JP2016122611A - Composition for nonaqueous secondary battery functional layer, nonaqueous secondary battery functional layer, and nonaqueous secondary battery - Google Patents

Composition for nonaqueous secondary battery functional layer, nonaqueous secondary battery functional layer, and nonaqueous secondary battery Download PDF

Info

Publication number
JP2016122611A
JP2016122611A JP2014262881A JP2014262881A JP2016122611A JP 2016122611 A JP2016122611 A JP 2016122611A JP 2014262881 A JP2014262881 A JP 2014262881A JP 2014262881 A JP2014262881 A JP 2014262881A JP 2016122611 A JP2016122611 A JP 2016122611A
Authority
JP
Japan
Prior art keywords
functional layer
secondary battery
polymer
composition
particulate polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014262881A
Other languages
Japanese (ja)
Other versions
JP6455140B2 (en
Inventor
一輝 浅井
Kazuki Asai
一輝 浅井
純之介 秋池
Suminosuke Akiike
純之介 秋池
慶 大浦
Kei Oura
慶 大浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2014262881A priority Critical patent/JP6455140B2/en
Publication of JP2016122611A publication Critical patent/JP2016122611A/en
Application granted granted Critical
Publication of JP6455140B2 publication Critical patent/JP6455140B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a composition for a nonaqueous secondary battery functional layer, which enables the formation of a functional layer for a nonaqueous secondary battery; the functional layer can show superior adhesiveness and impart superior battery characteristics to a secondary battery even after immersed in electrolytic solution.SOLUTION: A composition for a nonaqueous secondary battery functional layer comprises: particulate polymer; and an amino acid. The rate of the amino acid to 100 pts.mass of the particulate polymer is 0.1-5 pts.mass. The particulate polymer has a core-shell structure including a core part and a shell part partially covering the outer surface of the core part. The core part includes a polymer of which the degree of swelling by electrolyte is 5 to 30 times. The shell part includes a polymer of which the degree of swelling by the electrolyte is over 1 to 4 times.SELECTED DRAWING: Figure 1

Description

本発明は、非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池に関するものである。   The present invention relates to a non-aqueous secondary battery functional layer composition, a non-aqueous secondary battery functional layer, and a non-aqueous secondary battery.

リチウムイオン二次電池などの非水系二次電池(以下、単に「二次電池」と略記する場合がある)は、小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そして、非水系二次電池は、一般に、正極、負極、および、正極と負極とを隔離して正極と負極との間の短絡を防ぐセパレータなどの電池部材を備えている。   Non-aqueous secondary batteries such as lithium ion secondary batteries (hereinafter sometimes simply referred to as “secondary batteries”) have the characteristics that they are small and light, have high energy density, and can be repeatedly charged and discharged. Is used in a wide range of applications. The non-aqueous secondary battery generally includes a battery member such as a positive electrode, a negative electrode, and a separator that separates the positive electrode and the negative electrode and prevents a short circuit between the positive electrode and the negative electrode.

ここで、近年、二次電池においては、耐熱性および強度を向上させるための多孔膜層や、電池部材同士を接着するための接着層など(以下、これらを総称して「機能層」と称する場合がある)を備える電池部材が使用されている。具体的には、集電体上に電極合材層を設けてなる電極基材上にさらに機能層を形成してなる電極や、セパレータ基材上に機能層を形成してなるセパレータが電池部材として使用されている。   Here, in recent years, in secondary batteries, a porous film layer for improving heat resistance and strength, an adhesive layer for bonding battery members, and the like (hereinafter, these are collectively referred to as “functional layer”). In some cases, battery members are used. Specifically, an electrode in which a functional layer is further formed on an electrode base material in which an electrode mixture layer is provided on a current collector, or a separator in which a functional layer is formed on a separator base material is a battery member. It is used as

そして、それらの機能層を有する電池部材を使用した二次電池の更なる高性能化を目的として、機能層の改良が盛んに行われている(例えば特許文献1、2参照)。   And the improvement of a functional layer is performed actively for the purpose of the further performance enhancement of the secondary battery using the battery member which has those functional layers (for example, refer patent document 1, 2).

具体的には、特許文献1では、二次電池用のセパレータとして、セパレータ基材の上に、非導電性粒子および結着材を含有する多孔膜の層を形成するとともに、この多孔膜層上に、所定の粒子状重合体を含有する接着層をさらに設けてなるセパレータが提案されている。そして、特許文献1では、当該接着層を備えるセパレータを使用することで、セパレータと電極とを接着層を介して良好に接着させ、二次電池の電池特性を向上させることができることが報告されている。   Specifically, in Patent Document 1, as a separator for a secondary battery, a porous membrane layer containing non-conductive particles and a binder is formed on a separator substrate, and the porous membrane layer is formed on the porous membrane layer. In addition, a separator has been proposed in which an adhesive layer containing a predetermined particulate polymer is further provided. And in patent document 1, by using the separator provided with the said contact bonding layer, it is reported that a separator and an electrode can be adhere | attached favorably through an contact bonding layer, and the battery characteristic of a secondary battery can be improved. Yes.

また、特許文献2では、アミノ酸、セラミック粒子、結着材および溶剤を含むスラリーを用いて、二次電池用のセパレータ基材または電極基材の表面に多孔膜層を形成することが提案されている。そして、特許文献2では、当該スラリーにアミノ酸が含まれていることにより、セラミック粒子の凝集による多孔膜層の空隙率の低減(内部抵抗の上昇)を防止し、二次電池の電池特性を向上させることができることが報告されている。   Patent Document 2 proposes forming a porous film layer on the surface of a separator substrate or electrode substrate for a secondary battery using a slurry containing amino acids, ceramic particles, a binder and a solvent. Yes. And in patent document 2, since the said slurry contains an amino acid, the reduction | decrease of the porosity (increase of internal resistance) of the porous membrane layer by aggregation of a ceramic particle is prevented, and the battery characteristic of a secondary battery is improved. It has been reported that can be made.

国際公開第2013/151144号International Publication No. 2013/151144 特開2014−067632号公報JP 2014-066762 A

しかしながら、特許文献1に記載の粒子状重合体を用いた接着層や、特許文献2に記載のスラリーを用いた多孔膜層は、電解液に浸漬させると接着性が低下する傾向があった。そのため、これらの機能層を備える非水系二次電池は、高温サイクル特性などの電池特性が十分に良好なものとならない虞があった。従って、上記従来の機能層には、電解液への浸漬後においても高い接着性を発現させ、当該機能層を備える非水系二次電池の電池特性を更に向上させるという点において、改善の余地があった。   However, the adhesive layer using the particulate polymer described in Patent Document 1 and the porous film layer using the slurry described in Patent Document 2 have a tendency to deteriorate in adhesion when immersed in an electrolytic solution. Therefore, the non-aqueous secondary battery including these functional layers may not have sufficiently good battery characteristics such as high-temperature cycle characteristics. Therefore, the conventional functional layer has a room for improvement in that it exhibits high adhesiveness even after being immersed in an electrolytic solution and further improves the battery characteristics of the nonaqueous secondary battery including the functional layer. there were.

そこで、本発明は、電解液への浸漬後においても優れた接着性を発揮して二次電池に優れた電池特性をもたらすことができる非水系二次電池用機能層を形成可能な非水系二次電池機能層用組成物を提供することを目的とする。
また、本発明は、電解液への浸漬後においても優れた接着性を発揮し、二次電池に優れた電池特性をもたらすことができる非水系二次電池用機能層を提供することを目的とする。
さらに、本発明は、高温サイクル特性などの電池特性に優れる非水系二次電池を提供することを目的とする。
Therefore, the present invention provides a non-aqueous secondary battery capable of forming a functional layer for a non-aqueous secondary battery that can exhibit excellent adhesive properties even after being immersed in an electrolytic solution and can provide excellent battery characteristics to the secondary battery. It aims at providing the composition for secondary battery functional layers.
Another object of the present invention is to provide a functional layer for a non-aqueous secondary battery that exhibits excellent adhesion even after being immersed in an electrolytic solution and can provide excellent battery characteristics to a secondary battery. To do.
Furthermore, an object of this invention is to provide the non-aqueous secondary battery which is excellent in battery characteristics, such as a high temperature cycling characteristic.

本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、所定のコアシェル構造および性状を有する粒子状重合体とアミノ酸とを特定の割合で含有する組成物を用いることで、電解液への浸漬後においても優れた接着性を発揮し、二次電池に優れた電池特性をもたらすことができる機能層を得られることを見出し、本発明を完成させた。   The present inventor has intensively studied for the purpose of solving the above problems. The inventor exhibits excellent adhesion even after being immersed in an electrolytic solution by using a composition containing a particulate polymer having a predetermined core-shell structure and properties and an amino acid in a specific ratio. The present inventors have found that a functional layer that can provide excellent battery characteristics to a secondary battery can be obtained, and the present invention has been completed.

即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池機能層用組成物は、粒子状重合体とアミノ酸とを含有する非水系二次電池機能層用組成物であって、前記粒子状重合体100質量部に対し、前記アミノ酸の割合が0.1質量部以上5質量部以下であり、前記粒子状重合体は、コア部と、前記コア部の外表面を部分的に覆うシェル部とを備えるコアシェル構造を有し、前記コア部は、電解液膨潤度が5倍以上30倍以下の重合体からなり、前記シェル部は、電解液膨潤度が1倍超4倍以下の重合体からなることを特徴とする。このように、上述した所定のコアシェル構造および性状を有する粒子状重合体とアミノ酸とを特定の割合で含有する組成物を機能層の形成に用いれば、電解液への浸漬後においても優れた接着性を発揮し、二次電池に優れた電池特性をもたらすことができる機能層を提供することができる。
なお、本発明において、粒子状重合体のコア部およびシェル部を構成する重合体の「電解液膨潤度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
That is, the present invention aims to advantageously solve the above problems, and the composition for a non-aqueous secondary battery functional layer of the present invention comprises a non-aqueous two-component composition containing a particulate polymer and an amino acid. The composition for a secondary battery functional layer, wherein the ratio of the amino acid is 0.1 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass of the particulate polymer, and the particulate polymer includes: a core part; And a shell part partly covering the outer surface of the core part, the core part is made of a polymer having an electrolyte swelling degree of 5 times or more and 30 times or less, and the shell part is It is characterized by comprising a polymer having an electrolyte solution swelling degree of more than 1 time and 4 times or less. Thus, if a composition containing a particulate polymer having the predetermined core-shell structure and properties described above and an amino acid in a specific ratio is used for forming a functional layer, excellent adhesion even after being immersed in an electrolyte solution It is possible to provide a functional layer that can exhibit excellent battery performance and can provide excellent battery characteristics to the secondary battery.
In the present invention, the “electrolyte swelling degree” of the polymer constituting the core part and the shell part of the particulate polymer can be measured using the measuring method described in the examples of the present specification.

そして、本発明の非水系二次電池機能層用組成物は、前記コア部を構成する重合体のガラス転移温度が−50℃以上150℃以下であり、前記シェル部を構成する重合体のガラス転移温度が50℃以上200℃以下であることが好ましい。このように、コア部およびシェル部を構成する重合体のガラス転移温度を、それぞれ上述の範囲内とすることにより、当該組成物を用いて得られる機能層の接着性および当該機能層を備える二次電池の電池特性をさらに向上させることができる。
なお、本発明において、粒子状重合体のコア部およびシェル部を構成する重合体の「ガラス転移温度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
The composition for a non-aqueous secondary battery functional layer of the present invention has a glass transition temperature of −50 ° C. or more and 150 ° C. or less of the polymer constituting the core portion, and the polymer glass constituting the shell portion. The transition temperature is preferably 50 ° C. or higher and 200 ° C. or lower. Thus, the adhesiveness of the functional layer obtained by using the composition and the functional layer obtained by setting the glass transition temperature of the polymer constituting the core part and the shell part within the above-mentioned ranges, respectively. The battery characteristics of the secondary battery can be further improved.
In the present invention, the “glass transition temperature” of the polymer constituting the core part and the shell part of the particulate polymer can be measured using the measuring method described in the examples of the present specification.

さらに、本発明の非水系二次電池機能層用組成物においては、前記アミノ酸が、アスパラギン酸および/またはグルタミン酸を含むことが好ましい。このように、アミノ酸として、アスパラギン酸および/またはグルタミン酸を使用することにより、当該組成物を用いて形成される機能層の接着性および当該機能層を備える二次電池の電池特性を更に向上させることができる。   Furthermore, in the composition for a non-aqueous secondary battery functional layer of the present invention, the amino acid preferably contains aspartic acid and / or glutamic acid. Thus, by using aspartic acid and / or glutamic acid as amino acids, the adhesion of the functional layer formed using the composition and the battery characteristics of the secondary battery including the functional layer are further improved. Can do.

また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用機能層は、上述したいずれかの非水系二次電池機能層用組成物を用いて形成してなることを特徴とする。上述のいずれかの機能層用組成物を材料として形成される機能層は、電解液中での接着性に優れ、また、二次電池に優れた電気的特性を発揮させることができる。   Moreover, this invention aims at solving the said subject advantageously, The functional layer for non-aqueous secondary batteries of this invention is the composition for any of the non-aqueous secondary battery functional layers mentioned above. It is characterized by being formed using. A functional layer formed using any of the above-described functional layer compositions as a material is excellent in adhesion in an electrolytic solution, and can exhibit excellent electrical characteristics in a secondary battery.

また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池は、上述した非水系二次電池用機能層を備えることを特徴とする。上述の非水系二次電池用機能層を備える二次電池は、高温サイクル特性などの電気的特性に優れる。   Moreover, this invention aims at solving the said subject advantageously, The non-aqueous secondary battery of this invention is equipped with the functional layer for non-aqueous secondary batteries mentioned above, It is characterized by the above-mentioned. A secondary battery including the above-described functional layer for a non-aqueous secondary battery is excellent in electrical characteristics such as high-temperature cycle characteristics.

本発明によれば、電解液への浸漬後においても優れた接着性を発揮して二次電池に優れた電池特性をもたらすことができる非水系二次電池用機能層を形成可能な非水系二次電池機能層用組成物を提供することができる。
また、本発明によれば、電解液への浸漬後においても優れた接着性を発揮し、二次電池に優れた電池特性をもたらすことができる非水系二次電池用機能層を提供することができる。
さらに、本発明によれば、高温サイクル特性などの電池特性に優れる非水系二次電池を提供することができる。
According to the present invention, a non-aqueous secondary battery capable of forming a functional layer for a non-aqueous secondary battery that exhibits excellent adhesion even after being immersed in an electrolytic solution and can provide excellent battery characteristics to the secondary battery. A composition for a secondary battery functional layer can be provided.
In addition, according to the present invention, it is possible to provide a functional layer for a non-aqueous secondary battery that exhibits excellent adhesion even after being immersed in an electrolytic solution and can provide excellent battery characteristics for a secondary battery. it can.
Furthermore, according to this invention, the non-aqueous secondary battery which is excellent in battery characteristics, such as a high temperature cycling characteristic, can be provided.

本発明の非水系二次電池機能層用組成物に含有される粒子状重合体の一例の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of an example of the particulate polymer contained in the composition for non-aqueous secondary battery functional layers of this invention.

以下、本発明の実施形態について詳細に説明する。
ここで、本発明の非水系二次電池機能層用組成物は、本発明の非水系二次電池用機能層を調製する際の材料として用いられる。また、本発明の非水系二次電池用機能層は、本発明の非水系二次電池機能層用組成物を用いて調製され、例えばセパレータや電極の一部を構成する。なお、本発明の非水系二次電池機能層用組成物を用いて形成される本発明の非水系二次電池用機能層は、セパレータや電極等の電池部材の耐熱性および強度を向上させるための多孔膜層であってもよいし、電池部材同士を接着させるための接着層であってもよいし、多孔膜層と接着層との双方の機能を発揮する層であってもよい。そして、本発明の非水系二次電池は、少なくとも本発明の非水系二次電池用機能層を備えるものである。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the composition for non-aqueous secondary battery functional layers of the present invention is used as a material for preparing the functional layer for non-aqueous secondary batteries of the present invention. Moreover, the functional layer for non-aqueous secondary batteries of this invention is prepared using the composition for non-aqueous secondary battery functional layers of this invention, for example, comprises a part of separator and an electrode. The non-aqueous secondary battery functional layer of the present invention formed using the non-aqueous secondary battery functional layer composition of the present invention improves the heat resistance and strength of battery members such as separators and electrodes. It may be a porous film layer, an adhesive layer for bonding battery members together, or a layer that exhibits both functions of the porous film layer and the adhesive layer. And the non-aqueous secondary battery of this invention is equipped with the functional layer for non-aqueous secondary batteries of this invention at least.

(非水系二次電池機能層用組成物)
非水系二次電池機能層用組成物は、所定の構造および性状を有する粒子状重合体とアミノ酸とを少なくとも含有し、任意に、機能層用結着材、非導電性粒子(粒子状重合体および機能層用結着材に該当するものを除く)、その他の成分を含有する、水などを分散媒としたスラリー組成物である。
そして、本発明の非水系二次電池機能層用組成物を用いて形成される機能層は、所定の構造および性状を有する粒子状重合体とアミノ酸とを特定の割合で含有しているので、電解液への浸漬後においても優れた接着性を発揮することができ、また、非水系二次電池に優れた電池特性を発揮させることができる。具体的には、本発明の非水系二次電池機能層用組成物を用いて形成される機能層は、電解液中において優れた接着性を発揮する所定の粒子状重合体を含有しているので、電解液への浸漬後においても優れた接着性を発揮し、非水系二次電池に優れた電池特性を発揮させることができる。また、本発明の非水系二次電池機能層用組成物は、粒子状重合体とアミノ酸とを特定の割合で併用しているので、組成物中および機能層中で粒子状重合体を良好に分散させて電解液中での機能層の接着性を更に高めることができると共に、非水系二次電池の電池特性を向上させることができる。
(Composition for functional layer of non-aqueous secondary battery)
The composition for a functional layer for a non-aqueous secondary battery contains at least a particulate polymer having a predetermined structure and properties and an amino acid, and optionally includes a binder for a functional layer, non-conductive particles (particulate polymer). And a slurry composition containing other components and containing water or the like as a dispersion medium.
And since the functional layer formed using the composition for a non-aqueous secondary battery functional layer of the present invention contains a particulate polymer having a predetermined structure and properties and an amino acid at a specific ratio, Even after immersion in the electrolytic solution, excellent adhesiveness can be exhibited, and excellent battery characteristics can be exhibited in the non-aqueous secondary battery. Specifically, the functional layer formed using the composition for a non-aqueous secondary battery functional layer of the present invention contains a predetermined particulate polymer that exhibits excellent adhesiveness in the electrolytic solution. Therefore, even after immersion in the electrolytic solution, excellent adhesiveness can be exhibited, and excellent battery characteristics can be exhibited in the non-aqueous secondary battery. In addition, since the composition for a non-aqueous secondary battery functional layer of the present invention uses a particulate polymer and an amino acid together in a specific ratio, the particulate polymer is favorably improved in the composition and in the functional layer. It can be dispersed to further enhance the adhesion of the functional layer in the electrolytic solution, and the battery characteristics of the non-aqueous secondary battery can be improved.

<粒子状重合体>
非水系二次電池機能層用組成物に含有される粒子状重合体は、非水系二次電池機能層用組成物を用いて形成された機能層に優れた接着性を発揮させる機能を担う。
そして、粒子状重合体は、コア部と、前記コア部の外表面を部分的に覆うシェル部とを備えるコアシェル構造を有しており、前記コア部は、電解液膨潤度が5倍以上30倍以下の重合体からなり、前記シェル部は、電解液膨潤度が1倍超4倍以下の重合体からなることを特徴とする。
<Particulate polymer>
The particulate polymer contained in the composition for a non-aqueous secondary battery functional layer has a function of exerting excellent adhesiveness in a functional layer formed using the composition for a non-aqueous secondary battery functional layer.
The particulate polymer has a core-shell structure including a core portion and a shell portion that partially covers the outer surface of the core portion, and the core portion has an electrolyte swelling degree of 5 times or more and 30. The shell part is made of a polymer having an electrolyte solution swelling degree of more than 1 time and 4 times or less.

ここで、上記構造および性状を有する粒子状重合体は、電解液中において優れた接着性を発揮し、しかも電解液への成分の溶出が少なく、優れた接着性を長期に亘り保持することができる。そして、機能層用組成物を用いて得られる機能層は、二次電池の電池特性を良好に向上させることができる。また、この機能層用組成物を用いて得られる機能層は、電解液への浸漬前には大きな接着力を発揮しないので、当該機能層自体および当該機能層を備える部材は、ブロッキング(機能層同士、或いは機能層を介した部材同士などの膠着)を生じ難く、ハンドリング性にも優れている。   Here, the particulate polymer having the above structure and properties exhibits excellent adhesiveness in the electrolytic solution, and further, the elution of components into the electrolytic solution is small, and excellent adhesiveness can be maintained for a long time. it can. And the functional layer obtained using the composition for functional layers can improve the battery characteristic of a secondary battery favorably. In addition, since the functional layer obtained using the functional layer composition does not exhibit a large adhesive force before being immersed in the electrolytic solution, the functional layer itself and the member including the functional layer are blocked (functional layer). Or sticking between members via the functional layer), and handling properties are excellent.

なお、上記粒子状重合体を使用することで上述したような優れた効果が得られる理由は、明らかではないが、以下の通りであると推察される。
即ち、上記粒子状重合体のシェル部を構成する重合体は、電解液に対してある程度膨潤する。このとき、例えば膨潤したシェル部の重合体が有する官能基が活性化して、機能層が形成されるセパレータ基材または電極基材、或いは、機能層を有する電池部材と接着される電極またはセパレータ等の表面にある官能基と化学的または電気的な相互作用を生じるなどの要因により、シェル部は電池部材と強固に接着できる。一方、シェル部は、電解液に膨潤する前には大きな接着力を発揮しない。そのため、当該粒子状重合体を含む機能層では、ブロッキングの発生を抑制しつつ、電池部材同士(例えば、セパレータと電極)を電解液中において強力に接着することが可能となっているものと推察される。
また、シェル部の重合体およびコア部の重合体はいずれも電解液膨潤度が所定の値以下に設定されており、電解液に対して過度に膨潤することもない。そのため、例えば二次電池の長時間稼働後にも上述した優れた接着性を十分に発揮することができると推察される。
更に、上記粒子状重合体は、アミノ酸の存在下において分散性が向上するため、所定量のアミノ酸と併用することで機能層の電解液中での接着性を更に向上させることができる。加えて、上記粒子状重合体は、シェル部の重合体が電解液に対して適度に膨潤するため、アミノ酸と併用した際に粒子状重合体の表面部にアミノ酸を捕捉しておくことができる。従って、非水系二次電池において機能層から電解液中へとアミノ酸が溶出するのを抑制して、溶出したアミノ酸の分解により高温サイクル特性などの電池特性が低下することを防止できる。
そして、上記粒子状重合体を含む機能層を使用した場合、上述したように電解液中において電池部材同士を強力に接着することができるので、当該機能層を備える二次電池では、機能層を介して接着された電池部材間(例えば、セパレータと電極との間)に空隙を生じ難い。そのため、当該粒子状重合体を含む機能層を使用した二次電池では、二次電池内において正極と負極との距離が大きくなり難く、二次電池の内部抵抗を小さくできると共に、電極における電気化学反応の反応場が不均一になり難い。さらに、当該二次電池では、充放電を繰り返してもセパレータと電極との間に空隙ができ難く、電池容量が低下しにくい。これにより、優れた高温サイクル特性などの電池特性を実現できるものと推察される。
さらに、上記粒子状重合体のコア部を構成する重合体は、電解液に対して大きく膨潤する。そして、重合体は、電解液に大きく膨潤した状態では、重合体の分子間の隙間が大きくなり、その分子間をイオンが通り易くなる。また、粒子状重合体のコア部の重合体は、シェル部によって完全に覆われてはいない。そのため、電解液中においてイオンがコア部を通りやすくなるので、粒子状重合体は高いイオン拡散性を発現できる。従って、上記粒子状重合体を使用すれば、機能層による抵抗の上昇を抑制し、低温出力特性などの電池特性の低下を抑制することも可能である。
なお、上述した通り、粒子状重合体は電解液に膨潤することで優れた接着性を発揮し、電解液への浸漬前には大きな接着力を発揮しない。しかし、粒子状重合体は、電解液に膨潤しない限りは接着性を全く発揮しないというものではなく、電解液に膨潤していない状態であっても、例えば一定温度以上(例えば50℃以上)に加熱されることにより、接着性を発現し得る。
The reason why the above-described excellent effect can be obtained by using the particulate polymer is not clear, but is presumed to be as follows.
That is, the polymer constituting the shell part of the particulate polymer swells to some extent with respect to the electrolytic solution. At this time, for example, the functional group of the polymer of the swollen shell part is activated, and the separator base or electrode base on which the functional layer is formed, or the electrode or separator adhered to the battery member having the functional layer, etc. The shell part can be firmly bonded to the battery member due to factors such as causing a chemical or electrical interaction with a functional group on the surface of the battery member. On the other hand, the shell portion does not exhibit a large adhesive force before it swells in the electrolytic solution. Therefore, in the functional layer containing the particulate polymer, it is inferred that it is possible to strongly bond battery members (for example, a separator and an electrode) in the electrolyte solution while suppressing the occurrence of blocking. Is done.
Moreover, the polymer of the shell part and the polymer of the core part both have an electrolyte solution swelling degree set to a predetermined value or less, and do not swell excessively with respect to the electrolyte solution. Therefore, for example, it is speculated that the excellent adhesiveness described above can be sufficiently exhibited even after the secondary battery is operated for a long time.
Furthermore, since the dispersibility of the particulate polymer is improved in the presence of an amino acid, the adhesiveness of the functional layer in the electrolytic solution can be further improved by using it together with a predetermined amount of amino acid. In addition, since the polymer in the shell portion swells moderately with respect to the electrolyte solution, the particulate polymer can capture the amino acid on the surface portion of the particulate polymer when used in combination with the amino acid. . Accordingly, it is possible to suppress elution of amino acids from the functional layer into the electrolytic solution in the non-aqueous secondary battery, and to prevent battery characteristics such as high-temperature cycle characteristics from being degraded due to decomposition of the eluted amino acids.
And when using the functional layer containing the said particulate polymer, since it can adhere | attach a battery member strongly in electrolyte solution as mentioned above, in a secondary battery provided with the said functional layer, a functional layer is used. It is difficult to generate a gap between the battery members bonded via each other (for example, between the separator and the electrode). Therefore, in the secondary battery using the functional layer containing the particulate polymer, the distance between the positive electrode and the negative electrode is not easily increased in the secondary battery, the internal resistance of the secondary battery can be reduced, and the electrochemical in the electrode can be reduced. The reaction field of the reaction is unlikely to be uneven. Furthermore, in the secondary battery, even if charging and discharging are repeated, it is difficult to form a gap between the separator and the electrode, and the battery capacity is unlikely to decrease. Thus, it is assumed that battery characteristics such as excellent high-temperature cycle characteristics can be realized.
Furthermore, the polymer constituting the core of the particulate polymer swells greatly with respect to the electrolytic solution. When the polymer is greatly swollen in the electrolytic solution, the gap between the molecules of the polymer becomes large, and ions easily pass between the molecules. Further, the polymer in the core part of the particulate polymer is not completely covered by the shell part. Therefore, since ions easily pass through the core portion in the electrolytic solution, the particulate polymer can exhibit high ion diffusibility. Therefore, if the particulate polymer is used, it is possible to suppress an increase in resistance due to the functional layer and to suppress a decrease in battery characteristics such as a low temperature output characteristic.
In addition, as above-mentioned, a particulate polymer exhibits the outstanding adhesiveness by swelling to electrolyte solution, and does not exhibit big adhesive force before being immersed in electrolyte solution. However, the particulate polymer does not exhibit any adhesiveness unless it swells in the electrolytic solution, and even if it is not swollen in the electrolytic solution, for example, at a certain temperature or higher (for example, 50 ° C. or higher). Adhesiveness can be expressed by heating.

[粒子状重合体の構造]
ここで、粒子状重合体は、コア部と、コア部の外表面を覆うシェル部とを備えるコアシェル構造を有している。また、シェル部は、コア部の外表面を部分的に覆っている。即ち、粒子状重合体のシェル部は、コア部の外表面を覆っているが、コア部の外表面の全体を覆ってはいない。外観上、コア部の外表面がシェル部によって完全に覆われているように見える場合であっても、シェル部の内外を連通する孔が形成されていれば、そのシェル部はコア部の外表面を部分的に覆うシェル部である。従って、例えば、シェル部の外表面(即ち、粒子状重合体の周面)からコア部の外表面まで連通する細孔を有するシェル部を備える粒子状重合体は、上記粒子状重合体に含まれる。
[Structure of particulate polymer]
Here, the particulate polymer has a core-shell structure including a core part and a shell part covering the outer surface of the core part. The shell portion partially covers the outer surface of the core portion. That is, the shell part of the particulate polymer covers the outer surface of the core part, but does not cover the entire outer surface of the core part. Even if it appears that the outer surface of the core part is completely covered by the shell part, the shell part is outside the core part as long as a hole that communicates the inside and outside of the shell part is formed. A shell part that partially covers the surface. Therefore, for example, a particulate polymer having a shell portion having pores communicating from the outer surface of the shell portion (that is, the peripheral surface of the particulate polymer) to the outer surface of the core portion is included in the particulate polymer. It is.

具体的には、粒子状重合体の一例の断面構造を図1に示すように、粒子状重合体100は、コア部110およびシェル部120を備えるコアシェル構造を有する。ここで、コア部110は、この粒子状重合体100においてシェル部120よりも内側にある部分である。また、シェル部120は、コア部110の外表面110Sを覆う部分であり、通常は粒子状重合体100において最も外側にある部分である。そして、シェル部120は、コア部110の外表面110Sの全体を覆っているのではなく、コア部110の外表面110Sを部分的に覆っている。   Specifically, as shown in FIG. 1, the cross-sectional structure of an example of the particulate polymer has a core-shell structure including a core part 110 and a shell part 120. Here, the core part 110 is a part located inside the shell part 120 in the particulate polymer 100. The shell portion 120 is a portion that covers the outer surface 110 </ b> S of the core portion 110, and is usually the outermost portion in the particulate polymer 100. The shell portion 120 does not cover the entire outer surface 110S of the core portion 110, but partially covers the outer surface 110S of the core portion 110.

[[被覆率]]
ここで、粒子状重合体では、コア部の外表面がシェル部によって覆われる平均割合(被覆率)は、好ましくは10%以上、より好ましくは30%以上、さらに好ましくは50%以上であり、好ましくは95%以下、より好ましくは90%以下、さらに好ましくは80%以下である。被覆率を前記範囲の下限値以上にすることにより、電池部材同士のブロッキングの発生を抑制するとともに、電解液中での電池部材同士の接着性を高め、二次電池の高温サイクル特性を向上させることができる。また、被覆率を前記範囲の上限値以下にすることにより、機能層に高いイオン拡散性を発現させて二次電池の低温出力特性を向上させることができる。
なお、本発明において、「コア部の外表面がシェル部によって覆われる平均割合(被覆率)」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
[[Coverage]]
Here, in the particulate polymer, the average ratio (coverage) in which the outer surface of the core part is covered by the shell part is preferably 10% or more, more preferably 30% or more, and still more preferably 50% or more, Preferably it is 95% or less, More preferably, it is 90% or less, More preferably, it is 80% or less. By making the coverage more than the lower limit of the above range, the occurrence of blocking between the battery members is suppressed, the adhesion between the battery members in the electrolytic solution is enhanced, and the high-temperature cycle characteristics of the secondary battery are improved. be able to. In addition, by setting the coverage to be equal to or less than the upper limit of the above range, it is possible to improve the low temperature output characteristics of the secondary battery by expressing high ion diffusibility in the functional layer.
In addition, in this invention, "the average ratio (coverage) by which the outer surface of a core part is covered with a shell part" can be measured using the measuring method as described in the Example of this specification.

[[体積平均粒子径D50]]
また、粒子状重合体の体積平均粒子径D50は、好ましくは0.01μm以上、より好ましくは0.1μm以上、さらに好ましくは0.3μm以上であり、好ましくは10μm以下、より好ましくは5μm以下、さらに好ましくは1μm以下である。粒子状重合体の体積平均粒子径D50を前記範囲の下限値以上にすることにより、機能層の内部抵抗の上昇を抑制し、二次電池の低温出力特性を向上させることができる。また、粒子状重合体の体積平均粒子径D50を上限値以下にすることにより、電解液中での電池部材同士の接着性を高め、二次電池の高温サイクル特性を向上させることができる。
なお、本発明において、粒子状重合体の「体積平均粒子径D50」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
[[Volume average particle diameter D50]]
Further, the volume average particle diameter D50 of the particulate polymer is preferably 0.01 μm or more, more preferably 0.1 μm or more, further preferably 0.3 μm or more, preferably 10 μm or less, more preferably 5 μm or less, More preferably, it is 1 μm or less. By setting the volume average particle diameter D50 of the particulate polymer to be equal to or greater than the lower limit of the above range, it is possible to suppress the increase in internal resistance of the functional layer and improve the low temperature output characteristics of the secondary battery. Moreover, by making volume average particle diameter D50 of a particulate polymer below an upper limit, the adhesiveness of the battery members in electrolyte solution can be improved, and the high temperature cycling characteristic of a secondary battery can be improved.
In the present invention, the “volume average particle diameter D50” of the particulate polymer can be measured using the measuring method described in the examples of the present specification.

[[コアシェル比率]]
さらに、シェル部は、粒子状重合体の体積平均粒子径D50に対して、所定の範囲に収まる平均厚みを有することが好ましい。具体的には、粒子状重合体の体積平均粒子径D50に対するシェル部の平均厚み(コアシェル比率)は、好ましくは1%以上、より好ましくは5%以上、さらに好ましくは8%以上であり、好ましくは30%以下、より好ましくは25%以下、さらに好ましくは20%以下である。コアシェル比率を前記範囲の下限値以上にすることにより、電解液中での機能層の接着性をさらに高め、二次電池の高温サイクル特性を向上させることができる。また、コアシェル比率を前記範囲の上限値以下にすることにより、二次電池の低温出力特性をさらに高めることができる。
なお、本発明において、「コアシェル比率」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
[[Core shell ratio]]
Further, the shell part preferably has an average thickness that falls within a predetermined range with respect to the volume average particle diameter D50 of the particulate polymer. Specifically, the average thickness (core-shell ratio) of the shell part with respect to the volume average particle diameter D50 of the particulate polymer is preferably 1% or more, more preferably 5% or more, further preferably 8% or more, preferably Is 30% or less, more preferably 25% or less, and still more preferably 20% or less. By setting the core-shell ratio to be equal to or higher than the lower limit of the above range, the adhesion of the functional layer in the electrolytic solution can be further improved and the high-temperature cycle characteristics of the secondary battery can be improved. Moreover, the low temperature output characteristic of a secondary battery can further be improved by making a core-shell ratio below the upper limit of the said range.
In the present invention, the “core-shell ratio” can be measured using the measurement method described in the examples of the present specification.

なお、粒子状重合体は、所期の効果を著しく損なわない限り、上述したコア部およびシェル部以外に任意の構成要素を備えていてもよい。具体的には、例えば、粒子状重合体は、コア部の内部に、コア部とは別の重合体で形成された部分を有していてもよい。具体例を挙げると、粒子状重合体をシード重合法で製造する場合に用いたシード粒子が、コア部の内部に残留していてもよい。ただし、所期の効果を顕著に発揮する観点からは、粒子状重合体はコア部およびシェル部のみを備えることが好ましい。   In addition, the particulate polymer may be provided with arbitrary components other than the core part and shell part which were mentioned above, unless the expected effect is impaired remarkably. Specifically, for example, the particulate polymer may have a part formed of a polymer different from the core part inside the core part. As a specific example, the seed particles used when the particulate polymer is produced by the seed polymerization method may remain inside the core portion. However, it is preferable that the particulate polymer includes only the core part and the shell part from the viewpoint of remarkably exhibiting the intended effect.

[コア部]
[[コア部の重合体の電解液膨潤度]]
粒子状重合体のコア部は、電解液に対して所定の膨潤度を有する重合体からなる。具体的には、コア部の重合体の電解液膨潤度は、5倍以上であることが必要であり、7倍以上であることが好ましく、8倍以上であることがより好ましく、また、30倍以下であることが必要であり、28倍以下であることが好ましく、25倍以下であることがより好ましい。コア部の重合体の電解液膨潤度を前記範囲の下限値以上にすることにより、機能層に高いイオン拡散性を発現させて二次電池の低温出力特性を向上させることができる。また、コア部の重合体の電解液膨潤度を前記範囲の上限値以下にすることにより、電解液中における機能層の接着性を高め、二次電池の高温サイクル特性を向上させることができる。
なお、本発明において、コア部の重合体の「電解液膨潤度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
[Core]
[[Polymer swelling degree of polymer in core part]]
The core of the particulate polymer is made of a polymer having a predetermined degree of swelling with respect to the electrolytic solution. Specifically, the electrolyte swelling degree of the polymer of the core part needs to be 5 times or more, preferably 7 times or more, more preferably 8 times or more, and 30 It is necessary that it is not more than twice, preferably not more than 28 times, and more preferably not more than 25 times. By setting the electrolyte swelling degree of the polymer in the core part to be equal to or higher than the lower limit of the above range, the functional layer can exhibit high ion diffusibility and the low-temperature output characteristics of the secondary battery can be improved. Moreover, the adhesiveness of the functional layer in electrolyte solution can be improved, and the high temperature cycling characteristic of a secondary battery can be improved by making electrolyte solution swelling degree of the polymer of a core part below the upper limit of the said range.
In the present invention, the “electrolyte swelling degree” of the polymer of the core part can be measured using the measuring method described in the examples of the present specification.

なお、コア部の重合体の電解液膨潤度を調整する方法としては、例えば、電解液のSP値を考慮して、当該コア部の重合体を調製するために用いる単量体の種類および量を適切に選択することが挙げられる。一般に、重合体のSP値が電解液のSP値に近い場合、その重合体はその電解液に膨潤しやすい傾向がある。他方、重合体のSP値が電解液のSP値から離れていると、その重合体はその電解液に膨潤し難い傾向がある。   In addition, as a method of adjusting the electrolyte swelling degree of the polymer of the core part, for example, considering the SP value of the electrolyte solution, the kind and amount of the monomer used for preparing the polymer of the core part Is appropriately selected. Generally, when the SP value of a polymer is close to the SP value of an electrolytic solution, the polymer tends to swell in the electrolytic solution. On the other hand, when the SP value of the polymer is far from the SP value of the electrolytic solution, the polymer tends to hardly swell in the electrolytic solution.

ここでSP値とは、溶解度パラメーターのことを意味する。
そして、SP値は、Hansen Solubility Parameters A User’s Handbook,2ndEd(CRCPress)で紹介される方法を用いて算出することができる。
また、有機化合物のSP値は、その有機化合物の分子構造から推算することも可能である。具体的には、SMILEの式からSP値を計算できるシミュレーションソフトウェア(例えば「HSPiP」(http=//www.hansen−solubility.com))を用いて計算しうる。このシミュレーションソフトウェアでは、Hansen SOLUBILITY PARAMETERS A User’s Handbook SecondEdition、Charles M.Hansenに記載の理論に基づき、SP値が求められている。
Here, the SP value means a solubility parameter.
The SP value can be calculated using the method introduced in Hansen Solubility Parameters A User's Handbook, 2nd Ed (CRCPless).
Further, the SP value of an organic compound can be estimated from the molecular structure of the organic compound. Specifically, it can be calculated using simulation software (for example, “HSPiP” (http://www.hansen-solubility.com)) that can calculate the SP value from the SMILE equation. In this simulation software, Hansen SOLUBILITY PARAMETERS A User's Handbook Second Edition, Charles M. et al. The SP value is obtained based on the theory described in Hansen.

[[コア部の重合体のガラス転移温度]]
また、粒子状重合体のコア部を構成する重合体のガラス転移温度は、−50℃以上であることが好ましく、−30℃以上であることがより好ましく、5℃以上であることがさらに好ましく、また、150℃以下であることが好ましく、110℃以下であることがより好ましく、100℃以下であることがより好ましい。コア部の重合体のガラス転移温度を前記範囲の下限値以上にすることにより、機能層の接着性や耐ブロッキング性を一層向上させることができる。また、コア部の重合体のガラス転移温度を上記範囲の上限値以下にすることにより、機能層の電解液中での接着性および二次電池の高温サイクル特性を向上させることができる。
[[Glass transition temperature of core polymer]]
Further, the glass transition temperature of the polymer constituting the core of the particulate polymer is preferably −50 ° C. or higher, more preferably −30 ° C. or higher, and further preferably 5 ° C. or higher. Moreover, it is preferable that it is 150 degrees C or less, It is more preferable that it is 110 degrees C or less, It is more preferable that it is 100 degrees C or less. By setting the glass transition temperature of the polymer in the core part to be equal to or higher than the lower limit of the above range, the adhesion and blocking resistance of the functional layer can be further improved. Moreover, the adhesiveness in the electrolyte solution of a functional layer and the high temperature cycling characteristic of a secondary battery can be improved by making the glass transition temperature of the polymer of a core part below into the upper limit of the said range.

なお、コア部の重合体のガラス転移温度を調整する方法としては、例えば、コア部の重合体を調製するために用いる単量体の種類および量を、当該単量体の単独重合体のガラス転移温度を考慮して、適切に選択することが挙げられる。例えば、コア部の重合体の調製に(メタ)アクリル酸エステル単量体を使用する場合、(メタ)アクリル酸エステル単量体のアルコールに由来する部分の炭素数が多いほど、得られる重合体のガラス転移温度が低くなる傾向がある。ここで、本発明において、(メタ)アクリルとは、アクリルおよび/またはメタクリルを意味する。   In addition, as a method of adjusting the glass transition temperature of the polymer of the core part, for example, the type and amount of the monomer used for preparing the polymer of the core part are the same as the homopolymer glass of the monomer. Appropriate selection is considered in consideration of the transition temperature. For example, when a (meth) acrylic acid ester monomer is used for the preparation of the polymer of the core part, the polymer obtained as the carbon number of the part derived from the alcohol of the (meth) acrylic acid ester monomer increases. The glass transition temperature of the glass tends to be low. Here, in the present invention, (meth) acryl means acryl and / or methacryl.

[[コア部重合体の組成]]
コア部の重合体を調製するために用いる単量体としては、その重合体の電解液膨潤度が上記範囲となるものを適宜選択して用いうる。そのような単量体としては、例えば、塩化ビニル、塩化ビニリデン等の塩化ビニル系単量体;酢酸ビニル等の酢酸ビニル系単量体;スチレン、α−メチルスチレン、スチレンスルホン酸、ブトキシスチレン、ビニルナフタレン等の芳香族ビニル単量体;ビニルアミン等のビニルアミン系単量体;N−ビニルホルムアミド、N−ビニルアセトアミド等のビニルアミド系単量体;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸エチル、2−エチルヘキシルアクリレート等の(メタ)アクリル酸エステル単量体;アクリルアミド、メタクリルアミド等の(メタ)アクリルアミド単量体;アクリロニトリル、メタクリロニトリル等の(メタ)アクリロニトリル単量体;2−(パーフルオロヘキシル)エチルメタクリレート、2−(パーフルオロブチル)エチルアクリレート等のフッ素含有(メタ)アクリレート単量体;マレイミド;フェニルマレイミド等のマレイミド誘導体;1,3−ブタジエン、イソプレン等のジエン系単量体;などが挙げられる。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
なお、本発明において、(メタ)アクリレートとは、アクリレートおよび/またはメタクリレートを意味し、(メタ)アクリロニトリルとは、アクリロニトリルおよび/またはメタクリロニトリルを意味する。
[[Composition of core polymer]]
As a monomer used for preparing the polymer of the core part, a monomer having an electrolyte solution swelling degree within the above range can be appropriately selected and used. Examples of such monomers include vinyl chloride monomers such as vinyl chloride and vinylidene chloride; vinyl acetate monomers such as vinyl acetate; styrene, α-methylstyrene, styrenesulfonic acid, butoxystyrene, Aromatic vinyl monomers such as vinylnaphthalene; vinylamine monomers such as vinylamine; vinylamide monomers such as N-vinylformamide and N-vinylacetamide; methyl acrylate, ethyl acrylate, butyl acrylate, methacryl (Meth) acrylic acid ester monomers such as methyl acrylate, ethyl methacrylate and 2-ethylhexyl acrylate; (meth) acrylamide monomers such as acrylamide and methacrylamide; (meth) acrylonitrile single quantities such as acrylonitrile and methacrylonitrile Body; 2- (perfluorohexyl) ester Fluorine-containing (meth) acrylate monomers such as dimethacrylate and 2- (perfluorobutyl) ethyl acrylate; maleimide; maleimide derivatives such as phenylmaleimide; and diene monomers such as 1,3-butadiene and isoprene; Can be mentioned. Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
In the present invention, (meth) acrylate means acrylate and / or methacrylate, and (meth) acrylonitrile means acrylonitrile and / or methacrylonitrile.

これらの単量体の中でも、コア部の重合体の調製に用いられる単量体としては、(メタ)アクリル酸エステル単量体を用いることが好ましく、メタクリル酸メチルおよび/またはアクリル酸ブチルを用いることがより好ましい。即ち、コア部の重合体は、(メタ)アクリル酸エステル単量体単位を含むことが好ましく、メタクリル酸メチルおよび/またはアクリル酸ブチルに由来する単量体単位を含むことが更に好ましい。これにより、コア部の重合体の電解液膨潤度の制御やコア部の重合体のガラス転移温度の制御が容易になると共に、粒子状重合体を用いた機能層のイオン拡散性を一層高めることができる。   Among these monomers, it is preferable to use a (meth) acrylic acid ester monomer, and methyl methacrylate and / or butyl acrylate are used as the monomer used for preparing the core polymer. It is more preferable. That is, the polymer of the core part preferably contains a (meth) acrylate monomer unit, and more preferably contains a monomer unit derived from methyl methacrylate and / or butyl acrylate. This makes it easier to control the degree of electrolyte swelling of the polymer in the core and the glass transition temperature of the polymer in the core, and to further increase the ion diffusibility of the functional layer using the particulate polymer. Can do.

また、コア部の重合体は、酸基含有単量体単位を含みうる。ここで、酸基含有単量体としては、酸基を有する単量体、例えば、カルボン酸基を有する単量体、スルホン酸基を有する単量体、リン酸基を有する単量体、および、水酸基を有する単量体が挙げられる。   Further, the polymer of the core part may include an acid group-containing monomer unit. Here, as the acid group-containing monomer, a monomer having an acid group, for example, a monomer having a carboxylic acid group, a monomer having a sulfonic acid group, a monomer having a phosphoric acid group, and And monomers having a hydroxyl group.

そして、カルボン酸基を有する単量体としては、例えば、モノカルボン酸、ジカルボン酸などが挙げられる。モノカルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。ジカルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸などが挙げられる。
また、スルホン酸基を有する単量体としては、例えば、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、(メタ)アクリル酸−2−スルホン酸エチル、2−アクリルアミド−2−メチルプロパンスルホン酸、3−アリロキシ−2−ヒドロキシプロパンスルホン酸などが挙げられる。
さらに、リン酸基を有する単量体としては、例えば、リン酸−2−(メタ)アクリロイルオキシエチル、リン酸メチル−2−(メタ)アクリロイルオキシエチル、リン酸エチル−(メタ)アクリロイルオキシエチルなどが挙げられる。
また、水酸基を有する単量体としては、例えば、アクリル酸−2−ヒドロキシエチル、アクリル酸−2−ヒドロキシプロピル、メタクリル酸−2−ヒドロキシエチル、メタクリル酸−2−ヒドロキシプロピルなどが挙げられる。
なお、本発明において、(メタ)アリルとは、アリルおよび/またはメタリルを意味し、(メタ)アクリロイルとは、アクリロイルおよび/またはメタクリロイルを意味する。
Examples of the monomer having a carboxylic acid group include monocarboxylic acid and dicarboxylic acid. Examples of the monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid. Examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
Examples of the monomer having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, (meth) acrylic acid-2-ethyl sulfonate, 2-acrylamido-2-methyl. Examples thereof include propanesulfonic acid and 3-allyloxy-2-hydroxypropanesulfonic acid.
Furthermore, examples of the monomer having a phosphoric acid group include phosphoric acid-2- (meth) acryloyloxyethyl phosphate, methyl-2- (meth) acryloyloxyethyl phosphate, and ethyl phosphate- (meth) acryloyloxyethyl phosphate. Etc.
Examples of the monomer having a hydroxyl group include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, and 2-hydroxypropyl methacrylate.
In the present invention, (meth) allyl means allyl and / or methallyl, and (meth) acryloyl means acryloyl and / or methacryloyl.

これらの中でも、酸基含有単量体としては、カルボン酸基を有する単量体が好ましく、中でもモノカルボン酸が好ましく、(メタ)アクリル酸がより好ましい。
また、酸基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Among these, as the acid group-containing monomer, a monomer having a carboxylic acid group is preferable, among which monocarboxylic acid is preferable, and (meth) acrylic acid is more preferable.
Moreover, an acid group containing monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

また、コア部の重合体における酸基含有量体単位の割合は、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、好ましくは20質量%以下、より好ましくは10質量%以下、さらに好ましくは7質量%以下である。酸基含有量体単位の割合を前記範囲に収めることにより、粒子状重合体の調製時に、コア部の重合体の分散性を高め、コア部の重合体の外表面に対し、コア部の外表面を部分的に覆うシェル部を形成し易くすることができる。   Moreover, the ratio of the acid group content body unit in the polymer of the core part is preferably 0.1% by mass or more, more preferably 1% by mass or more, preferably 20% by mass or less, more preferably 10% by mass. Hereinafter, it is more preferably 7% by mass or less. By keeping the ratio of the acid group-containing unit within the above range, the dispersibility of the polymer in the core part is improved during the preparation of the particulate polymer, and the outer surface of the core part is increased with respect to the outer surface of the core part polymer. A shell portion that partially covers the surface can be easily formed.

また、コア部の重合体は、上記単量体単位に加え、架橋性単量体単位を含んでいることが好ましい。架橋性単量体とは、加熱またはエネルギー線の照射により、重合中または重合後に架橋構造を形成しうる単量体である。架橋性単量体単位を含むことにより、重合体の電解液膨潤度を、前記の範囲に容易に収めることができる。   Moreover, it is preferable that the polymer of a core part contains the crosslinkable monomer unit in addition to the said monomer unit. A crosslinkable monomer is a monomer that can form a crosslinked structure during or after polymerization by heating or irradiation with energy rays. By including a crosslinkable monomer unit, the electrolyte solution swelling degree of the polymer can be easily kept within the above range.

架橋性単量体としては、例えば、当該単量体に2個以上の重合反応性基を有する多官能単量体が挙げられる。このような多官能単量体としては、例えば、ジビニルベンゼン等のジビニル化合物;エチレンジメタクリレート、ジエチレングリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、1,3−ブチレングリコールジアクリレート等のジ(メタ)アクリル酸エステル化合物;トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート等のトリ(メタ)アクリル酸エステル化合物;アリルグリシジルエーテル、グリシジルメタクリレート等のエポキシ基を含有するエチレン性不飽和単量体;などが挙げられる。これらの中でも、コア部の重合体の電解液膨潤度を容易に制御する観点から、ジメタクリル酸エステル化合物およびエポキシ基を含有するエチレン性不飽和単量体が好ましく、ジメタクリル酸エステル化合物がより好ましい。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   As a crosslinkable monomer, the polyfunctional monomer which has a 2 or more polymerization reactive group in the said monomer is mentioned, for example. Examples of such polyfunctional monomers include divinyl compounds such as divinylbenzene; di (meta) such as ethylene dimethacrylate, diethylene glycol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, and 1,3-butylene glycol diacrylate. ) Acrylic acid ester compounds; Tri (meth) acrylic acid ester compounds such as trimethylolpropane trimethacrylate and trimethylolpropane triacrylate; Ethylenically unsaturated monomers containing epoxy groups such as allyl glycidyl ether and glycidyl methacrylate; Is mentioned. Among these, from the viewpoint of easily controlling the degree of swelling of the electrolyte in the polymer of the core part, an ethylenically unsaturated monomer containing a dimethacrylic acid ester compound and an epoxy group is preferred, and a dimethacrylic acid ester compound is more preferred. preferable. Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.

ここで、一般に、重合体において架橋性単量体単位の割合が増えると、その重合体の電解液に対する膨潤度は小さくなる傾向がある。従って、架橋性単量体単位の割合は、使用する単量体の種類および量を考慮して決定することが好ましい。コア部の重合体における架橋性単量体単位の具体的な割合は、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、さらに好ましくは0.5質量%以上であり、好ましくは10質量%以下、より好ましくは8質量%以下、さらに好ましくは6質量%以下である。架橋性単量体単位の割合を前記範囲の下限値以上にすることにより、機能層の接着性を高めることができる。また、架橋性単量体単位の割合を前記範囲の上限値以下にすることにより、非水系二次電池のサイクル特性を向上させることができる。   Here, generally, when the proportion of the crosslinkable monomer unit in the polymer increases, the degree of swelling of the polymer with respect to the electrolytic solution tends to decrease. Therefore, the ratio of the crosslinkable monomer unit is preferably determined in consideration of the type and amount of the monomer used. The specific ratio of the crosslinkable monomer unit in the polymer of the core part is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and further preferably 0.5% by mass or more. Preferably it is 10 mass% or less, More preferably, it is 8 mass% or less, More preferably, it is 6 mass% or less. By setting the ratio of the crosslinkable monomer unit to the lower limit value or more of the above range, the adhesiveness of the functional layer can be enhanced. Moreover, the cycle characteristic of a non-aqueous secondary battery can be improved by making the ratio of a crosslinkable monomer unit below the upper limit of the said range.

[シェル部]
[[シェル部の重合体の電解液膨潤度]]
粒子状重合体のシェル部は、コア部の電解液膨潤度よりも小さい所定の電解液膨潤度を有する重合体からなる。具体的には、シェル部の重合体の電解液膨潤度は、1倍超であることが必要であり、1.1倍以上であることが好ましく、1.2倍以上であることがより好ましく、また、4倍以下であることが必要であり、3.5倍以下であることが好ましく、3倍以下であることがより好ましい。シェル部の重合体の電解液膨潤度を前記範囲の下限値超にすることにより、機能層に高いイオン拡散性を発現させて二次電池の低温出力特性を向上させることができる。また、シェル部の重合体の電解液膨潤度を前記範囲の上限値以下にすることにより、電解液中での機能層を介した電池部材同士の接着性を高め、二次電池の高温サイクル特性を向上させることができる。更に、シェル部の重合体の電解液膨潤度を前記範囲内にすることにより、粒子状重合体とアミノ酸とを併用して機能層を形成した際に、機能層から電解液中へとアミノ酸が溶出するのを抑制することもできる。
ここで、本発明において、シェル部の重合体の「電解液膨潤度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
[Shell part]
[[Swelling degree of electrolyte in shell polymer]]
The shell part of the particulate polymer is made of a polymer having a predetermined electrolyte solution swelling degree smaller than the electrolyte solution swelling degree of the core part. Specifically, the electrolyte solution swelling degree of the polymer of the shell portion needs to be more than 1 time, preferably 1.1 times or more, more preferably 1.2 times or more. In addition, it is necessary to be 4 times or less, 3.5 times or less is preferable, and 3 times or less is more preferable. By making the electrolyte solution swelling degree of the polymer of the shell part exceed the lower limit value of the above range, the low-temperature output characteristics of the secondary battery can be improved by expressing high ion diffusibility in the functional layer. Moreover, by making the electrolyte solution swelling degree of the polymer of the shell part below the upper limit of the above range, the adhesion between the battery members through the functional layer in the electrolyte solution is improved, and the high temperature cycle characteristics of the secondary battery Can be improved. Further, by making the electrolyte solution swelling degree of the polymer of the shell part within the above range, when the functional layer is formed by using the particulate polymer and the amino acid together, the amino acid is transferred from the functional layer into the electrolytic solution. Elution can also be suppressed.
Here, in this invention, the "electrolyte swelling degree" of the polymer of a shell part can be measured using the measuring method as described in the Example of this specification.

なお、シェル部の重合体の電解液膨潤度を調整する方法としては、例えば、電解液のSP値を考慮して、当該シェル部の重合体を製造するための単量体の種類および量を適切に選択することが挙げられる。   In addition, as a method for adjusting the electrolyte solution swelling degree of the polymer of the shell part, for example, considering the SP value of the electrolyte solution, the kind and amount of the monomer for producing the polymer of the shell part are determined. Appropriate selection can be mentioned.

[[シェル部の重合体のガラス転移温度]]
また、粒子状重合体のシェル部を構成する重合体のガラス転移温度は、50℃以上であることが好ましく、60℃以上であることがより好ましく、70℃以上であることがさらに好ましく、また、200℃以下であることが好ましく、180℃以下であることがより好ましく、150℃以下であることがさらに好ましい。シェル部の重合体のガラス転移温度を50℃以上とすることにより、電池部材同士のブロッキングの発生を抑制できることに加え、二次電池の低温出力特性を向上させることができる。また、シェル部の重合体のガラス転移温度を200℃以下とすることにより、機能層の接着性を更に向上させることができる。
ここで、シェル部の重合体の「ガラス転移温度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
[[Glass transition temperature of polymer in shell part]]
The glass transition temperature of the polymer constituting the shell part of the particulate polymer is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, still more preferably 70 ° C. or higher. It is preferably 200 ° C. or lower, more preferably 180 ° C. or lower, and further preferably 150 ° C. or lower. By setting the glass transition temperature of the polymer of the shell part to 50 ° C. or higher, it is possible to suppress the occurrence of blocking between battery members and improve the low-temperature output characteristics of the secondary battery. Moreover, the adhesiveness of a functional layer can further be improved by making the glass transition temperature of the polymer of a shell part into 200 degrees C or less.
Here, the “glass transition temperature” of the polymer of the shell part can be measured using the measuring method described in the examples of the present specification.

なお、シェル部の重合体のガラス転移温度を調整する方法としては、例えば、シェル部の重合体を調製するために用いる単量体の種類および量を、当該単量体の単独重合体のガラス転移温度を考慮して、適切に選択することが挙げられる。   In addition, as a method of adjusting the glass transition temperature of the polymer of the shell part, for example, the type and amount of the monomer used for preparing the polymer of the shell part are the same as the homopolymer glass of the monomer. Appropriate selection is considered in consideration of the transition temperature.

[[シェル部の重合体の組成]]
シェル部の重合体を調製するために用いる単量体としては、その重合体の電解液膨潤度が前記範囲となるものを適宜選択して用いうる。そのような単量体としては、例えば、コア部の重合体を製造するために用いうる単量体として例示した単量体と同様の単量体が挙げられる。また、このような単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
[[Polymer composition of shell part]]
As a monomer used for preparing the polymer of the shell part, a monomer having an electrolyte solution swelling degree within the above range can be appropriately selected and used. Examples of such a monomer include the same monomers as those exemplified as monomers that can be used to produce the core polymer. Moreover, such a monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

これらの単量体の中でも、シェル部の重合体の調製に用いられる単量体としては、芳香族ビニル単量体を用いることが好ましい。即ち、シェル部の重合体は、芳香族ビニル単量体単位を含むことが好ましい。また、芳香族ビニル単量体の中でも、スチレンおよびスチレンスルホン酸等のスチレン誘導体がより好ましい。芳香族ビニル単量体を用いれば、重合体の電解液膨潤度を制御し易い。また、機能層の接着性を一層高めることができる。   Among these monomers, it is preferable to use an aromatic vinyl monomer as a monomer used for preparing the polymer of the shell portion. That is, the polymer of the shell part preferably includes an aromatic vinyl monomer unit. Among aromatic vinyl monomers, styrene derivatives such as styrene and styrene sulfonic acid are more preferable. If an aromatic vinyl monomer is used, it is easy to control the degree of electrolyte swelling of the polymer. Moreover, the adhesiveness of the functional layer can be further enhanced.

そして、シェル部の重合体における芳香族ビニル単量体単位の割合は、好ましくは20質量%以上、より好ましくは40質量%以上、さらに好ましくは50質量%以上、より一層好ましくは60質量%以上、特に好ましくは80質量%以上 であり、好ましくは100質量%以下、より好ましくは99.5質量%以下、さらに好ましくは99質量%以下である。芳香族ビニル単量体単位の割合を前記範囲に収めることにより、シェル部の重合体の電解液膨潤度およびガラス転移温度を所望の範囲に制御しやすい。また、電解液中における機能層の接着性をより高めることができる。   And the ratio of the aromatic vinyl monomer unit in the polymer of the shell part is preferably 20% by mass or more, more preferably 40% by mass or more, further preferably 50% by mass or more, and still more preferably 60% by mass or more. Especially preferably, it is 80 mass% or more, Preferably it is 100 mass% or less, More preferably, it is 99.5 mass% or less, More preferably, it is 99 mass% or less. By keeping the ratio of the aromatic vinyl monomer unit in the above range, the degree of swelling of the electrolyte solution and the glass transition temperature of the polymer in the shell part can be easily controlled to a desired range. Moreover, the adhesiveness of the functional layer in electrolyte solution can be improved more.

また、シェル部の重合体は、芳香族ビニル単量体単位以外に、酸基含有単量体単位を含みうる。ここで、酸基含有単量体としては、酸基を有する単量体、例えば、カルボン酸基を有する単量体、スルホン酸基を有する単量体、リン酸基を有する単量体、および、水酸基を有する単量体が挙げられる。具体的には、酸基含有単量体としては、コア部に含み得る酸基含有単量体と同様の単量体が挙げられる。   Further, the polymer of the shell part may contain an acid group-containing monomer unit in addition to the aromatic vinyl monomer unit. Here, as the acid group-containing monomer, a monomer having an acid group, for example, a monomer having a carboxylic acid group, a monomer having a sulfonic acid group, a monomer having a phosphoric acid group, and And monomers having a hydroxyl group. Specifically, examples of the acid group-containing monomer include monomers similar to the acid group-containing monomer that can be contained in the core portion.

これらの中でも、酸基含有単量体としては、カルボン酸基を有する単量体が好ましく、中でもモノカルボン酸がより好ましく、(メタ)アクリル酸がさらに好ましい。
また、酸基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Among these, the acid group-containing monomer is preferably a monomer having a carboxylic acid group, more preferably a monocarboxylic acid, and even more preferably (meth) acrylic acid.
Moreover, an acid group containing monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

シェル部の重合体中の酸基含有単量体単位の割合は、好ましくは0.1質量%以上、より好ましくは1質量%以上、さらに好ましくは3質量%以上であり、好ましくは20質量%以下、より好ましくは10質量%以下、さらに好ましくは7質量%以下である。酸基含有単量体単位の割合を前記範囲に収めることにより、機能層中での粒子状重合体の分散性を向上させ、機能層全面に渡って良好な接着性を発現させることができる。   The ratio of the acid group-containing monomer unit in the polymer of the shell part is preferably 0.1% by mass or more, more preferably 1% by mass or more, still more preferably 3% by mass or more, and preferably 20% by mass. Hereinafter, it is more preferably 10% by mass or less, and further preferably 7% by mass or less. By keeping the ratio of the acid group-containing monomer unit within the above range, the dispersibility of the particulate polymer in the functional layer can be improved, and good adhesiveness can be expressed over the entire functional layer.

また、シェル部の重合体は、架橋性単量体単位を含みうる。架橋性単量体としては、例えば、コア部の重合体に用いうる架橋性単量体として例示したものと同様の単量体が挙げられる。また、架橋性単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   Further, the polymer of the shell part may contain a crosslinkable monomer unit. Examples of the crosslinkable monomer include monomers similar to those exemplified as the crosslinkable monomer that can be used in the core polymer. Moreover, a crosslinking | crosslinked monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

そして、シェル部の重合体における架橋性単量体単位の割合は、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、さらに好ましくは0.5質量%以上であり、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。   And the ratio of the crosslinkable monomer unit in the polymer of the shell part is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, further preferably 0.5% by mass or more, preferably Is 5% by mass or less, more preferably 4% by mass or less, and still more preferably 3% by mass or less.

[[シェル部の形態]]
また、シェル部の形態は特に制限されないが、シェル部は、重合体の粒子によって構成されていることが好ましい。シェル部が重合体の粒子によって構成されている場合、粒子状重合体の径方向にシェル部を構成する粒子が複数重なり合っていてもよい。ただし、粒子状重合体の径方向では、シェル部を構成する粒子同士が重なり合わず、それらの重合体の粒子が単層でシェル部を構成していることが好ましい。
[[Shell configuration]]
The form of the shell part is not particularly limited, but the shell part is preferably composed of polymer particles. When the shell part is constituted by polymer particles, a plurality of particles constituting the shell part may overlap in the radial direction of the particulate polymer. However, in the radial direction of the particulate polymer, it is preferable that the particles constituting the shell portion do not overlap each other and the particles of the polymer constitute the shell portion as a single layer.

[粒子状重合体の調製方法]
そして、上述したコアシェル構造を有する粒子状重合体は、例えば、コア部の重合体の単量体と、シェル部の重合体の単量体とを用い、経時的にそれらの単量体の比率を変えて段階的に重合することにより、調製することができる。具体的には、粒子状重合体は、先の段階の重合体を後の段階の重合体が順次に被覆するような連続した多段階乳化重合法および多段階懸濁重合法によって調製することができる。
[Preparation method of particulate polymer]
And the particulate polymer which has the core shell structure mentioned above uses the monomer of the polymer of a core part, and the monomer of the polymer of a shell part, for example, The ratio of those monomers with time It can be prepared by polymerizing stepwise while changing. Specifically, the particulate polymer can be prepared by a continuous multi-stage emulsion polymerization method and a multi-stage suspension polymerization method in which the polymer of the previous stage is sequentially coated with the polymer of the subsequent stage. it can.

そこで、以下に、多段階乳化重合法により上記コアシェル構造を有する粒子状重合体を得る場合の一例を示す。   Then, an example in the case of obtaining the particulate polymer which has the said core shell structure by a multistage emulsion polymerization method below is shown.

重合に際しては、常法に従って、乳化剤として、例えば、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム等のアニオン性界面活性剤、ポリオキシエチレンノニルフェニルエーテル、ソルビタンモノラウレート等のノニオン性界面活性剤、またはオクタデシルアミン酢酸塩等のカチオン性界面活性剤を用いることができる。また、重合開始剤として、例えば、t−ブチルパーオキシ−2−エチルヘキサノエート、過硫酸カリウム、キュメンパーオキサイド等の過酸化物、2,2’−アゾビス(2−メチル−N−(2−ハイドロキシエチル)−プロピオンアミド)、2,2’−アゾビス(2−アミジノプロパン)塩酸塩等のアゾ化合物を用いることができる。   In the polymerization, according to a conventional method, as an emulsifier, for example, an anionic surfactant such as sodium dodecylbenzenesulfonate and sodium dodecylsulfate, a nonionic surfactant such as polyoxyethylene nonylphenyl ether and sorbitan monolaurate, or Cationic surfactants such as octadecylamine acetate can be used. Examples of the polymerization initiator include peroxides such as t-butylperoxy-2-ethylhexanoate, potassium persulfate, cumene peroxide, 2,2′-azobis (2-methyl-N- (2 An azo compound such as (hydroxyethyl) -propionamide) or 2,2′-azobis (2-amidinopropane) hydrochloride can be used.

そして、重合手順としては、まず、コア部を形成する単量体および乳化剤を混合し、一括で乳化重合することによってコア部を構成する粒子状の重合体を得る。さらに、このコア部を構成する粒子状の重合体の存在下にシェル部を形成する単量体の重合を行うことによって、上述したコアシェル構造を有する粒子状重合体を得ることができる。   And as a polymerization procedure, the monomer and emulsifier which form a core part are mixed first, and the particulate polymer which comprises a core part is obtained by carrying out emulsion polymerization collectively. Furthermore, the particulate polymer which has the core shell structure mentioned above can be obtained by superposing | polymerizing the monomer which forms a shell part in presence of the particulate polymer which comprises this core part.

この際、コア部の外表面をシェル部によって部分的に覆う観点から、シェル部の重合体を形成する単量体は、複数回に分割して、もしくは、連続して重合系に供給することが好ましい。シェル部の重合体を形成する単量体を重合系に分割して、もしくは、連続で供給することにより、シェル部を構成する重合体が粒子状に形成され、この粒子がコア部と結合することで、コア部を部分的に覆うシェル部を形成することができる。   At this time, from the viewpoint of partially covering the outer surface of the core portion with the shell portion, the monomer that forms the polymer of the shell portion is divided into a plurality of times or continuously supplied to the polymerization system. Is preferred. The monomer that forms the polymer of the shell part is divided into a polymerization system or continuously supplied, whereby the polymer constituting the shell part is formed into particles, and these particles are bonded to the core part. Thereby, the shell part which covers a core part partially can be formed.

なお、シェル部の重合体を形成する単量体を複数回に分割して供給する場合には、単量体を分割する割合に応じてシェル部の平均厚みを制御することが可能である。また、シェル部の重合体を形成する単量体を連続で供給する場合には、単位時間あたりの単量体の供給量を調整することで、シェル部の平均厚みを制御することが可能である。   In addition, when supplying the monomer which forms the polymer of a shell part divided | segmented into multiple times, it is possible to control the average thickness of a shell part according to the ratio which divides | segments a monomer. In addition, when continuously supplying the monomer that forms the polymer of the shell part, it is possible to control the average thickness of the shell part by adjusting the monomer supply amount per unit time. is there.

また、シェル部を形成した後の粒子状重合体の体積平均粒子径D50は、例えば、乳化剤の量、単量体の量などを調整することで、所望の範囲にすることができる。さらに、コア部の外表面がシェル部によって覆われる平均割合(被覆率)は、例えば、乳化剤の量、および、シェル部の重合体を形成する単量体の量を調整することで、所望の範囲にすることができる。   Moreover, the volume average particle diameter D50 of the particulate polymer after forming the shell part can be set to a desired range by adjusting, for example, the amount of the emulsifier and the amount of the monomer. Furthermore, the average ratio (coverage) by which the outer surface of the core part is covered by the shell part is adjusted by, for example, adjusting the amount of the emulsifier and the amount of the monomer that forms the polymer of the shell part. Can range.

<アミノ酸>
本発明の非水系二次電池機能層用組成物には、上記粒子状重合体とともにアミノ酸が含有される。非水系二次電池機能層用組成物に含有されるアミノ酸は、機能層用組成物中および機能層中における粒子状重合体の分散性を向上させる機能を担っている。そして、粒子状重合体の分散性を向上させることにより、非水系二次電池機能層用組成物を用いて形成される機能層の接着性を向上させ、二次電池の高温サイクル特性を一層優れたものとすることができる。
<Amino acid>
The composition for a non-aqueous secondary battery functional layer of the present invention contains an amino acid together with the particulate polymer. The amino acid contained in the non-aqueous secondary battery functional layer composition has a function of improving the dispersibility of the particulate polymer in the functional layer composition and in the functional layer. And by improving the dispersibility of the particulate polymer, the adhesion of the functional layer formed using the composition for a non-aqueous secondary battery functional layer is improved, and the high-temperature cycle characteristics of the secondary battery are further improved. Can be.

本発明では上記アミノ酸として、非水系二次電池機能層用組成物に溶解可能なものを適宜選択して用いることができる。アミノ酸とは、一分子中にアミノ基とカルボキシル基とを有する有機化合物であり、アミノ基とカルボキシル基が結合する炭素の位置によってα−アミノ酸、β−アミノ酸、γ−アミノ酸、δ−アミノ酸が存在する。本発明においてはいずれのものも用いることができるが、入手の容易性などからα−アミノ酸を用いることが好ましい。また、グリシンを除くα−アミノ酸には、D型とL型の立体異性体が存在するが、本発明においてはそれらのいずれか一方を使用することも、両者の混合物を使用することもできる。   In the present invention, amino acids that can be dissolved in the composition for a non-aqueous secondary battery functional layer can be appropriately selected and used as the amino acid. An amino acid is an organic compound having an amino group and a carboxyl group in one molecule, and there are α-amino acids, β-amino acids, γ-amino acids, and δ-amino acids depending on the carbon position where the amino group and the carboxyl group are bonded. To do. In the present invention, any one can be used, but it is preferable to use an α-amino acid from the viewpoint of availability. In addition, D-type and L-type stereoisomers exist in the α-amino acid excluding glycine. In the present invention, either one of them or a mixture of both can be used.

上記アミノ酸としては、例えば、アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、リシン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、バリンなどが挙げられる。なお、アミノ酸は単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。   Examples of the amino acids include alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine and the like. It is done. In addition, an amino acid may be used independently and may be used in combination of 2 or more types.

溶解性や安定性などの観点からは、上記アミノ酸1分子あたりの炭素数は2以上であることが好ましく、3以上であることがより好ましく、4以上であることがさらに好ましく、また、10以下であることが好ましく、9以下であることがより好ましく、8以下であることがさらに好ましい。また、上記アミノ酸としては、一分子中に2つのカルボキシル基を有するアミノ酸(酸性アミノ酸)を用いることが好ましく、アスパラギン酸および/またはグルタミン酸を用いることがより好ましい。これにより、当該非水系二次電池機能層用組成物を用いて形成される機能層や、当該機能層を備える二次電池の機能を阻害することなく、粒子状重合体の分散性を向上させ、優れた接着性を有する機能層を提供することができる。   From the viewpoint of solubility and stability, the number of carbon atoms per molecule of the amino acid is preferably 2 or more, more preferably 3 or more, further preferably 4 or more, and 10 or less. Preferably, it is 9 or less, more preferably 8 or less. In addition, as the amino acid, an amino acid having two carboxyl groups in one molecule (acidic amino acid) is preferably used, and aspartic acid and / or glutamic acid is more preferably used. This improves the dispersibility of the particulate polymer without hindering the function of the functional layer formed using the non-aqueous secondary battery functional layer composition or the function of the secondary battery including the functional layer. A functional layer having excellent adhesiveness can be provided.

本発明の非水系二次電池機能層用組成物におけるアミノ酸の含有量は、粒子状重合体100質量部に対し、アミノ酸の割合を0.1質量部以上とする必要があり、0.5質量部以上とすることが好ましく、0.8質量部以上とすることがより好ましく、5質量部以下とすることが必要であり、4質量部以下とすることが好ましく、3質量部以下とすることがより好ましい。アミノ酸の含有量を前記範囲の下限値以上とすることにより、非水系二次電池機能層用組成物中における粒子状重合体の分散性を高めることができる。そしてその結果、機能層を均一に形成することが可能となり、機能層の接着性および当該機能層を備える二次電池の高温サイクル特性を向上させることができる。また、アミノ酸の含有量を前記範囲の上限値以下とすることにより、機能層中に含有されるアミノ酸の量を適正な範囲とし、二次電池の使用時に、過剰に存在するアミノ酸が分解して高温サイクル特性などの電池特性が低下することを防止できる。   The content of amino acid in the composition for a non-aqueous secondary battery functional layer of the present invention is such that the ratio of amino acid is 0.1 parts by mass or more with respect to 100 parts by mass of the particulate polymer, and 0.5 mass Part or more, preferably 0.8 part by weight or more, more preferably 5 parts by weight or less, preferably 4 parts by weight or less, and 3 parts by weight or less. Is more preferable. By making content of an amino acid more than the lower limit of the said range, the dispersibility of the particulate polymer in the composition for non-aqueous secondary battery functional layers can be improved. As a result, the functional layer can be formed uniformly, and the adhesiveness of the functional layer and the high-temperature cycle characteristics of the secondary battery including the functional layer can be improved. In addition, by setting the content of amino acids below the upper limit of the above range, the amount of amino acids contained in the functional layer is set to an appropriate range, and excessive amino acids are decomposed when the secondary battery is used. It can prevent that battery characteristics, such as a high temperature cycling characteristic, fall.

<機能層用結着材>
ここで、上述した通り、粒子状重合体は、電解液に膨潤しておらず、且つ、加熱されていない状態では、通常、大きな接着性を発現しない。そのため、機能層の形成直後(加熱前または電解液への浸漬前)に粒子状重合体が機能層から脱落するのを抑制する観点からは、機能層用組成物は、電解液に膨潤しておらず、且つ、加熱されていない状態においても接着性を発揮する機能層用結着材を含むことが好ましい。機能層用結着材を用いることにより、電解液に膨潤しておらず、且つ、加熱されていない状態においても、粒子状重合体等の成分が機能層から脱落するのを抑制することができる。
<Binder for functional layer>
Here, as described above, the particulate polymer is not swollen in the electrolytic solution, and usually does not exhibit great adhesiveness when not heated. Therefore, from the viewpoint of suppressing the particulate polymer from falling off the functional layer immediately after the formation of the functional layer (before heating or immersion in the electrolytic solution), the functional layer composition swells in the electrolytic solution. In addition, it is preferable to include a functional layer binder that exhibits adhesiveness even in an unheated state. By using the binder for the functional layer, it is possible to suppress the components such as the particulate polymer from falling off the functional layer even when the electrolyte is not swollen and not heated. .

そして、上記粒子状重合体と併用し得る機能層用結着材としては、非水溶性で、水などの分散媒中に分散可能な既知の結着材、例えば、熱可塑性エラストマーが挙げられる。そして、熱可塑性エラストマーとしては、共役ジエン系重合体およびアクリル系重合体が好ましく、アクリル系重合体がより好ましい。
ここで、共役ジエン系重合体とは、共役ジエン単量体単位を含む重合体を指し、共役ジエン系重合体の具体例としては、スチレン−ブタジエン共重合体(SBR)などの、芳香族ビニル単量体単位および脂肪族共役ジエン単量体単位を含む重合体や、アクリルゴム(NBR)(アクリロニトリル単位およびブタジエン単位を含む重合体)などが挙げられる。また、アクリル系重合体とは、(メタ)アクリル酸エステル単量体単位を含む重合体を指す。ここで、(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、粒子状重合体のコア部の重合体を調製するために用いる単量体と同様のものを用いることができる。
なお、これらの機能層用結着材は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。ただし、2種類以上の重合体を組み合わせた機能層用結着材を用いる場合、かかる機能層用結着材としての重合体は、上述した所定の重合体からなるコアシェル構造を有する粒子状重合体とは異なるものである。
The functional layer binder that can be used in combination with the particulate polymer includes known binders that are water-insoluble and dispersible in a dispersion medium such as water, such as thermoplastic elastomers. And as a thermoplastic elastomer, a conjugated diene polymer and an acrylic polymer are preferable, and an acrylic polymer is more preferable.
Here, the conjugated diene polymer refers to a polymer containing a conjugated diene monomer unit. Specific examples of the conjugated diene polymer include aromatic vinyl such as styrene-butadiene copolymer (SBR). Examples thereof include a polymer containing a monomer unit and an aliphatic conjugated diene monomer unit, and an acrylic rubber (NBR) (a polymer containing an acrylonitrile unit and a butadiene unit). Moreover, an acrylic polymer refers to the polymer containing a (meth) acrylic acid ester monomer unit. Here, the (meth) acrylic acid ester monomer that can form a (meth) acrylic acid ester monomer unit is the same as the monomer used for preparing the core polymer of the particulate polymer. Can be used.
These functional layer binders may be used alone or in combination of two or more. However, when a functional layer binding material in which two or more kinds of polymers are combined is used, the polymer as the functional layer binding material is a particulate polymer having a core-shell structure made of the above-mentioned predetermined polymer. Is different.

さらに、機能層用結着材としてのアクリル系重合体は、(メタ)アクリロニトリル単量体単位を含むことがさらに好ましい。これにより、機能層の強度を高めることができる。   Furthermore, it is more preferable that the acrylic polymer as the functional layer binder contains a (meth) acrylonitrile monomer unit. Thereby, the intensity | strength of a functional layer can be raised.

ここで、機能層用結着材としてのアクリル系重合体において、(メタ)アクリロニトリル単量体単位および(メタ)アクリル酸エステル単量体単位の合計量に対する(メタ)アクリロニトリル単量体単位の量の割合は、好ましくは1質量%以上、より好ましくは2質量%以上であり、好ましくは30質量%以下、より好ましくは25質量%以下である。前記割合を前記範囲の下限値以上にすることにより、機能層用結着材としてのアクリル系重合体の強度を高め、当該アクリル系重合体を用いた機能層の強度をより高くすることができる。また、前記割合を前記範囲の上限値以下にすることにより、機能層用結着材としてのアクリル系重合体が電解液に対して適度に膨潤するため、機能層のイオン伝導性の低下および二次電池の低温出力特性の低下を抑制することができる。   Here, in the acrylic polymer as the binder for the functional layer, the amount of the (meth) acrylonitrile monomer unit relative to the total amount of the (meth) acrylonitrile monomer unit and the (meth) acrylic acid ester monomer unit The ratio is preferably 1% by mass or more, more preferably 2% by mass or more, preferably 30% by mass or less, more preferably 25% by mass or less. By setting the ratio to be equal to or higher than the lower limit of the range, the strength of the acrylic polymer as the binder for the functional layer can be increased, and the strength of the functional layer using the acrylic polymer can be further increased. . Moreover, since the acrylic polymer as the binder for the functional layer is appropriately swollen with respect to the electrolytic solution by setting the ratio to be not more than the upper limit of the above range, the ion conductivity of the functional layer is reduced. A decrease in the low-temperature output characteristics of the secondary battery can be suppressed.

また、機能層用結着材のガラス転移温度は、好ましくは−100℃以上であり、より好ましくは−90℃以上であり、さらに好ましくは−80℃以上であり、また、好ましくは0℃以下であり、より好ましくは−5℃以下であり、さらに好ましくは−10℃以下である。機能層用結着材のガラス転移温度を前記範囲の下限値以上にすることにより、機能層用結着材の接着性および強度を高めることができる。また、機能層用結着材のガラス転移温度を前記範囲の上限値以下にすることにより、機能層の柔軟性を高めることができる。   The glass transition temperature of the functional layer binder is preferably −100 ° C. or higher, more preferably −90 ° C. or higher, further preferably −80 ° C. or higher, and preferably 0 ° C. or lower. More preferably, it is -5 degrees C or less, More preferably, it is -10 degrees C or less. By making the glass transition temperature of the functional layer binder higher than the lower limit of the above range, the adhesiveness and strength of the functional layer binder can be enhanced. Moreover, the softness | flexibility of a functional layer can be improved by making the glass transition temperature of the binder for functional layers below into the upper limit of the said range.

さらに、機能層用結着材の体積平均粒子径D50は、好ましくは0.1μm以上0.5μm以下である。機能層用結着材の体積平均粒子径D50を前記範囲の下限値以上にすることにより、機能層用結着材の分散性を高めることができる。また、体積平均粒子径D50を前記範囲の上限値以下にすることにより、機能層用結着材の接着性を高めることができる。   Furthermore, the volume average particle diameter D50 of the functional layer binder is preferably 0.1 μm or more and 0.5 μm or less. By setting the volume average particle diameter D50 of the binder for functional layers to be equal to or greater than the lower limit of the above range, the dispersibility of the binder for functional layers can be enhanced. Moreover, the adhesiveness of the binder for functional layers can be improved by making volume average particle diameter D50 below the upper limit of the said range.

そして、機能層用組成物中の機能層用結着材の含有量は、前述した粒子状重合体100質量部に対して、1質量部以上であることが好ましく、5質量部以上であることがより好ましく、また、30質量部以下であることが好ましく、25質量部以下であることがより好ましい。機能層用結着材の含有量を前記範囲の下限値以上にすることにより、機能層の結着性を向上させ、加熱前または電解液への浸漬前に粒子状重合体が機能層から脱落するのを十分に防止することができる。また、機能層用結着材の含有量を前記範囲の上限値以下にすることにより、機能層のイオン伝導性の低下および二次電池の低温出力特性の低下を抑制することができる。   The content of the functional layer binder in the functional layer composition is preferably 1 part by mass or more and preferably 5 parts by mass or more with respect to 100 parts by mass of the particulate polymer described above. Is more preferable, and it is preferably 30 parts by mass or less, and more preferably 25 parts by mass or less. By making the content of the binder for the functional layer more than the lower limit of the above range, the binding property of the functional layer is improved, and the particulate polymer is dropped from the functional layer before heating or immersion in the electrolytic solution. Can be sufficiently prevented. Moreover, the fall of the ion conductivity of a functional layer and the low-temperature output characteristic of a secondary battery can be suppressed by making content of the binder for functional layers into below the upper limit of the said range.

機能層用結着材の製造方法としては、例えば、溶液重合法、懸濁重合法、乳化重合法などが挙げられる。中でも、水中で重合をすることができ、粒子状の機能層用結着材を含む水分散液をそのまま機能層用組成物の材料として好適に使用できるので、乳化重合法および懸濁重合法が好ましい。また、機能層用結着材としての重合体を製造する際、その反応系は分散剤を含むことが好ましい。機能層用結着材は、通常、実質的にそれを構成する重合体により形成されるが、重合に際して用いた添加剤等の任意の成分を同伴していてもよい。   Examples of the method for producing the functional layer binder include a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. Among these, the emulsion polymerization method and the suspension polymerization method can be polymerized in water, and an aqueous dispersion containing a particulate functional layer binder can be suitably used as a material for the functional layer composition as it is. preferable. Moreover, when manufacturing the polymer as a binder for functional layers, it is preferable that the reaction system contains a dispersing agent. The functional layer binder is usually formed of a polymer substantially constituting the functional layer binder, but may be accompanied by optional components such as additives used in the polymerization.

<非導電性粒子>
さらに、機能層が多孔膜層としても機能する場合には、機能層用組成物は、非導電性粒子を含んでいてもよい。機能層用組成物に配合される非導電性粒子としては、特に限定されることなく、非水系二次電池に用いられる既知の非導電性粒子を挙げることができる。
具体的には、非導電性粒子としては、無機微粒子と、上述した粒子状重合体および機能層用結着材以外の有機微粒子との双方を用いることができるが、通常は無機微粒子が用いられる。なかでも、非導電性粒子の材料としては、非水系二次電池の使用環境下で安定に存在し、電気化学的に安定である材料が好ましい。このような観点から非導電性粒子の材料の好ましい例を挙げると、酸化アルミニウム(アルミナ)、水和アルミニウム酸化物(ベーマイト)、酸化ケイ素、酸化マグネシウム(マグネシア)、酸化カルシウム、酸化チタン(チタニア)、BaTiO3、ZrO、アルミナ−シリカ複合酸化物等の酸化物粒子;窒化アルミニウム、窒化ホウ素等の窒化物粒子;シリコン、ダイヤモンド等の共有結合性結晶粒子;硫酸バリウム、フッ化カルシウム、フッ化バリウム等の難溶性イオン結晶粒子;タルク、モンモリロナイト等の粘土微粒子;などが挙げられる。また、これらの粒子は必要に応じて元素置換、表面処理、固溶体化等が施されていてもよい。
なお、上述した非導電性粒子は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
<Non-conductive particles>
Furthermore, when the functional layer also functions as a porous membrane layer, the functional layer composition may contain non-conductive particles. The non-conductive particles to be blended in the functional layer composition are not particularly limited, and known non-conductive particles used for non-aqueous secondary batteries can be exemplified.
Specifically, as the non-conductive particles, both inorganic fine particles and organic fine particles other than the above-described particulate polymer and functional layer binder can be used, but inorganic fine particles are usually used. . Especially, as a material of nonelectroconductive particle, the material which exists stably in the use environment of a non-aqueous secondary battery and is electrochemically stable is preferable. From this point of view, preferable examples of the non-conductive particle material include aluminum oxide (alumina), hydrated aluminum oxide (boehmite), silicon oxide, magnesium oxide (magnesia), calcium oxide, titanium oxide (titania). Oxide particles such as BaTiO 3 , ZrO, alumina-silica composite oxide; nitride particles such as aluminum nitride and boron nitride; covalently bonded crystal particles such as silicon and diamond; barium sulfate, calcium fluoride, barium fluoride Insoluble ion crystal particles such as; clay fine particles such as talc and montmorillonite; In addition, these particles may be subjected to element substitution, surface treatment, solid solution, and the like as necessary.
In addition, the nonelectroconductive particle mentioned above may be used individually by 1 type, and may be used in combination of 2 or more types.

<その他の成分>
そして、非水系二次電池機能層用組成物は、上述した成分以外にも、任意のその他の成分を含んでいてもよい。前記その他の成分は、電池反応に影響を及ぼさないものであれば特に限られず、公知のものを使用することができる。また、これらのその他の成分は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
前記その他の成分としては、例えば、エチレンオキサイド−プロピレンオキサイド共重合体などの濡れ剤、粘度調整剤、電解液添加剤などの既知の添加剤が挙げられる。
<Other ingredients>
And the composition for non-aqueous secondary battery functional layers may contain arbitrary other components besides the component mentioned above. The other components are not particularly limited as long as they do not affect the battery reaction, and known components can be used. Moreover, these other components may be used individually by 1 type, and may be used in combination of 2 or more types.
Examples of the other components include known additives such as a wetting agent such as an ethylene oxide-propylene oxide copolymer, a viscosity modifier, and an electrolyte solution additive.

<非水系二次電池機能層用組成物の調製>
機能層用組成物の調製方法は、特に限定はされないが、通常は、粒子状重合体と、アミノ酸と、分散媒としての水と、必要に応じて用いられる機能層用結着材、非導電性粒子およびその他の成分とを混合して機能層用組成物を調製する。混合方法は特に制限されないが、各成分を効率よく分散させるため、通常は混合装置として分散機を用いて混合を行う。
分散機としては、上記成分を均一に分散および混合できる装置を用いることが好ましい。例としては、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサーなどが挙げられる。また、高い分散シェアを加えることができるという観点から、ビーズミル、ロールミル、フィルミックス等の高分散装置を用いることも好ましい。
<Preparation of non-aqueous secondary battery functional layer composition>
The method for preparing the composition for the functional layer is not particularly limited, but is usually a particulate polymer, an amino acid, water as a dispersion medium, a functional layer binder used as necessary, and a non-conductive material. The functional layer composition is prepared by mixing the functional particles and other components. Although the mixing method is not particularly limited, in order to disperse each component efficiently, mixing is usually performed using a disperser as a mixing device.
As the disperser, it is preferable to use an apparatus capable of uniformly dispersing and mixing the above components. Examples include a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, and a planetary mixer. From the viewpoint that a high dispersion share can be added, it is also preferable to use a high dispersion apparatus such as a bead mill, a roll mill, or a fill mix.

(非水系二次電池用機能層)
非水系二次電池用機能層は、上述した非水系二次電池機能層用組成物を用い、適切な基材上に形成することができる。そして、機能層を基材上に形成することにより、非水系二次電池用機能層付き基材が得られる。ここで、この基材上に形成された非水系二次電池用機能層は、耐ブロッキング性に優れる上、電解液への浸漬後においても優れた接着性を発揮することができ、そして、非水系二次電池に優れた電池特性(高温サイクル特性や低温出力特性など)を発揮させることができる。
(Functional layer for non-aqueous secondary batteries)
The functional layer for a non-aqueous secondary battery can be formed on an appropriate base material using the composition for a non-aqueous secondary battery functional layer described above. And the base material with a functional layer for non-aqueous secondary batteries is obtained by forming a functional layer on a base material. Here, the functional layer for a non-aqueous secondary battery formed on this base material is excellent in blocking resistance, can exhibit excellent adhesiveness even after being immersed in an electrolytic solution, and non- Excellent battery characteristics (such as high-temperature cycle characteristics and low-temperature output characteristics) can be exhibited in water-based secondary batteries.

<基材>
機能層を形成する基材の種類は特に限定されず、例えばセパレータの一部を構成する部材として機能層を使用する場合には、基材としてセパレータ基材を用いることができ、また、電極の一部を構成する部材として機能層を使用する場合には、基材として集電体上に電極合材層を形成してなる電極基材を用いることができる。また、非水系二次電池機能層用組成物を用いて基材上に機能層を形成して得られる機能層付き基材の用法に特に制限は無く、例えばセパレータ基材等の上に機能層を形成してそのままセパレータ等の電池部材として使用してもよいし、電極基材上に機能層を形成してそのまま電極として使用してもよいし、離型基材上に形成した機能層を離型基材から一度剥離し、他の基材に貼り付けて電池部材として使用してもよい。
しかし、機能層から離型基材を剥がす工程を省略して電池部材の製造効率を高める観点からは、基材としてセパレータ基材または電極基材を使用し、機能層付き基材を電池部材としてそのまま用いることが好ましい。セパレータ基材または電極基材に形成された機能層は、上述の粒子状重合体を含むので、耐ブロッキング性を発揮する。また、機能層は、電解液中において優れた接着性を発揮すると共に、二次電池の電池特性を向上させることができる。
<Base material>
The type of the base material for forming the functional layer is not particularly limited. For example, when the functional layer is used as a member constituting a part of the separator, the separator base material can be used as the base material. When a functional layer is used as a member constituting a part, an electrode base material formed by forming an electrode mixture layer on a current collector can be used as the base material. Moreover, there is no restriction | limiting in particular in the usage of the base material with a functional layer obtained by forming a functional layer on a base material using the composition for non-aqueous secondary battery functional layers, for example, a functional layer on a separator base material etc. May be used directly as a battery member such as a separator, or may be used as an electrode by forming a functional layer on an electrode substrate, or a functional layer formed on a release substrate. It may be peeled once from the mold release substrate and attached to another substrate to be used as a battery member.
However, from the viewpoint of increasing the production efficiency of the battery member by omitting the step of peeling the release substrate from the functional layer, a separator substrate or an electrode substrate is used as the substrate, and the substrate with the functional layer is used as the battery member. It is preferable to use it as it is. Since the functional layer formed on the separator base material or the electrode base material contains the above-mentioned particulate polymer, it exhibits blocking resistance. In addition, the functional layer can exhibit excellent adhesiveness in the electrolytic solution and can improve the battery characteristics of the secondary battery.

[セパレータ基材]
機能層を形成するセパレータ基材としては、特に限定されることなく、例えば特開2012−204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。
なお、セパレータ基材は、機能層以外の、所期の機能を発揮し得る任意の層をその一部に含んでいてもよい。
[Separator substrate]
As a separator base material which forms a functional layer, it does not specifically limit, For example, the thing of Unexamined-Japanese-Patent No. 2012-204303 can be used. Among these, the film thickness of the entire separator can be reduced, thereby increasing the ratio of the electrode active material in the secondary battery and increasing the capacity per volume. A microporous film made of a resin such as polyethylene, polypropylene, polybutene, or polyvinyl chloride is preferable.
In addition, the separator base material may contain an arbitrary layer that can exhibit an intended function other than the functional layer.

[電極基材]
機能層を形成する電極基材(正極基材および負極基材)としては、特に限定されないが、集電体上に電極合材層が形成された電極基材が挙げられる。
ここで、集電体、電極合材層中の成分(例えば、電極活物質(正極活物質、負極活物質)および電極合材層用結着材(正極合材層用結着材、負極合材層用結着材)など)、並びに、集電体上への電極合材層の形成方法は、既知のものを用いることができる。具体的には、例えば特開2013−145763号公報に記載のものを用いることができる。
なお、電極基材は、機能層以外の、所期の機能を有する任意の層をその一部に含んでいてもよい。
[Electrode substrate]
Although it does not specifically limit as an electrode base material (a positive electrode base material and a negative electrode base material) which forms a functional layer, The electrode base material with which the electrode compound-material layer was formed on the electrical power collector is mentioned.
Here, the current collector, the components in the electrode mixture layer (for example, the electrode active material (positive electrode active material, negative electrode active material) and the electrode mixture layer binder (positive electrode mixture layer binder, negative electrode composite) As a method for forming the electrode mixture layer on the current collector, and the like, a known material can be used. Specifically, for example, those described in JP2013-145663A can be used.
In addition, the electrode base material may include an arbitrary layer having an intended function other than the functional layer in a part thereof.

[離型基材]
機能層を形成する離型基材としては、特に限定されず、既知の離型基材を用いることができる。
[Release substrate]
It does not specifically limit as a mold release base material which forms a functional layer, A known mold release base material can be used.

<非水系二次電池用機能層の形成方法>
上述したセパレータ基材、電極基材などの基材上に機能層を形成する方法としては、以下の方法が挙げられる:
1)機能層用組成物をセパレータ基材または電極基材の表面(電極基材の場合は電極合材層側の表面、以下同じ)に塗布し、次いで乾燥する方法;
2)機能層用組成物にセパレータ基材または電極基材を浸漬後、これを乾燥する方法;
3)機能層用組成物を、離型基材上に塗布、乾燥して機能層を製造し、得られた機能層をセパレータ基材または電極基材の表面に転写する方法。
これらの中でも、前記1)の方法が、機能層の膜厚制御をしやすいことから特に好ましい。当該1)の方法は、詳細には、機能層用組成物をセパレータ基材または電極基材上に塗布する工程(塗布工程)と、セパレータ基材または電極基材上に塗布された機能層用組成物を乾燥させて機能層を形成する工程(乾燥工程)を備える。
<Method for forming functional layer for non-aqueous secondary battery>
Examples of the method for forming a functional layer on a substrate such as the separator substrate or electrode substrate described above include the following methods:
1) A method in which the composition for a functional layer is applied to the surface of a separator substrate or an electrode substrate (in the case of an electrode substrate, the surface on the electrode mixture layer side, the same shall apply hereinafter) and then dried;
2) A method of drying a separator substrate or electrode substrate after immersing the separator layer or electrode substrate in the functional layer composition;
3) A method for producing a functional layer by applying and drying a composition for a functional layer on a release substrate, and transferring the obtained functional layer to the surface of a separator substrate or an electrode substrate.
Among these, the method 1) is particularly preferable because the thickness of the functional layer can be easily controlled. Specifically, the method 1) includes a step of applying a functional layer composition on a separator substrate or an electrode substrate (application step), and a function layer applied on the separator substrate or the electrode substrate. A step of drying the composition to form a functional layer (drying step) is provided.

塗布工程において、機能層用組成物をセパレータ基材または電極基材上に塗布する方法は、特に制限は無く、例えば、スプレーコート法、ドクターブレード法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。なかでも、より薄い機能層を形成する点から、グラビア法やスプレーコート法が好ましい。
また乾燥工程において、基材上の機能層用組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。乾燥条件は特に限定されないが、乾燥温度は好ましくは30〜80℃で、乾燥時間は好ましくは30秒〜10分である。
In the coating process, the method for coating the functional layer composition on the separator substrate or the electrode substrate is not particularly limited. For example, spray coating method, doctor blade method, reverse roll method, direct roll method, gravure method, Examples include an extrusion method and a brush coating method. Of these, the gravure method and the spray coating method are preferable from the viewpoint of forming a thinner functional layer.
In the drying step, the method for drying the composition for the functional layer on the substrate is not particularly limited, and a known method can be used. For example, drying with warm air, hot air, low-humidity air, vacuum drying, infrared rays, A drying method by irradiation with an electron beam or the like can be mentioned. The drying conditions are not particularly limited, but the drying temperature is preferably 30 to 80 ° C., and the drying time is preferably 30 seconds to 10 minutes.

なお、基材上に形成された機能層の厚みは、好ましくは0.01μm以上、より好ましくは0.1μm以上、さらに好ましくは0.5μm以上であり、好ましくは20μm以下、より好ましくは10μm以下、さらに好ましくは5μm以下である。機能層の厚みが、前記範囲の下限値以上であることで、機能層の強度を十分に確保することができ、前記範囲の上限値以下であることで、機能層のイオン拡散性を確保し二次電池の低温出力特性をさらに向上させることができる。   The thickness of the functional layer formed on the substrate is preferably 0.01 μm or more, more preferably 0.1 μm or more, further preferably 0.5 μm or more, preferably 20 μm or less, more preferably 10 μm or less. More preferably, it is 5 μm or less. When the thickness of the functional layer is not less than the lower limit value of the range, the strength of the functional layer can be sufficiently secured, and by being not more than the upper limit value of the range, the ion diffusibility of the functional layer is ensured. The low temperature output characteristics of the secondary battery can be further improved.

(非水系二次電池)
本発明の非水系二次電池は、上述した非水系二次電池用機能層を備えることを特徴とする。具体的には、本発明の非水系二次電池は、正極と、負極と、セパレータと、電解液とを備え、正極、負極およびセパレータの少なくとも一つが上記非水系二次電池用機能層を備える非水系二次電池用機能層付き基材よりなる。そして、本発明の非水系二次電池では、上記非水系二次電池用機能層が接着層として機能する場合には、正極とセパレータ、および/または、負極とセパレータが機能層を介して接着される。なお、本発明の非水系二次電池は、本発明の非水系二次電池機能層用組成物を用いて形成した機能層を含む電池部材を備えており、機能層と電極基材またはセパレータ基材、並びに、電池部材同士が電解液中でも強固に接着されているため、高温サイクル特性などの電池特性に優れている。
(Non-aqueous secondary battery)
The non-aqueous secondary battery of the present invention includes the above-described functional layer for a non-aqueous secondary battery. Specifically, the non-aqueous secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and an electrolytic solution, and at least one of the positive electrode, the negative electrode, and the separator includes the functional layer for the non-aqueous secondary battery. It consists of a base material with a functional layer for non-aqueous secondary batteries. And in the non-aqueous secondary battery of this invention, when the said functional layer for non-aqueous secondary batteries functions as an adhesive layer, a positive electrode and a separator and / or a negative electrode and a separator are adhere | attached through a functional layer. The The non-aqueous secondary battery of the present invention includes a battery member including a functional layer formed using the composition for a non-aqueous secondary battery functional layer of the present invention. Since the material and the battery members are firmly bonded even in the electrolytic solution, the battery characteristics such as high-temperature cycle characteristics are excellent.

なお、非水系二次電池において、上述した非水系二次電池用機能層を有さない正極、負極およびセパレータとしては、非水系二次電池において用いられている既知の正極、負極およびセパレータを使用することができる。また、電解液としては、非水系二次電池において用いられている既知の電解液を使用することができる。   In the non-aqueous secondary battery, as the positive electrode, negative electrode, and separator that do not have the above-described non-aqueous secondary battery functional layer, the known positive electrode, negative electrode, and separator used in the non-aqueous secondary battery are used. can do. As the electrolytic solution, a known electrolytic solution used in a non-aqueous secondary battery can be used.

具体的には、上述した非水系二次電池用機能層を有さない電極(正極および負極)としては、上述した電極基材を用いることができ、上述した非水系二次電池用機能層を有さないセパレータとしては、上述したセパレータ基材を用いることができる。   Specifically, as the electrode (positive electrode and negative electrode) that does not have the above-described non-aqueous secondary battery functional layer, the above-described electrode base material can be used, and the above-described non-aqueous secondary battery functional layer is The separator base material mentioned above can be used as a separator which does not have.

また、電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。例えば、非水系二次電池がリチウムイオン二次電池である場合には、支持電解質としては、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF6、LiClO4、CF3SO3Liが好ましく、LiPF6が特に好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。 As the electrolytic solution, an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used. For example, when the non-aqueous secondary battery is a lithium ion secondary battery, a lithium salt is used as the supporting electrolyte. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like. Of these, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable, and LiPF 6 is particularly preferable because it is easily dissolved in a solvent and exhibits a high degree of dissociation. In addition, electrolyte may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. Usually, the lithium ion conductivity tends to increase as the supporting electrolyte having a higher degree of dissociation is used, so that the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.

さらに、電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)等のカーボネート類;γ−ブチロラクトン、ギ酸メチル等のエステル類;1,2−ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類を用いることが好ましく、エチレンカーボネートとエチルメチルカーボネートとの混合物を用いることがさらに好ましい。
なお、電解液中の電解質の濃度は適宜調整することができ、例えば0.5〜15質量%することが好ましく、2〜13質量%とすることがより好ましく、5〜10質量%とすることがさらに好ましい。また、電解液には、既知の添加剤、例えばフルオロエチレンカーボネートやエチルメチルスルホンなどを添加してもよい。
Furthermore, the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte. For example, dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC) ), Carbonates such as butylene carbonate (BC) and ethyl methyl carbonate (EMC); esters such as γ-butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; including sulfolane and dimethyl sulfoxide Sulfur compounds; etc. are preferably used. Moreover, you may use the liquid mixture of these solvents. Among them, it is preferable to use carbonates because they have a high dielectric constant and a wide stable potential region, and it is more preferable to use a mixture of ethylene carbonate and ethyl methyl carbonate.
In addition, the density | concentration of the electrolyte in electrolyte solution can be adjusted suitably, for example, it is preferable to set it as 0.5-15 mass%, it is more preferable to set it as 2-13 mass%, and it shall be 5-10 mass%. Is more preferable. Further, known additives such as fluoroethylene carbonate and ethyl methyl sulfone may be added to the electrolytic solution.

<非水系二次電池の製造方法>
非水系二次電池は、例えば、正極と負極とをセパレータを介して重ね合わせ、たものを、必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。非水系二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。非水系二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、いずれであってもよい。
<Method for producing non-aqueous secondary battery>
The non-aqueous secondary battery is, for example, a structure in which a positive electrode and a negative electrode are stacked with a separator interposed between them, and if necessary, wound or folded according to the shape of the battery and put into a battery container. Can be manufactured by injecting and sealing. In order to prevent the occurrence of pressure rise inside the non-aqueous secondary battery, overcharge / discharge, etc., an overcurrent prevention element such as a fuse or a PTC element, an expanded metal, a lead plate, etc. may be provided as necessary. . The shape of the non-aqueous secondary battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like, for example.

以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
また、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される構造単位の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
実施例および比較例において、コア部の重合体およびシェル部の重合体の電解液膨潤度およびガラス転移温度、機能層用結着材のガラス転移温度、粒子状重合体および機能層用結着材の体積平均粒子径D50、粒子状重合体のコアシェル比率および被覆率、非水系二次電池機能層用組成物の分散性、電解液浸漬後の電極とセパレータとの接着性、並びに、二次電池の高温サイクル特性および低温出力特性は、下記の方法で測定および評価した。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the following description, “%” and “part” representing amounts are based on mass unless otherwise specified.
In addition, in a polymer produced by copolymerizing a plurality of types of monomers, the proportion of the structural unit formed by polymerizing a certain monomer in the polymer is usually that unless otherwise specified. This coincides with the ratio (preparation ratio) of the certain monomer in the total monomers used for polymerization of the polymer.
In Examples and Comparative Examples, the electrolyte swelling degree and glass transition temperature of the core polymer and the shell polymer, the glass transition temperature of the functional layer binder, the particulate polymer, and the functional layer binder Volume average particle diameter D50, core-shell ratio and coverage of particulate polymer, dispersibility of composition for non-aqueous secondary battery functional layer, adhesion between electrode and separator after immersion in electrolyte, and secondary battery The high-temperature cycle characteristics and low-temperature output characteristics were measured and evaluated by the following methods.

<コア部の重合体およびシェル部の重合体の電解液膨潤度>
粒子状重合体のコア部およびシェル部の形成に用いた単量体および各種添加剤等を使用し、当該コア部およびシェル部の重合条件と同様の重合条件で、コア部の重合体およびシェル部の重合体を含む水分散液をそれぞれ調製した。この水分散液を、ポリテトラフルオロエチレン製のシャーレに入れ、25℃、48時間の条件で乾燥して、厚み0.5mmのフィルムを得た。そして、得られたフィルムを1cm角に裁断し、試験片を得た。この試験片の質量W0を測定した。また、前記試験片を、電解液に60℃で72時間浸漬した。その後、試験片を電解液から取り出し、試験片の表面の電解液を拭き取り、浸漬試験後の試験片の質量W1を測定した。そして、これらの質量W0およびW1を用いて、電解液膨潤度S(倍)を、S=W1/W0にて求めた。
なお、電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とビニレンカーボネート(VC)との混合溶媒(体積混合比:EC/DEC/VC=68.5/30/1.5;SP値:12.7(cal/cm31/2)に、支持電解質としてLiPF6を溶媒に対して1mol/Lの濃度で溶かしたものを用いた。
<Swelling degree of electrolyte solution of polymer of core part and polymer of shell part>
Using the monomers and various additives used for forming the core and shell of the particulate polymer, the polymer and shell of the core are polymerized under the same polymerization conditions as those of the core and shell. An aqueous dispersion containing part of the polymer was prepared. This aqueous dispersion was put into a petri dish made of polytetrafluoroethylene and dried under conditions of 25 ° C. and 48 hours to obtain a film having a thickness of 0.5 mm. And the obtained film was cut | judged to 1 square cm, and the test piece was obtained. The mass W0 of this test piece was measured. Further, the test piece was immersed in an electrolytic solution at 60 ° C. for 72 hours. Then, the test piece was taken out from the electrolytic solution, the electrolytic solution on the surface of the test piece was wiped off, and the mass W1 of the test piece after the immersion test was measured. And using these mass W0 and W1, electrolyte solution swelling degree S (times) was calculated | required by S = W1 / W0.
As the electrolytic solution, a mixed solvent of ethylene carbonate (EC), diethyl carbonate (DEC), and vinylene carbonate (VC) (volume mixing ratio: EC / DEC / VC = 68.5 / 30 / 1.5; SP Value: 12.7 (cal / cm 3 ) 1/2 ) was used as a supporting electrolyte in which LiPF 6 was dissolved in a solvent at a concentration of 1 mol / L.

<コア部の重合体、シェル部の重合体および機能層用結着材のガラス転移温度>
粒子状重合体のコア部およびシェル部の形成に用いた単量体および各種添加剤等を使用し、当該コア部およびシェル部の重合条件と同様の重合条件で、測定試料となる重合体(コア部の重合体およびシェル部の重合体)を含む水分散液をそれぞれ調製した。そして、調製した水分散液を測定試料とした。また、機能層用結着材を含む水分散液を準備し、測定試料とした。
次に、示差熱分析測定装置(エスアイアイ・ナノテクノロジー社製、製品名「EXSTAR DSC6220」)を用い、乾燥させた測定試料10mgをアルミパンに計量し、リファレンスとして空のアルミパンを用い、測定温度範囲−100℃〜500℃の間で、昇温速度10℃/分、常温常湿下で、DSC曲線を測定した。この昇温過程で、微分信号(DDSC)が0.05mW/分/mg以上となるDSC曲線の吸熱ピークが出る直前のベースラインと、吸熱ピーク後に最初に現れる変曲点でのDSC曲線の接線との交点から、ガラス転移温度を求めた。
<Glass transition temperature of core polymer, shell polymer and functional layer binder>
Polymer used as a measurement sample under the same polymerization conditions as the polymerization conditions of the core part and the shell part using the monomers and various additives used for the formation of the core part and the shell part of the particulate polymer ( A water dispersion containing a core polymer and a shell polymer) was prepared. The prepared aqueous dispersion was used as a measurement sample. Moreover, the aqueous dispersion containing the binder for functional layers was prepared, and it was set as the measurement sample.
Next, using a differential thermal analysis measuring device (product name “EXSTAR DSC6220” manufactured by SII Nano Technology Co., Ltd.), 10 mg of the dried measurement sample is weighed on an aluminum pan, and an empty aluminum pan is used as a reference. The DSC curve was measured in a temperature range of −100 ° C. to 500 ° C. at a temperature rising rate of 10 ° C./min and at normal temperature and humidity. During this temperature rising process, the baseline immediately before the endothermic peak of the DSC curve where the differential signal (DDSC) becomes 0.05 mW / min / mg or more and the tangent line of the DSC curve at the first inflection point after the endothermic peak The glass transition temperature was determined from the intersection with.

<粒子状重合体および機能層用結着材の体積平均粒子径D50>
粒子状重合体および機能層用結着材の体積平均粒子径D50は、レーザー回折式粒子径分布測定装置(島津製作所社製「SALD−3100」)により測定された粒子径分布において、小径側から計算した累積体積が50%となる粒子径とした。
<Volume average particle diameter D50 of binder for functional polymer and functional layer>
The volume average particle diameter D50 of the particulate polymer and the functional layer binder is determined from the small diameter side in the particle diameter distribution measured by a laser diffraction particle size distribution measuring device ("SALD-3100" manufactured by Shimadzu Corporation). The particle diameter was such that the calculated cumulative volume was 50%.

<粒子状重合体のコアシェル比率>
粒子状重合体のコアシェル比率を、以下の手順で測定した。
調製した粒子状重合体を、可視光硬化性樹脂(日本電子株式会社製「D−800」)に十分分散させた後、包埋し、粒子状重合体を含有するブロック片を得た。次に、得られたブロック片を、ダイヤモンド刃を備えたミクロトームで厚さ100nmの薄片状に切り出して、測定用試料を作製した。その後、四酸化ルテニウムを用いて測定用試料に染色処理を施した。
次に、染色処理を施した測定用試料を、透過型電子顕微鏡(日本電子社製「JEM−3100F」)にセットして、加速電圧80kVにて、粒子状重合体の断面構造を写真撮影した。電子顕微鏡の倍率は、視野に粒子状重合体1個の断面が入るように倍率を設定した。その後、撮影された粒子状重合体の断面構造を観察し、観察されたシェル部の構成に応じて、以下の手順で粒子状重合体のシェル部の平均厚みを測定した。そして、測定されたシェル部の平均厚みを粒子状重合体の体積平均粒子径D50で割ることにより、コアシェル比率を求めた。
<<シェル部が重合体の粒子により構成されている場合>>
粒子状重合体の断面構造から、シェル部を構成する重合体の粒子の最長径を測定した。シェル部を構成する重合体の粒子の最長径を、任意に選択した20個の粒子状重合体について測定し、その最長径の平均値をシェル部の平均厚みとした。
<<シェル部が粒子以外の形状を有している場合>>
粒子状重合体の断面構造から、シェル部の最大厚みを測定した。シェル部の最大厚みを、任意に選択した20個の粒子状重合体について測定し、その最大厚みの平均値をシェル部の平均厚みとした。
<Core-shell ratio of particulate polymer>
The core-shell ratio of the particulate polymer was measured by the following procedure.
The prepared particulate polymer was sufficiently dispersed in a visible light curable resin (“D-800” manufactured by JEOL Ltd.) and then embedded to obtain a block piece containing the particulate polymer. Next, the obtained block piece was cut into a thin piece having a thickness of 100 nm with a microtome equipped with a diamond blade to prepare a measurement sample. Thereafter, the measurement sample was dyed using ruthenium tetroxide.
Next, the dyed measurement sample was set in a transmission electron microscope (“JEM-3100F” manufactured by JEOL Ltd.), and the cross-sectional structure of the particulate polymer was photographed at an acceleration voltage of 80 kV. . The magnification of the electron microscope was set so that the cross section of one particulate polymer was in the visual field. Thereafter, the cross-sectional structure of the photographed particulate polymer was observed, and the average thickness of the shell portion of the particulate polymer was measured by the following procedure according to the observed configuration of the shell portion. And the core-shell ratio was calculated | required by dividing the measured average thickness of the shell part by the volume average particle diameter D50 of a particulate polymer.
<< When the shell part is composed of polymer particles >>
From the cross-sectional structure of the particulate polymer, the longest diameter of the polymer particles constituting the shell portion was measured. The longest diameter of the polymer particles constituting the shell portion was measured for 20 arbitrarily selected particulate polymers, and the average value of the longest diameters was taken as the average thickness of the shell portion.
<< When the shell has a shape other than particles >>
The maximum thickness of the shell portion was measured from the cross-sectional structure of the particulate polymer. The maximum thickness of the shell part was measured for 20 arbitrarily selected particulate polymers, and the average value of the maximum thickness was taken as the average thickness of the shell part.

<粒子状重合体の被覆率>
粒子状重合体の被覆率を、以下の手順で測定した。
上記粒子状重合体のコアシェル比率の測定方法と同様にして、粒子状重合体の断面構造を写真撮影し、撮影された粒子状重合体の断面構造において、コア部の周の長さD1、および、コア部の外表面とシェル部とが当接する部分の長さD2を計測し、その粒子状重合体のコア部の外表面がシェル部によって覆われる割合(被覆割合)Rc(%)=(D2/D1)×100を算出した。被覆割合Rcの算出には、画像解析ソフトである「AnalySIS Pro」(オリンパス株式会社製)を使用した。
前記の被覆割合Rcを、任意に選択した20個の粒子状重合体について測定し、その平均値を、粒子状重合体のコア部の外表面がシェル部によって覆われる平均割合(被覆率)とした。
<Particulate polymer coverage>
The coverage of the particulate polymer was measured by the following procedure.
In the same manner as the method for measuring the core-shell ratio of the particulate polymer, a cross-sectional structure of the particulate polymer is photographed. In the photographed cross-sectional structure of the particulate polymer, the circumference D1 of the core portion, and The length D2 of the part where the outer surface of the core part and the shell part contact each other is measured, and the ratio of the outer surface of the core part of the particulate polymer covered by the shell part (covering ratio) Rc (%) = ( D2 / D1) × 100 was calculated. For the calculation of the covering ratio Rc, “AnalySIS Pro” (manufactured by Olympus Corporation) which is image analysis software was used.
The covering ratio Rc is measured for 20 arbitrarily selected particulate polymers, and the average value is the average ratio (covering ratio) at which the outer surface of the core part of the particulate polymer is covered by the shell part. did.

<非水系二次電池機能層用組成物の分散性>
製造した固形分濃度Cの非水系二次電池機能層用組成物を質量w0だけ沈降管に封入し、遠心分離器を使用して、遠心加速度700G、処理時間6hの条件で遠心分離し、粒子状重合体等を強制的に沈降させた。次いで、前記沈降管を振とう機にセットし、振とう速度80min-1、振とう時間12hの条件で振とうし、粒子状重合体等を再分散させた。以上の処理によって得られた沈降管の内容物を、金網(200メッシュ)に通し、当該金網と、金網上の残留物とを105℃のオーブンで30分乾燥させた後、金網上の残留物の重量w1を測定した。そして、残留物濃度w(ppm)=w1/(w0×C)×1000000を算出し、機能層用組成物の分散性を下記の基準で評価した。このWの値が小さいほど非水系二次電池機能層用組成物中における粒子状重合体等の分散性が良く、粒子状重合体等が非水系二次電池機能層用組成物中において凝集状態で存在する割合が少ないことを示す。
A:残留物濃度wが300ppm未満
B:残留物濃度wが300ppm以上1000ppm未満
C:残留物濃度wが1000ppm以上
<Dispersibility of composition for functional layer of non-aqueous secondary battery>
The produced composition for a non-aqueous secondary battery functional layer having a solid content concentration of C is enclosed in a settling tube by a mass w0, and is centrifuged using a centrifuge at a centrifugal acceleration of 700 G and a processing time of 6 h to obtain particles. The polymer was forced to settle. Next, the settling tube was set on a shaker, and shaken under the conditions of a shaking speed of 80 min −1 and a shaking time of 12 hours, and the particulate polymer and the like were redispersed. The contents of the settling tube obtained by the above treatment are passed through a wire mesh (200 mesh), and the wire mesh and the residue on the wire mesh are dried in an oven at 105 ° C. for 30 minutes, and then the residue on the wire mesh. The weight w1 of was measured. And the residue density | concentration w (ppm) = w1 / (w0 * C) * 1000000 was computed, and the dispersibility of the composition for functional layers was evaluated on the following reference | standard. The smaller the value of W, the better the dispersibility of the particulate polymer and the like in the composition for the non-aqueous secondary battery functional layer, and the particulate polymer and the like are aggregated in the composition for the non-aqueous secondary battery functional layer. It shows that the ratio which exists is small.
A: Residual concentration w is less than 300 ppm B: Residual concentration w is 300 ppm or more and less than 1000 ppm C: Residual concentration w is 1000 ppm or more

<電解液浸漬後のセパレータと電極との接着性>
調製した正極およびセパレータを備える積層体、並びに、負極およびセパレータを備える積層体を、それぞれ10mm幅に切り出して試験片を得た。この試験片を電解液中に温度60℃で3日間浸漬した。ここで、電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とビニレンカーボネート(VC)との混合溶媒(体積混合比:EC/DEC/VC=68.5/30/1.5;SP値:12.7(cal/cm31/2)に、支持電解質としてLiPF6を溶媒に対して1mol/Lの濃度で溶かしたものを用いた。
その後、試験片を取り出し、表面に付着した電解液を拭き取った。その後、この試験片を、電極(正極または負極)の集電体側の面を下にして、電極の表面にセロハンテープを貼り付けた。この際、セロハンテープとしてはJIS Z1522に規定されるものを用いた。また、セロハンテープは水平な試験台に固定しておいた。そして、セパレータ基材の一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を、正極およびセパレータを備える積層体、並びに、負極およびセパレータを備える積層体でそれぞれ3回、合計6回行い、応力の平均値をピール強度として求めて、電解液浸漬後の電極基材とセパレータ基材との接着性を下記の基準で評価した。ピール強度が大きいほど、接着性が高いことを示す。
A:ピール強度が5.0N/m以上
B:ピール強度が3.0N/m以上5.0N/m未満
C:ピール強度が0.5N/m以上3.0N/m未満
D:ピール強度が0.5N/m未満
<Adhesiveness between separator and electrode after immersion in electrolyte>
The prepared laminate including the positive electrode and the separator and the laminate including the negative electrode and the separator were each cut into a width of 10 mm to obtain test pieces. This test piece was immersed in the electrolytic solution at a temperature of 60 ° C. for 3 days. Here, as the electrolytic solution, a mixed solvent of ethylene carbonate (EC), diethyl carbonate (DEC), and vinylene carbonate (VC) (volume mixing ratio: EC / DEC / VC = 68.5 / 30 / 1.5; SP value: 12.7 (cal / cm 3 ) 1/2 ) was used as a supporting electrolyte in which LiPF 6 was dissolved in a solvent at a concentration of 1 mol / L.
Then, the test piece was taken out and the electrolytic solution adhering to the surface was wiped off. Then, the cellophane tape was affixed on the surface of the electrode of this test piece with the current collector side of the electrode (positive electrode or negative electrode) facing down. At this time, a cellophane tape defined in JIS Z1522 was used. The cellophane tape was fixed on a horizontal test bench. And the stress when one end of the separator base material was pulled vertically upward at a pulling speed of 50 mm / min and peeled was measured. This measurement was performed three times for each of the laminate including the positive electrode and the separator, and the laminate including the negative electrode and the separator, for a total of 6 times, and the average value of the stress was obtained as the peel strength. And the separator base material were evaluated according to the following criteria. It shows that adhesiveness is so high that peel strength is large.
A: Peel strength is 5.0 N / m or more B: Peel strength is 3.0 N / m or more and less than 5.0 N / m C: Peel strength is 0.5 N / m or more and less than 3.0 N / m D: Peel strength is Less than 0.5 N / m

<高温サイクル特性>
製造した放電容量800mAhの捲回型セルのリチウムイオン二次電池を、25℃の環境下で24時間静置した。その後、25℃の環境下で、0.1Cで4.35Vまで充電し0.1Cで2.75Vまで放電する充放電の操作を行い、初期容量C0を測定した。その後、さらに、60℃の環境下で、前記と同様の条件で充放電を繰り返し、1000サイクル後の容量C1を測定した。そして、サイクル前後での容量維持率ΔC(%)=(C1/C0)×100を算出し、高温サイクル特性を下記の基準で評価した。この容量維持率ΔCの値が大きいほど、高温サイクル特性に優れ、電池が長寿命であることを示す。
A:容量維持率ΔCが84%以上
B:容量維持率ΔCが80%以上84%未満
C:容量維持率ΔCが75%以上80%未満
D:容量維持率ΔCが75%未満
<High temperature cycle characteristics>
The manufactured lithium ion secondary battery of a wound type cell having a discharge capacity of 800 mAh was allowed to stand in an environment of 25 ° C. for 24 hours. Thereafter, under an environment of 25 ° C., a charge / discharge operation of charging up to 4.35 V at 0.1 C and discharging to 2.75 V at 0.1 C was performed, and the initial capacity C0 was measured. Thereafter, charging and discharging were further repeated under the same conditions as described above under an environment of 60 ° C., and the capacity C1 after 1000 cycles was measured. Then, the capacity retention ratio ΔC (%) = (C1 / C0) × 100 before and after the cycle was calculated, and the high temperature cycle characteristics were evaluated according to the following criteria. The larger the value of the capacity retention ratio ΔC, the better the high-temperature cycle characteristics and the longer the battery life.
A: Capacity maintenance ratio ΔC is 84% or more B: Capacity maintenance ratio ΔC is 80% or more and less than 84% C: Capacity maintenance ratio ΔC is 75% or more and less than 80% D: Capacity maintenance ratio ΔC is less than 75%

<低温出力特性>
製造した放電容量800mAhの捲回型セルのリチウムイオン二次電池を、25℃の環境下で24時間静置した。その後、25℃の環境下で、0.1Cの充電レートで5時間の充電の操作を行い、その時の電圧V0を測定した。その後、−10℃環境下で、1Cの放電レートにて放電の操作を行い、放電開始15秒後の電圧V1を測定した。そして、電圧変化ΔV=V0−V1を算出し、低温出力特性を下記の基準で評価した。この電圧変化ΔVの値が小さいほど、低温出力特性に優れることを示す。
A:電圧変化ΔVが350mV未満
B:電圧変化ΔVが350mV以上500mV未満
C:電圧変化ΔVが500mV以上650mV未満
D:電圧変化ΔVが650mV以上
<Low temperature output characteristics>
The manufactured lithium ion secondary battery of a wound type cell having a discharge capacity of 800 mAh was allowed to stand in an environment of 25 ° C. for 24 hours. Thereafter, charging was performed for 5 hours at a charging rate of 0.1 C under an environment of 25 ° C., and the voltage V0 at that time was measured. Thereafter, a discharge operation was performed at a discharge rate of 1 C in a -10 ° C environment, and the voltage V1 15 seconds after the start of discharge was measured. And voltage change (DELTA) V = V0-V1 was computed, and the low-temperature output characteristic was evaluated on the following reference | standard. It shows that it is excellent in low temperature output characteristics, so that the value of this voltage change (DELTA) V is small.
A: Voltage change ΔV is less than 350 mV B: Voltage change ΔV is 350 mV or more and less than 500 mV C: Voltage change ΔV is 500 mV or more and less than 650 mV D: Voltage change ΔV is 650 mV or more

(実施例1)
<コアシェル構造を有する粒子状重合体の調製>
攪拌機付き5MPa耐圧容器に、コア部形成用として、(メタ)アクリル酸エステル単量体としてのメタクリル酸メチル75部、酸基含有単量体としてのメタクリル酸4部、架橋性単量体としてのエチレングリコールジメタクリレート1部;乳化剤としてのドデシルベンゼンスルホン酸ナトリウム1部;イオン交換水150部、並びに、重合開始剤としての過硫酸カリウム0.5部を入れ、十分に攪拌した。その後、60℃に加温して重合を開始した。重合転化率が96%になるまで重合を継続させて、コア部を構成する粒子状の重合体を含む水分散液を得た。
Example 1
<Preparation of particulate polymer having core-shell structure>
In a 5 MPa pressure vessel with a stirrer, 75 parts of methyl methacrylate as a (meth) acrylic acid ester monomer, 4 parts of methacrylic acid as an acid group-containing monomer, 1 part of ethylene glycol dimethacrylate; 1 part of sodium dodecylbenzenesulfonate as an emulsifier; 150 parts of ion-exchanged water and 0.5 part of potassium persulfate as a polymerization initiator were added and sufficiently stirred. Then, it heated to 60 degreeC and superposition | polymerization was started. Polymerization was continued until the polymerization conversion rate reached 96% to obtain an aqueous dispersion containing a particulate polymer constituting the core portion.

この水分散液に、シェル部形成用として、芳香族ビニル単量体としてのスチレン19部および酸基含有単量体としてのメタクリル酸1部の混合物を連続添加し、70℃に加温して重合を継続した。重合転化率が96%になった時点で、冷却して反応を停止して、コア部の外表面が部分的にシェル部で覆われたコアシェル構造を有する粒子状重合体を含む水分散液を調製した。
なお、得られた粒子状重合体の体積平均粒子径D50は、0.45μmであった。
そして、得られた粒子状重合体のコアシェル比率および被覆率を評価した。結果を表1に示す。
To this aqueous dispersion, a mixture of 19 parts of styrene as an aromatic vinyl monomer and 1 part of methacrylic acid as an acid group-containing monomer was continuously added to form a shell part, and heated to 70 ° C. Polymerization was continued. When the polymerization conversion rate reaches 96%, the reaction is stopped by cooling, and an aqueous dispersion containing a particulate polymer having a core-shell structure in which the outer surface of the core part is partially covered with the shell part. Prepared.
In addition, the volume average particle diameter D50 of the obtained particulate polymer was 0.45 μm.
Then, the core-shell ratio and the coverage of the obtained particulate polymer were evaluated. The results are shown in Table 1.

<機能層用結着材の調製>
撹拌機を備えた反応器に、イオン交換水70部、乳化剤としてのラウリル硫酸ナトリウム(花王ケミカル社製、製品名「エマール2F」)0.15部、および過流酸アンモニウム0.5部を、それぞれ供給し、気相部を窒素ガスで置換し、60℃に昇温した。
一方、別の容器で、イオン交換水50部、分散剤としてのドデシルベンゼンスルホン酸ナトリウム0.5部、および、(メタ)アクリル酸エステル単量体としてのアクリル酸ブチル94部、アクリロニトリル2部、メタクリル酸2部、N−メチロールアクリルアミド1部、アクリルアミド1部を混合して単量体混合物を得た。この単量体混合物を4時間かけて前記反応器に連続的に添加して重合を行った。添加中は、60℃で反応を行った。添加終了後、さらに70℃で3時間撹拌して反応を終了し、機能層用結着材を含む水分散液を調製した。
なお、得られた機能層用結着材の体積平均粒子径D50は0.36μm、ガラス転移温度は−40℃であった。
<Preparation of functional layer binder>
In a reactor equipped with a stirrer, 70 parts of ion-exchanged water, 0.15 part of sodium lauryl sulfate (product name “Emal 2F” manufactured by Kao Chemical Co., Ltd.) as an emulsifier, and 0.5 part of ammonium persulfate, Each was supplied, the gas phase was replaced with nitrogen gas, and the temperature was raised to 60 ° C.
On the other hand, in a separate container, 50 parts of ion-exchanged water, 0.5 part of sodium dodecylbenzenesulfonate as a dispersant, 94 parts of butyl acrylate as a (meth) acrylate monomer, 2 parts of acrylonitrile, 2 parts of methacrylic acid, 1 part of N-methylolacrylamide and 1 part of acrylamide were mixed to obtain a monomer mixture. This monomer mixture was continuously added to the reactor over 4 hours for polymerization. During the addition, the reaction was carried out at 60 ° C. After completion of the addition, the reaction was terminated by further stirring at 70 ° C. for 3 hours to prepare an aqueous dispersion containing the functional layer binder.
In addition, the volume average particle diameter D50 of the obtained binder for functional layers was 0.36 micrometer, and the glass transition temperature was -40 degreeC.

<非水系二次電池機能層用組成物の調製>
前記のコアシェル構造を有する粒子状重合体を含む水分散液を固形分相当で100部に対し、前記の機能層用結着材を含む水分散液を固形分相当で22部、アミノ酸としてのL−アスパラギン酸を固形分相当で1部、濡れ剤としてのエチレンオキサイド−プロピレンオキサイド共重合体(固形分濃度70質量%、重合比:5/5(質量比))を固形分相当で2部混合し、さらにイオン交換水を固形分濃度が20質量%になるように混合し、スラリー状の非水系二次電池機能層用組成物を調製した。このようにして得た非水系二次電池機能層用組成物の分散性を、上述した方法により測定した。その結果を表1に示す。
<Preparation of non-aqueous secondary battery functional layer composition>
The aqueous dispersion containing the particulate polymer having the core-shell structure is equivalent to 100 parts in solids, and the aqueous dispersion containing the functional layer binder is equivalent to 22 parts in solids, L as an amino acid. -1 part of aspartic acid corresponding to solid content, and 2 parts of ethylene oxide-propylene oxide copolymer (solid content concentration 70 mass%, polymerization ratio: 5/5 (mass ratio)) as a wetting agent Further, ion-exchanged water was mixed so that the solid content concentration was 20% by mass to prepare a slurry-like composition for a non-aqueous secondary battery functional layer. The dispersibility of the composition for a non-aqueous secondary battery functional layer thus obtained was measured by the method described above. The results are shown in Table 1.

<セパレータの調製>
ポリエチレン製の多孔性基材(厚み16μm、ガーレー値210s/100cc)をセパレータ基材として用意した。用意したセパレータ基材の両面の上に、前記機能層用組成物をスプレーコート法により塗布し、50℃で1分間乾燥させた。これにより、1層当たりの厚みが1μmの機能層をセパレータ基材上に形成して、セパレータ基材の両面に機能層を形成してなるセパレータを得た。このセパレータは、機能層、セパレータ基材および機能層を、この順に備えている。
<Preparation of separator>
A porous substrate made of polyethylene (thickness 16 μm, Gurley value 210 s / 100 cc) was prepared as a separator substrate. On both surfaces of the prepared separator base material, the functional layer composition was applied by a spray coating method and dried at 50 ° C. for 1 minute. As a result, a functional layer having a thickness of 1 μm per layer was formed on the separator substrate, and a separator formed by forming functional layers on both sides of the separator substrate was obtained. This separator includes a functional layer, a separator base material, and a functional layer in this order.

<負極用の粒子状バインダーの製造>
攪拌機付き5MPa耐圧容器に、1,3−ブタジエン33.5部、イタコン酸3.5部、スチレン62部、2−ヒドロキシエチルアクリレート1部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部および重合開始剤としての過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状バインダー(SBR)を含む混合物を得た。上記粒子状バインダーを含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって前記の混合物から未反応単量体の除去を行い、30℃以下まで冷却して、所望の粒子状バインダー(負極合材層用結着材)を含む水分散液を得た。
<Manufacture of particulate binder for negative electrode>
In a 5 MPa pressure vessel with a stirrer, 33.5 parts of 1,3-butadiene, 3.5 parts of itaconic acid, 62 parts of styrene, 1 part of 2-hydroxyethyl acrylate, 0.4 part of sodium dodecylbenzenesulfonate as an emulsifier, ions After adding 150 parts of exchange water and 0.5 part of potassium persulfate as a polymerization initiator and stirring sufficiently, the mixture was heated to 50 ° C. to initiate polymerization. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a particulate binder (SBR). A 5% aqueous sodium hydroxide solution was added to the mixture containing the particulate binder to adjust the pH to 8. Thereafter, unreacted monomers are removed from the mixture by heating under reduced pressure, and the mixture is cooled to 30 ° C. or lower to obtain an aqueous dispersion containing a desired particulate binder (binder for negative electrode mixture layer). It was.

<負極用スラリー組成物の製造>
負極活物質として人造黒鉛(体積平均粒子径:15.6μm)100部、および、増粘剤としてカルボキシメチルセルロースナトリウム塩(日本製紙社製「MAC350HC」)の2%水溶液を固形分相当で1部混合し、さらにイオン交換水を加えて固形分濃度を68%に調製し、25℃で60分間混合した。こうして得られた混合液に、イオン交換水を加えて固形分濃度を62%に調製した後、さらに25℃で15分間混合した。この混合液に、上記の粒子状バインダーを含む水分散液を固形分相当で1.5部入れ、さらにイオン交換水を加えて最終固形分濃度が52%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して、流動性の良い負極用スラリー組成物を得た。
<Manufacture of slurry composition for negative electrode>
100 parts of artificial graphite (volume average particle size: 15.6 μm) as a negative electrode active material and 1 part of a 2% aqueous solution of carboxymethylcellulose sodium salt (“MAC350HC” manufactured by Nippon Paper Industries Co., Ltd.) as a thickener are mixed in an amount equivalent to solids Further, ion exchange water was added to adjust the solid content concentration to 68%, and the mixture was mixed at 25 ° C. for 60 minutes. Ion exchange water was added to the liquid mixture thus obtained to adjust the solid content concentration to 62%, and the mixture was further mixed at 25 ° C. for 15 minutes. To this mixed solution, 1.5 parts of the above aqueous dispersion containing the particulate binder is added in an amount corresponding to the solid content, and ion-exchanged water is further added to adjust the final solid content concentration to 52%, and further for 10 minutes. Mixed. This was defoamed under reduced pressure to obtain a negative electrode slurry composition having good fluidity.

<負極の製造>
前記負極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、プレス前の負極原反を得た。このプレス前の負極原反をロールプレスで圧延して、負極合材層の厚みが80μmのプレス後の負極を得た。
<Manufacture of negative electrode>
The slurry composition for negative electrode was applied on a copper foil having a thickness of 20 μm, which is a current collector, with a comma coater so that the film thickness after drying was about 150 μm and dried. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a negative electrode raw material before pressing. The negative electrode raw material before pressing was rolled with a roll press to obtain a negative electrode after pressing with a negative electrode mixture layer thickness of 80 μm.

<正極用スラリー組成物の製造>
正極活物質として体積平均粒子径12μmのLiCoO2を100部、導電材としてアセチレンブラック(電気化学工業社製、製品名「HS−100」)を2部、および、正極用バインダー(正極合材層用結着材)としてポリフッ化ビニリデン(クレハ社製、製品名「#7208」)を固形分相当で2部混合し、これにN−メチルピロリドンを加えて全固形分濃度を70%にした。これらをプラネタリーミキサーにより混合し、正極用スラリー組成物を得た。
<Production of positive electrode slurry composition>
100 parts of LiCoO 2 having a volume average particle diameter of 12 μm as the positive electrode active material, 2 parts of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., product name “HS-100”) as the conductive material, and binder for positive electrode (positive electrode mixture layer) Polyvinylidene fluoride (manufactured by Kureha Co., Ltd., product name “# 7208”) as a solid content was mixed in an amount of 2 parts, and N-methylpyrrolidone was added thereto to make the total solid content concentration 70%. These were mixed by a planetary mixer to obtain a positive electrode slurry composition.

<正極の製造>
前記正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミニウム箔上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、アルミニウム箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、プレス前の正極原反を得た。このプレス前の正極原反をロールプレスで圧延して、正極を得た。
<Production of positive electrode>
The positive electrode slurry composition was applied onto a 20 μm-thick aluminum foil as a current collector by a comma coater so that the film thickness after drying was about 150 μm and dried. This drying was performed by conveying the aluminum foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a positive electrode raw material before pressing. The positive electrode raw material before pressing was rolled with a roll press to obtain a positive electrode.

<負極または正極とセパレータとの積層体の製造>
プレス後の正極を直径13mmの円形に切り抜いて、円形の正極を得た。また、プレス後の負極を直径14mmの円形に切り抜いて、円形の負極を得た。さらに、上記セパレータを直径18mmの円形に切り抜いて、円形のセパレータを得た。
<Manufacture of laminate of negative electrode or positive electrode and separator>
The positive electrode after pressing was cut into a circle having a diameter of 13 mm to obtain a circular positive electrode. Further, the negative electrode after pressing was cut out into a circle having a diameter of 14 mm to obtain a circular negative electrode. Further, the separator was cut into a circle having a diameter of 18 mm to obtain a circular separator.

そして、円形のセパレータの片面に、負極または正極のみを、電極合材層側の面でセパレータに接触する向きにして沿わせた。その後、温度80℃、圧力0.5MPaで10秒間、加熱プレス処理を施し、正極または負極をセパレータに圧着して、正極およびセパレータを備える積層体、並びに、負極およびセパレータを備える積層体を得た。これらの積層体を用いて、上述した方法により、電解液浸漬後のセパレータと電極との接着性を評価した。結果を表1に示す。   Then, only the negative electrode or the positive electrode was placed on one side of the circular separator so as to be in contact with the separator on the surface on the electrode mixture layer side. Thereafter, a heat press treatment was performed at a temperature of 80 ° C. and a pressure of 0.5 MPa for 10 seconds, and the positive electrode or the negative electrode was pressure-bonded to the separator to obtain a laminate including the positive electrode and the separator, and a laminate including the negative electrode and the separator. . Using these laminates, the adhesion between the separator and the electrode after immersion in the electrolytic solution was evaluated by the method described above. The results are shown in Table 1.

<リチウムイオン二次電池の製造>
プレス後の正極を49cm×5cmに切り出した。切り出された正極の正極合材層上に、55cm×5.5cmに切り出したセパレータを配置した。さらに、プレス後の負極を50cm×5.2cmに切り出し、この切り出された負極を前記セパレータの正極とは反対側に、負極合材層側の表面がセパレータに向かい合うよう配置した。これを捲回機によって捲回し、捲回体を得た。この捲回体を60℃、0.5MPaでプレスし、扁平体とした。この扁平体を、電池の外装としてのアルミニウム包材外装で包み、電解液(溶媒:エチレンカーボネート(EC)/ジエチルカーボネート(DEC)/ビニレンカーボネート(VC)=68.5/30/1.5(体積比)、電解質:濃度1MのLiPF6)を空気が残らないように注入した。さらに、アルミニウム包材の開口を密封するために、150℃のヒートシールをしてアルミニウム外装を閉口した。これにより、800mAhの捲回型リチウムイオン二次電池を製造した。
こうして得られたリチウムイオン二次電池について、上述した方法で、高温サイクル特性および低温出力特性を評価した。結果を表1に示す。
<Manufacture of lithium ion secondary batteries>
The pressed positive electrode was cut out to 49 cm × 5 cm. A separator cut out to 55 cm × 5.5 cm was disposed on the positive electrode mixture layer of the cut out positive electrode. Furthermore, the negative electrode after pressing was cut into 50 cm × 5.2 cm, and the cut negative electrode was arranged on the side opposite to the positive electrode of the separator so that the surface on the negative electrode mixture layer side faced the separator. This was wound by a winding machine to obtain a wound body. The wound body was pressed at 60 ° C. and 0.5 MPa to obtain a flat body. This flat body is wrapped with an aluminum packaging exterior as a battery exterior, and an electrolytic solution (solvent: ethylene carbonate (EC) / diethyl carbonate (DEC) / vinylene carbonate (VC) = 68.5 / 30 / 1.5 ( Volume ratio), electrolyte: LiPF 6 ) having a concentration of 1M was injected so that no air remained. Further, in order to seal the opening of the aluminum packaging material, heat sealing at 150 ° C. was performed to close the aluminum exterior. Thus, an 800 mAh wound type lithium ion secondary battery was manufactured.
About the lithium ion secondary battery obtained in this way, the high temperature cycling characteristic and the low temperature output characteristic were evaluated by the method mentioned above. The results are shown in Table 1.

(実施例2〜4)
粒子状重合体の調製時に、メタクリル酸メチル、メタクリル酸、およびエチレングリコールジメタクリレートの量を表1に示すように変更した以外は実施例1と同様にして、粒子状重合体、非水系二次電池機能層用組成物、機能層を設けたセパレータ、負極、正極、積層体、およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
(Examples 2 to 4)
In the same manner as in Example 1 except that the amounts of methyl methacrylate, methacrylic acid, and ethylene glycol dimethacrylate were changed as shown in Table 1 during the preparation of the particulate polymer, the particulate polymer, non-aqueous secondary A battery functional layer composition, a separator provided with a functional layer, a negative electrode, a positive electrode, a laminate, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例5)
粒子状重合体の調製時に、コア部の製造に用いる単量体組成物について、メタクリル酸メチルの量を43部に、メタクリル酸の量を1部にそれぞれ変更し、さらに(メタ)アクリル酸エステル単量体としてのアクリル酸ブチル35部を加えた以外は実施例1と同様にして、粒子状重合体、非水系二次電池機能層用組成物、機能層を設けたセパレータ、負極、正極、積層体、およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
(Example 5)
When preparing the particulate polymer, the monomer composition used for the production of the core part was changed to 43 parts methyl methacrylate and 1 part methacrylic acid, respectively, and (meth) acrylic acid ester Except for adding 35 parts of butyl acrylate as a monomer, in the same manner as in Example 1, a particulate polymer, a composition for a non-aqueous secondary battery functional layer, a separator provided with a functional layer, a negative electrode, a positive electrode, A laminate and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例6)
粒子状重合体の調製時に、シェル部の製造に用いる単量体組成物について、スチレンの量を18部に変更し、新たに(メタ)アクリロニトリル単量体としてのアクリロニトリル1部と架橋性単量体としてのエチレングリコールジメタクリレート1部とを追加し、メタクリル酸を添加しなかった以外は実施例1と同様にして、粒子状重合体、非水系二次電池機能層用組成物、機能層を設けたセパレータ、負極、正極、積層体、およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
(Example 6)
When preparing the particulate polymer, the amount of styrene was changed to 18 parts for the monomer composition used for the production of the shell part, and 1 part of acrylonitrile as a (meth) acrylonitrile monomer and a crosslinkable monomer. In the same manner as in Example 1 except that 1 part of ethylene glycol dimethacrylate was added and methacrylic acid was not added, a particulate polymer, a composition for a non-aqueous secondary battery functional layer, and a functional layer were prepared. The provided separator, negative electrode, positive electrode, laminate, and lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例7)
粒子状重合体の調製時に、シェル部の製造に用いる単量体組成物について、スチレンの量を15部に変更し、新たに(メタ)アクリロニトリル単量体としてのアクリロニトリル4.5部と架橋性単量体としてのエチレングリコールジメタクリレート0.5部とを追加し、メタクリル酸を添加しなかった以外は実施例1と同様にして、粒子状重合体、非水系二次電池機能層用組成物、機能層を設けたセパレータ、負極、正極、積層体、およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
(Example 7)
When preparing the particulate polymer, the amount of styrene was changed to 15 parts for the monomer composition used for the production of the shell part, and 4.5 parts of acrylonitrile as a (meth) acrylonitrile monomer was newly cross-linked. A composition for a particulate polymer and a non-aqueous secondary battery functional layer in the same manner as in Example 1 except that 0.5 part of ethylene glycol dimethacrylate as a monomer was added and methacrylic acid was not added. A separator provided with a functional layer, a negative electrode, a positive electrode, a laminate, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例8)
非水系二次電池機能層用組成物の調製時に、L−アスパラギン酸の量を、コアシェル構造を有する粒子状重合体100部に対し2.8部に変更した以外は、実施例1と同様にして、粒子状重合体、非水系二次電池機能層用組成物、機能層を設けたセパレータ、負極、正極、積層体、およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
(Example 8)
The same procedure as in Example 1 was conducted except that the amount of L-aspartic acid was changed to 2.8 parts with respect to 100 parts of the particulate polymer having a core-shell structure when preparing the composition for a non-aqueous secondary battery functional layer. Thus, a particulate polymer, a composition for a non-aqueous secondary battery functional layer, a separator provided with a functional layer, a negative electrode, a positive electrode, a laminate, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例9)
非水系二次電池機能層用組成物の調製時に、L−アスパラギン酸の量を、コアシェル構造を有する粒子状重合体100部に対し5部に変更した以外は、実施例1と同様にして、粒子状重合体、非水系二次電池機能層用組成物、機能層を設けたセパレータ、負極、正極、積層体、およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
Example 9
Except for changing the amount of L-aspartic acid to 5 parts with respect to 100 parts of the particulate polymer having a core-shell structure when preparing the composition for a nonaqueous secondary battery functional layer, the same as in Example 1, A particulate polymer, a composition for a non-aqueous secondary battery functional layer, a separator provided with a functional layer, a negative electrode, a positive electrode, a laminate, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例10)
非水系二次電池機能層用組成物の調製時に、L−アスパラギン酸の量を、コアシェル構造を有する粒子状重合体100部に対し0.6部に変更した以外は、実施例1と同様にして、粒子状重合体、非水系二次電池機能層用組成物、機能層を設けたセパレータ、負極、正極、積層体、およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
(Example 10)
The same procedure as in Example 1 was conducted except that the amount of L-aspartic acid was changed to 0.6 parts with respect to 100 parts of the particulate polymer having a core-shell structure at the time of preparing the composition for a non-aqueous secondary battery functional layer. Thus, a particulate polymer, a composition for a non-aqueous secondary battery functional layer, a separator provided with a functional layer, a negative electrode, a positive electrode, a laminate, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例11)
非水系二次電池機能層用組成物の調製時に、L−アスパラギン酸に代えて、L−グルタミン酸を、コアシェル構造を有する粒子状重合体100部に対し1部添加した以外は、実施例1と同様にして、粒子状重合体、非水系二次電池機能層用組成物、機能層を設けたセパレータ、負極、正極、積層体、およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
(Example 11)
Example 1 except that 1 part of L-glutamic acid was added to 100 parts of the particulate polymer having a core-shell structure instead of L-aspartic acid when preparing the composition for a non-aqueous secondary battery functional layer. Similarly, a particulate polymer, a composition for a non-aqueous secondary battery functional layer, a separator provided with a functional layer, a negative electrode, a positive electrode, a laminate, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(実施例12)
実施例1と同様にして、コアシェル構造を有する粒子状重合体、機能層用結着材、並びに当該粒子状重合体および機能層用結着材を含有する非水系二次電池機能層用組成物を調製した。そして、リチウムイオン二次電池の製造時に、機能層を形成することなくセパレータ基材をそのままセパレータとして使用し、負極、正極として、機能層を備える負極、機能層を備える正極を使用した以外は、実施例1と同様にしてリチウムイオン二次電池を製造した。また、機能層を備える負極または機能層を備える正極と、セパレータ基材よりなるセパレータとの積層体を実施例1と同様にして製造した。そして、実施例1と同様にして各種評価を行った。結果を表1に示す。なお、前記機能層を備える負極および機能層を備える正極の作成方法は以下のとおりである。
(Example 12)
In the same manner as in Example 1, a particulate polymer having a core-shell structure, a functional layer binder, and a composition for a functional layer of a non-aqueous secondary battery containing the particulate polymer and the functional layer binder. Was prepared. And, at the time of manufacturing the lithium ion secondary battery, the separator base material is used as it is as a separator without forming a functional layer, and as a negative electrode and a positive electrode, a negative electrode including a functional layer and a positive electrode including a functional layer are used. A lithium ion secondary battery was produced in the same manner as in Example 1. Moreover, the laminated body of the negative electrode provided with a functional layer or the positive electrode provided with a functional layer, and the separator which consists of a separator base material was manufactured similarly to Example 1. FIG. Various evaluations were performed in the same manner as in Example 1. The results are shown in Table 1. In addition, the preparation methods of the negative electrode provided with the said functional layer and the positive electrode provided with a functional layer are as follows.

<機能層を備える負極の調製>
実施例1と同様にして集電体(銅箔)上に厚さ80μmの負極合材層を形成し、電極基材(負極基材)を得た後、負極合材層側の面に、機能層用組成物をスプレーコート法により塗布し、50℃で1分間乾燥させた。これにより、厚さ1μmの機能層を片面に備える負極を作製した。
<Preparation of negative electrode with functional layer>
In the same manner as in Example 1, after forming a negative electrode mixture layer having a thickness of 80 μm on the current collector (copper foil) to obtain an electrode substrate (negative electrode substrate), on the surface on the negative electrode mixture layer side, The functional layer composition was applied by spray coating and dried at 50 ° C. for 1 minute. Thus, a negative electrode having a functional layer having a thickness of 1 μm on one side was produced.

<機能層を備える正極の調製>
実施例1と同様にして集電体(アルミ箔)上に厚さ80μmの正極合材層を形成し、電極基材(正極基材)を得た後、正極合材層側の面に、機能層用組成物をスプレーコート法により塗布し、50℃で1分間乾燥させた。これにより、厚さ1μmの機能層を片面に備える正極を作製した。
<Preparation of positive electrode with functional layer>
In the same manner as in Example 1, after forming a positive electrode mixture layer having a thickness of 80 μm on a current collector (aluminum foil) to obtain an electrode substrate (positive electrode substrate), on the surface on the positive electrode mixture layer side, The functional layer composition was applied by spray coating and dried at 50 ° C. for 1 minute. Thus, a positive electrode having a functional layer having a thickness of 1 μm on one side was produced.

(比較例1)
非水系二次電池機能層用組成物の調製時に、L−アスパラギン酸の量を、コアシェル構造を有する粒子状重合体100部に対し7部に変更した以外は、実施例1と同様にして、粒子状重合体、非水系二次電池機能層用組成物、機能層を設けたセパレータ、負極、正極、積層体、およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
(Comparative Example 1)
Except for changing the amount of L-aspartic acid to 7 parts with respect to 100 parts of the particulate polymer having a core-shell structure when preparing the composition for a non-aqueous secondary battery functional layer, the same as in Example 1, A particulate polymer, a composition for a non-aqueous secondary battery functional layer, a separator provided with a functional layer, a negative electrode, a positive electrode, a laminate, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例2)
非水系二次電池機能層用組成物の調製時に、L−アスパラギン酸の量を、コアシェル構造を有する粒子状重合体100部に対し0.05部に変更した以外は、実施例1と同様にして、粒子状重合体、非水系二次電池機能層用組成物、機能層を設けたセパレータ、負極、正極、積層体、およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
(Comparative Example 2)
The same procedure as in Example 1 was conducted except that the amount of L-aspartic acid was changed to 0.05 parts with respect to 100 parts of the particulate polymer having a core-shell structure at the time of preparing the composition for a nonaqueous secondary battery functional layer. Thus, a particulate polymer, a composition for a non-aqueous secondary battery functional layer, a separator provided with a functional layer, a negative electrode, a positive electrode, a laminate, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例3)
粒子状重合体の調製時に、コア部の製造に用いる単量体組成物について、メタクリル酸メチルの量を93.75部に、メタクリル酸の量を5.0部に、エチレングリコールジメタクリレート1.25部にそれぞれ変更し、かつ、シェル部を形成しなかった以外は実施例1と同様にして、コアシェル構造を有しない粒子状重合体、非水系二次電池機能層用組成物、機能層を設けたセパレータ、負極、正極、積層体、およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
(Comparative Example 3)
At the time of preparing the particulate polymer, the monomer composition used for the production of the core part was prepared by adding 93.75 parts of methyl methacrylate, 5.0 parts of methacrylic acid, and 1. A particulate polymer not having a core-shell structure, a composition for a non-aqueous secondary battery functional layer, and a functional layer were obtained in the same manner as in Example 1 except that each part was changed to 25 parts and the shell part was not formed. The provided separator, negative electrode, positive electrode, laminate, and lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

(比較例4)
粒子状重合体の調製時に、シェル部の製造に用いる単量体組成物について、スチレンの量を10部に、メタクリル酸の量を0.4部にそれぞれ変更し、新たに(メタ)アクリル酸エステル単量体としてのメタクリル酸メチル9.6部を追加した以外は実施例1と同様にして、粒子状重合体、非水系二次電池機能層用組成物、機能層を設けたセパレータ、負極、正極、積層体、およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
(Comparative Example 4)
When preparing the particulate polymer, the monomer composition used for the production of the shell part was changed to 10 parts of styrene and 0.4 parts of methacrylic acid, respectively. Except for adding 9.6 parts of methyl methacrylate as an ester monomer, the same procedure as in Example 1 was carried out, a particulate polymer, a composition for a non-aqueous secondary battery functional layer, a separator provided with a functional layer, a negative electrode A positive electrode, a laminate, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.

なお、以下に示す表中、
「MMA」は、メタクリル酸メチルを示し、
「BA」は、アクリル酸ブチルを示し、
「MAA]は、メタクリル酸を示し、
「EDMA」は、エチレングリコールジメタクリレートを示し、
「ST」は、スチレンを示し、
「AN」は、アクリロニトリルを示し、
「NMA」は、N−メチロールアクリルアミドを示し、
「AAm」は、アクリルアミドを示し、
「L−Asp」は、L−アスパラギン酸を示し、
「L−Glu」は、L−グルタミン酸を示す。
In the table below,
“MMA” indicates methyl methacrylate;
“BA” indicates butyl acrylate,
“MAA” indicates methacrylic acid,
“EDMA” refers to ethylene glycol dimethacrylate,
“ST” indicates styrene,
“AN” indicates acrylonitrile,
“NMA” indicates N-methylolacrylamide,
“AAm” indicates acrylamide,
“L-Asp” refers to L-aspartic acid;
“L-Glu” refers to L-glutamic acid.

Figure 2016122611
Figure 2016122611

表1より、所定のコアシェル構造および性状を有する粒子状重合体と、所定量のアミノ酸とを含有する組成物を用いた実施例1〜12では、非水系二次電池機能層用組成物の分散性が高く、電解液浸漬後のセパレータと電極との接着性に優れ、さらに高温サイクル特性、低温出力特性などの電池特性が良好な二次電池を得ることができることが分かる。
また、表1より、非水系二次電池機能層用組成物中におけるアミノ酸の含有量が、コアシェル構造を有する粒子状重合体100部に対し5部超である比較例1では、非水系二次電池機能層用組成物の分散性や電解液浸漬後のセパレータと電極との接着性を高めることができるものの、高温サイクル特性に優れる二次電池が得られないことが分かる。
さらに、表1より、非水系二次電池機能層用組成物中におけるアミノ酸の含有量が、コアシェル構造を有する粒子状重合体100部に対し0.1部未満である比較例2では、非水系二次電池機能層用組成物の分散性が悪く、電解液浸漬後の電極とセパレータとの接着性が低い上、高温サイクル特性に優れる二次電池が得られないことが分かる。
また、表1より、粒子状重合体のコア部の電解液膨潤度が30倍超である比較例3では、電解液浸漬後の電極とセパレータとの接着性が低く、高温サイクル特性に優れる二次電池が得られないことが分かる。
さらに、表1より、粒子状重合体のシェル部の電解液膨潤度が4倍超である比較例4では、電解液浸漬後の電極とセパレータとの接着性が低く、高温サイクル特性に優れる二次電池が得られないことが分かる。
From Table 1, in Examples 1-12 using the composition containing the particulate polymer which has a predetermined | prescribed core-shell structure and property, and a predetermined amount of amino acid, dispersion | distribution of the composition for non-aqueous secondary battery functional layers It can be seen that it is possible to obtain a secondary battery having high battery properties, excellent adhesion between the separator and the electrode after immersion in an electrolyte, and excellent battery characteristics such as high-temperature cycle characteristics and low-temperature output characteristics.
Further, from Table 1, in Comparative Example 1 in which the content of amino acids in the composition for a non-aqueous secondary battery functional layer is more than 5 parts with respect to 100 parts of the particulate polymer having a core-shell structure, the non-aqueous secondary battery It can be seen that although the dispersibility of the battery functional layer composition and the adhesion between the separator and the electrode after immersion in the electrolyte can be improved, a secondary battery excellent in high-temperature cycle characteristics cannot be obtained.
Furthermore, from Table 1, in Comparative Example 2 in which the content of amino acid in the composition for a non-aqueous secondary battery functional layer is less than 0.1 part with respect to 100 parts of the particulate polymer having a core-shell structure, It turns out that the dispersibility of the composition for secondary battery functional layers is bad, the adhesiveness of the electrode and separator after immersion in electrolyte solution is low, and a secondary battery excellent in high temperature cycle characteristics cannot be obtained.
Further, from Table 1, in Comparative Example 3 where the electrolyte swelling degree of the core part of the particulate polymer is more than 30 times, the adhesion between the electrode and the separator after immersion in the electrolyte is low, and the high temperature cycle characteristics are excellent. It turns out that a secondary battery cannot be obtained.
Furthermore, from Table 1, in Comparative Example 4 in which the electrolyte solution swelling degree of the shell portion of the particulate polymer is more than 4 times, the adhesion between the electrode after immersion in the electrolyte and the separator is low, and the high temperature cycle characteristics are excellent. It turns out that a secondary battery cannot be obtained.

本発明によれば、電解液への浸漬後においても優れた接着性を発揮して二次電池に優れた電池特性をもたらすことができる非水系二次電池用機能層を形成可能な非水系二次電池機能層用組成物を提供することができる。
また、本発明によれば、電解液への浸漬後においても優れた接着性を発揮し、二次電池に優れた電池特性をもたらすことができる非水系二次電池用機能層を提供することができる。
さらに、本発明によれば、高温サイクル特性などの電池特性に優れる非水系二次電池を提供することができる。
According to the present invention, a non-aqueous secondary battery capable of forming a functional layer for a non-aqueous secondary battery that exhibits excellent adhesion even after being immersed in an electrolytic solution and can provide excellent battery characteristics to the secondary battery. A composition for a secondary battery functional layer can be provided.
In addition, according to the present invention, it is possible to provide a functional layer for a non-aqueous secondary battery that exhibits excellent adhesion even after being immersed in an electrolytic solution and can provide excellent battery characteristics for a secondary battery. it can.
Furthermore, according to this invention, the non-aqueous secondary battery which is excellent in battery characteristics, such as a high temperature cycling characteristic, can be provided.

100 粒子状重合体
110 コア部
110S コア部の外表面
120 シェル部
DESCRIPTION OF SYMBOLS 100 Particulate polymer 110 Core part 110S Outer surface of core part 120 Shell part

Claims (5)

粒子状重合体とアミノ酸とを含有する非水系二次電池機能層用組成物であって、
前記粒子状重合体100質量部に対し、前記アミノ酸の割合が0.1質量部以上5質量部以下であり、
前記粒子状重合体は、コア部と、前記コア部の外表面を部分的に覆うシェル部とを備えるコアシェル構造を有し、
前記コア部は、電解液膨潤度が5倍以上30倍以下の重合体からなり、
前記シェル部は、電解液膨潤度が1倍超4倍以下の重合体からなる、非水系二次電池機能層用組成物。
A composition for a non-aqueous secondary battery functional layer containing a particulate polymer and an amino acid,
The proportion of the amino acid is 0.1 to 5 parts by mass with respect to 100 parts by mass of the particulate polymer,
The particulate polymer has a core-shell structure including a core portion and a shell portion that partially covers an outer surface of the core portion,
The core portion is made of a polymer having an electrolyte solution swelling degree of 5 times or more and 30 times or less,
The shell part is a composition for a non-aqueous secondary battery functional layer made of a polymer having an electrolyte solution swelling degree of more than 1 time and 4 times or less.
前記コア部を構成する重合体のガラス転移温度が−50℃以上150℃以下であり、
前記シェル部を構成する重合体のガラス転移温度が50℃以上200℃以下である、請求項1に記載の非水系二次電池機能層用組成物。
The glass transition temperature of the polymer constituting the core part is −50 ° C. or higher and 150 ° C. or lower,
The composition for a non-aqueous secondary battery functional layer according to claim 1, wherein a glass transition temperature of the polymer constituting the shell portion is 50 ° C or higher and 200 ° C or lower.
前記アミノ酸が、アスパラギン酸およびグルタミン酸の少なくとも一方を含む、請求項1または2に記載の非水系二次電池機能層用組成物。   The composition for a non-aqueous secondary battery functional layer according to claim 1 or 2, wherein the amino acid contains at least one of aspartic acid and glutamic acid. 請求項1〜3のいずれか一項に記載の非水系二次電池機能層用組成物を用いて形成される、非水系二次電池用機能層。   The functional layer for non-aqueous secondary batteries formed using the composition for non-aqueous secondary battery functional layers as described in any one of Claims 1-3. 請求項4に記載の非水系二次電池用機能層を備える、非水系二次電池。   A non-aqueous secondary battery comprising the functional layer for a non-aqueous secondary battery according to claim 4.
JP2014262881A 2014-12-25 2014-12-25 Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, and non-aqueous secondary battery Active JP6455140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014262881A JP6455140B2 (en) 2014-12-25 2014-12-25 Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, and non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014262881A JP6455140B2 (en) 2014-12-25 2014-12-25 Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, and non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2016122611A true JP2016122611A (en) 2016-07-07
JP6455140B2 JP6455140B2 (en) 2019-01-23

Family

ID=56327495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014262881A Active JP6455140B2 (en) 2014-12-25 2014-12-25 Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, and non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP6455140B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037867A1 (en) * 2016-08-25 2018-03-01 日本ゼオン株式会社 Composition for nonaqueous secondary battery functional layers, functional layer for nonaqueous secondary batteries, nonaqueous secondary battery, and method for producing electrode for nonaqueous secondary batteries
WO2019044912A1 (en) 2017-08-31 2019-03-07 日本ゼオン株式会社 Composition for electrochemical element functional layer, electrochemical element functional layer, and electrochemical element
WO2019044909A1 (en) 2017-08-31 2019-03-07 日本ゼオン株式会社 Composition for electrochemical element functional layer, electrochemical element functional layer, and electrochemical element
CN109983599A (en) * 2016-11-24 2019-07-05 日本瑞翁株式会社 Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer and non-aqueous secondary battery
CN110462880A (en) * 2017-03-31 2019-11-15 日本瑞翁株式会社 Non-aqueous secondary battery adhesive layer paste compound, manufacturing method and purposes
WO2021039673A1 (en) * 2019-08-30 2021-03-04 日本ゼオン株式会社 Binder composition for heat-resistant layer of non-aqueous secondary battery, slurry composition for heat-resistant layer of non-aqueous secondary battery, heat-resistant layer of non-aqueous secondary battery, and non-aqueous secondary battery
CN112868133A (en) * 2018-10-31 2021-05-28 日本瑞翁株式会社 Composition for functional layer of nonaqueous secondary battery, functional layer for nonaqueous secondary battery, separator for nonaqueous secondary battery, and nonaqueous secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008287888A (en) * 2007-05-15 2008-11-27 Asahi Kasei Chemicals Corp Coating composition for non-aqueous electrolyte secondary battery
WO2013080946A1 (en) * 2011-11-29 2013-06-06 日立マクセル株式会社 Separator for non-aqueous electrolyte cell and non-aqueous electrolyte cell using same
WO2013146515A1 (en) * 2012-03-28 2013-10-03 日本ゼオン株式会社 Porous membrane for secondary batteries, method for producing same, electrode for secondary batteries, separator for secondary batteries, and secondary battery
JP2013219006A (en) * 2011-09-26 2013-10-24 Sumitomo Chemical Co Ltd Adhesive resin composition for secondary battery
JP2014067632A (en) * 2012-09-26 2014-04-17 Kyoritsu Kagaku Sangyo Kk Ceramic slurry for protecting battery electrode or separator
WO2014136799A1 (en) * 2013-03-07 2014-09-12 日本ゼオン株式会社 Slurry for porous membranes of secondary battery separators, porous membrane for secondary battery separators, method for producing porous membrane for secondary battery separators, separator for secondary batteries, and secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008287888A (en) * 2007-05-15 2008-11-27 Asahi Kasei Chemicals Corp Coating composition for non-aqueous electrolyte secondary battery
JP2013219006A (en) * 2011-09-26 2013-10-24 Sumitomo Chemical Co Ltd Adhesive resin composition for secondary battery
WO2013080946A1 (en) * 2011-11-29 2013-06-06 日立マクセル株式会社 Separator for non-aqueous electrolyte cell and non-aqueous electrolyte cell using same
WO2013146515A1 (en) * 2012-03-28 2013-10-03 日本ゼオン株式会社 Porous membrane for secondary batteries, method for producing same, electrode for secondary batteries, separator for secondary batteries, and secondary battery
JP2014067632A (en) * 2012-09-26 2014-04-17 Kyoritsu Kagaku Sangyo Kk Ceramic slurry for protecting battery electrode or separator
WO2014136799A1 (en) * 2013-03-07 2014-09-12 日本ゼオン株式会社 Slurry for porous membranes of secondary battery separators, porous membrane for secondary battery separators, method for producing porous membrane for secondary battery separators, separator for secondary batteries, and secondary battery

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7020416B2 (en) 2016-08-25 2022-02-16 日本ゼオン株式会社 A method for manufacturing a composition for a non-aqueous secondary battery functional layer, a non-aqueous secondary battery functional layer, a non-aqueous secondary battery, and an electrode for a non-aqueous secondary battery.
KR20190042554A (en) * 2016-08-25 2019-04-24 니폰 제온 가부시키가이샤 Compositions for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, non-aqueous secondary battery, and method for manufacturing electrode for non-aqueous secondary battery
CN109565020B (en) * 2016-08-25 2023-04-04 日本瑞翁株式会社 Composition for functional layer of nonaqueous secondary battery, functional layer for nonaqueous secondary battery, and method for producing electrode for nonaqueous secondary battery
KR102407601B1 (en) * 2016-08-25 2022-06-10 니폰 제온 가부시키가이샤 A composition for a non-aqueous secondary battery functional layer, a functional layer for a non-aqueous secondary battery, a non-aqueous secondary battery, and a method for manufacturing an electrode for a non-aqueous secondary battery
US10930912B2 (en) 2016-08-25 2021-02-23 Zeon Corporation Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, non-aqueous secondary battery, and method of producing electrode for non-aqueous secondary battery
JPWO2018037867A1 (en) * 2016-08-25 2019-06-20 日本ゼオン株式会社 Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, non-aqueous secondary battery, and method for producing electrode for non-aqueous secondary battery
US20190207189A1 (en) * 2016-08-25 2019-07-04 Zeon Corporation Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, non-aqueous secondary battery, and method of producing electrode for non-aqueous secondary battery
WO2018037867A1 (en) * 2016-08-25 2018-03-01 日本ゼオン株式会社 Composition for nonaqueous secondary battery functional layers, functional layer for nonaqueous secondary batteries, nonaqueous secondary battery, and method for producing electrode for nonaqueous secondary batteries
CN109565020A (en) * 2016-08-25 2019-04-02 日本瑞翁株式会社 Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, the manufacturing method of non-aqueous secondary battery and non-aqueous secondary battery electrode
CN109983599A (en) * 2016-11-24 2019-07-05 日本瑞翁株式会社 Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer and non-aqueous secondary battery
CN109983599B (en) * 2016-11-24 2022-12-16 日本瑞翁株式会社 Nonaqueous secondary battery, composition for functional layer, and functional layer
CN110462880A (en) * 2017-03-31 2019-11-15 日本瑞翁株式会社 Non-aqueous secondary battery adhesive layer paste compound, manufacturing method and purposes
KR20200044797A (en) 2017-08-31 2020-04-29 니폰 제온 가부시키가이샤 Composition for electrochemical device functional layer, functional layer for electrochemical device, and electrochemical device
WO2019044909A1 (en) 2017-08-31 2019-03-07 日本ゼオン株式会社 Composition for electrochemical element functional layer, electrochemical element functional layer, and electrochemical element
WO2019044912A1 (en) 2017-08-31 2019-03-07 日本ゼオン株式会社 Composition for electrochemical element functional layer, electrochemical element functional layer, and electrochemical element
KR20200044805A (en) 2017-08-31 2020-04-29 니폰 제온 가부시키가이샤 Composition for electrochemical device functional layer, functional layer for electrochemical device, and electrochemical device
US11721798B2 (en) 2017-08-31 2023-08-08 Zeon Corporation Composition for electrochemical device functional layer, functional layer for electrochemical device, and electrochemical device
CN112868133A (en) * 2018-10-31 2021-05-28 日本瑞翁株式会社 Composition for functional layer of nonaqueous secondary battery, functional layer for nonaqueous secondary battery, separator for nonaqueous secondary battery, and nonaqueous secondary battery
CN112868133B (en) * 2018-10-31 2023-03-21 日本瑞翁株式会社 Composition for functional layer of nonaqueous secondary battery, functional layer for nonaqueous secondary battery, separator, and nonaqueous secondary battery
CN113892202A (en) * 2019-08-30 2022-01-04 日本瑞翁株式会社 Binder composition for heat-resistant layer of nonaqueous secondary battery, slurry composition for heat-resistant layer of nonaqueous secondary battery, heat-resistant layer for nonaqueous secondary battery, and nonaqueous secondary battery
WO2021039673A1 (en) * 2019-08-30 2021-03-04 日本ゼオン株式会社 Binder composition for heat-resistant layer of non-aqueous secondary battery, slurry composition for heat-resistant layer of non-aqueous secondary battery, heat-resistant layer of non-aqueous secondary battery, and non-aqueous secondary battery

Also Published As

Publication number Publication date
JP6455140B2 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
JP6601486B2 (en) Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, and non-aqueous secondary battery
WO2016017066A1 (en) Composition for nonaqueous secondary battery function layers, base with function layer for nonaqueous secondary batteries, method for producing laminate for nonaqueous secondary batteries, and nonaqueous secondary battery
WO2015198534A1 (en) Composition for nonaqueous secondary cell functional layer, functional layer for nonaqueous secondary cell, and nonaqueous secondary cell
JP6455140B2 (en) Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, and non-aqueous secondary battery
JP6750506B2 (en) Separator for non-aqueous secondary battery, method for manufacturing the same, and non-aqueous secondary battery
JP6614141B2 (en) Non-aqueous secondary battery laminate, method for producing the same, and non-aqueous secondary battery
JP6398431B2 (en) Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, and non-aqueous secondary battery
JP6413419B2 (en) Non-aqueous secondary battery porous membrane composite particles, non-aqueous secondary battery porous membrane, non-aqueous secondary battery member, and non-aqueous secondary battery
WO2016031163A1 (en) Laminate for nonaqueous secondary batteries and method for manufacturing nonaqueous secondary battery member
JP6565935B2 (en) Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery separator and non-aqueous secondary battery
WO2016051674A1 (en) Adhesive composition for electrochemical element, adhesive layer for electrochemical element, and electrochemical element
JP6737182B2 (en) Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer and non-aqueous secondary battery
JP2015028842A (en) Adhesive agent for lithium ion secondary batteries, lithium ion secondary battery separator, and lithium ion secondary battery
JP6589269B2 (en) Non-aqueous secondary battery adhesive layer composition, non-aqueous secondary battery adhesive layer and non-aqueous secondary battery
JP2017098203A (en) Composition for nonaqueous secondary battery adhesive layer, adhesive layer for nonaqueous secondary battery, and nonaqueous secondary battery
JP6834127B2 (en) A method for forming a functional layer for a non-aqueous secondary battery and a method for manufacturing a non-aqueous secondary battery
WO2018096975A1 (en) Composition for nonaqueous secondary battery functional layers, functional layer for nonaqueous secondary batteries, and nonaqueous secondary battery
WO2020090395A1 (en) Nonaqueous secondary battery functional layer composition, nonaqueous secondary battery functional layer, nonaqueous secondary battery separator, and nonaqueous secondary battery
JP6547630B2 (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
JP2016100149A (en) Composition for nonaqueous secondary battery adhesion layer, adhesion layer for nonaqueous secondary battery, nonaqueous secondary battery member, nonaqueous secondary battery, and method for manufacturing adhesion layer for nonaqueous secondary battery
JP2017103031A (en) Laminate for non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181203

R150 Certificate of patent or registration of utility model

Ref document number: 6455140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250