / cm 3 (polyolefin related to the resin porous membrane, and heat resistant porous layer). The volume ratio of the swellable fine particles and the binder) was 87% by volume.
 <正極の作製>
 正極活物質であるLiNi0.6Mn0.2Co0.2:86.2質量部と、導電助剤である黒鉛:9.0質量部およびアセチレンブラック:1.8質量部とを混合し、ここに、3質量部のPVDF(バインダー)を含むNMP溶液を加え、よく混練して正極合剤含有スラリーを調製した。次に、正極集電体となる厚みが20μmのアルミニウム箔の両面に、乾燥後の正極合剤層の質量が、正極集電体の片面あたり11.6mg/cmとなる量で前記のスラリーを均一に塗布し、その後80℃で乾燥し、更にロールプレス機で圧縮成形して正極を得た。正極合剤含有スラリーをアルミニウム箔に塗布する際には、アルミニウム箔の一部が露出するようにした。前記正極の正極合剤層の厚みは、集電体(アルミニウム箔)の片面あたり、26μmであった。
<Preparation of positive electrode>
LiNi 0.6 Mn 0.2 Co 0.2 O 2 as positive electrode active material: 86.2 parts by mass, graphite as a conductive additive: 9.0 parts by mass, and acetylene black: 1.8 parts by mass The mixture was mixed, and an NMP solution containing 3 parts by mass of PVDF (binder) was added thereto and kneaded well to prepare a positive electrode mixture-containing slurry. Next, the slurry is added in such an amount that the mass of the positive electrode mixture layer after drying is 11.6 mg / cm 2 on one side of the positive electrode current collector on both surfaces of an aluminum foil having a thickness of 20 μm to be the positive electrode current collector. Was applied uniformly, then dried at 80 ° C., and further compression molded with a roll press to obtain a positive electrode. When applying the positive electrode mixture-containing slurry to the aluminum foil, a part of the aluminum foil was exposed. The thickness of the positive electrode mixture layer of the positive electrode was 26 μm per one side of the current collector (aluminum foil).
 前記の正極を、正極合剤層の大きさが800mm×48mmで、かつアルミニウム箔の露出部を含むように裁断し、更に、電流を取り出すためのアルミニウム製のリード片を、アルミニウム箔の露出部に溶接した。 The positive electrode is cut so that the size of the positive electrode mixture layer is 800 mm × 48 mm and includes the exposed portion of the aluminum foil, and an aluminum lead piece for taking out the current is further exposed to the exposed portion of the aluminum foil. Welded to.
 <負極の作製>
 負極活物質である天然黒鉛:90質量部と、導電助剤であるアセチレンブラック:4.7質量部とを混合し、ここに、5.3質量部のPVDF(バインダー)を含むNMP溶液を加え、よく混練して負極合剤含有スラリーを調製した。次に、負極集電体となる厚みが20μmの圧延銅箔の両面に、乾燥後の負極合剤層の質量が、負極集電体の片面あたり5.0mg/cmとなる量で前記のスラリーを均一に塗布し、その後80℃で乾燥し、更にロールプレス機で圧縮成形して負極を得た。負極合剤含有スラリーを圧延銅箔に塗布する際には、圧延銅箔の一部が露出するようにした。前記負極の負極合剤層の厚みは、集電体(圧延銅箔)の片面あたり、21μmであった。
<Production of negative electrode>
Natural graphite as a negative electrode active material: 90 parts by mass and acetylene black as a conductive auxiliary agent: 4.7 parts by mass are mixed, and an NMP solution containing 5.3 parts by mass of PVDF (binder) is added thereto. The mixture was well kneaded to prepare a negative electrode mixture-containing slurry. Next, the weight of the negative electrode mixture layer after drying on both sides of a rolled copper foil with a thickness of 20 μm serving as the negative electrode current collector is 5.0 mg / cm 2 per side of the negative electrode current collector. The slurry was uniformly applied, then dried at 80 ° C., and further compression molded with a roll press to obtain a negative electrode. When applying the negative electrode mixture-containing slurry to the rolled copper foil, a part of the rolled copper foil was exposed. The thickness of the negative electrode mixture layer of the negative electrode was 21 μm per one side of the current collector (rolled copper foil).
 前記の負極を、負極合剤層の大きさが850mm×52mmで、かつ圧延銅箔の露出部を含むように裁断し、更に、電流を取り出すためのニッケル製のリード片を、圧延銅箔の露出部に溶接した。 The negative electrode was cut so that the size of the negative electrode mixture layer was 850 mm × 52 mm and the exposed portion of the rolled copper foil was included, and a nickel lead piece for taking out the current was further removed from the rolled copper foil. Welded to the exposed part.
 <電池の組み立て>
 前記の正極と前記の負極とを、前記のセパレータを、その耐熱多孔質層が正極と対向するように介在させつつ重ね合わせ、渦巻状に巻回して巻回電極体とした。この巻回電極体を、アルミニウム合金製の円筒形の電池缶に挿入し、非水電解液(エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとを2:4:4の体積比で混合した溶媒に、LiPFを1mol/Lの濃度で溶解させた溶液)を外装体内に注入した後に、電池缶の開口部を封止して、長さ65mm、直径18mmの円筒形の巻回電極体を内部に有する非水電解液二次電池(リチウムイオン二次電池)を作製した。得られた電池の定格容量は1150mAhであった。以降の各実施例および比較例の電池も、定格容量は全て1150mAhとした。
<Battery assembly>
The positive electrode and the negative electrode were overlapped with the separator interposed so that the heat-resistant porous layer was opposed to the positive electrode, and wound into a spiral shape to obtain a wound electrode body. This wound electrode body was inserted into a cylindrical battery can made of an aluminum alloy, and a non-aqueous electrolyte (a solvent in which ethylene carbonate, dimethyl carbonate, and methyl ethyl carbonate were mixed at a volume ratio of 2: 4: 4, After injecting LiPF 6 at a concentration of 1 mol / L into the outer package, the opening of the battery can is sealed, and a cylindrical wound electrode body with a length of 65 mm and a diameter of 18 mm is placed inside. A non-aqueous electrolyte secondary battery (lithium ion secondary battery) was prepared. The obtained battery had a rated capacity of 1150 mAh. The batteries of the following examples and comparative examples all have a rated capacity of 1150 mAh.
 (実施例2)
 架橋PMMA微粒子とベーマイト合成品との比率が、体積比で30:70となるようにした以外は、実施例1と同様にして耐熱多孔質層形成用組成物を調製し、この耐熱多孔質層形成用組成物を用いた以外は、実施例1と同様にしてセパレータを作製した。このセパレータに係る耐熱多孔質層では、実施例1のセパレータと同様にして算出した膨潤性微粒子の体積比率が27体積%、耐熱性微粒子の体積比率が63体積%であり、実施例1と同様にして算出したセパレータ全体中の樹脂の体積比率は82体積%であった。
(Example 2)
A composition for forming a heat resistant porous layer was prepared in the same manner as in Example 1 except that the ratio of the crosslinked PMMA fine particles to the boehmite synthesized product was 30:70 by volume, and this heat resistant porous layer was prepared. A separator was produced in the same manner as in Example 1 except that the forming composition was used. In the heat-resistant porous layer according to this separator, the volume ratio of swellable fine particles calculated in the same manner as in the separator of Example 1 is 27% by volume, and the volume ratio of heat-resistant fine particles is 63% by volume. The volume ratio of the resin in the whole separator calculated as described above was 82% by volume.
 そして、このセパレータを用いた以外は、実施例1と同様にして非水電解液二次電池を作製した。 Then, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this separator was used.
 (実施例3)
 架橋PMMA微粒子とベーマイト合成品との比率が、体積比で70:30となるようにした以外は、実施例1と同様にして耐熱多孔質層形成用組成物を調製し、この耐熱多孔質層形成用組成物を用いた以外は、実施例1と同様にしてセパレータを作製した。このセパレータに係る耐熱多孔質層では、実施例1のセパレータと同様にして算出した膨潤性微粒子の体積比率が65体積%、耐熱性微粒子の体積比率が28体積%であり、実施例1と同様にして算出したセパレータ全体中の樹脂の体積比率は92体積%であった。
(Example 3)
A composition for forming a heat resistant porous layer was prepared in the same manner as in Example 1 except that the ratio of the crosslinked PMMA fine particles to the boehmite synthesized product was 70:30 by volume, and this heat resistant porous layer was prepared. A separator was produced in the same manner as in Example 1 except that the forming composition was used. In the heat resistant porous layer according to this separator, the volume ratio of the swellable fine particles calculated in the same manner as in the separator of Example 1 is 65% by volume, and the volume ratio of the heat resistant fine particles is 28% by volume. The volume ratio of the resin in the whole separator calculated as described above was 92% by volume.
 そして、このセパレータを用いた以外は、実施例1と同様にして非水電解液二次電池を作製した。 Then, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this separator was used.
 (実施例4)
 PVPの量を、膨潤性微粒子と耐熱性微粒子との合計100質量部に対して1質量部となる量に変更した以外は、実施例1と同様にして耐熱多孔質層形成用組成物を調製し、この耐熱多孔質層形成用組成物を用いた以外は、実施例1と同様にしてセパレータを作製した。このセパレータに係る耐熱多孔質層では、実施例1のセパレータと同様にして算出した膨潤性微粒子の体積比率が49体積%、耐熱性微粒子の体積比率が49体積%であり、実施例1と同様にして算出したセパレータ全体中の樹脂の体積比率は86体積%であった。
(Example 4)
A composition for forming a heat resistant porous layer was prepared in the same manner as in Example 1 except that the amount of PVP was changed to 1 part by mass with respect to 100 parts by mass in total of the swellable fine particles and heat resistant fine particles. A separator was prepared in the same manner as in Example 1 except that this heat-resistant porous layer forming composition was used. In the heat resistant porous layer according to this separator, the volume ratio of swellable fine particles calculated in the same manner as in the separator of Example 1 was 49% by volume, and the volume ratio of heat resistant fine particles was 49% by volume. The volume ratio of the resin in the whole separator calculated as described above was 86% by volume.
 そして、このセパレータを用いた以外は、実施例1と同様にして非水電解液二次電池を作製した。 Then, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this separator was used.
 (実施例5)
 PVPの量を、膨潤性微粒子と耐熱性微粒子との合計100質量部に対して15質量部となる量に変更した以外は、実施例1と同様にして耐熱多孔質層形成用組成物を調製し、この耐熱多孔質層形成用組成物を用いた以外は、実施例1と同様にしてセパレータを作製した。このセパレータに係る耐熱多孔質層では、実施例1のセパレータと同様にして算出した膨潤性微粒子の体積比率が38体積%、耐熱性微粒子の体積比率が38体積%であり、実施例1と同様にして算出したセパレータ全体中の樹脂の体積比率は89体積%であった。
(Example 5)
A composition for forming a heat resistant porous layer was prepared in the same manner as in Example 1, except that the amount of PVP was changed to 15 parts by mass with respect to 100 parts by mass of the swellable fine particles and heat resistant fine particles. A separator was prepared in the same manner as in Example 1 except that this heat-resistant porous layer forming composition was used. In the heat-resistant porous layer according to this separator, the volume ratio of swellable fine particles calculated in the same manner as in the separator of Example 1 was 38% by volume, and the volume ratio of heat-resistant fine particles was 38% by volume. The volume ratio of the resin in the whole separator calculated as described above was 89% by volume.
 そして、このセパレータを用いた以外は、実施例1と同様にして非水電解液二次電池を作製した。 Then, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this separator was used.
 (比較例1)
 PE製の微多孔膜(厚み20μm、空孔率40%)を、耐熱多孔質層を形成することなくセパレータに用いた以外は、実施例1と同様にして非水電解液二次電池を作製した。
(Comparative Example 1)
A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that a PE microporous film (thickness 20 μm, porosity 40%) was used as a separator without forming a heat-resistant porous layer. did.
 (比較例2)
 膨潤性微粒子である架橋PMMA微粒子を使用せず、バインダーをPVPに代えてアクリレート共重合体(モノマー成分としてブチルアクリレートを主成分とする市販のアクリレート共重合体;耐熱性微粒子100質量部に対して5質量部)とした以外は、実施例1と同様にして耐熱多孔質層形成用組成物を調製し、この耐熱多孔質層形成用組成物を用いた以外は、実施例1と同様にしてセパレータを作製した。このセパレータに係る耐熱多孔質層では、実施例1のセパレータと同様にして算出した耐熱性微粒子の体積比率が87体積%であり、実施例1と同様にして算出したセパレータ全体中の樹脂の体積比率は74体積%であった。
(Comparative Example 2)
Cross-linked PMMA fine particles that are swellable fine particles are not used, and the binder is replaced with PVP and an acrylate copolymer (commercially available acrylate copolymer mainly containing butyl acrylate as a monomer component; with respect to 100 parts by mass of heat-resistant fine particles The composition for forming a heat resistant porous layer was prepared in the same manner as in Example 1 except that the amount was 5 parts by mass), and the same procedure as in Example 1 was performed except that this composition for forming a heat resistant porous layer was used. A separator was produced. In the heat-resistant porous layer according to this separator, the volume ratio of the heat-resistant fine particles calculated in the same manner as in the separator of Example 1 is 87% by volume, and the volume of the resin in the whole separator calculated in the same manner as in Example 1 The ratio was 74% by volume.
 そして、このセパレータを用いた以外は、実施例1と同様にして非水電解液二次電池を作製した。 Then, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this separator was used.
 (比較例3)
 ベーマイトの分散液に加えるバインダーを、重量平均分子量が7万のPVP〔ISPジャパン社製「K-30(商品名)」、Tg:163℃〕の水溶液(濃度10質量%)に変更した以外は、実施例1と同様にして耐熱多孔質層形成用組成物を調製し、この耐熱多孔質層形成用組成物を用いた以外は、実施例1と同様にしてセパレータを作製した。このセパレータに係る耐熱多孔質層では、実施例1のセパレータと同様にして算出した膨潤性微粒子の体積比率が45体積%、耐熱性微粒子の体積比率が45体積%であり、実施例1と同様にして算出したセパレータ全体中の樹脂の体積比率は87体積%であった。
(Comparative Example 3)
The binder added to the boehmite dispersion was changed to an aqueous solution (concentration of 10% by mass) of PVP having a weight average molecular weight of 70,000 (“K-30 (trade name)” manufactured by ISP Japan, Tg: 163 ° C.). A separator was prepared in the same manner as in Example 1 except that a heat-resistant porous layer forming composition was prepared in the same manner as in Example 1, and this heat-resistant porous layer forming composition was used. In the heat resistant porous layer according to this separator, the volume ratio of the swellable fine particles calculated in the same manner as in the separator of Example 1 is 45% by volume, and the volume ratio of the heat resistant fine particles is 45% by volume. The volume ratio of the resin in the whole separator calculated as described above was 87% by volume.
 そして、このセパレータを用いた以外は、実施例1と同様にして非水電解液二次電池を作製した。 Then, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this separator was used.
 (比較例4)
 実施例1で用いたものと同じ架橋PMMA微粒子の水分散体1000gに、実施例1で用いたものと同じバインダーを、膨潤性微粒子100質量部に対して5質量部の量で加え、スリーワンモーターを用いて1時間攪拌して分散させ、耐熱多孔質層形成用組成物を調製した。
(Comparative Example 4)
The same binder as used in Example 1 was added to 1000 g of an aqueous dispersion of the same crosslinked PMMA fine particles used in Example 1 in an amount of 5 parts by mass with respect to 100 parts by mass of the swellable fine particles. The composition for heat-resistant porous layer formation was prepared by stirring and dispersing for 1 hour.
 前記の耐熱多孔質層形成用組成物を用いた以外は、実施例1と同様にしてセパレータを作製した。このセパレータに係る耐熱多孔質層では、実施例1のセパレータと同様にして算出した膨潤性微粒子の体積比率が95体積%であり、実施例1と同様にして算出したセパレータ全体中の樹脂の体積比率は100体積%であった。 A separator was produced in the same manner as in Example 1 except that the heat-resistant porous layer forming composition was used. In the heat-resistant porous layer according to this separator, the volume ratio of the swellable fine particles calculated in the same manner as in the separator of Example 1 is 95% by volume, and the volume of the resin in the whole separator calculated in the same manner as in Example 1 The ratio was 100% by volume.
 そして、このセパレータを用いた以外は、実施例1と同様にして非水電解液二次電池を作製した。 Then, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this separator was used.
 (比較例5)
 PVPの量を、膨潤性微粒子と耐熱性微粒子との合計100質量部に対して0.05質量部となる量に変更した以外は、実施例1と同様にして耐熱多孔質層形成用組成物を調製し、この耐熱多孔質層形成用組成物を用いた以外は、実施例1と同様にしてセパレータを作製した。このセパレータに係る耐熱多孔質層では、実施例1のセパレータと同様にして算出した膨潤性微粒子の体積比率が49.95体積%、耐熱性微粒子の体積比率が49.95体積%であり、実施例1と同様にして算出したセパレータ全体中の樹脂の体積比率は85体積%であった。
(Comparative Example 5)
The composition for forming a heat-resistant porous layer is the same as in Example 1 except that the amount of PVP is changed to an amount that is 0.05 parts by mass with respect to 100 parts by mass of the swellable fine particles and heat-resistant fine particles. A separator was prepared in the same manner as in Example 1 except that this heat-resistant porous layer forming composition was used. In the heat resistant porous layer according to this separator, the volume ratio of the swellable fine particles calculated in the same manner as in the separator of Example 1 was 49.95% by volume, and the volume ratio of the heat resistant fine particles was 49.95% by volume. The volume ratio of the resin in the whole separator calculated in the same manner as in Example 1 was 85% by volume.
 そして、このセパレータを用いた以外は、実施例1と同様にして非水電解液二次電池を作製した。 Then, a nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that this separator was used.
 実施例および比較例の電池、並びに、これらの電池に用いたセパレータについて、以下の各評価を行った。 The following evaluations were performed on the batteries of Examples and Comparative Examples and the separators used in these batteries.
 <セパレータの熱収縮率測定>
 セパレータを縦5cm、横10cmの長方形に切り取り、黒インクで縦方向に平行に3cm、横方向に平行に3cmの十字線を描いた。セパレータを長方形に切り取るにあたっては、その縦方向が、セパレータを構成する樹脂多孔質膜の機械方向(MD方向)となるようにし、前記十字線は、その交点が、セパレータ片の中心となるようにした。その後、セパレータ片を、内部を200℃に設定した恒温槽内に吊るした。そして、1時間後にセパレータ片を恒温槽から取り出して冷却した後、十字線のうちのより短い方の長さd(mm)を計測し、下記式によって熱収縮率(%)を算出した。
<Measurement of thermal contraction rate of separator>
The separator was cut into a rectangular shape with a length of 5 cm and a width of 10 cm, and a cross line of 3 cm parallel to the vertical direction and 3 cm parallel to the horizontal direction was drawn with black ink. When the separator is cut into a rectangle, the longitudinal direction is the machine direction (MD direction) of the porous resin membrane constituting the separator, and the cross line is such that the intersection is the center of the separator piece. did. Thereafter, the separator piece was suspended in a thermostatic chamber whose interior was set to 200 ° C. And after taking out the separator piece from the thermostat after 1 hour and cooling, the shorter length d (mm) of the crosshairs was measured, and the thermal contraction rate (%) was computed by the following formula.
 熱収縮率=100×(30-d)/30
 <負荷特性測定>
 各電池について、定格容量に対して電流値1/2Cで4.2Vまで充電した後、所定電流値で3.0Vまで放電して、各電流値での放電容量を測定した。放電電流値は1/2Cと10Cとした。そして、1/2Cでの放電容量に対する10Cでの放電容量の比を百分率で表して、容量維持率を求めた。この容量維持率が大きいほど、電池の負荷特性が良好であるといえる。
Thermal shrinkage = 100 × (30−d) / 30
<Load characteristic measurement>
Each battery was charged to 4.2 V at a current value of 1/2 C with respect to the rated capacity, then discharged to 3.0 V at a predetermined current value, and the discharge capacity at each current value was measured. The discharge current values were 1 / 2C and 10C. The ratio of the discharge capacity at 10C to the discharge capacity at 1 / 2C was expressed as a percentage to obtain the capacity maintenance ratio. It can be said that the larger the capacity retention rate, the better the load characteristics of the battery.
 <内部短絡試験>
 定格容量まで充電した各電池の、中央側面の近傍に熱電対をテープでとめ、更に厚み6mmのグラスウールを巻きつけ、直径30mmの円筒形のラミネートフィルムで外装し、電池を断熱状態にした。また、試験時の電池の電圧および表面温度をモニタリングした。そして、20℃で、充電状態の電池の中央から、直径3mmのステンレス製の釘を1mm/secの速度で突き刺した。そして、短絡による電圧降下が観測された時点で釘の進行を停止して保持し、その後の電池表面の温度上昇を確認した。そして、釘の停止から10秒以内に電池表面が200℃まで上昇した場合を「温度上昇している(温度上昇)」と評価し、これに該当しない場合を「温度上昇を抑制できている(温度上昇抑制)」と評価した。
<Internal short circuit test>
Each battery charged to the rated capacity was taped with a thermocouple in the vicinity of the central side surface, wrapped with glass wool having a thickness of 6 mm, and packaged with a cylindrical laminate film having a diameter of 30 mm to make the battery insulative. In addition, the battery voltage and surface temperature during the test were monitored. Then, a stainless steel nail having a diameter of 3 mm was pierced at a speed of 1 mm / sec from the center of the charged battery at 20 ° C. And when the voltage drop by short circuit was observed, the progress of the nail was stopped and held, and the subsequent temperature rise of the battery surface was confirmed. Then, when the battery surface rises to 200 ° C. within 10 seconds from the stop of the nail, it is evaluated as “temperature rise (temperature rise)”, and when it does not fall under this, “temperature rise can be suppressed ( Temperature rise suppression) ”.
 実施例および比較例の電池に用いたセパレータ(実施例および比較例のセパレータ)の構成を表1に、前記の各評価結果を表2に示す。 Table 1 shows the configuration of separators used in the batteries of Examples and Comparative Examples (Separators of Examples and Comparative Examples), and Table 2 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1における耐熱多孔質層の「バインダーの量」は、膨潤性微粒子と耐熱性微粒子との合計100質量部に対する量(質量部)を意味しており、「セパレータ全体中の樹脂の比率」は、セパレータの構成成分の全体積中における樹脂の体積比率を意味している。 The “amount of binder” of the heat-resistant porous layer in Table 1 means the amount (part by mass) relative to 100 parts by mass of the swellable fine particles and the heat-resistant fine particles, and “the ratio of the resin in the whole separator” is The volume ratio of the resin in the total volume of the constituent components of the separator is meant.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2に示す通り、適正な体積比率で膨潤性微粒子と耐熱性微粒子とを含有し、かつ適正な量で重合物(A)(PVP)を含有している耐熱多孔質層を備えた実施例1~5のセパレータは、耐熱多孔質層を薄くしてセパレータ全体の厚みの増大を抑制しつつ、200℃におけるセパレータ全体の熱収縮を良好に抑制できている。そして、これらのセパレータを用いた実施例1~5の非水電解液二次電池は、内部短絡試験時の温度上昇が抑えられており、異常過熱した際にも熱暴走が生じ難い信頼性および安全性に優れものであることが確認できる。 As shown in Table 2, an embodiment comprising a heat-resistant porous layer containing swellable fine particles and heat-resistant fine particles in an appropriate volume ratio and containing a polymer (A) (PVP) in an appropriate amount. In the separators 1 to 5, the heat shrinkage of the entire separator at 200 ° C. can be satisfactorily suppressed while the heat-resistant porous layer is thinned to suppress the increase in the thickness of the entire separator. The non-aqueous electrolyte secondary batteries of Examples 1 to 5 using these separators are suppressed in temperature rise during the internal short circuit test, and are reliable and resistant to thermal runaway even when abnormally overheated. It can be confirmed that it is excellent in safety.
 これに対し、耐熱多孔質層を形成していない比較例1のセパレータ、膨潤性微粒子を含有していない耐熱多孔質層を形成した比較例2のセパレータ、重量平均分子量が低い重合物(A)を含有する耐熱多孔質層を形成した比較例3のセパレータ、耐熱性微粒子を含有していない耐熱多孔質層を形成した比較例4のセパレータ、および重合物(A)の量が少ない耐熱多孔質層を形成した比較例5のセパレータは、いずれも200℃での熱収縮率が大きく、これらを用いた比較例1~5の電池は、内部短絡試験時における信頼性が劣っている。 On the other hand, the separator of Comparative Example 1 in which the heat resistant porous layer was not formed, the separator of Comparative Example 2 in which the heat resistant porous layer not containing swellable fine particles was formed, and the polymer (A) having a low weight average molecular weight The separator of Comparative Example 3 in which the heat-resistant porous layer containing C is formed, the separator of Comparative Example 4 in which the heat-resistant porous layer not containing the heat-resistant fine particles is formed, and the heat-resistant porous with a small amount of the polymer (A) The separators of Comparative Example 5 in which the layers were formed all had a large heat shrinkage rate at 200 ° C., and the batteries of Comparative Examples 1 to 5 using them had poor reliability during the internal short circuit test.
 また、耐熱多孔質層におけるバインダー量を好適値としたセパレータを用いた実施例1~4の電池は、耐熱多孔質層におけるバインダー量が多いセパレータを用いた実施例5の電池に比べて、負荷特性が良好である。 In addition, the batteries of Examples 1 to 4 using the separator with the binder amount in the heat resistant porous layer having a suitable value are more loaded than the battery of Example 5 using the separator having a large amount of binder in the heat resistant porous layer. Good characteristics.
 本発明は、その趣旨を逸脱しない範囲で、上記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、これらに限定はされない。本発明の範囲は、上述の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれるものである。 The present invention can be implemented in forms other than those described above without departing from the spirit of the present invention. The embodiments disclosed in the present application are merely examples, and the present invention is not limited thereto. The scope of the present invention is construed in preference to the description of the appended claims rather than the description of the above specification, and all modifications within the scope equivalent to the claims are construed in the scope of the claims. It is included.
 1 正極
 2 負極
 3 セパレータ
 4 非水電解液
 5 電池缶
 6 絶縁体
 7 封口板
 7a 薄肉部
 7b 圧力導入口
 8 端子板
 8a ガス排出口
 9 防爆弁
 9a 突出部
 9b 薄肉部
10 絶縁パッキング
11 溶接部分
12 環状ガスケット
13 リード体
14 絶縁体
15 リード体
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Non-aqueous electrolyte 5 Battery can 6 Insulator 7 Sealing board 7a Thin part 7b Pressure inlet 8 Terminal board 8a Gas exhaust 9 Explosion-proof valve 9a Protrusion part 9b Thin part 10 Insulation packing 11 Weld part 12 Annular gasket 13 Lead body 14 Insulator 15 Lead body

Claims (11)

  1.  融解温度が80~180℃のポリオレフィンを主成分とする樹脂多孔質膜の少なくとも片面に、耐熱多孔質層を備えた非水電解液電池用セパレータであって、
     前記セパレータの構成成分の全体積中における樹脂の比率が、50~99.9体積%であり、
     前記耐熱多孔質層は、非水電解液中において加熱により非水電解液の吸収量が増大して膨潤する膨潤性微粒子と、耐熱性微粒子と、バインダーとを含み、
     前記膨潤性微粒子と前記耐熱性微粒子との体積比率が、10:90~95:5であり、
     前記耐熱多孔質層は、前記バインダーとして、アミド結合を含む環状構造を有する基と重合性二重結合由来の骨格とを有しており、ガラス転移温度が130℃以上であり、かつ重量平均分子量が35万以上の重合物を含み、
     前記膨潤性微粒子と前記耐熱性微粒子の合計量を100質量部としたとき、前記重合物の含有量が0.1質量部以上であり、
     前記耐熱多孔質層の厚みが、2~10μmであることを特徴とする非水電解液電池用セパレータ。
    A separator for a nonaqueous electrolyte battery comprising a heat-resistant porous layer on at least one surface of a porous resin membrane mainly composed of polyolefin having a melting temperature of 80 to 180 ° C.,
    The ratio of the resin in the total volume of the constituent components of the separator is 50 to 99.9% by volume,
    The heat-resistant porous layer includes swellable fine particles that swell by increasing the amount of absorption of the non-aqueous electrolyte by heating in the non-aqueous electrolyte, heat-resistant fine particles, and a binder.
    The volume ratio of the swellable fine particles and the heat-resistant fine particles is 10:90 to 95: 5,
    The heat-resistant porous layer has, as the binder, a group having a cyclic structure containing an amide bond and a skeleton derived from a polymerizable double bond, a glass transition temperature of 130 ° C. or higher, and a weight average molecular weight. Contains over 350,000 polymers,
    When the total amount of the swellable fine particles and the heat-resistant fine particles is 100 parts by mass, the content of the polymer is 0.1 parts by mass or more,
    A separator for a non-aqueous electrolyte battery, wherein the heat-resistant porous layer has a thickness of 2 to 10 μm.
  2.  前記アミド結合を含む環状構造を有する基が、下記化学式(1)で表される基であり、前記重合物のガラス転移温度が、150℃以上である請求項1に記載の非水電解液電池用セパレータ。
    Figure JPOXMLDOC01-appb-C000001
    2. The nonaqueous electrolyte battery according to claim 1, wherein the group having a cyclic structure including an amide bond is a group represented by the following chemical formula (1), and the glass transition temperature of the polymer is 150 ° C. or higher. Separator for use.
    Figure JPOXMLDOC01-appb-C000001
  3.  前記重合物が、ポリビニルピロリドンである請求項1に記載の非水電解液電池用セパレータ。 The separator for a non-aqueous electrolyte battery according to claim 1, wherein the polymer is polyvinylpyrrolidone.
  4.  前記耐熱多孔質層における前記バインダーの含有量が、前記膨潤性微粒子と前記耐熱性微粒子との合計量を100質量部としたときに、15質量部以下である請求項1に記載の非水電解液電池用セパレータ。 2. The nonaqueous electrolysis according to claim 1, wherein the content of the binder in the heat resistant porous layer is 15 parts by mass or less when the total amount of the swellable fine particles and the heat resistant fine particles is 100 parts by mass. Liquid battery separator.
  5.  前記膨潤性微粒子は、アクリル樹脂架橋体により構成されており、そのガラス転移点が70~130℃である請求項1に記載の非水電解液電池用セパレータ。 The separator for a non-aqueous electrolyte battery according to claim 1, wherein the swellable fine particles are composed of a crosslinked acrylic resin and have a glass transition point of 70 to 130 ° C.
  6.  前記膨潤性微粒子は、ガラス転移温度が25℃以下のアクリル樹脂架橋体で構成されたコア部と、ガラス転移温度が70℃以上のアクリル樹脂架橋体で構成されたシェル部とを有するコアシェル構造を有している請求項1に記載の非水電解液電池用セパレータ。 The swellable fine particles have a core-shell structure having a core part composed of a crosslinked acrylic resin having a glass transition temperature of 25 ° C. or lower and a shell part composed of a crosslinked acrylic resin having a glass transition temperature of 70 ° C. or higher. The separator for nonaqueous electrolyte batteries according to claim 1.
  7.  前記膨潤性微粒子の平均粒子径が、0.05~3μmである請求項1に記載の非水電解液電池用セパレータ。 The non-aqueous electrolyte battery separator according to claim 1, wherein the swellable fine particles have an average particle size of 0.05 to 3 µm.
  8.  前記耐熱性微粒子の耐熱温度が、300℃以上である請求項1に記載の非水電解液電池用セパレータ。 The non-aqueous electrolyte battery separator according to claim 1, wherein the heat resistant temperature of the heat resistant fine particles is 300 ° C. or higher.
  9.  前記耐熱性微粒子の平均粒子径が、0.05~3μmである請求項1に記載の非水電解液電池用セパレータ。 The non-aqueous electrolyte battery separator according to claim 1, wherein the heat-resistant fine particles have an average particle size of 0.05 to 3 µm.
  10.  200℃の温度雰囲気下に静置したときの熱収縮率が5%以下である請求項1に記載の非水電解液電池用セパレータ。 The separator for a non-aqueous electrolyte battery according to claim 1, wherein the thermal shrinkage rate is 5% or less when left in a 200 ° C temperature atmosphere.
  11.  正極、負極、セパレータおよび非水電解液を含む非水電解液電池であって、
     前記セパレータが請求項1~10のいずれかに記載の非水電解液電池用セパレータであることを特徴とする非水電解液電池。
     
    A non-aqueous electrolyte battery including a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte,
    A nonaqueous electrolyte battery characterized in that the separator is a separator for a nonaqueous electrolyte battery according to any one of claims 1 to 10.
PCT/JP2012/080555 2011-11-29 2012-11-27 Separator for non-aqueous electrolyte cell and non-aqueous electrolyte cell using same WO2013080946A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-259889 2011-11-29
JP2011259889A JP2015028840A (en) 2011-11-29 2011-11-29 Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
WO2013080946A1 true WO2013080946A1 (en) 2013-06-06

Family

ID=48535401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080555 WO2013080946A1 (en) 2011-11-29 2012-11-27 Separator for non-aqueous electrolyte cell and non-aqueous electrolyte cell using same

Country Status (2)

Country Link
JP (1) JP2015028840A (en)
WO (1) WO2013080946A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005151A1 (en) * 2013-07-10 2015-01-15 日本ゼオン株式会社 Porous film composition for lithium ion secondary batteries, separator for lithium ion secondary batteries, electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2015005145A1 (en) * 2013-07-10 2015-01-15 日本ゼオン株式会社 Adhesive for lithium ion secondary batteries, separator for lithium ion secondary batteries, and lithium ion secondary battery
JP2015088253A (en) * 2013-10-28 2015-05-07 日本ゼオン株式会社 Adhesive agent for lithium ion secondary batteries, lithium ion secondary battery separator, and lithium ion secondary battery
JP2016024866A (en) * 2014-07-16 2016-02-08 日本ゼオン株式会社 Composite particle for nonaqueous secondary battery porous film, nonaqueous secondary battery porous film, battery member for nonaqueous secondary battery, and nonaqueous secondary battery
WO2016051674A1 (en) * 2014-09-29 2016-04-07 日本ゼオン株式会社 Adhesive composition for electrochemical element, adhesive layer for electrochemical element, and electrochemical element
JP2016081888A (en) * 2014-10-22 2016-05-16 日本ゼオン株式会社 Composition for nonaqueous secondary battery adhesive layer, adhesive layer for nonaqueous secondary battery, and nonaqueous secondary battery
JP2016122611A (en) * 2014-12-25 2016-07-07 日本ゼオン株式会社 Composition for nonaqueous secondary battery functional layer, nonaqueous secondary battery functional layer, and nonaqueous secondary battery
WO2016110894A1 (en) * 2015-01-09 2016-07-14 日本ゼオン株式会社 Separator for non-aqueous secondary battery, manufacturing method therefor, and non-aqueous secondary battery
EP3046163A4 (en) * 2013-09-10 2017-07-26 Toray Industries, Inc. Separator for secondary cell, and secondary cell
KR20170097210A (en) * 2014-12-29 2017-08-25 셀가드 엘엘씨 Polylactam coated separator membranes for lithium ion secondary batteries and related coating formulations
CN109565021A (en) * 2016-09-21 2019-04-02 帝人株式会社 Diaphragm for non-water system secondary battery and non-aqueous secondary battery
US10290873B2 (en) * 2014-09-05 2019-05-14 Zeon Corporation Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
JP2019527751A (en) * 2016-07-22 2019-10-03 セルガード エルエルシー Improved coating, coated separator, battery, and related methods
CN112640196A (en) * 2019-05-09 2021-04-09 株式会社Lg化学 Separator for electrochemical device and electrochemical device comprising the same
EP4102636A4 (en) * 2020-11-30 2023-05-31 Contemporary Amperex Technology Co., Limited Separator film, secondary battery containing same, related battery module thereof, battery pack and device
KR102661503B1 (en) * 2014-12-29 2024-04-26 셀가드 엘엘씨 Polylactam coated separator membranes for lithium ion secondary batteries and related coating formulations

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102407590B1 (en) * 2016-10-28 2022-06-10 도레이 카부시키가이샤 Separator for non-aqueous electrolyte battery and non-aqueous electrolyte battery
WO2018096975A1 (en) * 2016-11-24 2018-05-31 日本ゼオン株式会社 Composition for nonaqueous secondary battery functional layers, functional layer for nonaqueous secondary batteries, and nonaqueous secondary battery
US10998536B2 (en) * 2017-10-13 2021-05-04 Optodot Corporation Multilayer nanoporous separator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157723A (en) * 2005-12-08 2007-06-21 Hitachi Maxell Ltd Separator for electrochemical element, and electrochemical element
WO2008114727A1 (en) * 2007-03-15 2008-09-25 Hitachi Maxell, Ltd. Separator for electrochemical device, electrode for electrochemical device, and electrochemical device
JP2010157521A (en) * 2006-09-07 2010-07-15 Hitachi Maxell Ltd Battery separator, and lithium secondary battery using the same
JP2011054503A (en) * 2009-09-04 2011-03-17 Hitachi Maxell Ltd Separator for electrochemical element, electrochemical element and manufacturing method thereof
WO2012050152A1 (en) * 2010-10-13 2012-04-19 日立マクセル株式会社 Separator for non-aqueous electrolyte battery and non-aqueous electrolyte battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157723A (en) * 2005-12-08 2007-06-21 Hitachi Maxell Ltd Separator for electrochemical element, and electrochemical element
JP2010157521A (en) * 2006-09-07 2010-07-15 Hitachi Maxell Ltd Battery separator, and lithium secondary battery using the same
WO2008114727A1 (en) * 2007-03-15 2008-09-25 Hitachi Maxell, Ltd. Separator for electrochemical device, electrode for electrochemical device, and electrochemical device
JP2011054503A (en) * 2009-09-04 2011-03-17 Hitachi Maxell Ltd Separator for electrochemical element, electrochemical element and manufacturing method thereof
WO2012050152A1 (en) * 2010-10-13 2012-04-19 日立マクセル株式会社 Separator for non-aqueous electrolyte battery and non-aqueous electrolyte battery

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005145A1 (en) * 2013-07-10 2015-01-15 日本ゼオン株式会社 Adhesive for lithium ion secondary batteries, separator for lithium ion secondary batteries, and lithium ion secondary battery
KR20160030891A (en) * 2013-07-10 2016-03-21 제온 코포레이션 Adhesive for lithium ion secondary batteries, separator for lithium ion secondary batteries, and lithium ion secondary battery
US10283748B2 (en) 2013-07-10 2019-05-07 Zeon Corporation Porous film composition for lithium ion secondary batteries, separator for lithium ion secondary batteries, electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2015005151A1 (en) * 2013-07-10 2015-01-15 日本ゼオン株式会社 Porous film composition for lithium ion secondary batteries, separator for lithium ion secondary batteries, electrode for lithium ion secondary batteries, and lithium ion secondary battery
US10141557B2 (en) 2013-07-10 2018-11-27 Zeon Corporation Adhesive for lithium ion secondary batteries, separator for lithium ion secondary batteries, and lithium ion secondary battery
JPWO2015005151A1 (en) * 2013-07-10 2017-03-02 日本ゼオン株式会社 Porous membrane composition for lithium ion secondary battery, separator for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
JPWO2015005145A1 (en) * 2013-07-10 2017-03-02 日本ゼオン株式会社 Lithium ion secondary battery adhesive, lithium ion secondary battery separator, and lithium ion secondary battery
KR102211534B1 (en) 2013-07-10 2021-02-02 제온 코포레이션 Adhesive for lithium ion secondary batteries, separator for lithium ion secondary batteries, and lithium ion secondary battery
EP3046163A4 (en) * 2013-09-10 2017-07-26 Toray Industries, Inc. Separator for secondary cell, and secondary cell
JP2015088253A (en) * 2013-10-28 2015-05-07 日本ゼオン株式会社 Adhesive agent for lithium ion secondary batteries, lithium ion secondary battery separator, and lithium ion secondary battery
JP2016024866A (en) * 2014-07-16 2016-02-08 日本ゼオン株式会社 Composite particle for nonaqueous secondary battery porous film, nonaqueous secondary battery porous film, battery member for nonaqueous secondary battery, and nonaqueous secondary battery
US10290873B2 (en) * 2014-09-05 2019-05-14 Zeon Corporation Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
KR102372832B1 (en) 2014-09-29 2022-03-08 니폰 제온 가부시키가이샤 Adhesive composition for electrochemical element, adhesive layer for electrochemical element, and electrochemical element
JPWO2016051674A1 (en) * 2014-09-29 2017-07-06 日本ゼオン株式会社 Adhesive composition for electrochemical device, adhesive layer for electrochemical device, and electrochemical device
KR20170063529A (en) * 2014-09-29 2017-06-08 니폰 제온 가부시키가이샤 Adhesive composition for electrochemical element, adhesive layer for electrochemical element, and electrochemical element
WO2016051674A1 (en) * 2014-09-29 2016-04-07 日本ゼオン株式会社 Adhesive composition for electrochemical element, adhesive layer for electrochemical element, and electrochemical element
JP2016081888A (en) * 2014-10-22 2016-05-16 日本ゼオン株式会社 Composition for nonaqueous secondary battery adhesive layer, adhesive layer for nonaqueous secondary battery, and nonaqueous secondary battery
JP2016122611A (en) * 2014-12-25 2016-07-07 日本ゼオン株式会社 Composition for nonaqueous secondary battery functional layer, nonaqueous secondary battery functional layer, and nonaqueous secondary battery
KR102583612B1 (en) * 2014-12-29 2023-10-04 셀가드 엘엘씨 Polylactam coated separator membranes for lithium ion secondary batteries and related coating formulations
KR20170097210A (en) * 2014-12-29 2017-08-25 셀가드 엘엘씨 Polylactam coated separator membranes for lithium ion secondary batteries and related coating formulations
JP2018500739A (en) * 2014-12-29 2018-01-11 セルガード エルエルシー Polylactam coated separator membrane for lithium ion secondary batteries and related coating formulations
JP2021093374A (en) * 2014-12-29 2021-06-17 セルガード エルエルシー Polylactam coating separator film for lithium ion secondary battery and related coating composition
KR102661503B1 (en) * 2014-12-29 2024-04-26 셀가드 엘엘씨 Polylactam coated separator membranes for lithium ion secondary batteries and related coating formulations
JPWO2016110894A1 (en) * 2015-01-09 2017-10-19 日本ゼオン株式会社 Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
CN107112480A (en) * 2015-01-09 2017-08-29 日本瑞翁株式会社 Non-aqueous secondary battery distance piece and its manufacture method and non-aqueous secondary battery
WO2016110894A1 (en) * 2015-01-09 2016-07-14 日本ゼオン株式会社 Separator for non-aqueous secondary battery, manufacturing method therefor, and non-aqueous secondary battery
JP2019527751A (en) * 2016-07-22 2019-10-03 セルガード エルエルシー Improved coating, coated separator, battery, and related methods
CN109565021A (en) * 2016-09-21 2019-04-02 帝人株式会社 Diaphragm for non-water system secondary battery and non-aqueous secondary battery
CN112640196A (en) * 2019-05-09 2021-04-09 株式会社Lg化学 Separator for electrochemical device and electrochemical device comprising the same
CN112640196B (en) * 2019-05-09 2024-02-09 株式会社Lg新能源 Separator for electrochemical device and electrochemical device including the same
EP4102636A4 (en) * 2020-11-30 2023-05-31 Contemporary Amperex Technology Co., Limited Separator film, secondary battery containing same, related battery module thereof, battery pack and device

Also Published As

Publication number Publication date
JP2015028840A (en) 2015-02-12

Similar Documents

Publication Publication Date Title
WO2013080946A1 (en) Separator for non-aqueous electrolyte cell and non-aqueous electrolyte cell using same
JP5477985B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP5328034B2 (en) Electrochemical element separator, electrochemical element and method for producing the same
JP5158678B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP5430778B2 (en) Battery separator and non-aqueous electrolyte battery using the same
JP5611505B2 (en) Battery separator and lithium secondary battery
JP5101569B2 (en) Battery separator, manufacturing method thereof, and lithium secondary battery
JP5403857B2 (en) Battery separator, method for producing the same, and lithium secondary battery
WO2013051079A1 (en) Heat resistant porous membrane, separator for nonaqueous cell, and nonaqueous cell
JP2008041581A (en) Rolled electrode group, rectangular secondary battery, and laminated type secondary battery
JP5247657B2 (en) Non-aqueous electrolyte battery
WO2017082258A1 (en) Separator for non-aqueous secondary cell, and non-aqueous secondary cell
JP2008066094A (en) Separator for battery, and lithium secondary battery
JP2008226566A (en) Composition for porous insulating layer formation, positive electrode for lithium-ion secondary battery, negative electrode for lithium ion secondary battery, and lithium-ion secondary battery
JP2008027839A (en) Porous membrane with liner, method of manufacturing porous membrane, and method of manufacturing lithium secondary battery
JP5348800B2 (en) Lithium ion secondary battery
WO2013136404A1 (en) Separator for electrochemical element and method for producing same, and electrochemical element
JP2009181756A (en) Lithium-ion secondary battery and electronic apparatus using the same
JP6974930B2 (en) Non-aqueous electrolyte secondary battery
WO2013042235A1 (en) Electrochemical device separator, manufacturing method therefor and electrochemical device
JP5804712B2 (en) Nonaqueous electrolyte secondary battery
WO2012005152A1 (en) Separator for non-aqueous battery, and non-aqueous battery
JP5478733B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP2008004441A (en) Lithium secondary battery, separator for lithium secondary battery, electrode for lithium secondary battery, nonaqueous electrolyte for lithium secondary battery, and armor for lithium secondary battery
JP2006179205A (en) Nonaqueous electrolytic solution battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP