JP2008226566A - Composition for porous insulating layer formation, positive electrode for lithium-ion secondary battery, negative electrode for lithium ion secondary battery, and lithium-ion secondary battery - Google Patents

Composition for porous insulating layer formation, positive electrode for lithium-ion secondary battery, negative electrode for lithium ion secondary battery, and lithium-ion secondary battery Download PDF

Info

Publication number
JP2008226566A
JP2008226566A JP2007061218A JP2007061218A JP2008226566A JP 2008226566 A JP2008226566 A JP 2008226566A JP 2007061218 A JP2007061218 A JP 2007061218A JP 2007061218 A JP2007061218 A JP 2007061218A JP 2008226566 A JP2008226566 A JP 2008226566A
Authority
JP
Japan
Prior art keywords
insulating layer
ion secondary
porous insulating
negative electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007061218A
Other languages
Japanese (ja)
Inventor
Hideki Tsubata
英樹 津幡
Hiroyuki Toshiro
博行 戸城
Yasuyoshi Kuroki
康好 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2007061218A priority Critical patent/JP2008226566A/en
Publication of JP2008226566A publication Critical patent/JP2008226566A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition in order to form a porous insulating layer capable of improving resistance to short-circuiting of a lithium ion secondary battery on a surface of the positive electrode or the negative electrode for the lithium-ion secondary battery, the positive electrode and the negative electrode for the lithium ion secondary battery having the porous insulating layer formed by the composition, and the lithium ion secondary battery having the positive electrode or the negative electrode. <P>SOLUTION: By the composition for forming the porous insulating layer at least containing insulating particles having a heat resistant temperature of 150°C or more, poly N-vinyl acetamide, and a solvent, by the positive electrode for the lithium ion secondary battery and the negative electrode for the lithium ion secondary battery having the porous insulating layer formed with the porous insulating layer while using the composition for forming the porous insulating layer, and by the lithium ion secondary battery having at least one of the positive electrode for the lithium ion secondary battery and the negative electrode for the lithium ion secondary battery, problems are solved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、耐短絡特性に優れたリチウムイオン二次電池、該リチウムイオン二次電池を構成するための正極および負極、並びに、これら正極および負極の製造に使用される多孔性絶縁層形成用組成物に関するものである。   The present invention relates to a lithium ion secondary battery excellent in short circuit resistance, a positive electrode and a negative electrode for constituting the lithium ion secondary battery, and a composition for forming a porous insulating layer used for manufacturing these positive electrode and negative electrode It is about things.

非水電解質電池の一種であるリチウムイオン二次電池は、エネルギー密度が高いという特徴から、携帯電話やノート型パーソナルコンピューターなどの携帯機器の電源として広く用いられている。携帯機器の高性能化に伴ってリチウムイオン二次電池の高容量化が更に進む傾向にあり、安全性の確保が重要となっている。   A lithium ion secondary battery, which is a type of nonaqueous electrolyte battery, is widely used as a power source for portable devices such as mobile phones and notebook personal computers because of its high energy density. As the performance of portable devices increases, the capacity of lithium ion secondary batteries tends to increase further, and ensuring safety is important.

現行のリチウムイオン二次電池では、正極と負極の間に介在させるセパレータとして、例えば厚みが20〜30μm程度のポリオレフィン系の微孔性フィルムが使用されている。また、セパレータの素材としては、電池の熱暴走温度以下でセパレータの構成樹脂を溶融させて空孔を閉塞させ、これにより電池の内部抵抗を上昇させて短絡の際などに電池の安全性を向上させる所謂シャットダウン機能を確保するため、融点の低いポリエチレンが適用されることがある。   In the current lithium ion secondary battery, as a separator interposed between the positive electrode and the negative electrode, for example, a polyolefin microporous film having a thickness of about 20 to 30 μm is used. In addition, as separator material, the constituent resin of the separator is melted below the thermal runaway temperature of the battery to close the pores, thereby increasing the internal resistance of the battery and improving the safety of the battery in the event of a short circuit. In order to ensure a so-called shutdown function, polyethylene having a low melting point may be applied.

ところで、こうしたセパレータとしては、例えば、多孔化と強度向上のために一軸延伸あるいは二軸延伸したフィルムが用いられている。このようなセパレータは、単独で存在する膜として供給されるため、作業性などの点で一定の強度が要求され、これを上記延伸によって確保している。そのため、セパレータにはひずみが生じており、これが高温に曝されると、残留応力によって収縮が起こるという問題がある。収縮温度は、融点、すなわちシャットダウン温度と非常に近いところに存在する。このため、ポリオレフィン系の多孔性フィルムセパレータを使用するときには、充電異常時などに電池の温度がシャットダウン温度に達すると、電流を直ちに減少させて電池の温度上昇を防止しなければならない。空孔が十分に閉塞せず電流を直ちに減少できなかった場合には、電池の温度は容易にセパレータの収縮温度にまで上昇するため、内部短絡による発火の危険性があるからである。   By the way, as such a separator, for example, a uniaxially stretched film or a biaxially stretched film is used for increasing the porosity and improving the strength. Since such a separator is supplied as a single film, a certain strength is required in terms of workability and the like, and this is ensured by the above stretching. Therefore, the separator is distorted, and when it is exposed to a high temperature, there is a problem that shrinkage occurs due to residual stress. The shrinkage temperature is very close to the melting point, ie the shutdown temperature. For this reason, when a polyolefin-based porous film separator is used, when the battery temperature reaches the shutdown temperature in the case of abnormal charging, the current must be immediately decreased to prevent the battery temperature from rising. This is because if the pores are not sufficiently closed and the current cannot be reduced immediately, the battery temperature easily rises to the contraction temperature of the separator, and there is a risk of ignition due to an internal short circuit.

また、リチウムイオン二次電池を高容量化する観点からは、例えば発電に関与しないセパレータを薄くして、電池内において電極を収容可能な領域をより大きくすることが考えられるが、セパレータは薄くするほど強度が低下するため、電池製造時の作業性を十分に確保したり、更には電池内での正極と負極との隔離を十分に達成できるようにしたりするには、より高延伸するなどして強度を高める必要がある。このように、より高延伸された薄いフィルムセパレータは、高温に曝された際の収縮の度合いが大きくなるため、かかるセパレータを用いた電池では、その内部温度が異常に高くなった際にセパレータの収縮による短絡発生の可能性がより大きくなる。   From the viewpoint of increasing the capacity of a lithium ion secondary battery, for example, it is conceivable that the separator that does not participate in power generation is made thin so that the area in which the electrode can be accommodated in the battery is made larger. As the strength decreases, the workability during battery production is sufficiently secured, and further, in order to achieve sufficient separation between the positive electrode and the negative electrode in the battery, higher stretching is performed. It is necessary to increase the strength. As described above, the higher-stretched thin film separator has a higher degree of shrinkage when exposed to high temperatures. Therefore, in a battery using such a separator, when the internal temperature becomes abnormally high, The possibility of occurrence of a short circuit due to shrinkage becomes greater.

例えば、特許文献1には、正極の正極活物質塗布層、負極の負極活物質塗布層のいずれかの表面に、樹脂結着剤と固体粒子などからなる多孔性保護膜を形成した電池が開示されている。特許文献1に開示の電池に係る多孔性保護層は、電池製造の際の電極からの活物質の脱落を抑えて、内部ショートの発生を防止するためのものであるが、多孔性保護層の構成の選択によっては、これによって電池の耐短絡性を高め得る可能性もある。   For example, Patent Document 1 discloses a battery in which a porous protective film made of a resin binder and solid particles is formed on the surface of either a positive electrode active material coating layer of a positive electrode or a negative electrode active material coating layer of a negative electrode. Has been. The porous protective layer according to the battery disclosed in Patent Document 1 is intended to prevent the active material from falling off the electrode during battery production and prevent the occurrence of an internal short circuit. Depending on the configuration choice, this may increase the short circuit resistance of the battery.

特開平7−220759号公報Japanese Patent Laid-Open No. 7-220759

上記のような事情の下、本発明者らは、セパレータの薄型化を試みると共に、これにより低下する電池の耐短絡性を高めるために、正極および負極の少なくとも一方の表面に、耐熱性の良好な絶縁性粒子を含む多孔性の絶縁層を形成する手法の検討を開始し、電池が高温状態となり、セパレータの収縮が生じた場合にも短絡発生の虞がなく、且つ高容量の電池を開発するに至った。すなわち、上記多孔性絶縁層を有する正極または負極を用いれば、電池内でセパレータが収縮しても、正極または負極表面の多孔性絶縁層によって、正極の正極合剤層と負極の負極合剤層との接触を防止することができる。   Under the circumstances as described above, the present inventors tried to reduce the thickness of the separator, and in order to increase the short-circuit resistance of the battery that is reduced thereby, the heat resistance is good on at least one surface of the positive electrode and the negative electrode. Of a method to form a porous insulating layer containing various insulating particles was developed, and a battery with a high capacity was developed without the possibility of a short circuit even when the battery became hot and the separator contracted. It came to do. That is, if the positive electrode or the negative electrode having the porous insulating layer is used, even if the separator shrinks in the battery, the positive electrode mixture layer of the positive electrode and the negative electrode mixture layer of the negative electrode are formed by the porous insulating layer on the positive electrode or the negative electrode surface. Can be prevented.

上記多孔性絶縁層は、例えば、絶縁性粒子と結着剤とを溶剤に分散させるなどして形成した組成物を、正極の正極合剤層表面や負極の負極合剤層表面に塗布し乾燥することで形成できる。   The porous insulating layer is formed by, for example, applying a composition formed by dispersing insulating particles and a binder in a solvent to the positive electrode mixture layer surface of the positive electrode or the negative electrode mixture layer surface of the negative electrode and drying. Can be formed.

しかし、更に検討を進めた結果、多孔性絶縁層形成用組成物において、例えば絶縁性粒子が凝集するなどして、組成物中での絶縁性粒子の分散が悪い場合には、形成後の多孔性絶縁層にスジなどが発生して、多孔性絶縁層を形成することによる電池の耐短絡性向上効果が十分に確保できない可能性のあることが判明した。多孔性絶縁層は、できる限り薄くすることが、電池の容量低下を防止する観点から好ましいが、多孔性絶縁層を薄くするほど、多孔性絶縁層形成用組成物中の絶縁性粒子の分散の悪さに起因する上記の問題は顕著となる。   However, as a result of further investigation, in the composition for forming a porous insulating layer, for example, when insulating particles are agglomerated due to agglomeration of the insulating particles in the composition, It has been found that streaks or the like are generated in the conductive insulating layer, and the effect of improving the short circuit resistance of the battery by forming the porous insulating layer may not be sufficiently ensured. It is preferable to make the porous insulating layer as thin as possible from the viewpoint of preventing the battery capacity from decreasing. However, the thinner the porous insulating layer, the more dispersed the insulating particles in the composition for forming the porous insulating layer. The above problem due to badness becomes remarkable.

本発明は上記事情に鑑みてなされたものであり、その目的は、リチウムイオン二次電池用正極または負極の表面に、リチウムイオン二次電池の耐短絡性を良好に高め得る多孔性絶縁層を形成するための組成物、該組成物により形成された多孔性絶縁層を有するリチウムイオン二次電池用正極および負極、並びに、上記正極または負極を有するリチウムイオン二次電池を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a porous insulating layer that can improve the short-circuit resistance of a lithium ion secondary battery on the surface of a positive electrode or a negative electrode for a lithium ion secondary battery. It is in providing the composition for forming, the positive electrode and negative electrode for lithium ion secondary batteries which have the porous insulating layer formed of this composition, and the lithium ion secondary battery which has the said positive electrode or negative electrode.

上記目的を達成し得た本発明の多孔性絶縁層形成用組成物は、リチウムイオン二次電池用電極の表面に多孔性の絶縁層を形成するための組成物であって、耐熱温度が150℃以上の絶縁性粒子と、ポリN−ビニルアセトアミドと、溶剤とを少なくとも含有することを特徴とするものである。   The composition for forming a porous insulating layer of the present invention that has achieved the above object is a composition for forming a porous insulating layer on the surface of an electrode for a lithium ion secondary battery, and has a heat resistant temperature of 150. It contains at least insulating particles having a temperature of at least ° C., poly N-vinylacetamide, and a solvent.

また、本発明のリチウムイオン二次電池用正極は、集電体の片面または両面に、活物質を含む正極合剤層を有しており、上記正極合剤層の表面に、本発明の多孔性絶縁層形成用組成物を用いて形成された多孔性絶縁層を有することを特徴とするものであり、本発明のリチウムイオン二次電池用負極は、集電体の片面または両面に、活物質を含む負極合剤層を有しており、上記負極合剤層の表面に、本発明の多孔性絶縁層形成用組成物を用いて形成された多孔性絶縁層を有することを特徴とするものである。   Further, the positive electrode for a lithium ion secondary battery of the present invention has a positive electrode mixture layer containing an active material on one side or both sides of a current collector, and the surface of the positive electrode mixture layer has a porous layer of the present invention. A negative electrode for a lithium ion secondary battery according to the present invention is provided on one side or both sides of a current collector, and has a porous insulating layer formed by using a composition for forming a conductive insulating layer. It has a negative electrode mixture layer containing a substance, and has a porous insulating layer formed on the surface of the negative electrode mixture layer using the porous insulating layer forming composition of the present invention. Is.

図1に、本発明の正極または負極の一例の断面模式図を示す。図1に示す正極または負極1では、正極集電体または負極集電体4の両面に正極合剤層または負極合剤層3が形成されており、更に、集電体4の両側の合剤層3の表面に多孔性絶縁層2が形成されている。なお、図1に示す構造以外にも、例えば、本発明の正極または負極は、集電体の両面に合剤層(正極合剤層または負極合剤層)を有しており、そのうち、一方の合剤層の表面にのみ多孔性絶縁層を有している構造であってもよい。   In FIG. 1, the cross-sectional schematic diagram of an example of the positive electrode or negative electrode of this invention is shown. In the positive electrode or negative electrode 1 shown in FIG. 1, the positive electrode mixture layer or the negative electrode mixture layer 3 is formed on both surfaces of the positive electrode current collector or the negative electrode current collector 4, and the mixture on both sides of the current collector 4 is further formed. A porous insulating layer 2 is formed on the surface of the layer 3. In addition to the structure shown in FIG. 1, for example, the positive electrode or negative electrode of the present invention has a mixture layer (positive electrode mixture layer or negative electrode mixture layer) on both sides of the current collector, A structure having a porous insulating layer only on the surface of the mixture layer.

更に、本発明のリチウムイオン二次電池は、正極、負極、セパレータおよび非水電解液を備えた電池であって、本発明のリチウムイオン二次電池用正極および本発明のリチウムイオン二次電池用負極の少なくとも一方を有することを特徴とするものである。   Furthermore, the lithium ion secondary battery of the present invention is a battery provided with a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, and is for the positive electrode for the lithium ion secondary battery of the present invention and the lithium ion secondary battery of the present invention. It has at least one of the negative electrodes.

本発明によれば、絶縁性粒子の分散が良好で、リチウムイオン二次電池の耐短絡性を良好に高め得る多孔性絶縁層を正極または負極の表面に形成可能な多孔性絶縁層形成用組成物を提供できる。また、本発明のリチウムイオン二次電池用正極およびリチウムイオン二次電池用負極によれば、耐短絡性に優れたリチウムイオン二次電池を提供できる。すなわち、本発明のリチウムイオン二次電池は、耐短絡性に優れたものである。   ADVANTAGE OF THE INVENTION According to this invention, the composition for porous insulating layer formation which can form the porous insulating layer which can improve the short circuit resistance of a lithium ion secondary battery favorable on the surface of a positive electrode or a negative electrode with favorable dispersion | distribution of insulating particles Can provide things. Moreover, according to the positive electrode for lithium ion secondary batteries and the negative electrode for lithium ion secondary batteries of this invention, the lithium ion secondary battery excellent in short circuit resistance can be provided. That is, the lithium ion secondary battery of the present invention is excellent in short circuit resistance.

本発明の多孔性絶縁層形成用組成物は、耐熱温度が150℃以上の絶縁性粒子(以下、単に「絶縁性粒子」という場合がある)とポリN−ビニルアセトアミドと溶剤とを少なくとも含むもの(スラリー、ペーストなど)である。本発明の多孔性絶縁層形成用組成物をリチウムイオン二次電池用正極の正極合剤層表面またはリチウムイオン二次電池用負極の負極合剤層表面に塗布し、乾燥して溶剤を除去することにより、上記正極または上記負極の表面に多孔性絶縁層を形成することができる。   The composition for forming a porous insulating layer of the present invention comprises at least insulating particles having a heat-resistant temperature of 150 ° C. or higher (hereinafter sometimes simply referred to as “insulating particles”), poly N-vinylacetamide, and a solvent. (Slurry, paste, etc.). The porous insulating layer forming composition of the present invention is applied to the surface of the positive electrode mixture layer of the positive electrode for lithium ion secondary batteries or the negative electrode mixture layer of the negative electrode for lithium ion secondary batteries, and dried to remove the solvent. Thus, a porous insulating layer can be formed on the surface of the positive electrode or the negative electrode.

本発明の多孔性絶縁層形成用組成物におけるポリN−ビニルアセトアミドは、多孔性絶縁層形成用組成物中での絶縁性粒子の凝集を抑え、良好に分散させる作用を有している。そのため、本発明の多孔性絶縁層形成用組成物によれば、スジなどの欠陥の発生を抑えつつ多孔性絶縁層(特に薄い多孔性絶縁層)を電極の合剤層表面に形成することが可能である。そして、多孔性絶縁層を有する電極を用いたリチウムイオン二次電池は、電池内が高温になってセパレータに収縮が生じても、多孔性絶縁層により正極の正極合剤層と負極の負極合剤層との接触を防止できるため、耐短絡性に優れたものとなる。また、ポリN−ビニルアセトアミドは、形成後の多孔性絶縁層において、絶縁性粒子同士を結着させる結着剤としての機能も有している。   The poly N-vinylacetamide in the composition for forming a porous insulating layer of the present invention has a function of suppressing the aggregation of the insulating particles in the composition for forming a porous insulating layer and dispersing them well. Therefore, according to the composition for forming a porous insulating layer of the present invention, a porous insulating layer (particularly a thin porous insulating layer) can be formed on the surface of the electrode mixture layer while suppressing the occurrence of defects such as streaks. Is possible. In addition, a lithium ion secondary battery using an electrode having a porous insulating layer has a positive electrode mixture layer of a positive electrode and a negative electrode mixture of a negative electrode formed by the porous insulating layer even when the inside of the battery becomes hot and the separator shrinks. Since contact with the agent layer can be prevented, it is excellent in short circuit resistance. In addition, poly N-vinylacetamide also has a function as a binder that binds the insulating particles to each other in the formed porous insulating layer.

多孔性絶縁層を構成するために、多孔性絶縁層形成用組成物に用いられる絶縁性粒子としては、耐熱温度が150℃以上であり、電気絶縁性を有しており、電気化学的に安定で、更に非水電解液や、多孔性絶縁層形成用組成物に使用する溶剤に対して安定であり、また、電池の作動電圧範囲において酸化還元といった副反応をしない粒子であればよい。なお、本明細書でいう「耐熱温度が150℃」とは、少なくとも150℃において軟化などの変形が見られないことを意味している。また、本明細書でいう「電気化学的に安定な」とは、電池の充放電の際に化学変化が生じないことを意味している。   Insulating particles used in the composition for forming a porous insulating layer in order to constitute the porous insulating layer have a heat resistant temperature of 150 ° C. or more, have an electrical insulating property, and are electrochemically stable. In addition, any particles that are stable to the non-aqueous electrolyte and the solvent used for the composition for forming the porous insulating layer and that do not cause side reactions such as oxidation-reduction in the operating voltage range of the battery may be used. In this specification, “heat-resistant temperature is 150 ° C.” means that deformation such as softening is not observed at least at 150 ° C. Further, “electrochemically stable” as used in the present specification means that no chemical change occurs during charging / discharging of the battery.

このような絶縁性粒子の具体例としては、以下の無機粒子または有機粒子が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。無機粒子(無機粉末)としては、例えば、酸化鉄、シリカ(SiO)、アルミナ(Al)、TiO、BaTiO、ZrOなどの酸化物粒子;窒化アルミニウム、窒化ケイ素などの窒化物粒子;フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶粒子;シリコン、ダイヤモンドなどの共有結合性結晶粒子;モンモリロナイトなどの粘土粒子、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビンなどの鉱物資源由来物質またはこれらの人造物;などが挙げられる。また、金属粒子;SnO、スズ−インジウム酸化物(ITO)などの酸化物粒子;カーボンブラック、グラファイトなどの炭素質粒子;などの導電性粒子の表面を、電気絶縁性を有する材料(例えば、上記の非電気伝導性の無機粒子を構成する材料や、後記の架橋高分子粒子を構成する材料など)で表面処理することで、電気絶縁性を持たせた微粒子であってもよい。有機粒子(有機粉末)としては、架橋ポリメタクリル酸メチル、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン−ジビニルベンゼン共重合体架橋物、ポリイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン−ホルムアルデヒド縮合物などの各種架橋高分子粒子が例示できる。また、これらの有機粒子を構成する有機樹脂(高分子)は、上記例示の材料の混合物、変性体、誘導体、共重合体(ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体、架橋体(熱可塑性のポリイミドの場合)であってもよい。 Specific examples of such insulating particles include the following inorganic particles or organic particles, and these may be used alone or in combination of two or more. Examples of the inorganic particles (inorganic powder) include oxide particles such as iron oxide, silica (SiO 2 ), alumina (Al 2 O 3 ), TiO 2 , BaTiO 2 , and ZrO; nitrides such as aluminum nitride and silicon nitride Particles: Slightly soluble ionic crystal particles such as calcium fluoride, barium fluoride and barium sulfate; Covalent crystal particles such as silicon and diamond; Clay particles such as montmorillonite, boehmite, zeolite, apatite, kaolin, mullite, spinel, And materials derived from mineral resources such as olivine or artificial products thereof. Further, the surface of conductive particles such as metal particles; oxide particles such as SnO 2 and tin-indium oxide (ITO); carbonaceous particles such as carbon black and graphite; Fine particles imparted with electrical insulation properties by surface treatment with a material constituting the above non-electrically conductive inorganic particles or a material constituting the crosslinked polymer particles described later) may be used. As organic particles (organic powder), various cross-links such as cross-linked polymethyl methacrylate, cross-linked polystyrene, cross-linked polydivinylbenzene, styrene-divinylbenzene copolymer cross-linked product, polyimide, melamine resin, phenol resin, benzoguanamine-formaldehyde condensate, etc. Polymer particles can be exemplified. The organic resin (polymer) constituting these organic particles is a mixture, modified product, derivative, or copolymer (random copolymer, alternating copolymer, block copolymer, graft copolymer) of the materials exemplified above. It may be a polymer or a crosslinked product (in the case of thermoplastic polyimide).

絶縁性粒子の形状は、球状(真球状および略球状を含む)、ラグビーボール状、板状などのいずれでもよい。板状の絶縁性粒子としては、例えば、板状ベーマイト、板状アルミナなどが挙げられる。   The shape of the insulating particles may be any of a spherical shape (including a true spherical shape and a substantially spherical shape), a rugby ball shape, and a plate shape. Examples of the plate-like insulating particles include plate-like boehmite and plate-like alumina.

上記例示の絶縁性粒子の中でも、アルミナ粒子が特に好ましい。   Of the insulating particles exemplified above, alumina particles are particularly preferable.

絶縁性粒子の平均粒径は、2μm以下であることが好ましく、1μm以下であることがより好ましい。多孔性絶縁層は、その効果を確保できる範囲でできる限り薄くすることが、電池内での多孔性絶縁層の占有体積を低減して、電池をより高容量とする点から好ましいが、絶縁性粒子の平均粒径が大きすぎると、薄い多孔性絶縁層を形成することが困難になる。また、絶縁性粒子が小さすぎると、絶縁性粒子の比表面積が大きくなり、絶縁性粒子同士を結着するために必要な結着剤量が増大して、多孔性絶縁層の耐熱性が低下する虞があることから、絶縁性粒子の平均粒径は、0.1μm以上であることが好ましく、0.25μm以上であることがより好ましい。なお、本明細書でいう絶縁性粒子の平均粒径は、レーザー散乱粒度分布径(HORIBA社製「LA−920」)を用い、微粒子を膨潤しない媒体(例えば水)に分散させて測定した数平均粒子径である。   The average particle size of the insulating particles is preferably 2 μm or less, and more preferably 1 μm or less. The porous insulating layer is preferably as thin as possible within a range that can ensure the effect, from the viewpoint of reducing the occupied volume of the porous insulating layer in the battery and increasing the capacity of the battery. If the average particle size of the particles is too large, it becomes difficult to form a thin porous insulating layer. If the insulating particles are too small, the specific surface area of the insulating particles increases, the amount of binder necessary to bind the insulating particles increases, and the heat resistance of the porous insulating layer decreases. Therefore, the average particle diameter of the insulating particles is preferably 0.1 μm or more, and more preferably 0.25 μm or more. In addition, the average particle diameter of the insulating particles referred to in this specification is the number measured by dispersing the fine particles in a medium that does not swell (for example, water) using a laser scattering particle size distribution diameter (“LA-920” manufactured by HORIBA). Average particle size.

上記の通り、ポリN−ビニルアセトアミドは、多孔性絶縁層形成用組成物中において、絶縁性粒子の凝集を抑えて良好に分散させる機能と共に、多孔性絶縁層中において絶縁性粒子同士を結着するための結着剤としての機能も有しているが、多孔性絶縁層には、ポリN−ビニルアセトアミド以外の結着剤を用いてもよい。   As described above, the poly N-vinylacetamide binds the insulating particles in the porous insulating layer together with the function of suppressing the aggregation of the insulating particles and dispersing them well in the composition for forming the porous insulating layer. However, a binder other than poly-N-vinylacetamide may be used for the porous insulating layer.

多孔性絶縁層に含有させるために、多孔性絶縁層形成用組成物に用いられるポリN−ビニルアセトアミド以外の結着剤としては、電気化学的に安定かつ非水電解液に対して安定で、絶縁性粒子を良好に接着できるものであればよいが、例えば、エチレン−酢酸ビニル共重合体(EVA、酢酸ビニル由来の構造単位が20〜35モル%のもの)、アクリル樹脂(エチレン−エチルアクリレート共重合体などのエチレン−アクリレート共重合体など)、ポリフッ化ビニリデン(PVDF)、フッ素系ゴム、スチレン−ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリウレタン、エポキシ樹脂などが挙げられ、これらを単独で使用してもよく、2種以上を併用してもよい。なお、これらの結着剤は、多孔性絶縁層形成用組成物の溶剤に溶解していてもよく、分散したエマルジョンの形態であってもよい。   As a binder other than poly-N-vinylacetamide used in the composition for forming a porous insulation layer for inclusion in the porous insulation layer, it is electrochemically stable and stable with respect to the non-aqueous electrolyte, Any material can be used as long as it can adhere the insulating particles satisfactorily. For example, ethylene-vinyl acetate copolymer (EVA, vinyl acetate-derived structural unit is 20 to 35 mol%), acrylic resin (ethylene-ethyl acrylate) Ethylene-acrylate copolymers such as copolymers), polyvinylidene fluoride (PVDF), fluorine-based rubber, styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVA) , Polyvinyl butyral (PVB), polyvinyl pyrrolidone (PVP), polyurea Emissions, such as epoxy resins. May use these alone or in combination of two or more. These binders may be dissolved in the solvent of the porous insulating layer forming composition or may be in the form of a dispersed emulsion.

多孔性絶縁層形成用組成物に用いられる溶剤は、ポリN−ビニルアセトアミドの使用によって絶縁性粒子を均一に分散でき、また、ポリN−ビニルアセトアミド以外の結着剤を使用する場合には、かかる結着剤を均一に溶解または分散できるものであればよいが、例えば、N−メチル−2−ピロリドン(NMP);N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;ジメチルスルホキシド;トルエンなどの芳香族炭化水素;テトラヒドロフランなどのフラン類;メチルエチルケトン、メチルイソブチルケトンなどのケトン類;などの有機溶媒が好適であり、これらの中でも、極性溶媒[特にNMP、アミド類、ジメチルスルホキシドなど]が、多孔性絶縁層形成用組成物により形成される塗膜との親和性が高いことから好ましい。なお、これらの溶媒に、界面張力を制御する目的で、アルコール(エチレングリコール、プロピレングリコールなど)、または、モノメチルアセテートなどの各種プロピレンオキサイド系グリコールエーテルなどを適宜添加してもよい。また、ポリN−ビニルアセトアミド以外の結着剤が水溶性である場合や、エマルジョンとして使用する場合などでは、水を溶媒としてもよく、この際にもアルコール類(メチルアルコール、エチルアルコール、イソプロピルアルコール、エチレングリコールなど)を適宜加えて界面張力を制御することもできる。   The solvent used in the composition for forming a porous insulating layer can uniformly disperse the insulating particles by using poly N-vinylacetamide, and when using a binder other than poly N-vinylacetamide, Any binder can be used as long as it can be dissolved or dispersed uniformly. Examples thereof include N-methyl-2-pyrrolidone (NMP); amides such as N, N-dimethylformamide and N, N-dimethylacetamide; Preferred are organic solvents such as sulfoxides; aromatic hydrocarbons such as toluene; furans such as tetrahydrofuran; ketones such as methyl ethyl ketone and methyl isobutyl ketone; among these, polar solvents [especially NMP, amides, dimethyl sulfoxide Etc.] has a high affinity with the coating film formed by the porous insulating layer forming composition Preferable from the. In addition, for the purpose of controlling the interfacial tension, alcohols (ethylene glycol, propylene glycol, etc.) or various propylene oxide glycol ethers such as monomethyl acetate may be appropriately added to these solvents. In addition, when a binder other than poly-N-vinylacetamide is water-soluble or used as an emulsion, water may be used as a solvent. In this case, alcohols (methyl alcohol, ethyl alcohol, isopropyl alcohol) may be used. , Ethylene glycol, etc.) can be added as appropriate to control the interfacial tension.

多孔性絶縁層形成用組成物におけるポリN−ビニルアセトアミドの使用量は、ポリN−ビニルアセトアミドの使用による作用(特に絶縁性粒子の分散性向上作用)をより有効に発揮させる観点から、絶縁性粒子100質量部に対して、1.5質量部以上であることが好ましく、2質量部以上であることがより好ましい。また、多孔性絶縁層中の有機物量が多くなると、リチウムイオンの移動に対する抵抗が大きくなり、ハイレート(高率)での放電特性の低下が懸念されることから、多孔性絶縁層形成用組成物におけるポリN−ビニルアセトアミドの使用量は、絶縁性粒子100質量部に対して、10質量部以下であることが好ましく、8質量部以下であることがより好ましい。   The amount of poly N-vinylacetamide used in the composition for forming a porous insulating layer is insulative from the viewpoint of more effectively exerting the action (especially the dispersibility improving action of insulating particles) due to the use of poly N-vinylacetamide. The amount is preferably 1.5 parts by mass or more and more preferably 2 parts by mass or more with respect to 100 parts by mass of the particles. In addition, when the amount of organic matter in the porous insulating layer increases, resistance to lithium ion migration increases, and there is a concern that the discharge characteristics at a high rate (high rate) may decrease. The amount of poly N-vinylacetamide used in is preferably 10 parts by mass or less and more preferably 8 parts by mass or less with respect to 100 parts by mass of the insulating particles.

なお、多孔性絶縁層形成用組成物において、ポリN−ビニルアセトアミド以外の結着剤を使用しない場合には、形成後の多孔性絶縁層において、ポリN−ビニルアセトアミドによる絶縁性粒子同士の結着作用をより有効に発揮させる観点から、多孔性絶縁層形成用組成物におけるポリN−ビニルアセトアミドの使用量は、絶縁性粒子100質量部に対して、3質量部以上であることが更に好ましく、5質量部以上であることが特に好ましい。   In the composition for forming a porous insulating layer, when no binder other than poly N-vinylacetamide is used, in the porous insulating layer after formation, the insulating particles are bonded with poly N-vinylacetamide. From the viewpoint of exerting the adhesion effect more effectively, the amount of poly N-vinylacetamide used in the composition for forming a porous insulating layer is more preferably 3 parts by mass or more with respect to 100 parts by mass of the insulating particles. It is particularly preferably 5 parts by mass or more.

また、多孔性絶縁層形成用組成物において、ポリN−ビニルアセトアミド以外の結着剤を使用する場合には、ポリN−ビニルアセトアミドの使用量を上記組成物中での絶縁性粒子の分散性向上作用が発揮できる程度に抑え、多孔性絶縁層における絶縁性粒子同士の結着作用を上記結着剤により補うようにしてもよく、例えば、多孔性絶縁層形成用組成におけるポリN−ビニルアセトアミドの使用量を、絶縁性粒子100質量部に対して、好ましくは6質量部以下、より好ましくは5質量部以下として、多孔性絶縁層中の有機物量の増大による電池のハイレートでの放電特性の低下を抑えるようにしてもよい。この場合、多孔性絶縁層形成用組成物におけるポリN−ビニルアセトアミド以外の結着剤の使用量は、絶縁性粒子100質量部に対して、好ましくは2質量部以上、より好ましくは3質量部以上であって、好ましくは8質量部以下、より好ましくは6質量部以下である。   In addition, when a binder other than poly-N-vinylacetamide is used in the composition for forming a porous insulating layer, the amount of poly-N-vinylacetamide used is determined according to the dispersibility of the insulating particles in the composition. For example, poly N-vinylacetamide in a composition for forming a porous insulating layer may be provided by suppressing the binding action between insulating particles in the porous insulating layer to the extent that an improving effect can be exhibited. Is preferably 6 parts by mass or less, more preferably 5 parts by mass or less with respect to 100 parts by mass of the insulating particles, and the discharge characteristics at a high rate of the battery due to an increase in the amount of organic substances in the porous insulating layer. You may make it suppress a fall. In this case, the amount of the binder other than poly-N-vinylacetamide used in the composition for forming a porous insulating layer is preferably 2 parts by mass or more, more preferably 3 parts by mass with respect to 100 parts by mass of the insulating particles. It is above, Preferably it is 8 mass parts or less, More preferably, it is 6 mass parts or less.

多孔性絶縁層形成用組成物における固形分濃度(絶縁性粒子、ポリN−ビニルアセトアミドおよびポリN−ビニルアセトアミド以外の結着剤を含む溶剤以外の成分の濃度)は、例えば、70〜80質量%とすることが好ましい。   The solid content concentration in the composition for forming a porous insulating layer (concentration of components other than insulating particles, binders other than poly-N-vinylacetamide and poly-N-vinylacetamide) is, for example, 70 to 80 mass. % Is preferable.

本発明のリチウムイオン二次電池用正極は、集電体の片面または両面に、リチウムイオンを吸蔵放出可能な正極活物質を含む正極合剤層を有しており、更に該正極合剤層の表面に本発明の多孔性絶縁層形成用組成物を用いて形成された多孔性絶縁層を有している。   The positive electrode for a lithium ion secondary battery of the present invention has a positive electrode mixture layer containing a positive electrode active material capable of occluding and releasing lithium ions on one side or both sides of a current collector, and further comprising the positive electrode mixture layer. The surface has a porous insulating layer formed using the composition for forming a porous insulating layer of the present invention.

正極活物質としては、従来公知のリチウムイオン二次電池に使用されているもの、例えば、Li1+xMO(−0.1<x<0.1、M:Co、Ni、Mnなど)で表されるリチウム含有遷移金属酸化物;LiMnなどのリチウムマンガン酸化物;LiMnのMnの一部を他元素で置換したLiMn(1−x);オリビン型LiMPO(M:Co、Ni、Mn、Fe);LiMn0.5Ni0.5;Li(1+a)MnNiCo(1−x−y)(−0.1<a<0.1、0<x<0.5、0<y<0.5);などを適用することが可能である。そして、これらの正極活物質に公知の導電助剤(カーボンブラックなどの炭素材料など)やPVDFなどの結着剤などを適宜添加した正極合剤を、集電体を芯材として成形体に仕上げて集電体表面に正極合剤層を設けることができる。 Examples of the positive electrode active material include those used in conventionally known lithium ion secondary batteries, for example, Li 1 + x MO 2 (−0.1 <x <0.1, M: Co, Ni, Mn, etc.). lithium-containing transition metal oxide is; LiMn 2 O 4 lithium-manganese oxide such as; LiMn x M (1-x ) O 2 where a part of Mn of LiMn 2 O 4 was substituted with another element; olivine LiMPO 4 (M: Co, Ni, Mn, Fe); LiMn 0.5 Ni 0.5 O 2 ; Li (1 + a) Mn x Ni y Co (1-xy) O 2 (−0.1 <a <0 .1, 0 <x <0.5, 0 <y <0.5); A positive electrode mixture in which a known conductive additive (carbon material such as carbon black) or a binder such as PVDF is appropriately added to these positive electrode active materials is finished into a molded body using the current collector as a core material. Thus, a positive electrode mixture layer can be provided on the surface of the current collector.

正極合剤層の組成としては、正極活物質の含有量は95〜98質量%であることが好ましく、導電助剤の含有量は0.5〜3質量%であることが好ましく、結着剤の含有量は1〜2質量%であることが好ましい。また、正極合剤層の厚み(片面あたりの厚み)は、60〜160μmであることが好ましい。   As the composition of the positive electrode mixture layer, the content of the positive electrode active material is preferably 95 to 98% by mass, the content of the conductive auxiliary agent is preferably 0.5 to 3% by mass, and the binder. The content of is preferably 1-2% by mass. Moreover, it is preferable that the thickness (thickness per one side) of a positive mix layer is 60-160 micrometers.

正極の集電体としては、アルミニウムなどの金属の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、厚みが10〜30μmのアルミニウム箔が好適に用いられる。   As the current collector of the positive electrode, a metal foil such as aluminum, a punching metal, a net, an expanded metal, or the like can be used. Usually, an aluminum foil having a thickness of 10 to 30 μm is preferably used.

正極側のリード部は、通常、正極作製時に、集電体の一部に正極合剤層を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。ただし、リード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体にアルミニウム製の箔などを後から接続することによって設けてもよい。   The lead portion on the positive electrode side is normally provided by leaving the exposed portion of the current collector without forming the positive electrode mixture layer on a part of the current collector and forming the lead portion at the time of producing the positive electrode. However, the lead portion is not necessarily integrated with the current collector from the beginning, and may be provided by connecting an aluminum foil or the like to the current collector later.

集電体の表面に形成された正極合剤層の表面に、本発明の多孔性絶縁層形成用組成物を塗布し乾燥して多孔性絶縁層を形成し、本発明の正極とすることができる。なお、正極の正極合剤層は、正極活物質を含む正極合剤をNMPなどの溶媒に分散させた正極合剤含有組成物(スラリー、ペーストなど)を集電体に塗布し、乾燥することで形成される場合がある。このような製法を経て形成される正極合剤層の表面に多孔性絶縁層を形成する場合には、集電体上に塗布後、完全に乾燥する前の正極合剤含有組成物の上に、多孔性絶縁層形成用組成物を塗布し乾燥する方法により、正極合剤層と多孔性絶縁層とを同時に形成するようにしてもよい。   The porous insulating layer-forming composition of the present invention is applied to the surface of the positive electrode mixture layer formed on the surface of the current collector and dried to form a porous insulating layer, thereby forming the positive electrode of the present invention. it can. The positive electrode mixture layer of the positive electrode is formed by applying a positive electrode mixture-containing composition (slurry, paste, etc.), in which a positive electrode mixture containing a positive electrode active material is dispersed in a solvent such as NMP, to a current collector and drying it. May be formed. When forming a porous insulating layer on the surface of the positive electrode mixture layer formed through such a manufacturing method, after coating on the current collector, on the positive electrode mixture containing composition before completely drying The positive electrode mixture layer and the porous insulating layer may be simultaneously formed by a method of applying and drying the porous insulating layer forming composition.

本発明のリチウムイオン二次電池用負極は、集電体の片面または両面に、リチウムイオンを吸蔵放出可能な負極活物質を含む負極合剤層を有しており、更に該負極合剤層の表面に本発明の多孔性絶縁層形成用組成物を用いて形成された多孔性絶縁層を有している。   The negative electrode for a lithium ion secondary battery of the present invention has a negative electrode mixture layer containing a negative electrode active material capable of occluding and releasing lithium ions on one side or both sides of a current collector, and further comprising the negative electrode mixture layer. The surface has a porous insulating layer formed using the composition for forming a porous insulating layer of the present invention.

負極活物質としては、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、リチウムを吸蔵、放出可能な炭素系材料の1種または2種以上の混合物が用いられる。また、Si,Sn、Ge,Bi,Sb、Inなどの元素およびその合金、リチウム含有窒化物、または酸化物などのリチウム金属に近い低電圧で充放電できる化合物、もしくはリチウム金属やリチウム/アルミニウム合金も負極活物質として用いることができる。そして、これらの負極活物質に導電助剤(カーボンブラックなどの炭素材料など)やPVDFなどの結着剤などを適宜添加した負極合剤を、集電体を芯材として成形体に仕上げることで、集電体表面に負極合剤層を形成することができる。   As the negative electrode active material, for example, lithium, such as graphite, pyrolytic carbons, cokes, glassy carbons, fired organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers, can be occluded and released. One kind or a mixture of two or more kinds of carbon-based materials is used. In addition, elements such as Si, Sn, Ge, Bi, Sb, In and their alloys, lithium-containing nitrides, oxides and other compounds that can be charged and discharged at a low voltage close to lithium metal, or lithium metals and lithium / aluminum alloys Can also be used as a negative electrode active material. Then, a negative electrode mixture obtained by appropriately adding a conductive additive (carbon material such as carbon black) or a binder such as PVDF to these negative electrode active materials is finished into a molded body using the current collector as a core material. A negative electrode mixture layer can be formed on the current collector surface.

負極合剤層の組成としては、負極活物質の含有量は97〜98質量%であることが好ましく、結着剤の含有量は1〜2質量%であることが好ましい。また、負極合剤層に導電助剤を含有させる場合には、負極合剤層中の導電助剤の含有量は、1〜2質量%であることが好ましい。更に、負極合剤層の厚み(片面あたりの厚み)は、50〜150μmであることが好ましい。   As the composition of the negative electrode mixture layer, the content of the negative electrode active material is preferably 97 to 98% by mass, and the content of the binder is preferably 1 to 2% by mass. Moreover, when making a negative electrode mixture layer contain a conductive support agent, it is preferable that content of the conductive support agent in a negative mix layer is 1-2 mass%. Furthermore, the thickness of the negative electrode mixture layer (thickness per one side) is preferably 50 to 150 μm.

負極の集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、また、下限は5μmであることが望ましい。   As the current collector for the negative electrode, a foil made of copper or nickel, a punching metal, a net, an expanded metal, or the like can be used, but a copper foil is usually used. In the negative electrode current collector, when the thickness of the entire negative electrode is reduced in order to obtain a battery having a high energy density, the upper limit of the thickness is preferably 30 μm, and the lower limit is preferably 5 μm.

負極側のリード部も、正極側のリード部と同様に、通常、負極作製時に、集電体の一部に負極合剤層を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。ただし、この負極側のリード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体に銅製の箔などを後から接続することによって設けてもよい。   As with the lead portion on the positive electrode side, the lead portion on the negative electrode side usually leaves an exposed portion of the current collector without forming a negative electrode mixture layer on a part of the current collector during the preparation of the negative electrode. It is provided by making it a part. However, the lead portion on the negative electrode side is not necessarily integrated with the current collector from the beginning, and may be provided by connecting a copper foil or the like to the current collector later.

集電体の表面に形成された負極合剤層の表面に、本発明の多孔性絶縁層形成用組成物を塗布し乾燥して多孔性絶縁層を形成し、本発明の負極とすることができる。なお、負極の負極合剤層は、負極活物質を含む負極合剤をNMPなどの溶媒に分散させた負極合剤含有組成物(スラリー、ペーストなど)を集電体に塗布し、乾燥することで形成される場合がある。このような製法を経て形成される負極合剤層の表面に多孔性絶縁層を形成する場合には、集電体上に塗布後、完全に乾燥する前の負極合剤含有組成物の上に、多孔性絶縁層形成用組成物を塗布し乾燥する方法により、負極合剤層と多孔性絶縁層とを同時に形成するようにしてもよい。   The porous insulating layer forming composition of the present invention is applied to the surface of the negative electrode mixture layer formed on the surface of the current collector and dried to form a porous insulating layer, whereby the negative electrode of the present invention can be obtained. it can. The negative electrode mixture layer of the negative electrode is obtained by applying a negative electrode mixture-containing composition (slurry, paste, etc.) in which a negative electrode mixture containing a negative electrode active material is dispersed in a solvent such as NMP to a current collector and drying it. May be formed. When forming a porous insulating layer on the surface of the negative electrode mixture layer formed through such a manufacturing method, after coating on the current collector, on the negative electrode mixture containing composition before completely drying The negative electrode mixture layer and the porous insulating layer may be formed at the same time by a method in which a composition for forming a porous insulating layer is applied and dried.

本発明の正極、本発明の負極のいずれにおいても、多孔性絶縁層の厚みは、多孔性絶縁層を形成することによる作用(電池内において、セパレータが収縮した場合に正極の正極合剤層と負極の負極合剤層との接触を防止する作用)をより有効に発揮させる観点からは、1μm以上であることが好ましく、2μm以上であることがより好ましい。また、電池内における多孔性絶縁層の占有体積を減らして、電池の容量低下を抑制する観点からは、本発明の正極、本発明の負極のいずれにおいても、多孔性絶縁層の厚みは、8μm以下であることが好ましく、6μm以下であることがより好ましい。   In both the positive electrode of the present invention and the negative electrode of the present invention, the thickness of the porous insulating layer is the same as that of the positive electrode mixture layer of the positive electrode when the separator contracts in the battery. From the viewpoint of more effectively exerting the effect of preventing the contact of the negative electrode with the negative electrode mixture layer), it is preferably 1 μm or more, and more preferably 2 μm or more. Moreover, from the viewpoint of reducing the occupied volume of the porous insulating layer in the battery and suppressing the capacity reduction of the battery, the thickness of the porous insulating layer is 8 μm in both the positive electrode of the present invention and the negative electrode of the present invention. Or less, and more preferably 6 μm or less.

本発明の正極、本発明の負極のいずれにおいても、多孔性絶縁層がポリN−ビニルアセトアミド以外の結着剤を含有していない場合には、多孔性絶縁層中のポリN−ビニルアセトアミドの含有量は、絶縁性粒子100質量部に対して、好ましくは3質量部以上、より好ましくは5質量部以上であって、好ましくは10質量部以下、より好ましくは8質量部以下である。   In either the positive electrode of the present invention or the negative electrode of the present invention, when the porous insulating layer does not contain a binder other than poly N-vinylacetamide, the poly N-vinylacetamide in the porous insulating layer The content is preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and preferably 10 parts by mass or less, more preferably 8 parts by mass or less, with respect to 100 parts by mass of the insulating particles.

また、本発明の正極、本発明の負極のいずれにおいても、多孔性絶縁層がポリN−ビニルアセトアミド以外の結着剤を含有している場合には、多孔性絶縁層中のポリN−ビニルアセトアミドの含有量は、絶縁性粒子100質量部に対して、好ましくは1.5質量部以上、より好ましくは2質量部以上であって、好ましくは6質量部以下、より好ましくは5質量部以下であり、多孔性絶縁層中のポリN−ビニルアセトアミド以外の結着剤の含有量は、絶縁性粒子100質量部に対して、好ましくは2質量部以上、より好ましくは3質量部以上であって、好ましくは8質量部以下、より好ましくは6質量部以下である。   In both the positive electrode of the present invention and the negative electrode of the present invention, when the porous insulating layer contains a binder other than poly N-vinylacetamide, the poly N-vinyl in the porous insulating layer is used. The content of acetamide is preferably 1.5 parts by mass or more, more preferably 2 parts by mass or more, preferably 6 parts by mass or less, more preferably 5 parts by mass or less, with respect to 100 parts by mass of the insulating particles. The content of the binder other than poly N-vinylacetamide in the porous insulating layer is preferably 2 parts by mass or more, more preferably 3 parts by mass or more with respect to 100 parts by mass of the insulating particles. The amount is preferably 8 parts by mass or less, more preferably 6 parts by mass or less.

本発明のリチウムイオン二次電池は、本発明のリチウムイオン二次電池用正極および本発明のリチウムイオン二次電池用負極のうち、少なくとも一方を有するものである。すなわち、本発明の電池において、多孔性絶縁層を有する電極は、正極であってもよく、負極であってもよい。また、正極と負極との両者が多孔性絶縁層を有していてもよい。更に、集電体の両面に正極合剤層を有しかつ片側の正極合剤層の表面に多孔性絶縁層を有する本発明の正極と、集電体の両面に負極合剤層を有しかつ片側の負極合剤層の表面に多孔性絶縁層を有する本発明の負極とを用い、正極と負極との間に常に多孔性絶縁層が介在するように、正極と負極とを重ね合わせて使用してもよい。   The lithium ion secondary battery of the present invention has at least one of the positive electrode for a lithium ion secondary battery of the present invention and the negative electrode for a lithium ion secondary battery of the present invention. That is, in the battery of the present invention, the electrode having a porous insulating layer may be a positive electrode or a negative electrode. Moreover, both the positive electrode and the negative electrode may have a porous insulating layer. Furthermore, the positive electrode of the present invention having a positive electrode mixture layer on both sides of the current collector and a porous insulating layer on the surface of the positive electrode mixture layer on one side, and a negative electrode mixture layer on both sides of the current collector And using the negative electrode of the present invention having a porous insulating layer on the surface of the negative electrode mixture layer on one side, the positive electrode and the negative electrode are overlapped so that the porous insulating layer is always interposed between the positive electrode and the negative electrode. May be used.

なお、本発明の電池に多孔性絶縁層を有しない正極または負極を用いる場合には、先に示した本発明の正極から多孔性絶縁層を除いた構成の正極、または先に示した本発明の負極から多孔性絶縁層を除いた構成の負極を用いることができる。   In addition, when using the positive electrode or negative electrode which does not have a porous insulating layer for the battery of this invention, the positive electrode of the structure which remove | excluded the porous insulating layer from the positive electrode of this invention shown previously, or this invention shown previously. A negative electrode having a configuration in which the porous insulating layer is removed from the negative electrode can be used.

本発明の電池に係るセパレータには、従来公知のリチウムイオン二次電池に採用されている微孔性フィルム、すなわち、フィルムの構成樹脂に無機フィラーなどを含有させてフィルム化したものを、一軸延伸または二軸延伸して孔を形成した微孔性フィルム製のセパレータが適用できる。   The separator according to the battery of the present invention is a uniaxially stretched microporous film employed in a conventionally known lithium ion secondary battery, that is, a film formed by adding an inorganic filler to the constituent resin of the film. Alternatively, a separator made of a microporous film in which holes are formed by biaxial stretching can be applied.

セパレータとなる微孔性フィルムを構成する樹脂としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィンなどが挙げられる。   As resin which comprises the microporous film used as a separator, polyolefin, such as polyethylene (PE) and polypropylene (PP), etc. are mentioned, for example.

なお、本発明の電池で使用するセパレータの厚みについては、特に制限はなく、従来公知のリチウムイオン二次電池と同様に、例えば、正極の全厚みと負極の全厚みとの合計(多孔性絶縁層の厚みも含む。セパレータの厚みに関して、以下同じ。)に対して、厚みが10%以下(例えば、7%など)のセパレータを使用することができるが、正極および負極の少なくとも一方が有する多孔性絶縁層の存在により耐短絡性が高められているため、従来公知のリチウムイオン二次電池で採用されているよりも薄型で、熱収縮の度合いが大きなセパレータも使用することができ、これにより電極をより厚くして、高容量化を図ることも可能である。具体的には、正極の全厚みと負極の全厚みに対して、セパレータの厚みを、好ましくは5%以下、より好ましくは3%以下とすることができる。ただし、セパレータが薄すぎると、電池製造時に必要な強度や電池内において必要な強度を十分に確保することが困難になるため、その厚みは、8μm以上であることが好ましい。   The thickness of the separator used in the battery of the present invention is not particularly limited. For example, the sum of the total thickness of the positive electrode and the total thickness of the negative electrode (porous insulation) is the same as that of a conventionally known lithium ion secondary battery. The thickness of the layer is also included (the same applies to the thickness of the separator), and a separator having a thickness of 10% or less (for example, 7%) can be used. Since the short-circuit resistance is enhanced by the presence of the conductive insulating layer, it is possible to use a separator that is thinner and has a higher degree of thermal shrinkage than that employed in a conventionally known lithium ion secondary battery. It is also possible to increase the capacity by making the electrode thicker. Specifically, the thickness of the separator can be preferably 5% or less, more preferably 3% or less with respect to the total thickness of the positive electrode and the total thickness of the negative electrode. However, if the separator is too thin, it is difficult to ensure sufficient strength at the time of manufacturing the battery and sufficient strength in the battery. Therefore, the thickness is preferably 8 μm or more.

また、セパレータの空孔率は30〜70%であることが好ましい。   Moreover, it is preferable that the porosity of a separator is 30 to 70%.

本発明のリチウムイオン二次電池は、例えば、正極と負極とを、セパレータを介し、かつ多孔性絶縁層が正極と負極との間に介在するように重ね合わせて積層電極体としたり、更にこれを渦巻状に巻回して巻回電極体とし、このような電極体を外装体に挿入した後に非水電解液を注入してから、外装体を封止する工程を経て作製される。   The lithium ion secondary battery of the present invention can be formed, for example, by laminating a positive electrode and a negative electrode with a separator interposed therebetween so that a porous insulating layer is interposed between the positive electrode and the negative electrode. Is wound to form a wound electrode body. After inserting such an electrode body into the exterior body, a non-aqueous electrolyte is injected, and then the exterior body is sealed.

電池の外装体としては、特に制限はなく、従来公知のリチウムイオン二次電池に採用されている筒形(角筒形や円筒形など)のスチール缶やアルミニウム缶などが挙げられる。また、樹脂フィルムに金属を蒸着したラミネートフィルムを外装体に用いることもできる。   There is no restriction | limiting in particular as an exterior body of a battery, The steel can, aluminum can, etc. of the cylinder shape (square tube shape, cylindrical shape, etc.) employ | adopted as a conventionally well-known lithium ion secondary battery are mentioned. In addition, a laminate film obtained by vapor-depositing a metal on a resin film can be used for the exterior body.

非水電解液としては、例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、プロピオン酸メチル、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、エチレングリコールサルファイト、1,2−ジメトキシエタン、1,3−ジオキソラン、テトラヒドロフラン、2−メチル−テトラヒドロフラン、ジエチルエーテルなどの1種のみからなる有機溶媒、あるいは2種以上の混合溶媒に、例えば、LiClO、LiPF、LiBF 、LiAsF 、LiSbF 、LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕などのリチウム塩から選ばれる少なくとも1種を溶解させることによって調製したものが使用される。このリチウム塩の電解液中の濃度としては、0.5〜1.5mol/lとすることが好ましく、0.9〜1.25mol/lとすることがより好ましい。 Examples of the non-aqueous electrolyte include dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propionate, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, ethylene glycol sulfite, 1,2-dimethoxyethane, 1, 3-dioxolane, tetrahydrofuran, 2-methyl - tetrahydrofuran, one composed of only an organic solvent such as diethyl ether or a mixture of two or more solvents, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3) 2, LiN (CF 3 SO 2) 2, LiC (CF 3 SO 2) 3, LiC n F 2n + 1 SO 3 (n ≧ ), LiN (RfOSO 2) those 2 [here Rf of fluoroalkyl group] was prepared by dissolving at least one selected from lithium salts such as are used. The concentration of the lithium salt in the electrolytic solution is preferably 0.5 to 1.5 mol / l, and more preferably 0.9 to 1.25 mol / l.

更に、非水電解液には、電池の充放電サイクル特性や負荷特性の向上を目的として、ビニレンカーボネートなどの二重結合を有するエステル;プロパンスルトンなどのイオウ含有有機化合物;フルオロベンゼンなどのフッ素含有芳香族化合物:などの添加剤を添加することが好ましい。   In addition, non-aqueous electrolytes include esters with double bonds such as vinylene carbonate; sulfur-containing organic compounds such as propane sultone; fluorine-containing fluorine such as fluorobenzene for the purpose of improving charge / discharge cycle characteristics and load characteristics of the battery. It is preferable to add additives such as aromatic compounds.

本発明のリチウムイオン二次電池は、従来公知のリチウムイオン二次電池が適用されている各種用途と同じ用途に用いることができる。   The lithium ion secondary battery of this invention can be used for the same use as the various uses to which a conventionally well-known lithium ion secondary battery is applied.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは、全て本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.

実施例1
<多孔性絶縁層形成用スラリーの調製>
平均粒径0.5μmのアルミナ粒子100質量部、PVDFのNMP溶液(呉羽化学株式会社製「PVDF #9305」、固形分濃度5質量%)90質量部、ポリN−ビニルアセトアミドのNMP溶液(昭和電工株式会社製「GE−191」、固形分濃度5質量%)100質量部、およびNMP:84質量部を混合し、ビーズ分散機にて塗料化して、多孔性絶縁層形成用スラリーを調製した。得られた多孔性絶縁層形成用組成物におけるポリN−ビニルアセトアミドの量は、アルミナ粒子100質量部に対して5質量部であり、PVDFの量は、アルミナ粒子100質量部に対して4.5質量部である。
Example 1
<Preparation of slurry for forming porous insulating layer>
100 parts by mass of alumina particles having an average particle size of 0.5 μm, 90 parts by mass of NDF solution of PVDF (“PVDF # 9305” manufactured by Kureha Chemical Co., Ltd., solid concentration 5% by mass), NMP solution of poly N-vinylacetamide (Showa) 100 parts by mass of “GE-191” manufactured by Denko Co., Ltd., solid content concentration of 5% by mass) and 84 parts by mass of NMP were mixed and made into a paint with a bead disperser to prepare a slurry for forming a porous insulating layer. . The amount of poly N-vinylacetamide in the obtained composition for forming a porous insulating layer is 5 parts by mass with respect to 100 parts by mass of alumina particles, and the amount of PVDF is 4. 5 parts by mass.

<負極の作製>
負極活物質として黒鉛系炭素材料(A)[純度99.9%以上、平均粒子径18μm、002面の面間距離(d002)=0.3356nm、c軸方向の結晶子の大きさ(Lc)=100nm、R値(波長514.5nmのアルゴンレーザーで励起させた時のラマンスペクトルにおける1350cm−1付近のピーク強度と1580cm−1付近のピーク強度との比〔R=I1350/I1580〕)=0.18]70質量部と、黒鉛系炭素材料(B)[純度99.9%以上、平均粒子径21μm、d002=0.3363nm、Lc=60nm、R値=0.11]30質量部とを混合し、この混合物98質量部と、CMC:1質量部とSBR:1質量部とを、水の存在下で混合してスラリー状の負極合剤含有ペーストを調製した。得られた負極合剤含有ペーストを、厚みが10μmの銅箔からなる負極集電体の両面に塗布し、乾燥して負極合剤層を形成し、ローラーで負極合剤層の密度が1.65g/cmになるまで加圧処理し、所定のサイズに切断後、ニッケル製のリード体を溶接して負極を作製した。得られた負極の負極合剤層の厚みは片面当たり60μmで、負極の全厚みは130μmであった。
<Production of negative electrode>
Graphite-based carbon material (A) as a negative electrode active material [purity 99.9% or more, average particle diameter 18 μm, inter-surface distance (d 002 ) = 0.3356 nm, crystallite size in the c-axis direction (Lc ) = 100 nm, R value (ratio of peak intensity around 1350 cm −1 and peak intensity around 1580 cm −1 in the Raman spectrum when excited by an argon laser with a wavelength of 514.5 nm [R = I 1350 / I 1580 ] ) = 0.18] 70 parts by mass and graphite-based carbon material (B) [purity 99.9% or more, average particle diameter 21 μm, d 002 = 0.3363 nm, Lc = 60 nm, R value = 0.11] 30 The mixture was mixed with 98 parts by mass of this mixture, and 1 part by mass of CMC and 1 part by mass of SBR in the presence of water to prepare a slurry-like negative electrode mixture-containing paste. The obtained negative electrode mixture-containing paste was applied to both surfaces of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried to form a negative electrode mixture layer, and the density of the negative electrode mixture layer was 1. A pressure treatment was performed until the pressure became 65 g / cm 3, and after cutting into a predetermined size, a nickel lead was welded to prepare a negative electrode. The thickness of the negative electrode mixture layer of the obtained negative electrode was 60 μm per side, and the total thickness of the negative electrode was 130 μm.

上記負極の両面の負極合剤層表面に、上記多孔性絶縁層形成用スラリーをスロットダイ方式によって塗布し、乾燥して、片面当たり厚みが5μmの多孔性絶縁層を形成した。   The porous insulating layer forming slurry was applied to the surface of the negative electrode mixture layer on both surfaces of the negative electrode by a slot die method, and dried to form a porous insulating layer having a thickness of 5 μm per side.

<正極の作製>
コバルト酸リチウム97.3質量部と、導電助剤としての炭素材料1.5質量部とを、粉体供給装置である定量フィーダ内に投入し、また、PVDFのNMP溶液(呉羽化学株式会社製「L #1120」、固形分濃度12質量%)の投入量を調整し、混練時の固形分濃度が常に94質量%になるように調整した材料を、単位時間あたり所定の投入量になるように制御しつつ二軸混練押出機に投入して混練を行い、正極合剤含有ペーストを調製した。得られた正極合剤含有ペーストをプラネタリーミキサー内に投入し、上記と同じPVDFのNMP溶液とNMPとを加えて希釈し、塗布可能な粘度に調整した。希釈後の正極合剤含有ペーストの固形分濃度は73.0質量%であった。この希釈後の正極合剤含有ペーストを70メッシュの網を通過させて大きな含有物を取り除いた後、厚みが15μmのアルミニウム箔からなる正極集電体の両面に均一に塗布し、乾燥して膜状の正極合剤層を形成した。乾燥後の正極合剤層の固形分比率は、正極活物質:導電助剤:PVDFが質量比で97.3:1.5:1.2である。その後、加圧処理し、所定のサイズに切断後、アルミニウム製のリード体を溶接して、シート状の正極を作製した。加圧処理後の正極合剤層の密度(正極の密度)は3.8g/cmで、正極合剤層の厚みは片面当たり60μmで、正極の全厚みは135μmであった。
<Preparation of positive electrode>
97.3 parts by mass of lithium cobaltate and 1.5 parts by mass of a carbon material as a conductive auxiliary agent are put into a quantitative feeder which is a powder feeder, and an NMP solution of PVDF (manufactured by Kureha Chemical Co., Ltd.). “L # 1120”, solid content concentration of 12% by mass) is adjusted so that the solid content concentration during kneading is always 94% by mass so that a predetermined input amount per unit time is obtained. The mixture was fed into a twin-screw kneading extruder while being kneaded to prepare a positive electrode mixture-containing paste. The obtained positive electrode mixture-containing paste was put into a planetary mixer, diluted with the same PVDF NMP solution and NMP as described above, and adjusted to a coatable viscosity. The solid content concentration of the positive electrode mixture-containing paste after dilution was 73.0% by mass. The diluted positive electrode mixture-containing paste is passed through a 70-mesh net to remove large inclusions, and then uniformly applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 15 μm and dried to form a film. A positive electrode mixture layer was formed. The solid content ratio of the positive electrode mixture layer after drying is 97.3: 1.5: 1.2 in terms of mass ratio of positive electrode active material: conductive auxiliary agent: PVDF. Then, after pressurizing and cutting to a predetermined size, an aluminum lead body was welded to produce a sheet-like positive electrode. The density of the positive electrode mixture layer after the pressure treatment (positive electrode density) was 3.8 g / cm 3 , the thickness of the positive electrode mixture layer was 60 μm per side, and the total thickness of the positive electrode was 135 μm.

<電池の組み立て>
上記正極および上記負極を乾燥処理した後、厚みが12μmの微孔性PEフィルムからなるセパレータを介して重ね、渦巻状に巻回してから押しつぶして扁平状の巻回電極体とし、これをアルミニウム合金製の角形電池ケース内に挿入し、正・負極リード体の溶接と蓋板の電池ケースへの開口端部へのレーザー溶接を行い、封口用蓋板に設けた注入口から上記の非水電解液を電池ケース内に注入し、非水電解液をセパレータなどに十分に浸透させた後、部分充電を行い、部分充電で発生したガスを排出後、注入口を封止して密閉状態にした。その後、充電、エイジングを行い、図2に示すような構造で図3に示すような外観を有し、幅が34.0mmで、厚みが4.0mmで、高さが50.0mmの角形のリチウムイオン二次電池を得た。なお、非水電解液には、メチルエチルカーボネートとジエチルカーボネートとエチレンカーボネートとの混合比が1.5/0.5/1.0(体積比)の混合溶媒に、LiPFを1.2mol/lで溶解させたものを用いた。
<Battery assembly>
After drying the positive electrode and the negative electrode, they are stacked through a separator made of a microporous PE film having a thickness of 12 μm, wound in a spiral shape, and then crushed into a flat wound electrode body, which is an aluminum alloy. Inserted into a rectangular battery case made of metal, welded positive and negative electrode lead bodies and laser welded to the opening end of the cover plate to the battery case, the above non-aqueous electrolysis from the inlet provided in the sealing cover plate After injecting the solution into the battery case and fully infiltrating the non-aqueous electrolyte into the separator, etc., partial charging was performed, and after the gas generated by partial charging was discharged, the inlet was sealed and sealed. . Thereafter, charging and aging are performed, the structure shown in FIG. 2 has the appearance shown in FIG. 3, the width is 34.0 mm, the thickness is 4.0 mm, and the height is 50.0 mm. A lithium ion secondary battery was obtained. The non-aqueous electrolyte includes a mixed solvent of methyl ethyl carbonate, diethyl carbonate and ethylene carbonate having a mixing ratio of 1.5 / 0.5 / 1.0 (volume ratio) and LiPF 6 of 1.2 mol / What was dissolved in 1 was used.

ここで図2〜3に示す電池について説明すると、正極10と負極20は上記のようにセパレータ30を介し、かつ負極20の多孔性絶縁層が介在するようにして渦巻状に巻回し、扁平状にした巻回電極体60として、角形の電池ケース40に非水電解液と共に収容されている。ただし、図2では、煩雑化を避けるため、正極10や負極20の作製にあたって使用した集電体としての金属箔や非水電解液、負極20の負極合剤層表面に形成した多孔性絶縁層などは図示していない。   Here, the battery shown in FIGS. 2 to 3 will be described. The positive electrode 10 and the negative electrode 20 are wound in a spiral shape with the separator 30 interposed therebetween and the porous insulating layer of the negative electrode 20 interposed therebetween as described above. The wound electrode body 60 is accommodated in a rectangular battery case 40 together with a non-aqueous electrolyte. However, in FIG. 2, in order to avoid complication, a metal foil or a non-aqueous electrolyte as a current collector used in the production of the positive electrode 10 and the negative electrode 20, a porous insulating layer formed on the negative electrode mixture layer surface of the negative electrode 20 Etc. are not shown.

電池ケース40はアルミニウム合金製で電池の外装材の主要部分を構成するものであり、この電池ケース40は正極端子を兼ねている。そして、電池ケース40の底部にはポリテトラフルオロエチレンシートからなる絶縁体50が配置され、上記正極10、負極20およびセパレータ30からなる巻回電極体60からは、正極10および負極20のそれぞれ一端に接続された正極リード体70と負極リード体80が引き出されている。また、電池ケース40の開口部を封口するアルミニウム製の蓋板90にはポリプロピレン製の絶縁パッキング100を介してステンレス鋼製の端子110が取り付けられ、この端子110には絶縁体120を介してステンレス鋼製のリード板130が取り付けられている。   The battery case 40 is made of an aluminum alloy and constitutes the main part of the battery exterior material. The battery case 40 also serves as a positive electrode terminal. An insulator 50 made of a polytetrafluoroethylene sheet is disposed at the bottom of the battery case 40. From the wound electrode body 60 made of the positive electrode 10, the negative electrode 20, and the separator 30, one end of each of the positive electrode 10 and the negative electrode 20 is provided. The positive electrode lead body 70 and the negative electrode lead body 80 connected to each other are drawn out. A stainless steel terminal 110 is attached to the aluminum lid plate 90 that seals the opening of the battery case 40 via a polypropylene insulating packing 100, and the terminal 110 is made of stainless steel via an insulator 120. A steel lead plate 130 is attached.

そして、この蓋板90は上記電池ケース40の開口部に挿入され、両者の接合部を溶接することによって、電池ケース40の開口部が封口され、電池内部が密閉されている。また、図2の電池では、蓋板90に電解液注入口140が設けられており、この電解液注入口140には、封止部材が挿入された状態で、例えばレーザー溶接などにより溶接封止されて、電池の密閉性が確保されている(従って、図2および図3の電池では、実際には、電解液注入口140は、電解液注入口と封止部材であるが、説明を容易にするために、電解液注入口140として示している)。更に、蓋板90には、防爆ベント150が設けられている。   And this cover plate 90 is inserted in the opening part of the said battery case 40, and the opening part of the battery case 40 is sealed by welding the junction part of both, and the inside of a battery is sealed. Further, in the battery of FIG. 2, an electrolyte solution inlet 140 is provided in the cover plate 90, and the electrolyte solution inlet 140 is welded and sealed by, for example, laser welding in a state where a sealing member is inserted. Thus, the sealing property of the battery is ensured (therefore, in the batteries of FIGS. 2 and 3, the electrolyte inlet 140 is actually the electrolyte inlet and the sealing member, but the explanation is easy. In order to achieve this, it is shown as an electrolyte inlet 140). Furthermore, the cover plate 90 is provided with an explosion-proof vent 150.

この実施例1の電池では、正極リード体70を蓋板90に直接溶接することによって電池ケース40と蓋板90とが正極端子として機能し、負極リード体80をリード板130に溶接し、そのリード板130を介して負極リード体80と端子110とを導通させることによって端子110が負極端子として機能するようになっているが、電池ケース40の材質などによっては、その正負が逆になる場合もある。   In the battery of Example 1, the battery case 40 and the cover plate 90 function as positive terminals by directly welding the positive electrode lead body 70 to the cover plate 90, and the negative electrode lead body 80 is welded to the lead plate 130. The negative electrode lead body 80 and the terminal 110 are electrically connected via the lead plate 130 so that the terminal 110 functions as a negative electrode terminal. However, depending on the material of the battery case 40, the sign may be reversed. There is also.

図3は、図2に示す電池の外観を模式的に示す斜視図であり、この図3は上記電池が角形電池であることを示すことを目的として図示されたものであって、この図3では電池を概略的に示しており、電池構成部材のうち特定のものを示している。   FIG. 3 is a perspective view schematically showing the external appearance of the battery shown in FIG. 2. This FIG. 3 is shown for the purpose of showing that the battery is a square battery. Fig. 1 schematically shows a battery, and shows a specific battery component.

実施例2
多孔性絶縁層形成用スラリー中のポリN−ビニルアセトアミドの量を、アルミナ粒子100質量部に対して6質量部とした以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
Example 2
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the amount of poly N-vinylacetamide in the slurry for forming the porous insulating layer was 6 parts by mass with respect to 100 parts by mass of the alumina particles.

実施例3
多孔性絶縁層形成用スラリー中のポリN−ビニルアセトアミドの量を、アルミナ粒子100質量部に対して1.5質量部とした以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
Example 3
A lithium ion secondary battery is produced in the same manner as in Example 1 except that the amount of poly N-vinylacetamide in the slurry for forming the porous insulating layer is 1.5 parts by mass with respect to 100 parts by mass of the alumina particles. did.

実施例4
実施例1と同様にして調製した多孔性絶縁層形成用スラリーを、実施例1と同様にして作製した正極の両面の正極合剤層表面にスロットダイ方式によって塗布し、乾燥して、片面当たり厚みが5μmの多孔性絶縁層を形成した。
Example 4
The slurry for forming a porous insulating layer prepared in the same manner as in Example 1 was applied to the surface of the positive electrode mixture layer on both surfaces of the positive electrode prepared in the same manner as in Example 1 by the slot die method, dried, A porous insulating layer having a thickness of 5 μm was formed.

上記の正極と、多孔性絶縁層を形成しない他は実施例1と同様にして作製した負極とを用いた以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。   A lithium ion secondary battery was produced in the same manner as in Example 1 except that the above positive electrode and a negative electrode produced in the same manner as in Example 1 were used except that the porous insulating layer was not formed.

実施例5
実施例3と同様にして調製した多孔性絶縁層形成用スラリーを用いた以外は、実施例4と同様にしてリチウムイオン二次電池を作製した。
Example 5
A lithium ion secondary battery was produced in the same manner as in Example 4 except that the porous insulating layer forming slurry prepared in the same manner as in Example 3 was used.

実施例6
多孔性絶縁層の厚みを、負極の片面当たり3μmとした以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
Example 6
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the thickness of the porous insulating layer was 3 μm per side of the negative electrode.

実施例7
PVDFを用いず、ポリN−ビニルアセトアミドの量を、アルミナ粒子100質量部に対して7質量部に変更した以外は、実施例1と同様にして調製した多孔性絶縁層形成用スラリーを使用した以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
Example 7
A slurry for forming a porous insulating layer prepared in the same manner as in Example 1 was used except that PVDF was not used and the amount of poly N-vinylacetamide was changed to 7 parts by mass with respect to 100 parts by mass of alumina particles. A lithium ion secondary battery was produced in the same manner as in Example 1 except for the above.

実施例8
多孔性絶縁層の厚みを、負極の片面当たり8μmとした以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
Example 8
A lithium ion secondary battery was fabricated in the same manner as in Example 1 except that the thickness of the porous insulating layer was 8 μm per one side of the negative electrode.

実施例9
平均粒径0.25μmのアルミナ粒子を用いた以外は実施例1と同様にして調製した多孔性絶縁層形成用スラリーを使用し、多孔性絶縁層の厚みを、負極の片面当たり2μmとした以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
Example 9
Except for using alumina particles having an average particle diameter of 0.25 μm, a slurry for forming a porous insulating layer prepared in the same manner as in Example 1 was used, and the thickness of the porous insulating layer was 2 μm per one side of the negative electrode Produced a lithium ion secondary battery in the same manner as in Example 1.

実施例10
平均粒径0.2μmのアルミナ粒子を用いた以外は実施例1と同様にして調製した多孔性絶縁層形成用スラリーを使用し、多孔性絶縁層の厚みを、負極の片面当たり8μmとした以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
Example 10
Except for using alumina particles having an average particle size of 0.2 μm, a slurry for forming a porous insulating layer prepared in the same manner as in Example 1 was used, and the thickness of the porous insulating layer was 8 μm per side of the negative electrode Produced a lithium ion secondary battery in the same manner as in Example 1.

比較例1
ポリN−ビニルアセトアミドを添加しなかった以外は、実施例1と同様にして多孔性絶縁層形成用スラリーを調製し、この多孔性絶縁層形成用スラリーを用いた以外は実施例1と同様にしてリチウムイオン二次電池を作製した。
Comparative Example 1
A slurry for forming a porous insulating layer was prepared in the same manner as in Example 1 except that no poly N-vinylacetamide was added, and the same procedure as in Example 1 was performed except that this slurry for forming a porous insulating layer was used. Thus, a lithium ion secondary battery was produced.

比較例2
比較例1と同様にして調製した多孔性絶縁層形成用スラリーを用いた以外は、実施例5と同様にしてリチウムイオン二次電池を作製した。
Comparative Example 2
A lithium ion secondary battery was produced in the same manner as in Example 5 except that the slurry for forming a porous insulating layer prepared in the same manner as in Comparative Example 1 was used.

比較例3
正極および負極のいずれにも多孔性絶縁層を形成しなかった以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
Comparative Example 3
A lithium ion secondary battery was produced in the same manner as in Example 1 except that no porous insulating layer was formed on either the positive electrode or the negative electrode.

実施例1〜10および比較例1〜2で作製した電極表面の多孔性絶縁層の表面外観評価、並びに実施例1〜10および比較例1〜3の電池について、充放電レート特性評価と高温貯蔵試験とを行った。結果を表1に示す。   Surface appearance evaluation of the porous insulating layer on the electrode surface produced in Examples 1 to 10 and Comparative Examples 1 to 2, and the batteries of Examples 1 to 10 and Comparative Examples 1 to 3 were evaluated for charge / discharge rate characteristics and high-temperature storage. Tests were conducted. The results are shown in Table 1.

<多孔性絶縁層の表面外観評価>
実施例1〜10および比較例1〜2で作製した負極または正極表面の多孔性絶縁層の表面状態を目視観察し、塗布スジやピンホールなどの不具合の有無を調べた。
<Evaluation of surface appearance of porous insulating layer>
The surface state of the porous insulating layer on the negative electrode or the positive electrode surface prepared in Examples 1 to 10 and Comparative Examples 1 to 2 was visually observed to check for defects such as coating stripes and pinholes.

<電池の充放電レート特性評価>
実施例1〜10および比較例1〜3のリチウムイオン二次電池を、4.2Vまで0.2Cの定電流で充電後、総充電時間が8時間となるまで4.2Vで定電圧充電し、続いて0.2Cで電池電圧が3.0Vになるまで定電流放電を行い、放電容量(A)を求めた。その後に再び、同条件で充電後に2Cで電池電圧が3.0Vになるまで定電流放電を行い、放電容量(B)を求めた。放電容量(A)に対する放電容量(B)の割合を百分率で表して、充放電レート特性値とした。
<Evaluation of battery charge / discharge rate characteristics>
The lithium ion secondary batteries of Examples 1 to 10 and Comparative Examples 1 to 3 were charged at a constant current of 0.2 C up to 4.2 V and then charged at a constant voltage of 4.2 V until the total charging time was 8 hours. Subsequently, constant current discharge was performed until the battery voltage became 3.0 V at 0.2 C, and the discharge capacity (A) was obtained. Thereafter, constant current discharge was performed again until the battery voltage reached 3.0 V at 2C after charging under the same conditions, and the discharge capacity (B) was determined. The ratio of the discharge capacity (B) to the discharge capacity (A) was expressed as a percentage and used as the charge / discharge rate characteristic value.

<電池の高温貯蔵試験>
実施例1〜10および比較例1〜3の電池を各10個用意し、これらを4.2Vまで0.2Cの定電流で充電後、総充電時間が8時間となるまで定電圧で充電した。その後これらの電池を130℃に保持した恒温槽内で2時間貯蔵し、室温まで冷却してから電池電圧を測定し、3.0V以下となった電池の個数を調べた。
<High-temperature battery storage test>
10 batteries of Examples 1 to 10 and Comparative Examples 1 to 3 were prepared, and after charging with a constant current of 0.2 C to 4.2 V, they were charged with a constant voltage until the total charging time was 8 hours. . Thereafter, these batteries were stored in a thermostat kept at 130 ° C. for 2 hours, cooled to room temperature, and then the battery voltage was measured to examine the number of batteries having a voltage of 3.0 V or less.

Figure 2008226566
Figure 2008226566

表1において、高温貯蔵試験の欄の「電圧低下個数」とは、高温貯蔵試験において、電池電圧が3.0V以下となった電池の個数を意味している。   In Table 1, the “number of voltage drops” in the column of the high temperature storage test means the number of batteries whose battery voltage is 3.0 V or less in the high temperature storage test.

表1から明らかなように、ポリN−ビニルアセトアミドを添加して調製した多孔性絶縁層形成用スラリーを用いて形成した実施例1〜10の負極または正極に係る多孔性絶縁層では、上記スラリー中のアルミナ粒子の分散が良好であるために、凝集物の影響によるスジやピンホールなどの外観不良が無く、また、このような負極または正極を用いた実施例1〜10のリチウム二次電池では、高温貯蔵試験時にセパレータが収縮しても正負極間の絶縁を維持できており、優れた耐短絡性を示している。よって、実施例1〜10の電池は、内部短絡などによって発熱し、この熱でセパレータが収縮しても、多孔性絶縁層の存在によって短絡の拡大を防止でき得るといった優れた安全性を有する電池といえる。   As is clear from Table 1, in the porous insulating layer according to the negative electrode or the positive electrode of Examples 1 to 10 formed using the slurry for forming a porous insulating layer prepared by adding poly N-vinylacetamide, the above slurry The dispersion of alumina particles therein is good, so there are no appearance defects such as streaks and pinholes due to the influence of aggregates, and the lithium secondary batteries of Examples 1 to 10 using such a negative electrode or positive electrode In this case, the insulation between the positive and negative electrodes can be maintained even when the separator contracts during the high-temperature storage test, and excellent short-circuit resistance is exhibited. Therefore, the batteries of Examples 1 to 10 have excellent safety such that heat is generated by an internal short circuit or the like, and even if the separator contracts due to this heat, the presence of the porous insulating layer can prevent the expansion of the short circuit. It can be said.

本発明のリチウムイオン二次電池用正極またはリチウムイオン二次電池用負極の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the positive electrode for lithium ion secondary batteries or the negative electrode for lithium ion secondary batteries of this invention. 本発明のリチウムイオン二次電池の一例を模式的に示す図で、(a)はその平面図、(b)はその部分縦断面図である。It is a figure which shows typically an example of the lithium ion secondary battery of this invention, (a) is the top view, (b) is the fragmentary longitudinal cross-sectional view. 図2に示すリチウムイオン二次電池の斜視図である。FIG. 3 is a perspective view of the lithium ion secondary battery shown in FIG. 2.

符号の説明Explanation of symbols

1 リチウムイオン二次電池用正極またはリチウムイオン二次電池用負極
2 多孔性絶縁層
3 正極合剤層または負極合剤層
4 正極集電体または負極集電体
DESCRIPTION OF SYMBOLS 1 Positive electrode for lithium ion secondary batteries or negative electrode for lithium ion secondary batteries 2 Porous insulating layer 3 Positive electrode mixture layer or negative electrode mixture layer 4 Positive electrode current collector or negative electrode current collector

Claims (8)

リチウムイオン二次電池用電極の表面に多孔性の絶縁層を形成するための多孔性絶縁層形成用組成物であって、
耐熱温度が150℃以上の絶縁性粒子と、ポリN−ビニルアセトアミドと、溶剤とを少なくとも含有することを特徴とする多孔性絶縁層形成用組成物。
A porous insulating layer forming composition for forming a porous insulating layer on the surface of a lithium ion secondary battery electrode,
A composition for forming a porous insulating layer, comprising at least insulating particles having a heat-resistant temperature of 150 ° C. or more, poly N-vinylacetamide, and a solvent.
耐熱温度が150℃以上の絶縁性粒子の平均粒径が、0.1〜2μmである請求項1に記載の多孔性絶縁層形成用組成物。   The composition for forming a porous insulating layer according to claim 1, wherein the insulating particles having a heat resistant temperature of 150 ° C or higher have an average particle diameter of 0.1 to 2 µm. 耐熱温度が150℃以上の絶縁性粒子が、アルミナ粒子である請求項1または2に記載の多孔性絶縁層形成用組成物。   The composition for forming a porous insulating layer according to claim 1 or 2, wherein the insulating particles having a heat resistant temperature of 150 ° C or higher are alumina particles. 耐熱温度が150℃以上の絶縁性粒子100質量部に対して、ポリN−ビニルアセトアミドを1.5〜10質量部含有している請求項1〜3のいずれかに記載の多孔性絶縁層形成用組成物。   The porous insulating layer formation according to any one of claims 1 to 3, comprising 1.5 to 10 parts by mass of poly-N-vinylacetamide with respect to 100 parts by mass of insulating particles having a heat resistant temperature of 150 ° C or higher. Composition. ポリN−ビニルアセトアミド以外の結着剤を更に含有している請求項1〜4のいずれかに記載の多孔性絶縁層形成用組成物。   The composition for forming a porous insulating layer according to any one of claims 1 to 4, further comprising a binder other than poly N-vinylacetamide. 集電体の片面または両面に、活物質を含む正極合剤層を有しており、上記正極合剤層の表面に、請求項1〜5のいずれかに記載の多孔性絶縁層形成用組成物を用いて形成された多孔性絶縁層を有することを特徴とするリチウムイオン二次電池用正極。   It has the positive mix layer containing an active material in the single side | surface or both surfaces of a collector, The composition for porous insulation layer formation in any one of Claims 1-5 on the surface of the said positive mix layer A positive electrode for a lithium ion secondary battery, comprising a porous insulating layer formed using a material. 集電体の片面または両面に、活物質を含む負極合剤層を有しており、上記負極合剤層の表面に、請求項1〜5のいずれかに記載の多孔性絶縁層形成用組成物を用いて形成された多孔性絶縁層を有することを特徴とするリチウムイオン二次電池用負極。   It has the negative mix layer containing an active material in the single side | surface or both surfaces of a collector, The composition for porous insulating layer formation in any one of Claims 1-5 on the surface of the said negative mix layer A negative electrode for a lithium ion secondary battery, comprising a porous insulating layer formed using a material. 正極、負極、セパレータおよび非水電解液を備えたリチウムイオン二次電池であって、
請求項6に記載のリチウムイオン二次電池用正極および請求項7に記載のリチウムイオン二次電池用負極の少なくとも一方を有することを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery comprising a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte,
A lithium ion secondary battery comprising at least one of the positive electrode for a lithium ion secondary battery according to claim 6 and the negative electrode for a lithium ion secondary battery according to claim 7.
JP2007061218A 2007-03-12 2007-03-12 Composition for porous insulating layer formation, positive electrode for lithium-ion secondary battery, negative electrode for lithium ion secondary battery, and lithium-ion secondary battery Withdrawn JP2008226566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007061218A JP2008226566A (en) 2007-03-12 2007-03-12 Composition for porous insulating layer formation, positive electrode for lithium-ion secondary battery, negative electrode for lithium ion secondary battery, and lithium-ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007061218A JP2008226566A (en) 2007-03-12 2007-03-12 Composition for porous insulating layer formation, positive electrode for lithium-ion secondary battery, negative electrode for lithium ion secondary battery, and lithium-ion secondary battery

Publications (1)

Publication Number Publication Date
JP2008226566A true JP2008226566A (en) 2008-09-25

Family

ID=39844941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007061218A Withdrawn JP2008226566A (en) 2007-03-12 2007-03-12 Composition for porous insulating layer formation, positive electrode for lithium-ion secondary battery, negative electrode for lithium ion secondary battery, and lithium-ion secondary battery

Country Status (1)

Country Link
JP (1) JP2008226566A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225544A (en) * 2009-03-25 2010-10-07 Tdk Corp Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2010225561A (en) * 2009-03-25 2010-10-07 Tdk Corp Lithium ion secondary battery
WO2012023199A1 (en) * 2010-08-19 2012-02-23 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
US8557437B2 (en) 2009-03-25 2013-10-15 Tdk Corporation Electrode comprising protective layer for lithium ion secondary battery and lithium ion secondary battery
WO2014162437A1 (en) * 2013-04-01 2014-10-09 日立オートモティブシステムズ株式会社 Lithium-ion secondary cell and method for manufacturing same
US9017853B2 (en) 2010-12-27 2015-04-28 Industrial Technololgy Research Institute Lithium battery and electrode plate structure
US9029003B2 (en) 2011-12-14 2015-05-12 Industrial Technology Research Institute Electrode assembly of lithium secondary battery
US9054376B2 (en) 2010-12-20 2015-06-09 Industrial Technology Research Institute Cathode material structure and method for preparing the same
US9698399B2 (en) 2013-12-10 2017-07-04 Industrial Technology Research Institute Organic-inorganic composite layer for lithium battery and electrode module
JPWO2016136524A1 (en) * 2015-02-24 2017-11-30 昭和電工株式会社 Carbon material, its production method and its use
EP3483948A1 (en) 2017-11-08 2019-05-15 Samsung SDI Co., Ltd. Composition for preparing porous insulating layer, electrode for non-aqueous rechargeable lithium battery, non-aqueous rechargeable lithium battery, method of preparing electrode for non-aqueous rechargeable lithium battery
EP3483957A1 (en) 2017-11-08 2019-05-15 Samsung SDI Co., Ltd. Compositions for forming a porous insulating layer, electrode for non-aqueous electrolyte rechargeable battery, the rechargeable battery and method for manufacturing the electrode
KR20190052597A (en) * 2017-11-08 2019-05-16 삼성에스디아이 주식회사 Composition for preparing porous insulating layer, electrode for non-aqueous rechargeable lithium battery, non-aqueous rechargeable lithium battery, method of preparing electrrode for non-aqueous rechargeable lithium battery
KR20190052606A (en) * 2017-11-08 2019-05-16 삼성에스디아이 주식회사 Compositions for forming a porous insulating layer, electrode for non-aqueous electrolyte rechargeable battery having the same, method for manufacturing non-aqueous electrolyte rechargeable battery and electrode for non-aqueous electrolyte rechargeable battery
EP3690993A1 (en) 2019-02-01 2020-08-05 Samsung SDI Co., Ltd. Compositions for forming a porous insulating layer, electrode for non-aqueous electrolyte rechargeable battery, rechargeable battery including the electrode and method of manufacturing the electrode
JP2021106167A (en) * 2009-05-26 2021-07-26 オプトドット コーポレイション Lithium battery utilizing nonporous separator layer

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225544A (en) * 2009-03-25 2010-10-07 Tdk Corp Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2010225561A (en) * 2009-03-25 2010-10-07 Tdk Corp Lithium ion secondary battery
US8557437B2 (en) 2009-03-25 2013-10-15 Tdk Corporation Electrode comprising protective layer for lithium ion secondary battery and lithium ion secondary battery
US8722253B2 (en) 2009-03-25 2014-05-13 Tdk Corporation Electrode comprising protective layer for lithium ion secondary battery and lithium ion secondary battery
JP7213567B2 (en) 2009-05-26 2023-01-27 オプトドット コーポレイション Lithium batteries utilizing nanoporous separator layers
JP2021106167A (en) * 2009-05-26 2021-07-26 オプトドット コーポレイション Lithium battery utilizing nonporous separator layer
WO2012023199A1 (en) * 2010-08-19 2012-02-23 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP5574196B2 (en) * 2010-08-19 2014-08-20 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
US9054376B2 (en) 2010-12-20 2015-06-09 Industrial Technology Research Institute Cathode material structure and method for preparing the same
US9017853B2 (en) 2010-12-27 2015-04-28 Industrial Technololgy Research Institute Lithium battery and electrode plate structure
US9029003B2 (en) 2011-12-14 2015-05-12 Industrial Technology Research Institute Electrode assembly of lithium secondary battery
JPWO2014162437A1 (en) * 2013-04-01 2017-02-16 日立オートモティブシステムズ株式会社 Lithium ion secondary battery and manufacturing method thereof
CN105190952A (en) * 2013-04-01 2015-12-23 日立汽车系统株式会社 Lithium-ion secondary cell and method for manufacturing same
WO2014162437A1 (en) * 2013-04-01 2014-10-09 日立オートモティブシステムズ株式会社 Lithium-ion secondary cell and method for manufacturing same
US9698399B2 (en) 2013-12-10 2017-07-04 Industrial Technology Research Institute Organic-inorganic composite layer for lithium battery and electrode module
JPWO2016136524A1 (en) * 2015-02-24 2017-11-30 昭和電工株式会社 Carbon material, its production method and its use
EP3483948A1 (en) 2017-11-08 2019-05-15 Samsung SDI Co., Ltd. Composition for preparing porous insulating layer, electrode for non-aqueous rechargeable lithium battery, non-aqueous rechargeable lithium battery, method of preparing electrode for non-aqueous rechargeable lithium battery
KR20190052606A (en) * 2017-11-08 2019-05-16 삼성에스디아이 주식회사 Compositions for forming a porous insulating layer, electrode for non-aqueous electrolyte rechargeable battery having the same, method for manufacturing non-aqueous electrolyte rechargeable battery and electrode for non-aqueous electrolyte rechargeable battery
JP2019087464A (en) * 2017-11-08 2019-06-06 三星エスディアイ株式会社Samsung SDI Co., Ltd. Composition for forming porous insulating layer, electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and manufacturing method of electrode for non-aqueous electrolyte secondary battery
US10700358B2 (en) 2017-11-08 2020-06-30 Samsung Sdi Co., Ltd. Composition for preparing porous insulating layer, electrode for non-aqueous rechargeable lithium battery, non-aqueous rechargeable lithium battery, method of preparing electrode for non-aqueous rechargeable lithium battery
KR102224022B1 (en) 2017-11-08 2021-03-05 삼성에스디아이 주식회사 Composition for preparing porous insulating layer, electrode for non-aqueous rechargeable lithium battery, non-aqueous rechargeable lithium battery, method of preparing electrrode for non-aqueous rechargeable lithium battery
US11005103B2 (en) 2017-11-08 2021-05-11 Samsung Sdi Co., Ltd. Compositions for forming a porous insulating layer, electrode for non-aqueous electrolyte rechargeable battery having the porous insulating layer, the rechargeable battery and method for manufacturing the electrode
KR102258088B1 (en) * 2017-11-08 2021-05-27 삼성에스디아이 주식회사 Compositions for forming a porous insulating layer, electrode for non-aqueous electrolyte rechargeable battery having the same, method for manufacturing non-aqueous electrolyte rechargeable battery and electrode for non-aqueous electrolyte rechargeable battery
KR20190052597A (en) * 2017-11-08 2019-05-16 삼성에스디아이 주식회사 Composition for preparing porous insulating layer, electrode for non-aqueous rechargeable lithium battery, non-aqueous rechargeable lithium battery, method of preparing electrrode for non-aqueous rechargeable lithium battery
JP6993180B2 (en) 2017-11-08 2022-02-04 三星エスディアイ株式会社 A method for producing a composition for forming a porous insulating layer, an electrode for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery, and an electrode for a non-aqueous electrolyte secondary battery.
EP3483957A1 (en) 2017-11-08 2019-05-15 Samsung SDI Co., Ltd. Compositions for forming a porous insulating layer, electrode for non-aqueous electrolyte rechargeable battery, the rechargeable battery and method for manufacturing the electrode
EP3690993A1 (en) 2019-02-01 2020-08-05 Samsung SDI Co., Ltd. Compositions for forming a porous insulating layer, electrode for non-aqueous electrolyte rechargeable battery, rechargeable battery including the electrode and method of manufacturing the electrode
US12015155B2 (en) 2019-02-01 2024-06-18 Samsung Sdi Co., Ltd. Compositions for forming a porous insulating layer, electrode for non-aqueous electrolyte rechargeable battery, rechargeable battery including the electrode and method of manufacturing the electrode

Similar Documents

Publication Publication Date Title
JP2008226566A (en) Composition for porous insulating layer formation, positive electrode for lithium-ion secondary battery, negative electrode for lithium ion secondary battery, and lithium-ion secondary battery
EP1826842B1 (en) Separator for electrochemical cell and electrochemical cell
US11050095B2 (en) Separator for electrochemical device, and electrochemical device
JP5477985B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP5328034B2 (en) Electrochemical element separator, electrochemical element and method for producing the same
US9166251B2 (en) Battery separator and nonaqueous electrolyte battery
JP5158678B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP5213007B2 (en) Battery separator and non-aqueous electrolyte battery
JP5183435B2 (en) Battery separator and lithium secondary battery
WO2013080946A1 (en) Separator for non-aqueous electrolyte cell and non-aqueous electrolyte cell using same
WO2016129629A1 (en) Non-aqueous secondary cell
WO2012150635A1 (en) Non-aqueous electrolyte secondary battery
JP5317130B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP5247657B2 (en) Non-aqueous electrolyte battery
JP2009032677A (en) Porous membrane for separator and its manufacturing method; separator for battery and its manufacturing method; electrode for battery and its manufacturing method, and lithium secondary cell
JP5348800B2 (en) Lithium ion secondary battery
JP5359444B2 (en) Lithium ion secondary battery
JP5148360B2 (en) Porous substrate for separator, separator for electrochemical element, electrode and electrochemical element
WO2015046126A1 (en) Porous layer for nonaqueous batteries, separator for nonaqueous batteries, electrode for nonaqueous batteries, and nonaqueous battery
JP2009181756A (en) Lithium-ion secondary battery and electronic apparatus using the same
JP2008004439A (en) Separator for battery, and lithium secondary battery
JP2008234879A (en) Lithium ion secondary battery
JP2007005158A (en) Lithium ion secondary battery
JP2012199253A (en) Separator for battery, and nonaqueous electrolyte battery
JP5478733B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601