WO2016110894A1 - Separator for non-aqueous secondary battery, manufacturing method therefor, and non-aqueous secondary battery - Google Patents

Separator for non-aqueous secondary battery, manufacturing method therefor, and non-aqueous secondary battery Download PDF

Info

Publication number
WO2016110894A1
WO2016110894A1 PCT/JP2015/006032 JP2015006032W WO2016110894A1 WO 2016110894 A1 WO2016110894 A1 WO 2016110894A1 JP 2015006032 W JP2015006032 W JP 2015006032W WO 2016110894 A1 WO2016110894 A1 WO 2016110894A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional layer
separator
secondary battery
polymer
aqueous secondary
Prior art date
Application number
PCT/JP2015/006032
Other languages
French (fr)
Japanese (ja)
Inventor
純之介 秋池
慶 大浦
一輝 浅井
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201580071472.9A priority Critical patent/CN107112480B/en
Priority to JP2016568172A priority patent/JP6750506B2/en
Priority to KR1020177017829A priority patent/KR102477891B1/en
Publication of WO2016110894A1 publication Critical patent/WO2016110894A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator for a non-aqueous secondary battery, a method for producing a separator for a non-aqueous secondary battery, and a non-aqueous secondary battery.
  • Non-aqueous secondary batteries such as lithium ion secondary batteries (hereinafter sometimes simply referred to as “secondary batteries”) have the characteristics of being small and light, having high energy density, and capable of repeated charge and discharge. Yes, it is used for a wide range of purposes.
  • the non-aqueous secondary battery generally includes a battery member such as a positive electrode, a negative electrode, and a separator that separates the positive electrode and the negative electrode and prevents a short circuit between the positive electrode and the negative electrode.
  • a porous film layer for improving heat resistance and strength, an adhesive layer for bonding battery members, and the like (hereinafter, these are collectively referred to as “functional layer”).
  • battery members are used.
  • a separator formed by forming a functional layer on a separator base material is used as a battery member.
  • thermoplastic polymer having a predetermined glass transition temperature is used for a separator formed by forming an adhesive layer made of a thermoplastic polymer coating layer on a separator substrate made of a polyolefin microporous film.
  • a technique for improving adhesiveness and ionic conductivity has been proposed by adopting a thermoplastic polymer coating layer having a configuration in which a portion including a portion and a portion not including a thermoplastic polymer are present in a sea-island shape.
  • adhesion to an electrode can be improved by using a thermoplastic polymer having a predetermined glass transition temperature, and a portion containing the thermoplastic polymer and the thermoplastic polymer Ion conductivity can be improved by making the part which does not contain be present in the shape of a sea island.
  • the conventional separator described above did not have sufficient adhesion of the adhesive layer (functional layer) in the electrolytic solution. Therefore, the above conventional separator further improves the adhesion of the functional layer in the electrolyte while ensuring ionic conductivity, and the battery characteristics (high temperature cycle characteristics and low temperature output characteristics) of the nonaqueous secondary battery including the separator. There was room for improvement in terms of further improvement.
  • an object of this invention is to provide the separator excellent in the adhesiveness and ionic conductivity in electrolyte solution.
  • Another object of the present invention is to provide a non-aqueous secondary battery that is excellent in high-temperature cycle characteristics and low-temperature output characteristics.
  • this separator which forms this functional layer on a separator base material
  • this inventor has the specific core shell structure provided with the core part and shell part which have the specific electrolyte solution swelling degree about the structure of a functional layer, respectively.
  • the present inventor applied the functional layer composition containing the organic particles on the separator substrate, and when the functional layer composition was dried to form the functional layer on the separator substrate, By setting the water droplet contact angle on the surface of the separator substrate on which the functional layer is formed and the surface tension of the composition for the functional layer within a specific range, a functional layer having the specific configuration described above can be easily formed. Found to get. And this inventor completed this invention based on the new knowledge mentioned above.
  • the separator for non-aqueous secondary batteries of this invention is on a separator base material and at least one surface of the said separator base material.
  • a functional layer formed, and the functional layer has a structure in which a phase of an organic particle having a core-shell structure including a core portion and a shell portion that partially covers an outer surface of the core portion is present in an irregular shape.
  • the core part is made of a polymer having an electrolyte solution swelling degree of 5 times or more and 30 times or less
  • the shell part is made of a polymer having an electrolyte solution swelling degree of more than 1 time and 4 times or less.
  • the ratio of the area of the portion where the organic particle phase is present to the area of the functional layer forming surface of the material is 20% or more and 80% or less.
  • the functional layer including the organic particle phase having the predetermined core-shell structure and properties described above is provided, and the area ratio of the portion where the organic particle phase exists in the functional layer forming surface is 20% or more.
  • the adhesiveness of the functional layer in electrolyte solution can be improved, and the separator excellent in adhesiveness can be provided.
  • the organic particle phase having the predetermined core-shell structure and properties described above is present in an irregular shape, and the area ratio of the portion where the organic particle phase is present in the functional layer forming surface is 80% or less.
  • the separator excellent in ion conductivity can be provided, improving the adhesiveness of the functional layer in electrolyte solution.
  • the “electrolyte swelling degree” of the polymer constituting the core part of the organic particles and the polymer constituting the shell part should be measured using the measuring method described in the examples of the present specification. Can do.
  • “the ratio of the area of the portion where the organic particle phase is present” is determined by observing the functional layer of the separator using a scanning electron microscope (SEM) and in the observation field of view using image analysis software. Can be obtained by calculating the ratio of the area of the portion where the organic particle phase exists.
  • the glass transition temperature of the polymer of the core part is ⁇ 50 ° C. or more and 150 ° C. or less, and the glass transition temperature of the polymer of the shell part is 50 ° C.
  • the temperature is preferably 200 ° C. or lower. If the glass transition temperature of the polymer constituting the core part of the organic particle and the polymer constituting the shell part are within the above-mentioned ranges, respectively, the strength of the organic particle in the electrolytic solution and the adhesion of the functional layer are improved. This is because the handling properties of the separator can be improved.
  • the “glass transition temperature” of the polymer constituting the core part of the organic particles and the polymer constituting the shell part can be measured using the measuring method described in the examples of the present specification. it can.
  • the manufacturing method of the separator for non-aqueous secondary batteries of this invention is the manufacturing method of the separator for non-aqueous secondary batteries mentioned above.
  • the layer composition is moderately repelled on the surface of the separator substrate, a functional layer having a configuration in which the phase of the organic particles exists in an irregular shape can be easily formed. Therefore, the above-described separator having excellent adhesion and ionic conductivity in the electrolytic solution can be easily produced.
  • the “water droplet contact angle” can be determined by dropping 1 ⁇ L of ion-exchanged water on the separator substrate and measuring the contact angle 60 seconds after landing.
  • the “surface tension” of the composition for a non-aqueous secondary battery functional layer can be measured using a plate method.
  • the non-aqueous secondary battery of this invention is equipped with either of the separators for non-aqueous secondary batteries mentioned above, It is characterized by the above-mentioned. To do. As described above, when the above-described separator for non-aqueous secondary battery having excellent adhesion and ionic conductivity in the electrolytic solution is used, a non-aqueous secondary battery having excellent high-temperature cycle characteristics and low-temperature output characteristics can be obtained.
  • the separator excellent in the adhesiveness and ionic conductivity in electrolyte solution can be provided.
  • the separator for a non-aqueous secondary battery of the present invention is used as a separator for a non-aqueous secondary battery such as a lithium ion secondary battery.
  • a non-aqueous secondary battery of the present invention is used.
  • the non-aqueous secondary battery of this invention is equipped with the separator for non-aqueous secondary batteries of this invention.
  • the separator for non-aqueous secondary batteries of this invention is equipped with the separator base material and the functional layer formed on the at least one surface (functional layer formation surface) of a separator base material.
  • the functional layer of the separator for non-aqueous secondary batteries of this invention contains the organic particle which has a specific core-shell structure provided with the core part and shell part which have specific electrolyte solution swelling degree.
  • the organic particles form a phase of organic particles singly or in combination in the functional layer.
  • the phase of the organic particles exists in an irregular shape as shown in, for example, an SEM image of an example of the functional layer in FIG. 1, and exists in a specific area ratio in the functional layer forming surface. .
  • the organic particles are observed as spherical dots having a diameter of about 0.3 to 0.7 ⁇ m.
  • the separator for non-aqueous secondary batteries of this invention since the functional layer containing a specific organic particle is provided, the adhesiveness of the functional layer in electrolyte solution can be improved. Therefore, the separator for non-aqueous secondary batteries of the present invention can exhibit excellent adhesiveness in the electrolytic solution.
  • the organic particle phase is present in an irregular shape, and the ratio of the area of the portion where the organic particle phase exists in the functional layer forming surface is specified. Since it is within the range, good ion conductivity can be ensured while sufficiently enhancing the adhesion of the functional layer in the electrolytic solution.
  • the separator base material on which the functional layer is formed on at least one surface is not particularly limited, and is a known one such as a microporous film described in JP2012-204303A.
  • a separator substrate can be used. Among these, the film thickness of the entire separator can be reduced, thereby increasing the ratio of the electrode active material in the secondary battery and increasing the capacity per volume.
  • a microporous membrane (organic separator substrate) made of a resin of polyethylene, polypropylene, polybutene, or polyvinyl chloride is preferable.
  • a separator base material can be made into arbitrary thickness, Usually, 0.5 micrometer or more, Preferably it is 5 micrometers or more, Usually, 40 micrometers or less, Preferably it is 30 micrometers or less, More preferably, it is 20 micrometers or less.
  • the separator base material may contain an arbitrary layer that can exhibit an intended function other than the functional layer.
  • the surface on the side which forms a functional layer Is preferably 80 ° or more, more preferably 85 ° or more, still more preferably 90 ° or more, and preferably 130 ° or less, more preferably 120 ° or less, still more preferably 110 ° or less. It is preferable to use a microporous membrane. This is because if a separator substrate having a surface with a water droplet contact angle of 80 ° to 130 ° is used, an organic particle phase having an irregular shape and a specific area ratio can be easily formed.
  • the water droplet contact angle on the surface of the separator substrate can be adjusted by using a known method such as, for example, changing the composition of the resin used for forming the microporous film or treating the surface of the microporous film.
  • a resin for example, polyethylene, polypropylene, etc.
  • the contact angle is preferably adjusted by surface treatment of the microporous membrane.
  • the microporous membrane is subjected to surface treatment using dry treatment such as plasma treatment, corona discharge treatment, and UV treatment. It is preferable to perform surface treatment using corona discharge treatment.
  • the treatment strength can be preferably 20 W ⁇ min / m 2 or more, more preferably 30 W ⁇ min / m 2 or more, still more preferably 40 W ⁇ min / m 2 or more, further, preferably 80W ⁇ min / m 2 or less, more preferably 70W ⁇ min / m 2 or less, more preferably be a 60W ⁇ min / m 2 or less.
  • the treatment strength is too high, the water droplet contact angle may be too low.
  • the functional layer formed on the separator substrate may be a porous film layer for improving the heat resistance and strength of the separator, or the separator and the electrode are bonded.
  • the adhesive layer may be a layer that exhibits both functions of the porous membrane layer and the adhesive layer.
  • the functional layer of the separator for a non-aqueous secondary battery according to the present invention includes a core portion made of a polymer having an electrolyte solution swelling degree of 5 times or more and 30 times or less, and an electrolyte solution swelling degree of more than 1 time and less than 4 times. It has a configuration in which a phase of organic particles having a core-shell structure, which is made of a polymer and has a shell part partially covering the outer surface of the core part, exists in an irregular shape.
  • the ratio of the area where the organic particle phase is present is 20% or more and 80% or less with respect to the area of the functional layer forming surface.
  • the functional layer exhibits excellent adhesiveness in the electrolyte and has good ionic conductivity.
  • the separator for a non-aqueous secondary battery of the present invention includes a functional layer having the above-described configuration on one surface and a functional layer having no above-described configuration on the other surface (for example, a function not containing organic particles). Layer or a functional layer in which the area ratio of the phase of the organic particles does not satisfy the above range).
  • the functional layer optionally contains a functional layer binder, non-conductive particles (except those corresponding to organic particles and functional layer binders), and other components. May be.
  • the content of the organic particles in the functional layer is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, and particularly preferably 80% by mass or more.
  • the organic particles contained in the functional layer have a function of exhibiting excellent adhesiveness in the functional layer in the electrolytic solution.
  • the organic particles have a core-shell structure including a core portion and a shell portion that partially covers the outer surface of the core portion.
  • the core portion has an electrolyte swelling degree of 5 times or more and 30 times or less. It is made of a polymer, and the shell part is made of a polymer having an electrolyte solution swelling degree of more than 1 time and 4 times or less.
  • the organic particles having the above structure and properties exhibit excellent adhesiveness in the electrolytic solution, and further, the elution of components into the electrolytic solution is small, and excellent adhesiveness can be maintained for a long time.
  • the functional layer containing an organic particle can improve the battery characteristic of a secondary battery favorably.
  • a separator having a functional layer containing organic particles is less likely to cause blocking (separation between separators via the functional layer). Also, handling is excellent.
  • the polymer constituting the shell portion of the organic particles swells to some extent with respect to the electrolytic solution.
  • the functional group of the polymer in the swollen shell part is activated, and the functional group is formed on the surface of the separator substrate on which the functional layer is formed or on the surface of the electrode or the like bonded to the separator having the functional layer. Due to factors such as causing chemical or electrical interaction with the group, the shell portion can be firmly bonded to the separator substrate, electrodes, and the like.
  • the shell portion does not exhibit a large adhesive force before it swells in the electrolytic solution. Therefore, it is assumed that the functional layer containing the organic particles can strongly bond the separator and the electrode in the electrolytic solution while suppressing the occurrence of blocking.
  • the polymer of the shell part and the polymer of the core part both have an electrolyte solution swelling degree set to a predetermined value or less, and do not swell excessively with respect to the electrolyte solution. Therefore, for example, it is speculated that the excellent adhesiveness described above can be sufficiently exhibited even after the secondary battery is operated for a long time.
  • the functional layer containing the organic particles since the functional layer can exert a strong adhesive force in the electrolyte solution as described above, in the secondary battery including the functional layer, the functional layer is It is difficult to generate a gap between the separator and the electrode bonded via the electrode. Therefore, in a secondary battery using a separator having a functional layer containing the organic particles, the distance between the positive electrode and the negative electrode is difficult to increase in the secondary battery, the internal resistance of the secondary battery can be reduced, and the electric power in the electrode can be reduced. The reaction field for chemical reactions is unlikely to be uneven. Furthermore, in the secondary battery, even if charging and discharging are repeated, it is difficult to form a gap between the separator and the electrode, and the battery capacity is unlikely to decrease.
  • the secondary battery which is excellent in high temperature cycling characteristics etc. can be provided.
  • the polymer constituting the core part of the organic particles swells greatly with respect to the electrolytic solution.
  • the gap between the molecules of the polymer becomes large, and ions easily pass between the molecules.
  • the polymer in the core part of the organic particles is not completely covered by the shell part. Therefore, ions easily pass through the core portion in the electrolytic solution, so that the organic particles can exhibit high ion diffusibility. Therefore, if the organic particles are used, it is possible to suppress an increase in resistance due to the functional layer and to suppress a decrease in battery characteristics such as low-temperature output characteristics.
  • an organic particle exhibits the outstanding adhesiveness by swelling to electrolyte solution, and does not exhibit big adhesive force before being immersed in electrolyte solution.
  • the organic particles do not exhibit adhesiveness unless they are swollen in the electrolytic solution, and are heated to a certain temperature or higher (for example, 50 ° C. or higher) even if they are not swollen in the electrolytic solution. Therefore, adhesiveness can be expressed.
  • the organic particles have a core-shell structure including a core part and a shell part that covers the outer surface of the core part.
  • the shell portion partially covers the outer surface of the core portion. That is, the shell part of the organic particles covers the outer surface of the core part, but does not cover the entire outer surface of the core part. Even if it appears that the outer surface of the core part is completely covered by the shell part, the shell part is outside the core part as long as a hole that communicates the inside and outside of the shell part is formed.
  • a shell part that partially covers the surface Therefore, for example, organic particles including a shell portion having pores communicating from the outer surface of the shell portion (that is, the peripheral surface of the organic particle) to the outer surface of the core portion are included in the organic particles.
  • the organic particle 100 has a core-shell structure including a core part 110 and a shell part 120, as shown in FIG.
  • the core part 110 is a part which is inside the shell part 120 in the organic particle 100.
  • the shell part 120 is a part that covers the outer surface 110 ⁇ / b> S of the core part 110, and is usually the outermost part of the organic particles 100.
  • the shell portion 120 does not cover the entire outer surface 110S of the core portion 110, but partially covers the outer surface 110S of the core portion 110.
  • the average ratio (coverage) at which the outer surface of the core part is covered by the shell part is preferably 10% or more, more preferably 30% or more, and even more preferably 50% or more, preferably It is 95% or less, more preferably 90% or less, and still more preferably 80% or less.
  • the coverage is preferably 10% or more, more preferably 30% or more, and even more preferably 50% or more, preferably It is 95% or less, more preferably 90% or less, and still more preferably 80% or less.
  • the volume average particle diameter D50 of the organic particles is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, further preferably 0.2 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and further preferably Is 1 ⁇ m or less.
  • the adhesiveness in electrolyte solution can be improved and the high temperature cycling characteristic of a secondary battery can be improved by making the volume average particle diameter D50 of an organic particle below the upper limit of the said range.
  • the “volume average particle diameter D50” of the organic particles can be measured using the measuring method described in the examples of the present specification.
  • the shell part preferably has an average thickness that falls within a predetermined range with respect to the volume average particle diameter D50 of the organic particles.
  • the average thickness (core-shell ratio) of the shell part with respect to the volume average particle diameter D50 of the organic particles is preferably 1.5% or more, more preferably 3% or more, and even more preferably 5% or more. Is 30% or less, more preferably 25% or less, and still more preferably 20% or less.
  • the organic particles may include arbitrary constituent elements other than the above-described core part and shell part as long as the intended effect is not significantly impaired.
  • the organic particles may have a portion formed of a polymer different from the core portion inside the core portion.
  • the seed particles used when the organic particles are produced by the seed polymerization method may remain inside the core portion.
  • the organic particles include only the core part and the shell part from the viewpoint of remarkably exhibiting the intended effect.
  • the core part of the organic particle is made of a polymer having a predetermined degree of swelling with respect to the electrolytic solution.
  • the electrolyte swelling degree of the polymer of the core part needs to be 5 times or more, preferably 7 times or more, more preferably 8 times or more, and 30 It is necessary that it is not more than twice, preferably not more than 28 times, and more preferably not more than 25 times.
  • the adhesiveness of the functional layer in electrolyte solution can be improved, and the high temperature cycling characteristic of a secondary battery can be improved by making electrolyte solution swelling degree of the polymer of a core part below the upper limit of the said range.
  • the “electrolyte swelling degree” of the polymer of the core part can be measured using the measuring method described in the examples of the present specification.
  • the kind and amount of the monomer used for preparing the polymer of the core part Is appropriately selected.
  • the SP value of a polymer is close to the SP value of an electrolytic solution, the polymer tends to swell in the electrolytic solution.
  • the SP value of the polymer is far from the SP value of the electrolytic solution, the polymer tends to hardly swell in the electrolytic solution.
  • the SP value means a solubility parameter.
  • the SP value can be calculated using the method introduced in Hansen Solubility Parameters A User's Handbook, 2nd Ed (CRCPless). Further, the SP value of an organic compound can be estimated from the molecular structure of the organic compound. Specifically, it can be calculated by using simulation software (for example, “HSPiP” (http://www.hansen-solution.com)) that can calculate the SP value from the SMILE equation. In this simulation software, Hansen SOLUBILITY PARAMETERS A User's Handbook Second Edition, Charles M. et al. The SP value is obtained based on the theory described in Hansen.
  • the glass transition temperature of the polymer constituting the core part of the organic particles is preferably ⁇ 50 ° C. or higher, more preferably 0 ° C. or higher, further preferably 20 ° C. or higher, It is preferable that it is 150 degrees C or less, It is more preferable that it is 120 degrees C or less, It is more preferable that it is 100 degrees C or less.
  • the glass transition temperature of the polymer in the core part is equal to or higher than the lower limit of the above range, the strength and blocking resistance of the functional layer can be further improved.
  • the adhesiveness in the electrolyte solution of a functional layer and the high temperature cycling characteristic of a secondary battery can be improved by making the glass transition temperature of the polymer of a core part below into the upper limit of the said range.
  • the type and amount of the monomer used for preparing the polymer of the core part are the same as the homopolymer glass of the monomer. Appropriate selection is considered in consideration of the transition temperature.
  • the transition temperature of the glass tends to be low.
  • (meth) acryl means acryl and / or methacryl.
  • a monomer having an electrolyte solution swelling degree within the above range can be appropriately selected and used.
  • monomers include vinyl chloride monomers such as vinyl chloride and vinylidene chloride; vinyl acetate monomers such as vinyl acetate; styrene, ⁇ -methylstyrene, styrenesulfonic acid, butoxystyrene, Aromatic vinyl monomers such as vinylnaphthalene; vinylamine monomers such as vinylamine; vinylamide monomers such as N-vinylformamide and N-vinylacetamide; methyl acrylate, ethyl acrylate, butyl acrylate, methacryl (Meth) acrylic acid ester monomers such as methyl acrylate, ethyl methacrylate and 2-ethylhexyl acrylate; (meth) acrylamide monomers such as acrylamide and methacrylamide;
  • (meth) acrylate means acrylate and / or methacrylate
  • (meth) acrylonitrile means acrylonitrile and / or methacrylonitrile
  • the polymer of the core part preferably contains a (meth) acrylate monomer unit, and more preferably contains a monomer unit derived from methyl methacrylate and / or butyl acrylate.
  • the polymer of the core part may include an acid group-containing monomer unit.
  • the acid group-containing monomer a monomer having an acid group, for example, a monomer having a carboxylic acid group, a monomer having a sulfonic acid group, a monomer having a phosphoric acid group, and And monomers having a hydroxyl group.
  • Examples of the monomer having a carboxylic acid group include monocarboxylic acid and dicarboxylic acid.
  • Examples of the monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid.
  • Examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Examples of the monomer having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, (meth) acrylic acid-2-ethyl sulfonate, 2-acrylamido-2-methyl. Examples thereof include propanesulfonic acid and 3-allyloxy-2-hydroxypropanesulfonic acid.
  • examples of the monomer having a phosphoric acid group include phosphoric acid-2- (meth) acryloyloxyethyl phosphate, methyl-2- (meth) acryloyloxyethyl phosphate, and ethyl phosphate- (meth) acryloyloxyethyl phosphate.
  • examples of the monomer having a hydroxyl group include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, and 2-hydroxypropyl methacrylate.
  • (meth) allyl means allyl and / or methallyl
  • (meth) acryloyl means acryloyl and / or methacryloyl.
  • an acid group-containing monomer a monomer having a carboxylic acid group is preferable, among which monocarboxylic acid is preferable, and (meth) acrylic acid is more preferable.
  • an acid group containing monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the ratio of the acid group content body unit in the polymer of the core part is preferably 0.1% by mass or more, more preferably 1% by mass or more, preferably 20% by mass or less, more preferably 10% by mass. Hereinafter, it is more preferably 7% by mass or less.
  • the polymer of the core part preferably contains a crosslinkable monomer unit in addition to the monomer unit.
  • a crosslinkable monomer is a monomer that can form a crosslinked structure during or after polymerization by heating or irradiation with energy rays. By including a crosslinkable monomer unit, the electrolyte solution swelling degree of the polymer can be easily kept within the above range.
  • crosslinkable monomer examples include polyfunctional monomers having two or more polymerization reactive groups in the monomer.
  • polyfunctional monomers include divinyl compounds such as divinylbenzene; di (meta) such as ethylene dimethacrylate, diethylene glycol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, and 1,3-butylene glycol diacrylate.
  • Acrylic acid ester compounds Tri (meth) acrylic acid ester compounds such as trimethylolpropane trimethacrylate and trimethylolpropane triacrylate; Ethylenically unsaturated monomers containing epoxy groups such as allyl glycidyl ether and glycidyl methacrylate; Is mentioned.
  • an ethylenically unsaturated monomer containing a dimethacrylic acid ester compound and an epoxy group is preferred, and a dimethacrylic acid ester compound is more preferred. preferable.
  • these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • the ratio of the crosslinkable monomer unit is preferably determined in consideration of the type and amount of the monomer used.
  • the specific ratio of the crosslinkable monomer unit in the polymer of the core part is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and further preferably 0.5% by mass or more. Preferably it is 10 mass% or less, More preferably, it is 8 mass% or less, More preferably, it is 6 mass% or less.
  • the shell part of the organic particle is made of a polymer having a predetermined electrolyte solution swelling degree smaller than the electrolyte solution swelling degree of the core part.
  • the electrolyte solution swelling degree of the polymer of the shell portion needs to be more than 1 time, preferably 1.1 times or more, more preferably 1.2 times or more. In addition, it is necessary to be 4 times or less, 3.5 times or less is preferable, and 3 times or less is more preferable.
  • the electrolyte solution swelling degree of the polymer of the shell part exceed the lower limit value of the above range, the low-temperature output characteristics of the secondary battery can be improved by expressing high ion diffusibility in the functional layer.
  • the electrolyte swelling degree of the polymer of the shell part below the upper limit of the above range, it is possible to improve the adhesion of the functional layer in the electrolyte and improve the high-temperature cycle characteristics of the secondary battery.
  • the "electrolyte swelling degree" of the polymer of a shell part can be measured using the measuring method as described in the Example of this specification.
  • the kind and amount of the monomer for producing the polymer of the shell part are determined. Appropriate selection can be mentioned.
  • the glass transition temperature of the polymer constituting the shell part of the organic particles is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, still more preferably 70 ° C. or higher, and 200 It is preferably not higher than ° C., more preferably not higher than 180 ° C., and further preferably not higher than 150 ° C.
  • the glass transition temperature of the polymer of the shell part is preferably 50 ° C. or higher, it is possible to improve the low temperature output characteristics of the secondary battery in addition to suppressing the occurrence of blocking.
  • the adhesiveness of a functional layer can further be improved by making the glass transition temperature of the polymer of a shell part into 200 degrees C or less.
  • the type and amount of the monomer used for preparing the polymer of the shell part are the same as the homopolymer glass of the monomer. Appropriate selection is considered in consideration of the transition temperature.
  • a monomer having an electrolyte solution swelling degree within the above range can be appropriately selected and used.
  • examples of such a monomer include the same monomers as those exemplified as monomers that can be used to produce the core polymer.
  • such a monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the polymer of the shell part preferably includes an aromatic vinyl monomer unit.
  • aromatic vinyl monomers styrene derivatives such as styrene and styrene sulfonic acid are more preferable. If an aromatic vinyl monomer is used, it is easy to control the degree of electrolyte swelling of the polymer. Moreover, the adhesiveness of the functional layer can be further enhanced.
  • the ratio of the aromatic vinyl monomer unit in the polymer of the shell part is preferably 20% by mass or more, more preferably 40% by mass or more, further preferably 50% by mass or more, and still more preferably 60% by mass or more. Especially preferably, it is 80 mass% or more, Preferably it is 100 mass% or less, More preferably, it is 99.5 mass% or less, More preferably, it is 99 mass% or less.
  • the polymer of the shell part may contain an acid group-containing monomer unit in addition to the aromatic vinyl monomer unit.
  • the acid group-containing monomer a monomer having an acid group, for example, a monomer having a carboxylic acid group, a monomer having a sulfonic acid group, a monomer having a phosphoric acid group, and And monomers having a hydroxyl group.
  • examples of the acid group-containing monomer include monomers similar to the acid group-containing monomer that can be contained in the core portion.
  • the acid group-containing monomer is preferably a monomer having a carboxylic acid group, more preferably a monocarboxylic acid, and even more preferably (meth) acrylic acid.
  • an acid group containing monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the ratio of the acid group-containing monomer unit in the polymer of the shell part is preferably 0.1% by mass or more, more preferably 1% by mass or more, still more preferably 3% by mass or more, and preferably 20% by mass. Hereinafter, it is more preferably 10% by mass or less, and further preferably 7% by mass or less.
  • the polymer of the shell part may contain a crosslinkable monomer unit.
  • the crosslinkable monomer include monomers similar to those exemplified as the crosslinkable monomer that can be used in the core polymer.
  • crosslinked monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the ratio of the crosslinkable monomer unit in the polymer of the shell part is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, further preferably 0.5% by mass or more, preferably Is 5% by mass or less, more preferably 4% by mass or less, and still more preferably 3% by mass or less.
  • the form of the shell part is not particularly limited, but the shell part is preferably composed of polymer particles.
  • the shell part is composed of polymer particles, a plurality of particles constituting the shell part may overlap in the radial direction of the organic particles. However, in the radial direction of the organic particles, it is preferable that the particles constituting the shell portion do not overlap each other, and those polymer particles constitute the shell portion as a single layer.
  • the organic particles having the core-shell structure described above use, for example, a polymer monomer in the core part and a polymer monomer in the shell part, and change the ratio of these monomers over time.
  • the organic particles can be prepared by a continuous multi-stage emulsion polymerization method and a multi-stage suspension polymerization method in which the polymer of the previous stage is sequentially coated with the polymer of the subsequent stage.
  • an emulsifier for example, an anionic surfactant such as sodium dodecylbenzenesulfonate and sodium dodecylsulfate, a nonionic surfactant such as polyoxyethylene nonylphenyl ether and sorbitan monolaurate, or Cationic surfactants such as octadecylamine acetate can be used.
  • anionic surfactant such as sodium dodecylbenzenesulfonate and sodium dodecylsulfate
  • a nonionic surfactant such as polyoxyethylene nonylphenyl ether and sorbitan monolaurate
  • Cationic surfactants such as octadecylamine acetate
  • polymerization initiator examples include peroxides such as t-butylperoxy-2-ethylhexanoate, potassium persulfate, cumene peroxide, 2,2′-azobis (2-methyl-N- (2 An azo compound such as -hydroxyethyl) -propionamide) or 2,2'-azobis (2-amidinopropane) hydrochloride can be used.
  • a monomer and an emulsifier that form a core part are mixed, and emulsion polymerization is performed at once to obtain a particulate polymer constituting the core part.
  • the organic particle which has the core shell structure mentioned above can be obtained by superposing
  • the monomer that forms the polymer of the shell portion is divided into a plurality of times or continuously supplied to the polymerization system.
  • the monomer that forms the polymer of the shell part is divided into a polymerization system or continuously supplied, whereby the polymer constituting the shell part is formed into particles, and these particles are bonded to the core part. Thereby, the shell part which covers a core part partially can be formed.
  • the monomer for forming the polymer of the shell part is divided and supplied in a plurality of times, it is possible to control the average thickness of the shell part according to the ratio of dividing the monomer.
  • the monomer that forms the polymer of the shell part it is possible to control the average thickness of the shell part by adjusting the monomer supply amount per unit time. is there.
  • the volume average particle diameter D50 of the organic particles after forming the shell portion can be set to a desired range by adjusting the amount of the emulsifier, the amount of the monomer, and the like. Furthermore, the average ratio (coverage) by which the outer surface of the core part is covered by the shell part is adjusted by, for example, adjusting the amount of the emulsifier and the amount of the monomer that forms the polymer of the shell part. Can range.
  • the organic particles usually do not swell in the electrolytic solution and do not exhibit great adhesion in a state where they are not heated. Therefore, from the viewpoint of suppressing the organic particles from dropping off from the functional layer immediately after the formation of the functional layer (before heating or immersion in the electrolytic solution), the functional layer is not swollen in the electrolytic solution, and It is preferable that the binder for functional layers which exhibits adhesiveness also in the state which is not heated is included.
  • the functional layer binder components such as organic particles can be prevented from falling off from the functional layer even in a state where the electrolyte is not swollen and heated.
  • a binder for functional layers which can be used together with the said organic particle a known binder, for example, a thermoplastic elastomer, is mentioned.
  • a thermoplastic elastomer a conjugated diene polymer and an acrylic polymer are preferable, and an acrylic polymer is more preferable.
  • the conjugated diene polymer refers to a polymer containing a conjugated diene monomer unit.
  • Specific examples of the conjugated diene polymer include aromatic vinyl such as styrene-butadiene copolymer (SBR).
  • Examples thereof include a polymer containing a monomer unit and an aliphatic conjugated diene monomer unit, and an acrylic rubber (NBR) (a polymer containing an acrylonitrile unit and a butadiene unit).
  • an acrylic polymer refers to the polymer containing a (meth) acrylic acid ester monomer unit.
  • the (meth) acrylate monomer that can form a (meth) acrylate monomer unit is the same as the monomer used to prepare the polymer of the core part of the organic particles.
  • These functional layer binders may be used alone or in combination of two or more.
  • the polymer as the functional layer binding material is an organic particle having a core-shell structure made of the predetermined polymer described above. Be different.
  • the acrylic polymer as the binder for the functional layer includes a (meth) acrylonitrile monomer unit. Thereby, the intensity
  • the amount of the (meth) acrylonitrile monomer unit relative to the total amount of the (meth) acrylonitrile monomer unit and the (meth) acrylic acid ester monomer unit is preferably 1% by mass or more, more preferably 2% by mass or more, preferably 30% by mass or less, more preferably 25% by mass or less.
  • the acrylic polymer as the binder for the functional layer is appropriately swollen with respect to the electrolytic solution by setting the ratio to be not more than the upper limit of the above range, the ion conductivity of the functional layer is reduced. A decrease in the low-temperature output characteristics of the secondary battery can be suppressed.
  • the glass transition temperature of the binder for the functional layer is usually lower than the glass transition temperature of the polymer of the core part of the organic particles and the glass transition temperature of the polymer of the shell part, and preferably ⁇ 100 ° C. or higher. More preferably, it is ⁇ 90 ° C. or more, more preferably ⁇ 80 ° C. or more, preferably 0 ° C. or less, more preferably ⁇ 5 ° C. or less, and further preferably ⁇ 10 ° C. or less. .
  • the glass transition temperature of the functional layer binder higher than the lower limit of the above range, the adhesiveness and strength of the functional layer binder can be enhanced. Moreover, the softness
  • the binder for the functional layer having a low glass transition temperature is usually fluidized by heating at the time of forming the functional layer, for example, it is widely dispersed in the functional layer so that it is difficult to grasp the shape by SEM or the like. To do.
  • the content of the functional layer binder in the functional layer is preferably 1 part by mass or more, more preferably 3 parts by mass or more, with respect to 100 parts by mass of the organic particles described above.
  • the amount is more preferably at least part by mass, more preferably at most 30 parts by mass, even more preferably at most 25 parts by mass, even more preferably at most 20 parts by mass.
  • Examples of the method for producing the functional layer binder include a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method.
  • the emulsion polymerization method and the suspension polymerization method are preferable because the polymerization can be performed in water and the aqueous dispersion containing the particulate functional layer binder can be suitably used for forming the functional layer as it is.
  • the reaction system contains a dispersing agent.
  • the functional layer binder is usually formed of a polymer substantially constituting the functional layer binder, but may be accompanied by optional components such as additives used in the polymerization.
  • the functional layer when the functional layer also functions as a porous membrane layer, the functional layer may contain non-conductive particles.
  • the non-conductive particles to be blended in the functional layer are not particularly limited, and known non-conductive particles used for non-aqueous secondary batteries can be exemplified.
  • the non-conductive particles both inorganic fine particles and organic fine particles other than the organic particles and the functional layer binder described above can be used, but inorganic fine particles are usually used.
  • a material of nonelectroconductive particle the material which exists stably in the use environment of a non-aqueous secondary battery and is electrochemically stable is preferable.
  • non-conductive particle material examples include aluminum oxide (alumina), hydrated aluminum oxide (boehmite), silicon oxide, magnesium oxide (magnesia), calcium oxide, titanium oxide (titania).
  • Oxide particles such as BaTiO 3 , ZrO, alumina-silica composite oxide; nitride particles such as aluminum nitride and boron nitride; covalently bonded crystal particles such as silicon and diamond; barium sulfate, calcium fluoride, barium fluoride Insoluble ion crystal particles such as; clay fine particles such as talc and montmorillonite;
  • these particles may be subjected to element substitution, surface treatment, solid solution, and the like as necessary.
  • the nonelectroconductive particle mentioned above may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the functional layer may contain arbitrary other components besides the component mentioned above.
  • the other components are not particularly limited as long as they do not affect the battery reaction, and known components can be used. Moreover, these other components may be used individually by 1 type, and may be used in combination of 2 or more types. Examples of the other components include known additives used at the time of forming a functional layer, such as a wetting agent such as an ethylene oxide-propylene oxide copolymer, a viscosity modifier, and an electrolytic solution additive.
  • the functional layer formed on the functional layer forming surface of the separator substrate is composed of a single organic particle or a plurality of assembled organic particles, as shown in FIG.
  • the organic particle phase that is, the portion where the organic particles are present
  • the portion where the organic particles are not present for example, the portion where only components other than the organic particles such as the binder for the functional layer are present
  • phase of the organic particles needs to be present in a ratio of 20% to 80% with respect to the area of the functional layer forming surface without covering the entire functional layer forming surface.
  • the organic particles exhibit a certain degree of high ionic conductivity
  • the portion where the organic particles are present has a lower ionic conductivity than the portion where the organic particles are not present. Therefore, from the viewpoint of improving the ion conductivity of the functional layer in the electrolyte and enhancing the low-temperature output characteristics of the secondary battery using the separator, it exists on the functional layer forming surface with respect to the area of the functional layer forming surface.
  • the ratio of the area of the phase of the organic particles to be performed needs to be 80% or less.
  • the area of the portion where the organic particle phase is present relative to the area of the functional layer forming surface The ratio is preferably 25% or more, more preferably 30% or more, and further preferably 35% or more.
  • the proportion of the area of the part is preferably 70% or less, more preferably 60% or less, and further preferably 45% or less.
  • the phase of the organic particles exists in an irregular shape.
  • a plurality of phases composed of single organic particles or aggregated organic particles are present in an irregular shape rather than a fixed repetitive pattern shape (for example, a stripe shape or a lattice shape). is doing.
  • the adhesiveness in electrolyte solution can be improved because the phase of an organic particle exists in an irregular shape.
  • the configuration in which the phase of the organic particles is present in an irregular shape is not particularly limited, and for example, an island-like phase composed of a single organic particle or an aggregate of 10 or less organic particles
  • a configuration in which a continental phase composed of an aggregate of 11 or more organic particles is mixed with a portion where no organic particles exist is included.
  • the area of the part in which the phase of the organic particles exists and the shape of the phase of the organic particles are, for example, the type of the material used for forming the separator base material and the functional layer (composition for the non-aqueous secondary battery functional layer), and It can be adjusted by changing the method of forming the functional layer.
  • the method for producing a separator for a non-aqueous secondary battery according to the present invention includes a step of preparing a separator base material having a water droplet contact angle of 80 ° to 130 ° on the functional layer forming surface (base material preparation step), A step of preparing a composition for a non-aqueous secondary battery functional layer containing a component constituting the functional layer and a dispersion medium such as water and having a surface tension of 33 mN / m to 39 mN / m (composition preparation) Step) and a non-aqueous secondary battery functional layer composition applied on the functional layer-forming surface of the separator base material, and the applied non-aqueous secondary battery functional layer composition is dried to function on the separator base material.
  • base material preparation step A step of preparing a composition for a non-aqueous secondary battery functional layer containing a component constituting the functional layer and a dispersion medium such as water and having a surface tension of 33 mN / m to 39 mN
  • the composition for non-aqueous secondary battery functional layers was apply
  • a separator substrate having a water droplet contact angle of 80 ° to 130 ° on the functional layer forming surface is used, and the surface tension is 33 mN /
  • the functional layer having the above-described configuration can be easily formed.
  • a separator base material having a water droplet contact angle on at least one surface (functional layer forming surface) of 80 ° or more and 130 ° or less is prepared.
  • the water droplet contact angle on the functional layer forming surface is less than 80 °, the ratio of the area of the portion where the organic particle phase exists in the formed functional layer becomes too large.
  • the water droplet contact angle on the functional layer forming surface is more than 130 °, the ratio of the area of the formed functional layer where the organic particle phase exists is too small.
  • the water droplet contact angle of the functional layer forming surface is preferably 85 ° or more, and preferably 90 ° or more. More preferably, it is preferably 120 ° or less, and more preferably 110 ° or less.
  • the separator substrate having a water droplet contact angle of 80 ° to 130 ° is not particularly limited, and may be prepared by purchasing a commercially available separator substrate having a surface with a water droplet contact angle within the above range. It is good to adjust the size of the contact angle of water droplets on the surface of the microporous membrane that can be used as a separator substrate by using a surface treatment such as corona discharge treatment as described in the section ⁇ Separator substrate>. You may prepare by.
  • composition preparation step it is a slurry composition containing at least the organic particles described above, optionally containing a binder for functional layers, non-conductive particles, and other components, using water as a dispersion medium, And the composition for non-aqueous secondary battery functional layers whose surface tension is 33 mN / m or more and 39 mN / m or less is prepared.
  • the surface tension of the functional layer composition is less than 33 mN / m, the ratio of the area of the portion where the organic particle phase is present in the formed functional layer becomes too large.
  • the surface tension of the functional layer composition is preferably 34 mN / m or more, and more preferably 35 mN / m or more. More preferably, it is preferably 38 mN / m or less, and more preferably 37 mN / m or less.
  • the method for preparing the functional layer composition is not particularly limited, but usually, organic particles, water as a dispersion medium, and functional layer binder, non-conductive particles and A functional layer composition is prepared by mixing with other components.
  • the mixing method is not particularly limited, in order to disperse each component efficiently, mixing is usually performed using a disperser as a mixing device.
  • the disperser it is preferable to use an apparatus capable of uniformly dispersing and mixing the above components. Examples of the disperser include a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, and a planetary mixer. From the viewpoint that a high dispersion share can be added, it is also preferable to use a high dispersion apparatus such as a bead mill, a roll mill, or a fill mix.
  • size of the surface tension of the composition for functional layers is not specifically limited, It can adjust by adding a wetting agent to the composition for functional layers, for example, increasing the addition amount of a wetting agent. Thereby, the surface tension of the composition for functional layers can be made small.
  • the wetting agent is not particularly limited, and a known surfactant such as a nonionic surfactant or an ionic surfactant can be used.
  • a nonionic surfactant is preferably used, a polyether copolymer is more preferably used, and an ethylene oxide-propylene oxide copolymer is further preferably used.
  • the compounding quantity of a wetting agent will not be specifically limited if the surface tension of the composition for functional layers can be made into the range mentioned above, for example, shall be 0.1 mass part or more per 100 mass parts of organic particles. It is preferably 0.5 parts by mass or more, more preferably 1.0 part by mass or more, particularly preferably 1.5 parts by mass or more, and 5.0 parts by mass or less. Preferably, it is 3.0 mass parts or less, More preferably, it is 2.5 mass parts or less, It is especially preferable to set it as 2.2 mass parts or less. When the amount of the wetting agent is too small, the surface tension of the functional layer composition may not be sufficiently reduced.
  • the amount of the wetting agent is too large, the surface tension of the functional layer composition may be too small.
  • the adhesiveness of a functional layer may fall or the high temperature cycling characteristic of a secondary battery may fall.
  • the functional layer forming step includes a step of applying the functional layer composition to the functional layer forming surface of the separator base material (application step), and drying the functional layer composition applied on the separator base material to form a functional layer.
  • a process of forming (drying process) is included.
  • the functional layer forming step when the functional layer composition having the surface tension described above is applied onto the functional layer forming surface having the water droplet contact angle, the functional layer composition is appropriately repelled and functions. Disperse non-uniformly without covering the entire surface of the layer formation.
  • the functional layer formed by drying the composition for the functional layer has the above-described specific shape and phase of organic particles having a specific area ratio.
  • the method for coating the functional layer composition on the separator substrate is not particularly limited.
  • Examples include the rouge method and the brush painting method.
  • the gravure method and the spray coating method are preferable from the viewpoint of forming a thinner functional layer.
  • the method for drying the composition for the functional layer on the separator substrate is not particularly limited, and a known method can be used. For example, a drying method using hot air, hot air, low-humidity air, or a vacuum drying method. And a drying method by irradiation with infrared rays or electron beams.
  • the drying conditions are not particularly limited, but the drying temperature is preferably 30 to 80 ° C., and the drying time is preferably 30 seconds to 10 minutes.
  • the thickness of the functional layer formed on the separator substrate is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, further preferably 0.5 ⁇ m or more, preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less. More preferably, it is 5 ⁇ m or less.
  • the thickness of the functional layer is not less than the lower limit of the above range, the strength of the functional layer can be sufficiently secured.
  • the thickness of the functional layer is less than or equal to the upper limit of the above range, the ion diffusibility of the functional layer can be secured and the low-temperature output characteristics of the secondary battery can be further improved.
  • the non-aqueous secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and an electrolyte, and uses a separator for a non-aqueous secondary battery including the functional layer described above as a separator. And in the non-aqueous secondary battery of this invention, when the said functional layer functions as an adhesive layer, a positive electrode and a separator and / or a negative electrode and a separator are adhere
  • non-aqueous secondary battery of the present invention includes the separator of the present invention having a functional layer that is excellent in both adhesion and ionic conductivity in an electrolytic solution, high temperature cycle characteristics, low temperature output characteristics, etc. Excellent battery characteristics.
  • nonaqueous secondary battery known positive electrodes and negative electrodes used in nonaqueous secondary batteries can be used as the positive electrode and the negative electrode.
  • electrolytic solution a known electrolytic solution used in a non-aqueous secondary battery can be used.
  • the electrode positive electrode and negative electrode
  • an electrode in which an electrode mixture layer is formed on a current collector can be used.
  • the current collector, the components in the electrode mixture layer for example, the electrode active material (positive electrode active material, negative electrode active material) and the electrode mixture layer binder (positive electrode mixture layer binder, negative electrode composite)
  • a known material can be used. Specifically, for example, those described in JP2013-145663A can be used.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a lithium salt is used as the supporting electrolyte.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable, and LiPF 6 is particularly preferable because it is easily soluble in a solvent and exhibits a high degree of dissociation.
  • electrolyte may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. Usually, the lithium ion conductivity tends to increase as the supporting electrolyte having a higher degree of dissociation is used, so that the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC) ), Carbonates such as butylene carbonate (BC) and ethyl methyl carbonate (EMC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; Sulfur compounds; etc. are preferably used.
  • the concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate.
  • the concentration is preferably 0.5 to 15% by mass, more preferably 2 to 13% by mass, and more preferably 5 to 10% by mass. More preferably.
  • known additives such as fluoroethylene carbonate and ethyl methyl sulfone may be added to the electrolytic solution.
  • a non-aqueous secondary battery is, for example, a stack of a positive electrode and a negative electrode sandwiched between separators, wound in accordance with the battery shape as needed, folded into a battery container, and an electrolyte solution in the battery container. It can be manufactured by pouring and sealing. In order to prevent the occurrence of pressure rise inside the non-aqueous secondary battery, overcharge / discharge, etc., an overcurrent prevention element such as a fuse or a PTC element, an expanded metal, a lead plate, etc. may be provided as necessary. .
  • the shape of the non-aqueous secondary battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like, for example.
  • the high-temperature cycle characteristics and low-temperature output characteristics of the secondary battery were measured and evaluated by the following methods.
  • ⁇ Swelling degree of electrolyte solution of polymer of core part and polymer of shell part Using the monomers and various additives used for the formation of the core part and shell part of the organic particles, under the same polymerization conditions as the polymerization conditions for the core part and shell part, the polymer of the core part and the shell part An aqueous dispersion containing the polymer was prepared. This aqueous dispersion was put in a petri dish made of polytetrafluoroethylene and dried under conditions of 110 ° C. and 10 hours to obtain a film having a thickness of 0.5 mm. And the obtained film was cut
  • test piece was immersed in an electrolytic solution at 60 ° C. for 72 hours. Then, the test piece was taken out from the electrolytic solution, the electrolytic solution on the surface of the test piece was wiped off, and the mass W1 of the test piece after the immersion test was measured. And using these mass W0 and W1, electrolyte solution swelling degree S (times) was calculated
  • required by S W1 / W0.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • VC vinylene carbonate
  • ⁇ Glass transition temperature of core polymer, shell polymer and functional layer binder> A polymer (core part) to be a measurement sample under the same polymerization conditions as the polymerization conditions of the core part and the shell part using the monomers and various additives used for forming the core part and shell part of the organic particles Water dispersions containing the polymer and the shell polymer).
  • the prepared aqueous dispersion was used as a measurement sample.
  • the aqueous dispersion containing the binder for functional layers was prepared, and it was set as the measurement sample.
  • volume average particle diameter D50 of organic particles The volume average particle size D50 of the organic particles is 50% of the cumulative volume calculated from the small diameter side in the particle size distribution measured by a laser diffraction type particle size distribution measuring device (“SALD-3100” manufactured by Shimadzu Corporation). The particle diameter was taken.
  • SALD-3100 laser diffraction type particle size distribution measuring device
  • the particle diameter was taken.
  • ⁇ Core shell ratio of organic particles The core-shell ratio of the organic particles was measured by the following procedure.
  • the prepared organic particles were sufficiently dispersed in a visible light curable resin (“D-800” manufactured by JEOL Ltd.) and then embedded to obtain a block piece containing organic particles. Next, the obtained block piece was cut into a thin piece having a thickness of 100 nm with a microtome equipped with a diamond blade to prepare a measurement sample.
  • the measurement sample was dyed using ruthenium tetroxide.
  • the dyed measurement sample was set in a transmission electron microscope (“JEM-3100F” manufactured by JEOL Ltd.), and a cross-sectional structure of organic particles was photographed at an acceleration voltage of 80 kV. The magnification of the electron microscope was set so that the cross section of one organic particle was in the visual field. Thereafter, the cross-sectional structure of the photographed organic particles was observed, and the average thickness of the shell portion of the organic particles was measured by the following procedure according to the observed configuration of the shell portion. And the core-shell ratio was calculated
  • the longest diameter of the polymer particles constituting the shell portion was measured.
  • the longest diameter of the polymer particles constituting the shell part was measured for 20 arbitrarily selected organic particles, and the average value of the longest diameters was taken as the average thickness of the shell part.
  • the maximum thickness of the shell portion was measured.
  • the maximum thickness of the shell portion was measured for 20 arbitrarily selected organic particles, and the average value of the maximum thickness was taken as the average thickness of the shell portion.
  • the cross-sectional structure of the organic particles is photographed.
  • the covering ratio Rc “AnalySIS Pro” (manufactured by Olympus Corporation) which is image analysis software was used.
  • the covering ratio Rc was measured for 20 arbitrarily selected organic particles, and the average value was defined as the average ratio (covering ratio) at which the outer surface of the core portion of the organic particles was covered by the shell portion.
  • ⁇ Surface tension of composition for non-aqueous secondary battery functional layer The prepared composition for a non-aqueous secondary battery functional layer was poured onto a glass petri dish. And the surface tension was measured by the plate method using the platinum plate. The measurement is performed twice using a fully automatic surface tension meter “CBVP-Z” manufactured by Kyowa Interface Science. The average value of the surface tension is obtained from the measured value, and the average value is used for the non-aqueous secondary battery functional layer. The surface tension of the composition was used.
  • ⁇ Water droplet contact angle of separator substrate> The separator substrate was fixed on a flat plate. Then, 1 ⁇ L of ion exchange water (surface tension 72 mN / m) was dropped on the separator substrate, and the contact angle 60 seconds after the landing was measured. The measurement was performed twice using a contact angle meter “DM-901” manufactured by Kyowa Interface Science, and the average value of the water droplet contact angles was determined from the measured values, and the average value was used as the water droplet contact angle of the separator substrate. It was.
  • DM-901 manufactured by Kyowa Interface Science
  • ⁇ Ratio of the area of the part where the phase of organic particles exists The surface of the functional layer of the separator was observed at a magnification of 5000 using a scanning electron microscope (SEM) “Hitachi S-4700” to obtain 10 SEM images. About the obtained image, the ratio of the area of the part in which the phase of an organic particle exists was computed with the following formula using image analysis software ("analysis PRO" by Olympus). And the average value of the calculated value was made into the ratio of the area of the part in which the phase of an organic particle exists with respect to the area of a functional layer formation surface.
  • SEM scanning electron microscope
  • the ratio of the area of the portion where the organic particle phase was present to the area of the functional layer forming surface was calculated from the width of the functional layer and the functional layer formation interval.
  • Ratio (%) of the area where the organic particle phase exists (area of the area where the organic particle phase exists / viewing area) ⁇ 100 ⁇ Adhesiveness between separator and electrode after immersion in electrolyte>
  • the prepared laminate including the positive electrode and the separator and the laminate including the negative electrode and the separator were each cut into a width of 10 mm to obtain test pieces. This test piece was immersed in the electrolytic solution at a temperature of 60 ° C. for 3 days.
  • EC ethylene carbonate
  • DEC / VC vinylene carbonate
  • a cellophane tape defined in JIS Z1522 was used.
  • the cellophane tape was fixed on a horizontal test bench.
  • the stress when one end of the separator base material was pulled vertically upward at a pulling speed of 50 mm / min and peeled was measured. This measurement was performed three times for each of the laminate including the positive electrode and the separator and the laminate including the negative electrode and the separator, for a total of 6 times, and the average value of the stress was obtained as the peel strength.
  • the adhesiveness was evaluated according to the following criteria. It shows that adhesiveness is so high that peel strength is large.
  • the manufactured lithium ion secondary battery of a wound type cell having a discharge capacity of 800 mAh was allowed to stand in an environment of 25 ° C. for 24 hours. Thereafter, under an environment of 25 ° C., a charge / discharge operation of charging up to 4.35 V at 0.1 C and discharging to 2.75 V at 0.1 C was performed, and the initial capacity C0 was measured.
  • Capacity maintenance ratio ⁇ C is 88% or more
  • the manufactured lithium ion secondary battery of a wound type cell having a discharge capacity of 800 mAh was allowed to stand in an environment of 25 ° C. for 24 hours. Thereafter, charging was performed for 5 hours at a charging rate of 0.1 C under an environment of 25 ° C., and the voltage V0 at that time was measured.
  • Example 1 ⁇ Preparation of organic particles having a core-shell structure>
  • 75 parts of methyl methacrylate as a (meth) acrylic acid ester monomer 75 parts of methacrylic acid as an acid group-containing monomer, 1 part of ethylene glycol dimethacrylate; 1 part of sodium dodecylbenzenesulfonate as an emulsifier; 150 parts of ion-exchanged water and 0.5 part of potassium persulfate as a polymerization initiator were added and sufficiently stirred. Then, it heated to 60 degreeC and superposition
  • Polymerization was continued until the polymerization conversion rate reached 96% to obtain an aqueous dispersion containing a particulate polymer constituting the core portion.
  • a mixture of 19 parts of styrene as an aromatic vinyl monomer and 1 part of methacrylic acid as an acid group-containing monomer was continuously added to form a shell part, and heated to 70 ° C.
  • Polymerization was continued.
  • the reaction was stopped by cooling to prepare an aqueous dispersion containing organic particles having a core-shell structure in which the outer surface of the core part was partially covered with the shell part. .
  • the obtained organic particles had a volume average particle diameter D50 of 0.45 ⁇ m.
  • aqueous dispersion containing a particulate functional layer binder (acrylic polymer).
  • the functional layer binder obtained had a glass transition temperature of ⁇ 40 ° C.
  • aqueous dispersion containing the organic particles having the core-shell structure is 100 parts in terms of solid content, and the aqueous dispersion containing the functional layer binder is 15 parts in terms of solid content.
  • Ethylene oxide as a wetting agent -Propylene oxide copolymer (solid content concentration 70% by mass, polymerization ratio: 5/5 (mass ratio)) is mixed with 1.9 parts in solid content, and ion-exchanged water is added to a solid content concentration of 15% by mass.
  • composition preparation step a slurry-like composition for a nonaqueous secondary battery functional layer was prepared (composition preparation step).
  • surface tension of the obtained composition for non-aqueous secondary battery functional layers was measured. The results are shown in Table 1.
  • ⁇ Preparation of separator substrate> A polyethylene microporous film (thickness 16 ⁇ m, Gurley value 210 s / 100 cc) was prepared.
  • the prepared microporous membrane was subjected to corona discharge treatment at a treatment strength of 50 W ⁇ min / m 2 using “Air Plasma APW-602f” manufactured by Kasuga Denki, and used as a separator base material (base material preparation step). And the water droplet contact angle of the separator base material was measured. The results are shown in Table 1.
  • ⁇ Preparation of separator> A slurry-like composition for a non-aqueous secondary battery functional layer was applied to both surfaces of the separator substrate by a gravure coating method (number of lines: 300) and dried at 50 ° C. for 1 minute (functional layer forming step).
  • a functional layer having a thickness of 0.8 ⁇ m per layer was formed on the separator base material, and a separator formed by forming the functional layers on both surfaces of the separator base material was obtained.
  • This separator includes a functional layer, a separator base material, and a functional layer in this order.
  • the functional layer of the separator was observed with SEM, and the ratio of the area of the part in which the phase of an organic particle exists was calculated
  • the obtained SEM image is shown in FIG. 1 and the results are shown in Table 1.
  • the phase of organic particles was present in an irregular shape. Moreover, only organic particles were observed as particles, and the binder for functional layers was not observed as particles by SEM.
  • a 5% aqueous sodium hydroxide solution was added to the mixture containing the particulate binder to adjust the pH to 8. Thereafter, unreacted monomers are removed from the mixture by heating under reduced pressure, and the mixture is cooled to 30 ° C. or lower to obtain an aqueous dispersion containing a desired particulate binder (binder for negative electrode mixture layer). It was.
  • MAC350HC carboxymethylcellulose sodium salt
  • ion exchange water was added to adjust the solid content concentration to 68%, and the mixture was mixed at 25 ° C. for 60 minutes. Ion exchange water was added to the liquid mixture thus obtained to adjust the solid content concentration to 62%, and the mixture was further mixed at 25 ° C. for 15 minutes.
  • 1.5 parts of the above aqueous dispersion containing the particulate binder is added in an amount corresponding to the solid content, and ion-exchanged water is further added to adjust the final solid content concentration to 52%, and further for 10 minutes. Mixed. This was defoamed under reduced pressure to obtain a negative electrode slurry composition having good fluidity.
  • the slurry composition for negative electrode was applied on a copper foil having a thickness of 20 ⁇ m, which is a current collector, with a comma coater so that the film thickness after drying was about 150 ⁇ m and dried. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a negative electrode raw material before pressing. The negative electrode raw material before pressing was rolled with a roll press to obtain a negative electrode after pressing with a negative electrode mixture layer thickness of 80 ⁇ m.
  • ⁇ Production of positive electrode slurry composition 100 parts of LiCoO 2 having a volume average particle diameter of 12 ⁇ m as the positive electrode active material, 2 parts of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., product name “HS-100”) as the conductive material, and binder for positive electrode (positive electrode mixture layer)
  • Polyvinylidene fluoride manufactured by Kureha Co., Ltd., product name “# 7208” was mixed in an amount equivalent to the solid content, and N-methylpyrrolidone was added thereto to make the total solid content concentration 70%. These were mixed by a planetary mixer to obtain a positive electrode slurry composition.
  • the positive electrode slurry composition was applied onto a 20 ⁇ m-thick aluminum foil as a current collector by a comma coater so that the film thickness after drying was about 150 ⁇ m and dried. This drying was performed by conveying the aluminum foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a positive electrode raw material before pressing. The positive electrode raw material before pressing was rolled with a roll press to obtain a positive electrode.
  • ⁇ Manufacture of laminate of negative electrode or positive electrode and separator> The positive electrode after pressing was cut into a circle having a diameter of 13 mm to obtain a circular positive electrode.
  • the negative electrode after pressing was cut out into a circle having a diameter of 14 mm to obtain a circular negative electrode.
  • the separator was cut into a circle having a diameter of 18 mm to obtain a circular separator. Then, only the negative electrode or the positive electrode was placed on one side of the circular separator so as to be in contact with the separator on the surface on the electrode mixture layer side. Thereafter, a heat press treatment was performed at a temperature of 80 ° C. and a pressure of 0.5 MPa for 10 seconds, and the positive electrode or the negative electrode was pressure-bonded to the separator to obtain a laminate including the positive electrode and the separator, and a laminate including the negative electrode and the separator. .
  • the wound body was pressed at 60 ° C. and 0.5 MPa to obtain a flat body.
  • electrolyte LiPF 6
  • Example 2 For the preparation of organic particles and functional layers in the same manner as in Example 1 except that the amounts of methyl methacrylate, methacrylic acid and ethylene glycol dimethacrylate used for the production of the core portion were changed as shown in Table 1 when the organic particles were prepared.
  • a binder, a composition for a non-aqueous secondary battery functional layer, a separator base material, a separator, a negative electrode, a positive electrode, a laminate, and a lithium ion secondary battery were produced.
  • Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
  • the organic particle phase was present in an irregular shape in the functional layer.
  • only organic particles were observed as particles, and the binder for functional layers was not observed as particles by SEM.
  • Example 5 When preparing the organic particles, the amount of methyl methacrylate is changed to 43 parts and the amount of methacrylic acid is changed to 1 part for the monomer composition used for the production of the core part. Except for adding 35 parts of butyl acrylate as a body, in the same manner as in Example 1, organic particles, functional layer binder, non-aqueous secondary battery functional layer composition, separator substrate, separator, negative electrode, A positive electrode, a laminate, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1. As a result of observation by SEM, the organic particle phase was present in an irregular shape in the functional layer. Moreover, only organic particles were observed as particles, and the binder for functional layers was not observed as particles by SEM.
  • Example 6 At the time of preparing the organic particles, the amount of styrene was changed to 18 parts for the monomer composition used for the production of the shell part, and 1.7 parts of acrylonitrile as a (meth) acrylonitrile monomer and a crosslinkable monomer Organic particles, binder for functional layer, functional layer for non-aqueous secondary battery, except that 0.3 part of ethylene glycol dimethacrylate as a body was added and methacrylic acid was not added Composition, separator substrate, separator, negative electrode, positive electrode, laminate, and lithium ion secondary battery were prepared. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1. As a result of observation by SEM, the organic particle phase was present in an irregular shape in the functional layer. Moreover, only organic particles were observed as particles, and the binder for functional layers was not observed as particles by SEM.
  • Example 7 When preparing organic particles, the amount of styrene is changed to 15 parts for the monomer composition used in the production of the shell part, and 4.5 parts of acrylonitrile as a (meth) acrylonitrile monomer and a crosslinkable monomer Organic particles, functional layer binder, non-aqueous secondary battery functional layer in the same manner as in Example 1 except that 0.5 part of ethylene glycol dimethacrylate as a body was added and methacrylic acid was not added. Composition, separator substrate, separator, negative electrode, positive electrode, laminate, and lithium ion secondary battery were prepared. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1. As a result of observation by SEM, the organic particle phase was present in an irregular shape in the functional layer. Moreover, only organic particles were observed as particles, and the binder for functional layers was not observed as particles by SEM.
  • Examples 8 to 9 In the same manner as in Example 1, except that the blending amount of the ethylene oxide-propylene oxide copolymer as the wetting agent was changed as shown in Table 1 when preparing the composition for the non-aqueous secondary battery functional layer, the organic particles Then, a functional layer binder, a non-aqueous secondary battery functional layer composition, a separator substrate, a separator, a negative electrode, a positive electrode, a laminate, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1. As a result of observation by SEM, the organic particle phase was present in an irregular shape in the functional layer. Moreover, only organic particles were observed as particles, and the binder for functional layers was not observed as particles by SEM.
  • Example 10 When preparing the separator base material, the organic particles and the binder for functional layers were prepared in the same manner as in Example 1 except that the treatment strength of the corona discharge treatment for the polyethylene microporous membrane was changed as shown in Table 1. Then, a composition for a non-aqueous secondary battery functional layer, a separator substrate, a separator, a negative electrode, a positive electrode, a laminate, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1. As a result of observation by SEM, the organic particle phase was present in an irregular shape in the functional layer. Moreover, only organic particles were observed as particles, and the binder for functional layers was not observed as particles by SEM.
  • Example 1 In the same manner as in Example 1 except that an ethylene oxide-propylene oxide copolymer as a wetting agent was not blended when preparing the composition for the functional layer of the non-aqueous secondary battery, the binder for organic particles and the functional layer was used. Then, a composition for a non-aqueous secondary battery functional layer, a separator substrate, a separator, a negative electrode, a positive electrode, a laminate, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1. As a result of observation by SEM, the organic particle phase was present in an irregular shape in the functional layer. Moreover, only organic particles were observed as particles, and the binder for functional layers was not observed as particles by SEM.
  • Example 2 In the same manner as in Example 1, except that the blending amount of the ethylene oxide-propylene oxide copolymer as the wetting agent was changed as shown in Table 1 when preparing the composition for the non-aqueous secondary battery functional layer, the organic particles Then, a functional layer binder, a non-aqueous secondary battery functional layer composition, a separator substrate, a separator, a negative electrode, a positive electrode, a laminate, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1. As a result of observation by SEM, organic particles were present uniformly over the entire surface of the separator substrate. Moreover, only organic particles were observed as particles, and the binder for functional layers was not observed as particles by SEM.
  • Example 5 At the time of preparing the composition for the non-aqueous secondary battery functional layer, the blending amount of the ethylene oxide-propylene oxide copolymer as a wetting agent was changed as shown in Table 1, and the gravure coating method was used at the time of preparing the separator.
  • the composition for the non-aqueous secondary battery functional layer was applied to the separator substrate using the wire bar coating method, the organic particles, the binder for the functional layer, and the non-aqueous system were used.
  • a composition for a secondary battery functional layer, a separator base material, a separator, a negative electrode, a positive electrode, a laminate, and a lithium ion secondary battery were produced.
  • MMA indicates methyl methacrylate
  • BA indicates butyl acrylate
  • MAA indicates methacrylic acid
  • EDMA refers to ethylene glycol dimethacrylate
  • ST indicates styrene
  • AN indicates acrylonitrile
  • NMA stands for N-methylolacrylamide
  • AAm indicates acrylamide.
  • a functional layer in which the phase of organic particles having a predetermined core-shell structure and properties exists in an irregular shape and the area ratio of the portion where the phase of organic particles exists is 20% or more and 80% or less
  • the separator having the above it is possible to obtain a secondary battery excellent in the adhesiveness between the separator and the electrode after immersion in the electrolyte, and having good battery characteristics such as high temperature cycle characteristics and low temperature output characteristics. I understand that I can do it.
  • Comparative Example 1 using a separator in which the proportion of the area where the organic particle phase is present is less than 20% the adhesion between the separator and the electrode after immersion in the electrolyte and the high-temperature cycle characteristics are It turns out that it falls.
  • the separator excellent in the adhesiveness and ionic conductivity in electrolyte solution can be provided.

Abstract

The present invention provides a separator that is excellent in terms of adhesiveness and ion conductivity in an electrolyte solution. This separator for a non-aqueous secondary battery comprises: a separator substrate; and a functional layer that is formed on at least one surface of the separator substrate. The functional layer has a configuration in which an organic particle phase exists in an irregular shape, the organic particles each having a core-shell structure that includes a core part and a shell part that partially covers an outer surface of the core part. The core part is composed of a polymer that has a degree of swelling in an electrolyte solution of 5-30 times. The shell part is composed of a polymer that has a degree of swelling in an electrolyte solution of 1-4 times. The ratio of the area of the part where the organic particle phase exists to the area of the surface of the separator substrate on which the functional layer is formed is 20-80%.

Description

非水系二次電池用セパレータおよびその製造方法、並びに、非水系二次電池Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
 本発明は、非水系二次電池用セパレータ、非水系二次電池用セパレータの製造方法および非水系二次電池に関するものである。 The present invention relates to a separator for a non-aqueous secondary battery, a method for producing a separator for a non-aqueous secondary battery, and a non-aqueous secondary battery.
 リチウムイオン二次電池などの非水系二次電池(以下、単に「二次電池」と略記する場合がある。)は、小型で軽量、且つエネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そして、非水系二次電池は、一般に、正極、負極、および、正極と負極とを隔離して正極と負極との間の短絡を防ぐセパレータなどの電池部材を備えている。 Non-aqueous secondary batteries such as lithium ion secondary batteries (hereinafter sometimes simply referred to as “secondary batteries”) have the characteristics of being small and light, having high energy density, and capable of repeated charge and discharge. Yes, it is used for a wide range of purposes. The non-aqueous secondary battery generally includes a battery member such as a positive electrode, a negative electrode, and a separator that separates the positive electrode and the negative electrode and prevents a short circuit between the positive electrode and the negative electrode.
 ここで、近年、二次電池においては、耐熱性および強度を向上させるための多孔膜層や、電池部材同士を接着するための接着層など(以下、これらを総称して「機能層」と称する場合がある)を備える電池部材が使用されている。具体的には、例えば、セパレータ基材上に機能層を形成してなるセパレータが、電池部材として使用されている。 Here, in recent years, in secondary batteries, a porous film layer for improving heat resistance and strength, an adhesive layer for bonding battery members, and the like (hereinafter, these are collectively referred to as “functional layer”). In some cases, battery members are used. Specifically, for example, a separator formed by forming a functional layer on a separator base material is used as a battery member.
 そして、二次電池の更なる高性能化を目的として、機能層を有するセパレータの改良が盛んに行われている(例えば、特許文献1参照)。
 具体的には、例えば特許文献1では、ポリオレフィン微多孔膜よりなるセパレータ基材上に熱可塑性ポリマー被覆層よりなる接着層を形成してなるセパレータについて、所定のガラス転移温度を有する熱可塑性ポリマーを含む部分と熱可塑性ポリマーを含まない部分とが海島状に存在する構成を有する熱可塑性ポリマー被覆層を採用することにより、接着性およびイオン伝導性を向上させる技術が提案されている。この特許文献1に記載のセパレータによれば、所定のガラス転移温度を有する熱可塑性ポリマーを使用することにより電極との接着性を向上させることができると共に、熱可塑性ポリマーを含む部分と熱可塑性ポリマーを含まない部分とを海島状に存在させることによりイオン伝導性を向上させることができる。
And the improvement of the separator which has a functional layer is performed actively for the purpose of the further performance enhancement of a secondary battery (for example, refer patent document 1).
Specifically, for example, in Patent Document 1, a thermoplastic polymer having a predetermined glass transition temperature is used for a separator formed by forming an adhesive layer made of a thermoplastic polymer coating layer on a separator substrate made of a polyolefin microporous film. A technique for improving adhesiveness and ionic conductivity has been proposed by adopting a thermoplastic polymer coating layer having a configuration in which a portion including a portion and a portion not including a thermoplastic polymer are present in a sea-island shape. According to the separator described in Patent Document 1, adhesion to an electrode can be improved by using a thermoplastic polymer having a predetermined glass transition temperature, and a portion containing the thermoplastic polymer and the thermoplastic polymer Ion conductivity can be improved by making the part which does not contain be present in the shape of a sea island.
国際公開第2014/017651号International Publication No. 2014/017651
 しかし、上記従来のセパレータは、電解液中における接着層(機能層)の接着性が十分ではなかった。そのため、上記従来のセパレータには、イオン伝導性を確保しつつ電解液中における機能層の接着性を更に向上させ、セパレータを備える非水系二次電池の電池特性(高温サイクル特性および低温出力特性)を更に向上させるという点において改善の余地があった。 However, the conventional separator described above did not have sufficient adhesion of the adhesive layer (functional layer) in the electrolytic solution. Therefore, the above conventional separator further improves the adhesion of the functional layer in the electrolyte while ensuring ionic conductivity, and the battery characteristics (high temperature cycle characteristics and low temperature output characteristics) of the nonaqueous secondary battery including the separator. There was room for improvement in terms of further improvement.
 そこで、本発明は、電解液中での接着性およびイオン伝導性に優れるセパレータを提供することを目的とする。
 また、本発明は、高温サイクル特性および低温出力特性に優れる非水系二次電池を提供することを目的とする。
Then, an object of this invention is to provide the separator excellent in the adhesiveness and ionic conductivity in electrolyte solution.
Another object of the present invention is to provide a non-aqueous secondary battery that is excellent in high-temperature cycle characteristics and low-temperature output characteristics.
 本発明者は、上記目的を達成するために鋭意検討を行った。そして、本発明者は、セパレータ基材上に機能層を形成してなるセパレータについて、機能層の構成を、それぞれ特定の電解液膨潤度を有するコア部とシェル部とを備える特定のコアシェル構造を有する有機粒子からなる相が不規則な形状で存在し、且つ、有機粒子の相が占める面積の割合が特定の範囲内となる構成とすることにより、イオン伝導性を確保しつつ電解液中における接着性を更に向上させ得ることを見出した。また、本発明者は、上記有機粒子を含む機能層用組成物をセパレータ基材上に塗布し、塗布した機能層用組成物を乾燥させてセパレータ基材上に機能層を形成する際に、機能層が形成されるセパレータ基材の表面の水滴接触角と、機能層用組成物の表面張力とを特定の範囲内とすることにより、上述した特定の構成を有する機能層を容易に形成し得ることを見出した。そして、本発明者は、上述した新たな知見に基づき、本発明を完成させた。 The present inventor has intensively studied to achieve the above object. And about this separator which forms this functional layer on a separator base material, this inventor has the specific core shell structure provided with the core part and shell part which have the specific electrolyte solution swelling degree about the structure of a functional layer, respectively. By having a configuration in which the phase composed of organic particles is present in an irregular shape, and the ratio of the area occupied by the phase of the organic particles is within a specific range, the ionic conductivity is ensured in the electrolyte solution. It has been found that the adhesion can be further improved. In addition, the present inventor applied the functional layer composition containing the organic particles on the separator substrate, and when the functional layer composition was dried to form the functional layer on the separator substrate, By setting the water droplet contact angle on the surface of the separator substrate on which the functional layer is formed and the surface tension of the composition for the functional layer within a specific range, a functional layer having the specific configuration described above can be easily formed. Found to get. And this inventor completed this invention based on the new knowledge mentioned above.
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用セパレータは、セパレータ基材と、前記セパレータ基材の少なくとも一方の表面上に形成された機能層とを備え、前記機能層は、コア部および前記コア部の外表面を部分的に覆うシェル部を備えるコアシェル構造を有する有機粒子の相が不規則な形状で存在する構成を有し、前記コア部は、電解液膨潤度が5倍以上30倍以下の重合体からなり、前記シェル部は、電解液膨潤度が1倍超4倍以下の重合体からなり、前記セパレータ基材の機能層形成面の面積に対する前記有機粒子の相が存在する部分の面積の割合が20%以上80%以下であることを特徴とする。このように、上述した所定のコアシェル構造および性状を有する有機粒子の相を含む機能層を設け、且つ、機能層形成面中で有機粒子の相が存在する部分の面積の割合を20%以上とすれば、電解液中での機能層の接着性を高め、接着性に優れるセパレータを提供することができる。また、上述した所定のコアシェル構造および性状を有する有機粒子の相を不規則な形状で存在させ、且つ、機能層形成面中で有機粒子の相が存在する部分の面積の割合を80%以下とすれば、電解液中での機能層の接着性を高めつつ、イオン伝導性に優れるセパレータを提供することができる。
 なお、本発明において、有機粒子のコア部を構成する重合体およびシェル部を構成する重合体の「電解液膨潤度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。また、本発明において、「有機粒子の相が存在する部分の面積の割合」は、走査型電子顕微鏡(SEM)を用いてセパレータの機能層を観察し、画像解析ソフトを使用して観察視野中において有機粒子の相が存在している部分の面積の割合を算出することにより求めることができる。
That is, this invention aims at solving the said subject advantageously, The separator for non-aqueous secondary batteries of this invention is on a separator base material and at least one surface of the said separator base material. A functional layer formed, and the functional layer has a structure in which a phase of an organic particle having a core-shell structure including a core portion and a shell portion that partially covers an outer surface of the core portion is present in an irregular shape. The core part is made of a polymer having an electrolyte solution swelling degree of 5 times or more and 30 times or less, and the shell part is made of a polymer having an electrolyte solution swelling degree of more than 1 time and 4 times or less. The ratio of the area of the portion where the organic particle phase is present to the area of the functional layer forming surface of the material is 20% or more and 80% or less. Thus, the functional layer including the organic particle phase having the predetermined core-shell structure and properties described above is provided, and the area ratio of the portion where the organic particle phase exists in the functional layer forming surface is 20% or more. Then, the adhesiveness of the functional layer in electrolyte solution can be improved, and the separator excellent in adhesiveness can be provided. Further, the organic particle phase having the predetermined core-shell structure and properties described above is present in an irregular shape, and the area ratio of the portion where the organic particle phase is present in the functional layer forming surface is 80% or less. Then, the separator excellent in ion conductivity can be provided, improving the adhesiveness of the functional layer in electrolyte solution.
In the present invention, the “electrolyte swelling degree” of the polymer constituting the core part of the organic particles and the polymer constituting the shell part should be measured using the measuring method described in the examples of the present specification. Can do. Further, in the present invention, “the ratio of the area of the portion where the organic particle phase is present” is determined by observing the functional layer of the separator using a scanning electron microscope (SEM) and in the observation field of view using image analysis software. Can be obtained by calculating the ratio of the area of the portion where the organic particle phase exists.
 なお、本発明の非水系二次電池用セパレータは、前記コア部の重合体のガラス転移温度が、-50℃以上150℃以下であり、前記シェル部の重合体のガラス転移温度が、50℃以上200℃以下であることが好ましい。有機粒子のコア部を構成する重合体およびシェル部を構成する重合体のガラス転移温度を、それぞれ上述の範囲内とすれば、電解液中における有機粒子の強度および機能層の接着性を高めつつ、セパレータのハンドリング性を高めることができるからである。
 なお、本発明において、有機粒子のコア部を構成する重合体およびシェル部を構成する重合体の「ガラス転移温度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
In the separator for a non-aqueous secondary battery of the present invention, the glass transition temperature of the polymer of the core part is −50 ° C. or more and 150 ° C. or less, and the glass transition temperature of the polymer of the shell part is 50 ° C. The temperature is preferably 200 ° C. or lower. If the glass transition temperature of the polymer constituting the core part of the organic particle and the polymer constituting the shell part are within the above-mentioned ranges, respectively, the strength of the organic particle in the electrolytic solution and the adhesion of the functional layer are improved. This is because the handling properties of the separator can be improved.
In the present invention, the “glass transition temperature” of the polymer constituting the core part of the organic particles and the polymer constituting the shell part can be measured using the measuring method described in the examples of the present specification. it can.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池用セパレータの製造方法は、上述した非水系二次電池用セパレータの製造方法であって、少なくとも一方の表面の水滴接触角が80°以上130°以下であるセパレータ基材を準備する工程と、前記有機粒子と分散媒とを含有し、且つ、表面張力が33mN/m以上39mN/m以下である非水系二次電池機能層用組成物を準備する工程と、前記非水系二次電池機能層用組成物を前記セパレータ基材の前記表面上に塗布し、塗布した非水系二次電池機能層用組成物を乾燥させてセパレータ基材上に機能層を形成する工程とを含むことを特徴とする。このように、所定の水滴接触角を有するセパレータ基材の表面上に所定の表面張力を有する非水系二次電池機能層用組成物を塗布すれば、有機粒子を含有する非水系二次電池機能層用組成物がセパレータ基材の表面上で適度にはじかれるので、有機粒子の相が不規則な形状で存在する構成を有する機能層を容易に形成することができる。従って、電解液中での接着性およびイオン伝導性に優れる上述したセパレータを容易に製造することができる。
 なお、本発明において、「水滴接触角」は、セパレータ基材上に1μLのイオン交換水を滴下し、着滴から60秒後の接触角を測定することにより求めることができる。また、本発明において、非水系二次電池機能層用組成物の「表面張力」は、プレート法を用いて測定することができる。
Moreover, this invention aims at solving the said subject advantageously, The manufacturing method of the separator for non-aqueous secondary batteries of this invention is the manufacturing method of the separator for non-aqueous secondary batteries mentioned above. A step of preparing a separator base material having a water droplet contact angle of at least 80 ° or more and 130 ° or less on the surface, the organic particles and the dispersion medium, and a surface tension of 33 mN / m or more and 39 mN. A step of preparing a composition for a non-aqueous secondary battery functional layer that is less than or equal to / m, and applying the non-aqueous secondary battery functional layer composition onto the surface of the separator substrate and applying the non-aqueous secondary battery functional layer composition And a step of drying the composition for a secondary battery functional layer to form a functional layer on a separator substrate. Thus, if a composition for a non-aqueous secondary battery functional layer having a predetermined surface tension is applied on the surface of a separator substrate having a predetermined water droplet contact angle, a non-aqueous secondary battery function containing organic particles can be obtained. Since the layer composition is moderately repelled on the surface of the separator substrate, a functional layer having a configuration in which the phase of the organic particles exists in an irregular shape can be easily formed. Therefore, the above-described separator having excellent adhesion and ionic conductivity in the electrolytic solution can be easily produced.
In the present invention, the “water droplet contact angle” can be determined by dropping 1 μL of ion-exchanged water on the separator substrate and measuring the contact angle 60 seconds after landing. In the present invention, the “surface tension” of the composition for a non-aqueous secondary battery functional layer can be measured using a plate method.
 そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の非水系二次電池は、上述した非水系二次電池用セパレータの何れかを備えることを特徴とする。このように、電解液中での接着性およびイオン伝導性に優れる上述した非水系二次電池用セパレータを使用すれば、高温サイクル特性および低温出力特性に優れる非水系二次電池が得られる。 And this invention aims at solving the said subject advantageously, The non-aqueous secondary battery of this invention is equipped with either of the separators for non-aqueous secondary batteries mentioned above, It is characterized by the above-mentioned. To do. As described above, when the above-described separator for non-aqueous secondary battery having excellent adhesion and ionic conductivity in the electrolytic solution is used, a non-aqueous secondary battery having excellent high-temperature cycle characteristics and low-temperature output characteristics can be obtained.
 本発明によれば、電解液中での接着性およびイオン伝導性に優れるセパレータを提供することができる。
 また、本発明によれば、高温サイクル特性および低温出力特性に優れる非水系二次電池を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the separator excellent in the adhesiveness and ionic conductivity in electrolyte solution can be provided.
In addition, according to the present invention, it is possible to provide a non-aqueous secondary battery excellent in high temperature cycle characteristics and low temperature output characteristics.
本発明の非水系二次電池用セパレータの機能層のSEM画像である。It is a SEM image of the functional layer of the separator for nonaqueous system rechargeable batteries of the present invention. 本発明の非水系二次電池用セパレータの機能層に含まれている有機粒子の一例の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of an example of the organic particle contained in the functional layer of the separator for non-aqueous secondary batteries of this invention.
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の非水系二次電池用セパレータは、リチウムイオン二次電池などの非水系二次電池のセパレータとして用いられ、例えば本発明の非水系二次電池用セパレータの製造方法を用いて製造することができる。そして、本発明の非水系二次電池は、本発明の非水系二次電池用セパレータを備えるものである。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the separator for a non-aqueous secondary battery of the present invention is used as a separator for a non-aqueous secondary battery such as a lithium ion secondary battery. For example, the separator for a non-aqueous secondary battery of the present invention is used. Can be manufactured. And the non-aqueous secondary battery of this invention is equipped with the separator for non-aqueous secondary batteries of this invention.
(非水系二次電池用セパレータ)
 本発明の非水系二次電池用セパレータは、セパレータ基材と、セパレータ基材の少なくとも一方の表面(機能層形成面)上に形成された機能層とを備えている。そして、本発明の非水系二次電池用セパレータの機能層は、特定の電解液膨潤度を有するコア部とシェル部とを備える特定のコアシェル構造を有する有機粒子を含んでいる。また、当該有機粒子は、機能層中において、単独で、または、複数集合して有機粒子の相を形成している。更に、有機粒子の相は、例えば図1に機能層の一例のSEM画像を示すように不規則な形状で存在しており、且つ、機能層形成面中に特定の面積割合で存在している。なお、図1に示すようなSEM画像において、有機粒子は、直径約0.3~0.7μm程度の球状のドットとして観察される。
(Separator for non-aqueous secondary battery)
The separator for non-aqueous secondary batteries of this invention is equipped with the separator base material and the functional layer formed on the at least one surface (functional layer formation surface) of a separator base material. And the functional layer of the separator for non-aqueous secondary batteries of this invention contains the organic particle which has a specific core-shell structure provided with the core part and shell part which have specific electrolyte solution swelling degree. In addition, the organic particles form a phase of organic particles singly or in combination in the functional layer. Furthermore, the phase of the organic particles exists in an irregular shape as shown in, for example, an SEM image of an example of the functional layer in FIG. 1, and exists in a specific area ratio in the functional layer forming surface. . In the SEM image as shown in FIG. 1, the organic particles are observed as spherical dots having a diameter of about 0.3 to 0.7 μm.
 そして、本発明の非水系二次電池用セパレータでは、特定の有機粒子を含む機能層を設けているので、電解液中での機能層の接着性を高めることができる。従って、本発明の非水系二次電池用セパレータは、電解液中において優れた接着性を発揮することができる。また、本発明の非水系二次電池用セパレータでは、有機粒子の相を不規則な形状で存在させ、且つ、機能層形成面中で有機粒子の相が存在する部分の面積の割合を特定の範囲内としているので、電解液中での機能層の接着性を十分に高めつつ、良好なイオン伝導性を確保することができる。 And in the separator for non-aqueous secondary batteries of this invention, since the functional layer containing a specific organic particle is provided, the adhesiveness of the functional layer in electrolyte solution can be improved. Therefore, the separator for non-aqueous secondary batteries of the present invention can exhibit excellent adhesiveness in the electrolytic solution. In the non-aqueous secondary battery separator of the present invention, the organic particle phase is present in an irregular shape, and the ratio of the area of the portion where the organic particle phase exists in the functional layer forming surface is specified. Since it is within the range, good ion conductivity can be ensured while sufficiently enhancing the adhesion of the functional layer in the electrolytic solution.
<セパレータ基材>
 ここで、少なくとも一方の表面(機能層形成面)に機能層を形成するセパレータ基材としては、特に限定されることなく、例えば特開2012-204303号公報に記載の微多孔膜などの既知のセパレータ基材を用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜(有機セパレータ基材)が好ましい。そして、セパレータ基材の厚さは、任意の厚さとすることができ、通常0.5μm以上、好ましくは5μm以上であり、通常40μm以下、好ましくは30μm以下、より好ましくは20μm以下である。
 なお、セパレータ基材は、機能層以外の、所期の機能を発揮し得る任意の層をその一部に含んでいてもよい。
<Separator substrate>
Here, the separator base material on which the functional layer is formed on at least one surface (functional layer forming surface) is not particularly limited, and is a known one such as a microporous film described in JP2012-204303A. A separator substrate can be used. Among these, the film thickness of the entire separator can be reduced, thereby increasing the ratio of the electrode active material in the secondary battery and increasing the capacity per volume. A microporous membrane (organic separator substrate) made of a resin of polyethylene, polypropylene, polybutene, or polyvinyl chloride is preferable. And the thickness of a separator base material can be made into arbitrary thickness, Usually, 0.5 micrometer or more, Preferably it is 5 micrometers or more, Usually, 40 micrometers or less, Preferably it is 30 micrometers or less, More preferably, it is 20 micrometers or less.
In addition, the separator base material may contain an arbitrary layer that can exhibit an intended function other than the functional layer.
 また、後に詳細に説明する本発明の非水系二次電池用セパレータの製造方法を用いてセパレータを製造する場合には、セパレータ基材としては、機能層を形成する側の表面(機能層形成面)の水滴接触角が、好ましくは80°以上、より好ましくは85°以上、更に好ましくは90°以上であり、また、好ましくは130°以下、より好ましくは120°以下、更に好ましくは110°以下である微多孔膜を用いることが好ましい。水滴接触角が80°以上130°以下の表面を有するセパレータ基材を用いれば、不規則な形状および特定の面積割合を有する有機粒子の相を容易に形成することができるからである。 Moreover, when manufacturing a separator using the manufacturing method of the separator for nonaqueous secondary batteries of this invention demonstrated in detail later, as a separator base material, the surface on the side which forms a functional layer (functional layer formation surface) ) Is preferably 80 ° or more, more preferably 85 ° or more, still more preferably 90 ° or more, and preferably 130 ° or less, more preferably 120 ° or less, still more preferably 110 ° or less. It is preferable to use a microporous membrane. This is because if a separator substrate having a surface with a water droplet contact angle of 80 ° to 130 ° is used, an organic particle phase having an irregular shape and a specific area ratio can be easily formed.
 ここで、セパレータ基材の表面の水滴接触角は、例えば、微多孔膜の形成に用いる樹脂の組成の変更や、微多孔膜の表面処理等の既知の手法を用いて調整することができる。中でも、耐熱性、強度およびイオン伝導性などの性能を確保し得る樹脂(例えば、ポリエチレンやポリプロピレン等)を使用しつつ水滴接触角の大きさを容易に調整する観点からは、セパレータ基材の水滴接触角は、微多孔膜の表面処理により調整することが好ましい。更に、微多孔膜の多孔性を確保しつつ水滴接触角の大きさを容易に調整する観点からは、微多孔膜は、プラズマ処理、コロナ放電処理、UV処理等の乾式処理を用いて表面処理することが好ましく、コロナ放電処理を用いて表面処理することがより好ましい。 Here, the water droplet contact angle on the surface of the separator substrate can be adjusted by using a known method such as, for example, changing the composition of the resin used for forming the microporous film or treating the surface of the microporous film. In particular, from the viewpoint of easily adjusting the size of the water droplet contact angle while using a resin (for example, polyethylene, polypropylene, etc.) that can ensure performance such as heat resistance, strength, and ion conductivity, The contact angle is preferably adjusted by surface treatment of the microporous membrane. Furthermore, from the viewpoint of easily adjusting the size of the water droplet contact angle while ensuring the porosity of the microporous membrane, the microporous membrane is subjected to surface treatment using dry treatment such as plasma treatment, corona discharge treatment, and UV treatment. It is preferable to perform surface treatment using corona discharge treatment.
 なお、コロナ放電処理を用いる場合、処理強度は、好ましくは20W・min/m以上、より好ましくは30W・min/m以上、更に好ましくは40W・min/m以上とすることができ、また、好ましくは80W・min/m以下、より好ましくは70W・min/m以下、更に好ましくは60W・min/m以下とすることができる。処理強度が大き過ぎる場合、水滴接触角が低下し過ぎる虞があるからである。また、処理強度が小さ過ぎる場合、水滴接触角が所望の大きさまで低下しない虞があるからである。 In the case of using a corona discharge treatment, the treatment strength can be preferably 20 W · min / m 2 or more, more preferably 30 W · min / m 2 or more, still more preferably 40 W · min / m 2 or more, further, preferably 80W · min / m 2 or less, more preferably 70W · min / m 2 or less, more preferably be a 60W · min / m 2 or less. This is because if the treatment strength is too high, the water droplet contact angle may be too low. Moreover, it is because there exists a possibility that a water droplet contact angle may not fall to a desired magnitude | size when process intensity | strength is too small.
<機能層>
 本発明の非水系二次電池用セパレータにおいて、セパレータ基材に形成される機能層は、セパレータの耐熱性および強度を向上させるための多孔膜層であってもよいし、セパレータと電極とを接着させるための接着層であってもよいし、多孔膜層と接着層との双方の機能を発揮する層であってもよい。
<Functional layer>
In the separator for a non-aqueous secondary battery of the present invention, the functional layer formed on the separator substrate may be a porous film layer for improving the heat resistance and strength of the separator, or the separator and the electrode are bonded. The adhesive layer may be a layer that exhibits both functions of the porous membrane layer and the adhesive layer.
 ここで、本発明の非水系二次電池用セパレータの機能層は、電解液膨潤度が5倍以上30倍以下の重合体からなるコア部と、電解液膨潤度が1倍超4倍以下の重合体からなり、且つ、コア部の外表面を部分的に覆うシェル部とを備えるコアシェル構造を有する有機粒子の相が不規則な形状で存在する構成を有している。また、機能層において、有機粒子の相が存在する部分の面積の割合は、機能層形成面の面積に対して20%以上80%以下である。そして、この機能層は、電解液中で優れた接着性を発揮すると共に、良好なイオン伝導性を有している。
 なお、機能層は、セパレータ基材の一方の表面のみに形成されていてもよいし、両方の表面に形成されていてもよい。また、本発明の非水系二次電池用セパレータは、一方の表面に上述した構成の機能層を備え、他方の表面には上述した構成を有さない機能層(例えば、有機粒子を含有しない機能層や、有機粒子の相の面積割合が上記範囲を満たさない機能層など)を有していてもよい。
Here, the functional layer of the separator for a non-aqueous secondary battery according to the present invention includes a core portion made of a polymer having an electrolyte solution swelling degree of 5 times or more and 30 times or less, and an electrolyte solution swelling degree of more than 1 time and less than 4 times. It has a configuration in which a phase of organic particles having a core-shell structure, which is made of a polymer and has a shell part partially covering the outer surface of the core part, exists in an irregular shape. In the functional layer, the ratio of the area where the organic particle phase is present is 20% or more and 80% or less with respect to the area of the functional layer forming surface. The functional layer exhibits excellent adhesiveness in the electrolyte and has good ionic conductivity.
In addition, the functional layer may be formed only on one surface of the separator base material, or may be formed on both surfaces. The separator for a non-aqueous secondary battery of the present invention includes a functional layer having the above-described configuration on one surface and a functional layer having no above-described configuration on the other surface (for example, a function not containing organic particles). Layer or a functional layer in which the area ratio of the phase of the organic particles does not satisfy the above range).
 また、機能層は、有機粒子以外に、任意に、機能層用結着材、非導電性粒子(有機粒子および機能層用結着材に該当するものを除く)、その他の成分を含有していてもよい。
 なお、機能層中の有機粒子の含有量は、好ましくは50質量%以上、より好ましくは60質量%以上、更に好ましくは70質量%以上、特に好ましくは80質量%以上である。
In addition to the organic particles, the functional layer optionally contains a functional layer binder, non-conductive particles (except those corresponding to organic particles and functional layer binders), and other components. May be.
In addition, the content of the organic particles in the functional layer is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, and particularly preferably 80% by mass or more.
[有機粒子]
 機能層中に含まれている有機粒子は、電解液中において機能層に優れた接着性を発揮させる機能を担う。
 そして、有機粒子は、コア部と、コア部の外表面を部分的に覆うシェル部とを備えるコアシェル構造を有しており、前記コア部は、電解液膨潤度が5倍以上30倍以下の重合体からなり、前記シェル部は、電解液膨潤度が1倍超4倍以下の重合体からなることを特徴とする。
[Organic particles]
The organic particles contained in the functional layer have a function of exhibiting excellent adhesiveness in the functional layer in the electrolytic solution.
The organic particles have a core-shell structure including a core portion and a shell portion that partially covers the outer surface of the core portion. The core portion has an electrolyte swelling degree of 5 times or more and 30 times or less. It is made of a polymer, and the shell part is made of a polymer having an electrolyte solution swelling degree of more than 1 time and 4 times or less.
 ここで、上記構造および性状を有する有機粒子は、電解液中において優れた接着性を発揮し、しかも電解液への成分の溶出が少なく、優れた接着性を長期に亘り保持することができる。そして、有機粒子を含む機能層は、二次電池の電池特性を良好に向上させることができる。また、この有機粒子は、電解液への浸漬前には大きな接着力を発揮しないので、有機粒子を含む機能層を備えるセパレータは、ブロッキング(機能層を介したセパレータ同士の膠着など)を生じ難く、ハンドリング性にも優れている。 Here, the organic particles having the above structure and properties exhibit excellent adhesiveness in the electrolytic solution, and further, the elution of components into the electrolytic solution is small, and excellent adhesiveness can be maintained for a long time. And the functional layer containing an organic particle can improve the battery characteristic of a secondary battery favorably. In addition, since the organic particles do not exhibit a large adhesive force before being immersed in the electrolytic solution, a separator having a functional layer containing organic particles is less likely to cause blocking (separation between separators via the functional layer). Also, handling is excellent.
 なお、上記有機粒子を使用することで上述したような優れた効果が得られる理由は、明らかではないが、以下の通りであると推察される。
 即ち、上記有機粒子のシェル部を構成する重合体は、電解液に対してある程度膨潤する。このとき、例えば膨潤したシェル部の重合体が有する官能基が活性化して、機能層が形成されるセパレータ基材の表面、或いは、機能層を有するセパレータと接着される電極等の表面にある官能基と化学的または電気的な相互作用を生じるなどの要因により、シェル部はセパレータ基材や電極等と強固に接着できる。一方、シェル部は、電解液に膨潤する前には大きな接着力を発揮しない。そのため、当該有機粒子を含む機能層では、ブロッキングの発生を抑制しつつ、セパレータと電極とを電解液中において強力に接着することが可能となっているものと推察される。
 また、シェル部の重合体およびコア部の重合体はいずれも電解液膨潤度が所定の値以下に設定されており、電解液に対して過度に膨潤することもない。そのため、例えば二次電池の長時間稼働後にも上述した優れた接着性を十分に発揮することができると推察される。
 そして、上記有機粒子を含む機能層を使用した場合、上述したように電解液中において機能層が強力な接着力を発揮することができるので、当該機能層を備える二次電池では、機能層を介して接着されたセパレータと電極との間に空隙を生じ難い。そのため、当該有機粒子を含む機能層を有するセパレータを使用した二次電池では、二次電池内において正極と負極との距離が大きくなり難く、二次電池の内部抵抗を小さくできると共に、電極における電気化学反応の反応場が不均一になり難い。さらに、当該二次電池では、充放電を繰り返してもセパレータと電極との間に空隙ができ難く、電池容量が低下しにくい。これにより、高温サイクル特性などに優れる二次電池を提供できるものと推察される。
 さらに、上記有機粒子のコア部を構成する重合体は、電解液に対して大きく膨潤する。そして、重合体は、電解液に大きく膨潤した状態では、重合体の分子間の隙間が大きくなり、その分子間をイオンが通り易くなる。また、有機粒子のコア部の重合体は、シェル部によって完全に覆われてはいない。そのため、電解液中においてイオンがコア部を通りやすくなるので、有機粒子は高いイオン拡散性を発現できる。従って、上記有機粒子を使用すれば、機能層による抵抗の上昇を抑制し、低温出力特性などの電池特性の低下を抑制することも可能である。
 なお、上述した通り、有機粒子は電解液に膨潤することで優れた接着性を発揮し、電解液への浸漬前には大きな接着力を発揮しない。しかし、有機粒子は、電解液に膨潤しない限りは接着性を全く発揮しないというものではなく、電解液に膨潤していない状態であっても、例えば一定温度以上(例えば50℃以上)に加熱されることにより、接着性を発現し得る。
The reason why the above-described excellent effect can be obtained by using the organic particles is not clear, but is presumed to be as follows.
That is, the polymer constituting the shell portion of the organic particles swells to some extent with respect to the electrolytic solution. At this time, for example, the functional group of the polymer in the swollen shell part is activated, and the functional group is formed on the surface of the separator substrate on which the functional layer is formed or on the surface of the electrode or the like bonded to the separator having the functional layer. Due to factors such as causing chemical or electrical interaction with the group, the shell portion can be firmly bonded to the separator substrate, electrodes, and the like. On the other hand, the shell portion does not exhibit a large adhesive force before it swells in the electrolytic solution. Therefore, it is assumed that the functional layer containing the organic particles can strongly bond the separator and the electrode in the electrolytic solution while suppressing the occurrence of blocking.
Moreover, the polymer of the shell part and the polymer of the core part both have an electrolyte solution swelling degree set to a predetermined value or less, and do not swell excessively with respect to the electrolyte solution. Therefore, for example, it is speculated that the excellent adhesiveness described above can be sufficiently exhibited even after the secondary battery is operated for a long time.
And when the functional layer containing the organic particles is used, since the functional layer can exert a strong adhesive force in the electrolyte solution as described above, in the secondary battery including the functional layer, the functional layer is It is difficult to generate a gap between the separator and the electrode bonded via the electrode. Therefore, in a secondary battery using a separator having a functional layer containing the organic particles, the distance between the positive electrode and the negative electrode is difficult to increase in the secondary battery, the internal resistance of the secondary battery can be reduced, and the electric power in the electrode can be reduced. The reaction field for chemical reactions is unlikely to be uneven. Furthermore, in the secondary battery, even if charging and discharging are repeated, it is difficult to form a gap between the separator and the electrode, and the battery capacity is unlikely to decrease. Thereby, it is guessed that the secondary battery which is excellent in high temperature cycling characteristics etc. can be provided.
Furthermore, the polymer constituting the core part of the organic particles swells greatly with respect to the electrolytic solution. When the polymer is greatly swollen in the electrolytic solution, the gap between the molecules of the polymer becomes large, and ions easily pass between the molecules. In addition, the polymer in the core part of the organic particles is not completely covered by the shell part. Therefore, ions easily pass through the core portion in the electrolytic solution, so that the organic particles can exhibit high ion diffusibility. Therefore, if the organic particles are used, it is possible to suppress an increase in resistance due to the functional layer and to suppress a decrease in battery characteristics such as low-temperature output characteristics.
In addition, as above-mentioned, an organic particle exhibits the outstanding adhesiveness by swelling to electrolyte solution, and does not exhibit big adhesive force before being immersed in electrolyte solution. However, the organic particles do not exhibit adhesiveness unless they are swollen in the electrolytic solution, and are heated to a certain temperature or higher (for example, 50 ° C. or higher) even if they are not swollen in the electrolytic solution. Therefore, adhesiveness can be expressed.
[[有機粒子の構造]]
 ここで、有機粒子は、コア部と、コア部の外表面を覆うシェル部とを備えるコアシェル構造を有している。また、シェル部は、コア部の外表面を部分的に覆っている。即ち、有機粒子のシェル部は、コア部の外表面を覆っているが、コア部の外表面の全体を覆ってはいない。外観上、コア部の外表面がシェル部によって完全に覆われているように見える場合であっても、シェル部の内外を連通する孔が形成されていれば、そのシェル部はコア部の外表面を部分的に覆うシェル部である。従って、例えば、シェル部の外表面(即ち、有機粒子の周面)からコア部の外表面まで連通する細孔を有するシェル部を備える有機粒子は、上記有機粒子に含まれる。
[[Structure of organic particles]]
Here, the organic particles have a core-shell structure including a core part and a shell part that covers the outer surface of the core part. The shell portion partially covers the outer surface of the core portion. That is, the shell part of the organic particles covers the outer surface of the core part, but does not cover the entire outer surface of the core part. Even if it appears that the outer surface of the core part is completely covered by the shell part, the shell part is outside the core part as long as a hole that communicates the inside and outside of the shell part is formed. A shell part that partially covers the surface. Therefore, for example, organic particles including a shell portion having pores communicating from the outer surface of the shell portion (that is, the peripheral surface of the organic particle) to the outer surface of the core portion are included in the organic particles.
 具体的には、有機粒子の一例の断面構造を図2に示すように、有機粒子100は、コア部110およびシェル部120を備えるコアシェル構造を有する。ここで、コア部110は、この有機粒子100においてシェル部120よりも内側にある部分である。また、シェル部120は、コア部110の外表面110Sを覆う部分であり、通常は有機粒子100において最も外側にある部分である。そして、シェル部120は、コア部110の外表面110Sの全体を覆っているのではなく、コア部110の外表面110Sを部分的に覆っている。 Specifically, the organic particle 100 has a core-shell structure including a core part 110 and a shell part 120, as shown in FIG. Here, the core part 110 is a part which is inside the shell part 120 in the organic particle 100. The shell part 120 is a part that covers the outer surface 110 </ b> S of the core part 110, and is usually the outermost part of the organic particles 100. The shell portion 120 does not cover the entire outer surface 110S of the core portion 110, but partially covers the outer surface 110S of the core portion 110.
-被覆率-
 ここで、有機粒子では、コア部の外表面がシェル部によって覆われる平均割合(被覆率)は、好ましくは10%以上、より好ましくは30%以上、さらに好ましくは50%以上であり、好ましくは95%以下、より好ましくは90%以下、さらに好ましくは80%以下である。被覆率を前記範囲の下限値以上にすることにより、ブロッキングの発生を抑制するとともに、電解液中での接着性を高め、二次電池の高温サイクル特性を向上させることができる。また、被覆率を前記範囲の上限値以下にすることにより、機能層に高いイオン拡散性を発現させて二次電池の低温出力特性を向上させることができる。
 なお、本発明において、「コア部の外表面がシェル部によって覆われる平均割合(被覆率)」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
-Coverage-
Here, in the organic particles, the average ratio (coverage) at which the outer surface of the core part is covered by the shell part is preferably 10% or more, more preferably 30% or more, and even more preferably 50% or more, preferably It is 95% or less, more preferably 90% or less, and still more preferably 80% or less. By setting the coverage to be equal to or higher than the lower limit of the above range, it is possible to suppress the occurrence of blocking, increase the adhesion in the electrolytic solution, and improve the high-temperature cycle characteristics of the secondary battery. In addition, by setting the coverage to be equal to or less than the upper limit of the above range, it is possible to improve the low temperature output characteristics of the secondary battery by expressing high ion diffusibility in the functional layer.
In addition, in this invention, "the average ratio (coverage) by which the outer surface of a core part is covered with a shell part" can be measured using the measuring method as described in the Example of this specification.
-体積平均粒子径D50-
 また、有機粒子の体積平均粒子径D50は、好ましくは0.01μm以上、より好ましくは0.1μm以上、さらに好ましくは0.2μm以上であり、好ましくは10μm以下、より好ましくは5μm以下、さらに好ましくは1μm以下である。有機粒子の体積平均粒子径D50を前記範囲の下限値以上にすることにより、機能層の内部抵抗の上昇を抑制し、二次電池の低温出力特性を向上させることができる。また、有機粒子の体積平均粒子径D50を前記範囲の上限値以下にすることにより、電解液中での接着性を高め、二次電池の高温サイクル特性を向上させることができる。
 なお、本発明において、有機粒子の「体積平均粒子径D50」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
-Volume average particle diameter D50-
Further, the volume average particle diameter D50 of the organic particles is preferably 0.01 μm or more, more preferably 0.1 μm or more, further preferably 0.2 μm or more, preferably 10 μm or less, more preferably 5 μm or less, and further preferably Is 1 μm or less. By setting the volume average particle diameter D50 of the organic particles to be equal to or greater than the lower limit of the above range, it is possible to suppress the increase in internal resistance of the functional layer and improve the low-temperature output characteristics of the secondary battery. Moreover, the adhesiveness in electrolyte solution can be improved and the high temperature cycling characteristic of a secondary battery can be improved by making the volume average particle diameter D50 of an organic particle below the upper limit of the said range.
In the present invention, the “volume average particle diameter D50” of the organic particles can be measured using the measuring method described in the examples of the present specification.
-コアシェル比率-
 さらに、シェル部は、有機粒子の体積平均粒子径D50に対して、所定の範囲に収まる平均厚みを有することが好ましい。具体的には、有機粒子の体積平均粒子径D50に対するシェル部の平均厚み(コアシェル比率)は、好ましくは1.5%以上、より好ましくは3%以上、さらに好ましくは5%以上であり、好ましくは30%以下、より好ましくは25%以下、さらに好ましくは20%以下である。コアシェル比率を前記範囲の下限値以上にすることにより、電解液中での機能層の接着性をさらに高め、二次電池の高温サイクル特性を向上させることができる。また、コアシェル比率を前記範囲の上限値以下にすることにより、二次電池の低温出力特性をさらに高めることができる。
 なお、本発明において、「コアシェル比率」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
-Core shell ratio-
Furthermore, the shell part preferably has an average thickness that falls within a predetermined range with respect to the volume average particle diameter D50 of the organic particles. Specifically, the average thickness (core-shell ratio) of the shell part with respect to the volume average particle diameter D50 of the organic particles is preferably 1.5% or more, more preferably 3% or more, and even more preferably 5% or more. Is 30% or less, more preferably 25% or less, and still more preferably 20% or less. By setting the core-shell ratio to be equal to or higher than the lower limit of the above range, the adhesion of the functional layer in the electrolytic solution can be further improved and the high-temperature cycle characteristics of the secondary battery can be improved. Moreover, the low temperature output characteristic of a secondary battery can further be improved by making a core-shell ratio below the upper limit of the said range.
In the present invention, the “core-shell ratio” can be measured using the measurement method described in the examples of the present specification.
 なお、有機粒子は、所期の効果を著しく損なわない限り、上述したコア部およびシェル部以外に任意の構成要素を備えていてもよい。具体的には、例えば、有機粒子は、コア部の内部に、コア部とは別の重合体で形成された部分を有していてもよい。具体例を挙げると、有機粒子をシード重合法で製造する場合に用いたシード粒子が、コア部の内部に残留していてもよい。ただし、所期の効果を顕著に発揮する観点からは、有機粒子はコア部およびシェル部のみを備えることが好ましい。 Note that the organic particles may include arbitrary constituent elements other than the above-described core part and shell part as long as the intended effect is not significantly impaired. Specifically, for example, the organic particles may have a portion formed of a polymer different from the core portion inside the core portion. As a specific example, the seed particles used when the organic particles are produced by the seed polymerization method may remain inside the core portion. However, it is preferable that the organic particles include only the core part and the shell part from the viewpoint of remarkably exhibiting the intended effect.
[[コア部]]
-コア部の重合体の電解液膨潤度-
 有機粒子のコア部は、電解液に対して所定の膨潤度を有する重合体からなる。具体的には、コア部の重合体の電解液膨潤度は、5倍以上であることが必要であり、7倍以上であることが好ましく、8倍以上であることがより好ましく、また、30倍以下であることが必要であり、28倍以下であることが好ましく、25倍以下であることがより好ましい。コア部の重合体の電解液膨潤度を前記範囲の下限値以上にすることにより、機能層に高いイオン拡散性を発現させて二次電池の低温出力特性を向上させることができる。また、コア部の重合体の電解液膨潤度を前記範囲の上限値以下にすることにより、電解液中における機能層の接着性を高め、二次電池の高温サイクル特性を向上させることができる。
 なお、本発明において、コア部の重合体の「電解液膨潤度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
[[Core]]
-Swelling degree of electrolyte in core polymer-
The core part of the organic particle is made of a polymer having a predetermined degree of swelling with respect to the electrolytic solution. Specifically, the electrolyte swelling degree of the polymer of the core part needs to be 5 times or more, preferably 7 times or more, more preferably 8 times or more, and 30 It is necessary that it is not more than twice, preferably not more than 28 times, and more preferably not more than 25 times. By setting the electrolyte swelling degree of the polymer in the core part to be equal to or higher than the lower limit of the above range, the functional layer can exhibit high ion diffusibility and the low-temperature output characteristics of the secondary battery can be improved. Moreover, the adhesiveness of the functional layer in electrolyte solution can be improved, and the high temperature cycling characteristic of a secondary battery can be improved by making electrolyte solution swelling degree of the polymer of a core part below the upper limit of the said range.
In the present invention, the “electrolyte swelling degree” of the polymer of the core part can be measured using the measuring method described in the examples of the present specification.
 なお、コア部の重合体の電解液膨潤度を調整する方法としては、例えば、電解液のSP値を考慮して、当該コア部の重合体を調製するために用いる単量体の種類および量を適切に選択することが挙げられる。一般に、重合体のSP値が電解液のSP値に近い場合、その重合体はその電解液に膨潤しやすい傾向がある。他方、重合体のSP値が電解液のSP値から離れていると、その重合体はその電解液に膨潤し難い傾向がある。 In addition, as a method of adjusting the electrolyte swelling degree of the polymer of the core part, for example, considering the SP value of the electrolyte solution, the kind and amount of the monomer used for preparing the polymer of the core part Is appropriately selected. Generally, when the SP value of a polymer is close to the SP value of an electrolytic solution, the polymer tends to swell in the electrolytic solution. On the other hand, when the SP value of the polymer is far from the SP value of the electrolytic solution, the polymer tends to hardly swell in the electrolytic solution.
 ここでSP値とは、溶解度パラメーターのことを意味する。
 そして、SP値は、Hansen Solubility Parameters A User’s Handbook,2ndEd(CRCPress)で紹介される方法を用いて算出することができる。
 また、有機化合物のSP値は、その有機化合物の分子構造から推算することも可能である。具体的には、SMILEの式からSP値を計算できるシミュレーションソフトウェア(例えば「HSPiP」(http=//www.hansen-solubility.com))を用いて計算しうる。このシミュレーションソフトウェアでは、Hansen SOLUBILITY PARAMETERS A User’s Handbook SecondEdition、Charles M.Hansenに記載の理論に基づき、SP値が求められている。
Here, the SP value means a solubility parameter.
The SP value can be calculated using the method introduced in Hansen Solubility Parameters A User's Handbook, 2nd Ed (CRCPless).
Further, the SP value of an organic compound can be estimated from the molecular structure of the organic compound. Specifically, it can be calculated by using simulation software (for example, “HSPiP” (http://www.hansen-solution.com)) that can calculate the SP value from the SMILE equation. In this simulation software, Hansen SOLUBILITY PARAMETERS A User's Handbook Second Edition, Charles M. et al. The SP value is obtained based on the theory described in Hansen.
-コア部の重合体のガラス転移温度-
 また、有機粒子のコア部を構成する重合体のガラス転移温度は、-50℃以上であることが好ましく、0℃以上であることがより好ましく、20℃以上であることがさらに好ましく、また、150℃以下であることが好ましく、120℃以下であることがより好ましく、100℃以下であることがより好ましい。コア部の重合体のガラス転移温度を前記範囲の下限値以上にすることにより、機能層の強度や耐ブロッキング性を一層向上させることができる。また、コア部の重合体のガラス転移温度を上記範囲の上限値以下にすることにより、機能層の電解液中での接着性および二次電池の高温サイクル特性を向上させることができる。
-Glass transition temperature of core polymer-
Further, the glass transition temperature of the polymer constituting the core part of the organic particles is preferably −50 ° C. or higher, more preferably 0 ° C. or higher, further preferably 20 ° C. or higher, It is preferable that it is 150 degrees C or less, It is more preferable that it is 120 degrees C or less, It is more preferable that it is 100 degrees C or less. By setting the glass transition temperature of the polymer in the core part to be equal to or higher than the lower limit of the above range, the strength and blocking resistance of the functional layer can be further improved. Moreover, the adhesiveness in the electrolyte solution of a functional layer and the high temperature cycling characteristic of a secondary battery can be improved by making the glass transition temperature of the polymer of a core part below into the upper limit of the said range.
 なお、コア部の重合体のガラス転移温度を調整する方法としては、例えば、コア部の重合体を調製するために用いる単量体の種類および量を、当該単量体の単独重合体のガラス転移温度を考慮して、適切に選択することが挙げられる。例えば、コア部の重合体の調製に(メタ)アクリル酸エステル単量体を使用する場合、(メタ)アクリル酸エステル単量体のアルコールに由来する部分の炭素数が多いほど、得られる重合体のガラス転移温度が低くなる傾向がある。
 ここで、本発明において、(メタ)アクリルとは、アクリルおよび/またはメタクリルを意味する。
In addition, as a method of adjusting the glass transition temperature of the polymer of the core part, for example, the type and amount of the monomer used for preparing the polymer of the core part are the same as the homopolymer glass of the monomer. Appropriate selection is considered in consideration of the transition temperature. For example, when a (meth) acrylic acid ester monomer is used for the preparation of the polymer of the core part, the polymer obtained as the carbon number of the part derived from the alcohol of the (meth) acrylic acid ester monomer increases. The glass transition temperature of the glass tends to be low.
Here, in the present invention, (meth) acryl means acryl and / or methacryl.
-コア部の重合体の組成-
 コア部の重合体を調製するために用いる単量体としては、その重合体の電解液膨潤度が上記範囲となるものを適宜選択して用いうる。そのような単量体としては、例えば、塩化ビニル、塩化ビニリデン等の塩化ビニル系単量体;酢酸ビニル等の酢酸ビニル系単量体;スチレン、α-メチルスチレン、スチレンスルホン酸、ブトキシスチレン、ビニルナフタレン等の芳香族ビニル単量体;ビニルアミン等のビニルアミン系単量体;N-ビニルホルムアミド、N-ビニルアセトアミド等のビニルアミド系単量体;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸エチル、2-エチルヘキシルアクリレート等の(メタ)アクリル酸エステル単量体;アクリルアミド、メタクリルアミド等の(メタ)アクリルアミド単量体;アクリロニトリル、メタクリロニトリル等の(メタ)アクリロニトリル単量体;2-(パーフルオロヘキシル)エチルメタクリレート、2-(パーフルオロブチル)エチルアクリレート等のフッ素含有(メタ)アクリレート単量体;マレイミド;フェニルマレイミド等のマレイミド誘導体;1,3-ブタジエン、イソプレン等のジエン系単量体;などが挙げられる。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 なお、本発明において、(メタ)アクリレートとは、アクリレートおよび/またはメタクリレートを意味し、(メタ)アクリロニトリルとは、アクリロニトリルおよび/またはメタクリロニトリルを意味する。
-Polymer composition of the core-
As a monomer used for preparing the polymer of the core part, a monomer having an electrolyte solution swelling degree within the above range can be appropriately selected and used. Examples of such monomers include vinyl chloride monomers such as vinyl chloride and vinylidene chloride; vinyl acetate monomers such as vinyl acetate; styrene, α-methylstyrene, styrenesulfonic acid, butoxystyrene, Aromatic vinyl monomers such as vinylnaphthalene; vinylamine monomers such as vinylamine; vinylamide monomers such as N-vinylformamide and N-vinylacetamide; methyl acrylate, ethyl acrylate, butyl acrylate, methacryl (Meth) acrylic acid ester monomers such as methyl acrylate, ethyl methacrylate and 2-ethylhexyl acrylate; (meth) acrylamide monomers such as acrylamide and methacrylamide; (meth) acrylonitrile single quantities such as acrylonitrile and methacrylonitrile Body; 2- (perfluorohexyl) ester Fluorine-containing (meth) acrylate monomers such as 2-methacrylate and 2- (perfluorobutyl) ethyl acrylate; maleimide; maleimide derivatives such as phenylmaleimide; and diene monomers such as 1,3-butadiene and isoprene; Can be mentioned. Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
In the present invention, (meth) acrylate means acrylate and / or methacrylate, and (meth) acrylonitrile means acrylonitrile and / or methacrylonitrile.
 これらの単量体の中でも、コア部の重合体の調製に用いられる単量体としては、(メタ)アクリル酸エステル単量体を用いることが好ましく、メタクリル酸メチルおよび/またはアクリル酸ブチルを用いることがより好ましい。即ち、コア部の重合体は、(メタ)アクリル酸エステル単量体単位を含むことが好ましく、メタクリル酸メチルおよび/またはアクリル酸ブチルに由来する単量体単位を含むことが更に好ましい。上述した単量体を使用することにより、コア部の重合体の電解液膨潤度の制御やコア部の重合体のガラス転移温度の制御が容易になると共に、有機粒子を用いた機能層のイオン拡散性を一層高めることができる。 Among these monomers, it is preferable to use a (meth) acrylic acid ester monomer, and methyl methacrylate and / or butyl acrylate are used as the monomer used for preparing the core polymer. It is more preferable. That is, the polymer of the core part preferably contains a (meth) acrylate monomer unit, and more preferably contains a monomer unit derived from methyl methacrylate and / or butyl acrylate. By using the above-mentioned monomer, it is easy to control the degree of electrolyte swelling of the polymer in the core part and the glass transition temperature of the polymer in the core part, and the functional layer ion using organic particles. The diffusibility can be further enhanced.
 また、コア部の重合体は、酸基含有単量体単位を含みうる。ここで、酸基含有単量体としては、酸基を有する単量体、例えば、カルボン酸基を有する単量体、スルホン酸基を有する単量体、リン酸基を有する単量体、および、水酸基を有する単量体が挙げられる。 Further, the polymer of the core part may include an acid group-containing monomer unit. Here, as the acid group-containing monomer, a monomer having an acid group, for example, a monomer having a carboxylic acid group, a monomer having a sulfonic acid group, a monomer having a phosphoric acid group, and And monomers having a hydroxyl group.
 そして、カルボン酸基を有する単量体としては、例えば、モノカルボン酸、ジカルボン酸などが挙げられる。モノカルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。ジカルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 また、スルホン酸基を有する単量体としては、例えば、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。
 さらに、リン酸基を有する単量体としては、例えば、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルなどが挙げられる。
 また、水酸基を有する単量体としては、例えば、アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピルなどが挙げられる。
 なお、本発明において、(メタ)アリルとは、アリルおよび/またはメタリルを意味し、(メタ)アクリロイルとは、アクリロイルおよび/またはメタクリロイルを意味する。
Examples of the monomer having a carboxylic acid group include monocarboxylic acid and dicarboxylic acid. Examples of the monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid. Examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
Examples of the monomer having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, (meth) acrylic acid-2-ethyl sulfonate, 2-acrylamido-2-methyl. Examples thereof include propanesulfonic acid and 3-allyloxy-2-hydroxypropanesulfonic acid.
Further, examples of the monomer having a phosphoric acid group include phosphoric acid-2- (meth) acryloyloxyethyl phosphate, methyl-2- (meth) acryloyloxyethyl phosphate, and ethyl phosphate- (meth) acryloyloxyethyl phosphate. Etc.
Examples of the monomer having a hydroxyl group include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, and 2-hydroxypropyl methacrylate.
In the present invention, (meth) allyl means allyl and / or methallyl, and (meth) acryloyl means acryloyl and / or methacryloyl.
 これらの中でも、酸基含有単量体としては、カルボン酸基を有する単量体が好ましく、中でもモノカルボン酸が好ましく、(メタ)アクリル酸がより好ましい。
 また、酸基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Among these, as the acid group-containing monomer, a monomer having a carboxylic acid group is preferable, among which monocarboxylic acid is preferable, and (meth) acrylic acid is more preferable.
Moreover, an acid group containing monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 また、コア部の重合体における酸基含有量体単位の割合は、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、好ましくは20質量%以下、より好ましくは10質量%以下、さらに好ましくは7質量%以下である。酸基含有量体単位の割合を前記範囲に収めることにより、有機粒子の調製時に、コア部の重合体の分散性を高め、コア部の重合体の外表面に対し、コア部の外表面を部分的に覆うシェル部を形成し易くすることができる。 Moreover, the ratio of the acid group content body unit in the polymer of the core part is preferably 0.1% by mass or more, more preferably 1% by mass or more, preferably 20% by mass or less, more preferably 10% by mass. Hereinafter, it is more preferably 7% by mass or less. By keeping the ratio of the acid group-containing body unit within the above range, when preparing the organic particles, the dispersibility of the polymer in the core part is improved, and the outer surface of the core part is made to be more than the outer surface of the polymer in the core part. A shell portion that partially covers can be easily formed.
 また、コア部の重合体は、上記単量体単位に加え、架橋性単量体単位を含んでいることが好ましい。架橋性単量体とは、加熱またはエネルギー線の照射により、重合中または重合後に架橋構造を形成しうる単量体である。架橋性単量体単位を含むことにより、重合体の電解液膨潤度を、前記の範囲に容易に収めることができる。 Further, the polymer of the core part preferably contains a crosslinkable monomer unit in addition to the monomer unit. A crosslinkable monomer is a monomer that can form a crosslinked structure during or after polymerization by heating or irradiation with energy rays. By including a crosslinkable monomer unit, the electrolyte solution swelling degree of the polymer can be easily kept within the above range.
 架橋性単量体としては、例えば、当該単量体に2個以上の重合反応性基を有する多官能単量体が挙げられる。このような多官能単量体としては、例えば、ジビニルベンゼン等のジビニル化合物;エチレンジメタクリレート、ジエチレングリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、1,3-ブチレングリコールジアクリレート等のジ(メタ)アクリル酸エステル化合物;トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート等のトリ(メタ)アクリル酸エステル化合物;アリルグリシジルエーテル、グリシジルメタクリレート等のエポキシ基を含有するエチレン性不飽和単量体;などが挙げられる。これらの中でも、コア部の重合体の電解液膨潤度を容易に制御する観点から、ジメタクリル酸エステル化合物およびエポキシ基を含有するエチレン性不飽和単量体が好ましく、ジメタクリル酸エステル化合物がより好ましい。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Examples of the crosslinkable monomer include polyfunctional monomers having two or more polymerization reactive groups in the monomer. Examples of such polyfunctional monomers include divinyl compounds such as divinylbenzene; di (meta) such as ethylene dimethacrylate, diethylene glycol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, and 1,3-butylene glycol diacrylate. ) Acrylic acid ester compounds; Tri (meth) acrylic acid ester compounds such as trimethylolpropane trimethacrylate and trimethylolpropane triacrylate; Ethylenically unsaturated monomers containing epoxy groups such as allyl glycidyl ether and glycidyl methacrylate; Is mentioned. Among these, from the viewpoint of easily controlling the degree of swelling of the electrolyte in the polymer of the core part, an ethylenically unsaturated monomer containing a dimethacrylic acid ester compound and an epoxy group is preferred, and a dimethacrylic acid ester compound is more preferred. preferable. Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
 ここで、一般に、重合体において架橋性単量体単位の割合が増えると、その重合体の電解液に対する膨潤度は小さくなる傾向がある。従って、架橋性単量体単位の割合は、使用する単量体の種類および量を考慮して決定することが好ましい。コア部の重合体における架橋性単量体単位の具体的な割合は、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、さらに好ましくは0.5質量%以上であり、好ましくは10質量%以下、より好ましくは8質量%以下、さらに好ましくは6質量%以下である。架橋性単量体単位の割合を前記範囲の下限値以上にすることにより、機能層の接着性を高めることができる。また、架橋性単量体単位の割合を前記範囲の上限値以下にすることにより、非水系二次電池のサイクル特性を向上させることができる。 Here, generally, when the proportion of the crosslinkable monomer unit in the polymer increases, the degree of swelling of the polymer with respect to the electrolytic solution tends to decrease. Therefore, the ratio of the crosslinkable monomer unit is preferably determined in consideration of the type and amount of the monomer used. The specific ratio of the crosslinkable monomer unit in the polymer of the core part is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and further preferably 0.5% by mass or more. Preferably it is 10 mass% or less, More preferably, it is 8 mass% or less, More preferably, it is 6 mass% or less. By setting the ratio of the crosslinkable monomer unit to the lower limit value or more of the above range, the adhesiveness of the functional layer can be enhanced. Moreover, the cycle characteristic of a non-aqueous secondary battery can be improved by making the ratio of a crosslinkable monomer unit below the upper limit of the said range.
[[シェル部]]
-シェル部の重合体の電解液膨潤度-
 有機粒子のシェル部は、コア部の電解液膨潤度よりも小さい所定の電解液膨潤度を有する重合体からなる。具体的には、シェル部の重合体の電解液膨潤度は、1倍超であることが必要であり、1.1倍以上であることが好ましく、1.2倍以上であることがより好ましく、また、4倍以下であることが必要であり、3.5倍以下であることが好ましく、3倍以下であることがより好ましい。シェル部の重合体の電解液膨潤度を前記範囲の下限値超にすることにより、機能層に高いイオン拡散性を発現させて二次電池の低温出力特性を向上させることができる。また、シェル部の重合体の電解液膨潤度を前記範囲の上限値以下にすることにより、電解液中での機能層の接着性を高め、二次電池の高温サイクル特性を向上させることができる。
 ここで、本発明において、シェル部の重合体の「電解液膨潤度」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
[[Shell]]
-Swelling degree of electrolyte in shell polymer-
The shell part of the organic particle is made of a polymer having a predetermined electrolyte solution swelling degree smaller than the electrolyte solution swelling degree of the core part. Specifically, the electrolyte solution swelling degree of the polymer of the shell portion needs to be more than 1 time, preferably 1.1 times or more, more preferably 1.2 times or more. In addition, it is necessary to be 4 times or less, 3.5 times or less is preferable, and 3 times or less is more preferable. By making the electrolyte solution swelling degree of the polymer of the shell part exceed the lower limit value of the above range, the low-temperature output characteristics of the secondary battery can be improved by expressing high ion diffusibility in the functional layer. Moreover, by making the electrolyte swelling degree of the polymer of the shell part below the upper limit of the above range, it is possible to improve the adhesion of the functional layer in the electrolyte and improve the high-temperature cycle characteristics of the secondary battery. .
Here, in this invention, the "electrolyte swelling degree" of the polymer of a shell part can be measured using the measuring method as described in the Example of this specification.
 なお、シェル部の重合体の電解液膨潤度を調整する方法としては、例えば、電解液のSP値を考慮して、当該シェル部の重合体を製造するための単量体の種類および量を適切に選択することが挙げられる。 In addition, as a method for adjusting the electrolyte solution swelling degree of the polymer of the shell part, for example, considering the SP value of the electrolyte solution, the kind and amount of the monomer for producing the polymer of the shell part are determined. Appropriate selection can be mentioned.
-シェル部の重合体のガラス転移温度-
 また、有機粒子のシェル部を構成する重合体のガラス転移温度は、50℃以上であることが好ましく、60℃以上であることがより好ましく、70℃以上であることがさらに好ましく、また、200℃以下であることが好ましく、180℃以下であることがより好ましく、150℃以下であることがさらに好ましい。シェル部の重合体のガラス転移温度を50℃以上とすることにより、ブロッキングの発生を抑制できることに加え、二次電池の低温出力特性を向上させることができる。また、シェル部の重合体のガラス転移温度を200℃以下とすることにより、機能層の接着性を更に向上させることができる。
-Glass transition temperature of polymer in shell-
The glass transition temperature of the polymer constituting the shell part of the organic particles is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, still more preferably 70 ° C. or higher, and 200 It is preferably not higher than ° C., more preferably not higher than 180 ° C., and further preferably not higher than 150 ° C. By setting the glass transition temperature of the polymer of the shell part to 50 ° C. or higher, it is possible to improve the low temperature output characteristics of the secondary battery in addition to suppressing the occurrence of blocking. Moreover, the adhesiveness of a functional layer can further be improved by making the glass transition temperature of the polymer of a shell part into 200 degrees C or less.
 なお、シェル部の重合体のガラス転移温度を調整する方法としては、例えば、シェル部の重合体を調製するために用いる単量体の種類および量を、当該単量体の単独重合体のガラス転移温度を考慮して、適切に選択することが挙げられる。 In addition, as a method of adjusting the glass transition temperature of the polymer of the shell part, for example, the type and amount of the monomer used for preparing the polymer of the shell part are the same as the homopolymer glass of the monomer. Appropriate selection is considered in consideration of the transition temperature.
-シェル部の重合体の組成-
 シェル部の重合体を調製するために用いる単量体としては、その重合体の電解液膨潤度が前記範囲となるものを適宜選択して用いうる。そのような単量体としては、例えば、コア部の重合体を製造するために用いうる単量体として例示した単量体と同様の単量体が挙げられる。また、このような単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
-Polymer composition of shell-
As a monomer used for preparing the polymer of the shell portion, a monomer having an electrolyte solution swelling degree within the above range can be appropriately selected and used. Examples of such a monomer include the same monomers as those exemplified as monomers that can be used to produce the core polymer. Moreover, such a monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 これらの単量体の中でも、シェル部の重合体の調製に用いられる単量体としては、芳香族ビニル単量体を用いることが好ましい。即ち、シェル部の重合体は、芳香族ビニル単量体単位を含むことが好ましい。また、芳香族ビニル単量体の中でも、スチレンおよびスチレンスルホン酸等のスチレン誘導体がより好ましい。芳香族ビニル単量体を用いれば、重合体の電解液膨潤度を制御し易い。また、機能層の接着性を一層高めることができる。 Among these monomers, it is preferable to use an aromatic vinyl monomer as a monomer used for the preparation of the shell polymer. That is, the polymer of the shell part preferably includes an aromatic vinyl monomer unit. Among aromatic vinyl monomers, styrene derivatives such as styrene and styrene sulfonic acid are more preferable. If an aromatic vinyl monomer is used, it is easy to control the degree of electrolyte swelling of the polymer. Moreover, the adhesiveness of the functional layer can be further enhanced.
 そして、シェル部の重合体における芳香族ビニル単量体単位の割合は、好ましくは20質量%以上、より好ましくは40質量%以上、さらに好ましくは50質量%以上、より一層好ましくは60質量%以上、特に好ましくは80質量%以上であり、好ましくは100質量%以下、より好ましくは99.5質量%以下、さらに好ましくは99質量%以下である。芳香族ビニル単量体単位の割合を前記範囲に収めることにより、シェル部の重合体の電解液膨潤度およびガラス転移温度を所望の範囲に制御しやすい。また、電解液中における機能層の接着性をより高めることができる。 And the ratio of the aromatic vinyl monomer unit in the polymer of the shell part is preferably 20% by mass or more, more preferably 40% by mass or more, further preferably 50% by mass or more, and still more preferably 60% by mass or more. Especially preferably, it is 80 mass% or more, Preferably it is 100 mass% or less, More preferably, it is 99.5 mass% or less, More preferably, it is 99 mass% or less. By keeping the ratio of the aromatic vinyl monomer unit in the above range, the degree of swelling of the electrolyte solution and the glass transition temperature of the polymer in the shell part can be easily controlled to a desired range. Moreover, the adhesiveness of the functional layer in electrolyte solution can be improved more.
 また、シェル部の重合体は、芳香族ビニル単量体単位以外に、酸基含有単量体単位を含みうる。ここで、酸基含有単量体としては、酸基を有する単量体、例えば、カルボン酸基を有する単量体、スルホン酸基を有する単量体、リン酸基を有する単量体、および、水酸基を有する単量体が挙げられる。具体的には、酸基含有単量体としては、コア部に含み得る酸基含有単量体と同様の単量体が挙げられる。 Further, the polymer of the shell part may contain an acid group-containing monomer unit in addition to the aromatic vinyl monomer unit. Here, as the acid group-containing monomer, a monomer having an acid group, for example, a monomer having a carboxylic acid group, a monomer having a sulfonic acid group, a monomer having a phosphoric acid group, and And monomers having a hydroxyl group. Specifically, examples of the acid group-containing monomer include monomers similar to the acid group-containing monomer that can be contained in the core portion.
 これらの中でも、酸基含有単量体としては、カルボン酸基を有する単量体が好ましく、中でもモノカルボン酸がより好ましく、(メタ)アクリル酸がさらに好ましい。
 また、酸基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
Among these, the acid group-containing monomer is preferably a monomer having a carboxylic acid group, more preferably a monocarboxylic acid, and even more preferably (meth) acrylic acid.
Moreover, an acid group containing monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 シェル部の重合体中の酸基含有単量体単位の割合は、好ましくは0.1質量%以上、より好ましくは1質量%以上、さらに好ましくは3質量%以上であり、好ましくは20質量%以下、より好ましくは10質量%以下、さらに好ましくは7質量%以下である。酸基含有単量体単位の割合を前記範囲に収めることにより、機能層中での有機粒子の分散性を向上させることができる。 The ratio of the acid group-containing monomer unit in the polymer of the shell part is preferably 0.1% by mass or more, more preferably 1% by mass or more, still more preferably 3% by mass or more, and preferably 20% by mass. Hereinafter, it is more preferably 10% by mass or less, and further preferably 7% by mass or less. By keeping the ratio of the acid group-containing monomer unit within the above range, the dispersibility of the organic particles in the functional layer can be improved.
 また、シェル部の重合体は、架橋性単量体単位を含みうる。架橋性単量体としては、例えば、コア部の重合体に用いうる架橋性単量体として例示したものと同様の単量体が挙げられる。また、架橋性単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Further, the polymer of the shell part may contain a crosslinkable monomer unit. Examples of the crosslinkable monomer include monomers similar to those exemplified as the crosslinkable monomer that can be used in the core polymer. Moreover, a crosslinking | crosslinked monomer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 そして、シェル部の重合体における架橋性単量体単位の割合は、好ましくは0.1質量%以上、より好ましくは0.2質量%以上、さらに好ましくは0.5質量%以上であり、好ましくは5質量%以下、より好ましくは4質量%以下、さらに好ましくは3質量%以下である。 And the ratio of the crosslinkable monomer unit in the polymer of the shell part is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, further preferably 0.5% by mass or more, preferably Is 5% by mass or less, more preferably 4% by mass or less, and still more preferably 3% by mass or less.
-シェル部の形態-
 また、シェル部の形態は特に制限されないが、シェル部は、重合体の粒子によって構成されていることが好ましい。シェル部が重合体の粒子によって構成されている場合、有機粒子の径方向にシェル部を構成する粒子が複数重なり合っていてもよい。ただし、有機粒子の径方向では、シェル部を構成する粒子同士が重なり合わず、それらの重合体の粒子が単層でシェル部を構成していることが好ましい。
-Shell configuration-
The form of the shell part is not particularly limited, but the shell part is preferably composed of polymer particles. When the shell part is composed of polymer particles, a plurality of particles constituting the shell part may overlap in the radial direction of the organic particles. However, in the radial direction of the organic particles, it is preferable that the particles constituting the shell portion do not overlap each other, and those polymer particles constitute the shell portion as a single layer.
[[有機粒子の調製方法]]
 そして、上述したコアシェル構造を有する有機粒子は、例えば、コア部の重合体の単量体と、シェル部の重合体の単量体とを用い、経時的にそれらの単量体の比率を変えて段階的に重合することにより、調製することができる。具体的には、有機粒子は、先の段階の重合体を後の段階の重合体が順次に被覆するような連続した多段階乳化重合法および多段階懸濁重合法によって調製することができる。
[[Preparation method of organic particles]]
The organic particles having the core-shell structure described above use, for example, a polymer monomer in the core part and a polymer monomer in the shell part, and change the ratio of these monomers over time. Can be prepared by stepwise polymerization. Specifically, the organic particles can be prepared by a continuous multi-stage emulsion polymerization method and a multi-stage suspension polymerization method in which the polymer of the previous stage is sequentially coated with the polymer of the subsequent stage.
 そこで、以下に、多段階乳化重合法により上記コアシェル構造を有する有機粒子を得る場合の一例を示す。 Therefore, an example of obtaining organic particles having the above core-shell structure by a multi-stage emulsion polymerization method is shown below.
 重合に際しては、常法に従って、乳化剤として、例えば、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム等のアニオン性界面活性剤、ポリオキシエチレンノニルフェニルエーテル、ソルビタンモノラウレート等のノニオン性界面活性剤、またはオクタデシルアミン酢酸塩等のカチオン性界面活性剤を用いることができる。また、重合開始剤として、例えば、t-ブチルパーオキシ-2-エチルヘキサノエート、過硫酸カリウム、キュメンパーオキサイド等の過酸化物、2,2’-アゾビス(2-メチル-N-(2-ハイドロキシエチル)-プロピオンアミド)、2,2’-アゾビス(2-アミジノプロパン)塩酸塩等のアゾ化合物を用いることができる。 In the polymerization, according to a conventional method, as an emulsifier, for example, an anionic surfactant such as sodium dodecylbenzenesulfonate and sodium dodecylsulfate, a nonionic surfactant such as polyoxyethylene nonylphenyl ether and sorbitan monolaurate, or Cationic surfactants such as octadecylamine acetate can be used. Examples of the polymerization initiator include peroxides such as t-butylperoxy-2-ethylhexanoate, potassium persulfate, cumene peroxide, 2,2′-azobis (2-methyl-N- (2 An azo compound such as -hydroxyethyl) -propionamide) or 2,2'-azobis (2-amidinopropane) hydrochloride can be used.
 そして、重合手順としては、まず、コア部を形成する単量体および乳化剤を混合し、一括で乳化重合することによってコア部を構成する粒子状の重合体を得る。さらに、このコア部を構成する粒子状の重合体の存在下にシェル部を形成する単量体の重合を行うことによって、上述したコアシェル構造を有する有機粒子を得ることができる。 As a polymerization procedure, first, a monomer and an emulsifier that form a core part are mixed, and emulsion polymerization is performed at once to obtain a particulate polymer constituting the core part. Furthermore, the organic particle which has the core shell structure mentioned above can be obtained by superposing | polymerizing the monomer which forms a shell part in presence of the particulate polymer which comprises this core part.
 この際、コア部の外表面をシェル部によって部分的に覆う観点から、シェル部の重合体を形成する単量体は、複数回に分割して、もしくは、連続して重合系に供給することが好ましい。シェル部の重合体を形成する単量体を重合系に分割して、もしくは、連続で供給することにより、シェル部を構成する重合体が粒子状に形成され、この粒子がコア部と結合することで、コア部を部分的に覆うシェル部を形成することができる。 At this time, from the viewpoint of partially covering the outer surface of the core portion with the shell portion, the monomer that forms the polymer of the shell portion is divided into a plurality of times or continuously supplied to the polymerization system. Is preferred. The monomer that forms the polymer of the shell part is divided into a polymerization system or continuously supplied, whereby the polymer constituting the shell part is formed into particles, and these particles are bonded to the core part. Thereby, the shell part which covers a core part partially can be formed.
 なお、シェル部の重合体を形成する単量体を複数回に分割して供給する場合には、単量体を分割する割合に応じてシェル部の平均厚みを制御することが可能である。また、シェル部の重合体を形成する単量体を連続で供給する場合には、単位時間あたりの単量体の供給量を調整することで、シェル部の平均厚みを制御することが可能である。 In addition, when the monomer for forming the polymer of the shell part is divided and supplied in a plurality of times, it is possible to control the average thickness of the shell part according to the ratio of dividing the monomer. In addition, when continuously supplying the monomer that forms the polymer of the shell part, it is possible to control the average thickness of the shell part by adjusting the monomer supply amount per unit time. is there.
 また、シェル部を形成した後の有機粒子の体積平均粒子径D50は、例えば、乳化剤の量、単量体の量などを調整することで、所望の範囲にすることができる。さらに、コア部の外表面がシェル部によって覆われる平均割合(被覆率)は、例えば、乳化剤の量、および、シェル部の重合体を形成する単量体の量を調整することで、所望の範囲にすることができる。 Further, the volume average particle diameter D50 of the organic particles after forming the shell portion can be set to a desired range by adjusting the amount of the emulsifier, the amount of the monomer, and the like. Furthermore, the average ratio (coverage) by which the outer surface of the core part is covered by the shell part is adjusted by, for example, adjusting the amount of the emulsifier and the amount of the monomer that forms the polymer of the shell part. Can range.
[機能層用結着材]
 ここで、上述した通り、有機粒子は、電解液に膨潤しておらず、且つ、加熱されていない状態では、通常、大きな接着性を発現しない。そのため、機能層の形成直後(加熱前または電解液への浸漬前)に有機粒子が機能層から脱落するのを抑制する観点からは、機能層は、電解液に膨潤しておらず、且つ、加熱されていない状態においても接着性を発揮する機能層用結着材を含むことが好ましい。機能層用結着材を用いることにより、電解液に膨潤しておらず、且つ、加熱されていない状態においても、有機粒子等の成分が機能層から脱落するのを抑制することができる。
[Binder for functional layer]
Here, as described above, the organic particles usually do not swell in the electrolytic solution and do not exhibit great adhesion in a state where they are not heated. Therefore, from the viewpoint of suppressing the organic particles from dropping off from the functional layer immediately after the formation of the functional layer (before heating or immersion in the electrolytic solution), the functional layer is not swollen in the electrolytic solution, and It is preferable that the binder for functional layers which exhibits adhesiveness also in the state which is not heated is included. By using the functional layer binder, components such as organic particles can be prevented from falling off from the functional layer even in a state where the electrolyte is not swollen and heated.
 そして、上記有機粒子と併用し得る機能層用結着材としては、既知の結着材、例えば、熱可塑性エラストマーが挙げられる。そして、熱可塑性エラストマーとしては、共役ジエン系重合体およびアクリル系重合体が好ましく、アクリル系重合体がより好ましい。
 ここで、共役ジエン系重合体とは、共役ジエン単量体単位を含む重合体を指し、共役ジエン系重合体の具体例としては、スチレン-ブタジエン共重合体(SBR)などの、芳香族ビニル単量体単位および脂肪族共役ジエン単量体単位を含む重合体や、アクリルゴム(NBR)(アクリロニトリル単位およびブタジエン単位を含む重合体)などが挙げられる。また、アクリル系重合体とは、(メタ)アクリル酸エステル単量体単位を含む重合体を指す。ここで、(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、有機粒子のコア部の重合体を調製するために用いる単量体と同様のものを用いることができる。
 なお、これらの機能層用結着材は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。ただし、2種類以上の重合体を組み合わせた機能層用結着材を用いる場合、かかる機能層用結着材としての重合体は、上述した所定の重合体からなるコアシェル構造を有する有機粒子とは異なるものとする。
And as a binder for functional layers which can be used together with the said organic particle, a known binder, for example, a thermoplastic elastomer, is mentioned. And as a thermoplastic elastomer, a conjugated diene polymer and an acrylic polymer are preferable, and an acrylic polymer is more preferable.
Here, the conjugated diene polymer refers to a polymer containing a conjugated diene monomer unit. Specific examples of the conjugated diene polymer include aromatic vinyl such as styrene-butadiene copolymer (SBR). Examples thereof include a polymer containing a monomer unit and an aliphatic conjugated diene monomer unit, and an acrylic rubber (NBR) (a polymer containing an acrylonitrile unit and a butadiene unit). Moreover, an acrylic polymer refers to the polymer containing a (meth) acrylic acid ester monomer unit. Here, the (meth) acrylate monomer that can form a (meth) acrylate monomer unit is the same as the monomer used to prepare the polymer of the core part of the organic particles. Can be used.
These functional layer binders may be used alone or in combination of two or more. However, in the case of using a functional layer binding material in which two or more kinds of polymers are combined, the polymer as the functional layer binding material is an organic particle having a core-shell structure made of the predetermined polymer described above. Be different.
 さらに、機能層用結着材としてのアクリル系重合体は、(メタ)アクリロニトリル単量体単位を含むことがさらに好ましい。これにより、機能層の強度を高めることができる。 Furthermore, it is more preferable that the acrylic polymer as the binder for the functional layer includes a (meth) acrylonitrile monomer unit. Thereby, the intensity | strength of a functional layer can be raised.
 ここで、機能層用結着材としてのアクリル系重合体において、(メタ)アクリロニトリル単量体単位および(メタ)アクリル酸エステル単量体単位の合計量に対する(メタ)アクリロニトリル単量体単位の量の割合は、好ましくは1質量%以上、より好ましくは2質量%以上であり、好ましくは30質量%以下、より好ましくは25質量%以下である。前記割合を前記範囲の下限値以上にすることにより、機能層用結着材としてのアクリル系重合体の強度を高め、当該アクリル系重合体を用いた機能層の強度をより高くすることができる。また、前記割合を前記範囲の上限値以下にすることにより、機能層用結着材としてのアクリル系重合体が電解液に対して適度に膨潤するため、機能層のイオン伝導性の低下および二次電池の低温出力特性の低下を抑制することができる。 Here, in the acrylic polymer as the binder for the functional layer, the amount of the (meth) acrylonitrile monomer unit relative to the total amount of the (meth) acrylonitrile monomer unit and the (meth) acrylic acid ester monomer unit The ratio is preferably 1% by mass or more, more preferably 2% by mass or more, preferably 30% by mass or less, more preferably 25% by mass or less. By setting the ratio to be equal to or higher than the lower limit of the range, the strength of the acrylic polymer as the binder for the functional layer can be increased, and the strength of the functional layer using the acrylic polymer can be further increased. . Moreover, since the acrylic polymer as the binder for the functional layer is appropriately swollen with respect to the electrolytic solution by setting the ratio to be not more than the upper limit of the above range, the ion conductivity of the functional layer is reduced. A decrease in the low-temperature output characteristics of the secondary battery can be suppressed.
 また、機能層用結着材のガラス転移温度は、通常は有機粒子のコア部の重合体のガラス転移温度およびシェル部の重合体のガラス転移温度よりも低く、好ましくは-100℃以上であり、より好ましくは-90℃以上であり、さらに好ましくは-80℃以上であり、また、好ましくは0℃以下であり、より好ましくは-5℃以下であり、さらに好ましくは-10℃以下である。機能層用結着材のガラス転移温度を前記範囲の下限値以上にすることにより、機能層用結着材の接着性および強度を高めることができる。また、機能層用結着材のガラス転移温度を前記範囲の上限値以下にすることにより、機能層の柔軟性を高めることができる。 Further, the glass transition temperature of the binder for the functional layer is usually lower than the glass transition temperature of the polymer of the core part of the organic particles and the glass transition temperature of the polymer of the shell part, and preferably −100 ° C. or higher. More preferably, it is −90 ° C. or more, more preferably −80 ° C. or more, preferably 0 ° C. or less, more preferably −5 ° C. or less, and further preferably −10 ° C. or less. . By making the glass transition temperature of the functional layer binder higher than the lower limit of the above range, the adhesiveness and strength of the functional layer binder can be enhanced. Moreover, the softness | flexibility of a functional layer can be improved by making the glass transition temperature of the binder for functional layers below into the upper limit of the said range.
 なお、ガラス転移温度の低い機能層用結着材は、通常、機能層の形成時の加熱などによって流動化するため、例えばSEM等では形状を把握するのが困難になるほど機能層内に広く分散する。 In addition, since the binder for the functional layer having a low glass transition temperature is usually fluidized by heating at the time of forming the functional layer, for example, it is widely dispersed in the functional layer so that it is difficult to grasp the shape by SEM or the like. To do.
 そして、機能層中の機能層用結着材の含有量は、前述した有機粒子100質量部に対して、1質量部以上であることが好ましく、3質量部以上であることがより好ましく、5質量部以上であることが更に好ましく、また、30質量部以下であることが好ましく、25質量部以下であることがより好ましく、20質量部以下であることが更に好ましい。機能層用結着材の含有量を前記範囲の下限値以上にすることにより、機能層の結着性を向上させ、加熱前または電解液への浸漬前に有機粒子が機能層から脱落するのを十分に防止することができる。また、機能層用結着材の含有量を前記範囲の上限値以下にすることにより、機能層のイオン伝導性の低下および二次電池の低温出力特性の低下を抑制することができる。 The content of the functional layer binder in the functional layer is preferably 1 part by mass or more, more preferably 3 parts by mass or more, with respect to 100 parts by mass of the organic particles described above. The amount is more preferably at least part by mass, more preferably at most 30 parts by mass, even more preferably at most 25 parts by mass, even more preferably at most 20 parts by mass. By making the content of the binder for the functional layer more than the lower limit of the above range, the binding property of the functional layer is improved, and the organic particles fall off from the functional layer before heating or immersion in the electrolytic solution. Can be sufficiently prevented. Moreover, the fall of the ion conductivity of a functional layer and the low-temperature output characteristic of a secondary battery can be suppressed by making content of the binder for functional layers into below the upper limit of the said range.
 機能層用結着材の製造方法としては、例えば、溶液重合法、懸濁重合法、乳化重合法などが挙げられる。中でも、水中で重合をすることができ、粒子状の機能層用結着材を含む水分散液をそのまま機能層の形成に好適に使用できるので、乳化重合法および懸濁重合法が好ましい。また、機能層用結着材としての重合体を製造する際、その反応系は分散剤を含むことが好ましい。機能層用結着材は、通常、実質的にそれを構成する重合体により形成されるが、重合に際して用いた添加剤等の任意の成分を同伴していてもよい。 Examples of the method for producing the functional layer binder include a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. Among them, the emulsion polymerization method and the suspension polymerization method are preferable because the polymerization can be performed in water and the aqueous dispersion containing the particulate functional layer binder can be suitably used for forming the functional layer as it is. Moreover, when manufacturing the polymer as a binder for functional layers, it is preferable that the reaction system contains a dispersing agent. The functional layer binder is usually formed of a polymer substantially constituting the functional layer binder, but may be accompanied by optional components such as additives used in the polymerization.
[非導電性粒子]
 さらに、機能層が多孔膜層としても機能する場合には、機能層は、非導電性粒子を含んでいてもよい。機能層に配合される非導電性粒子としては、特に限定されることなく、非水系二次電池に用いられる既知の非導電性粒子を挙げることができる。
 具体的には、非導電性粒子としては、無機微粒子と、上述した有機粒子および機能層用結着材以外の有機微粒子との双方を用いることができるが、通常は無機微粒子が用いられる。なかでも、非導電性粒子の材料としては、非水系二次電池の使用環境下で安定に存在し、電気化学的に安定である材料が好ましい。このような観点から非導電性粒子の材料の好ましい例を挙げると、酸化アルミニウム(アルミナ)、水和アルミニウム酸化物(ベーマイト)、酸化ケイ素、酸化マグネシウム(マグネシア)、酸化カルシウム、酸化チタン(チタニア)、BaTiO3、ZrO、アルミナ-シリカ複合酸化物等の酸化物粒子;窒化アルミニウム、窒化ホウ素等の窒化物粒子;シリコン、ダイヤモンド等の共有結合性結晶粒子;硫酸バリウム、フッ化カルシウム、フッ化バリウム等の難溶性イオン結晶粒子;タルク、モンモリロナイト等の粘土微粒子;などが挙げられる。また、これらの粒子は必要に応じて元素置換、表面処理、固溶体化等が施されていてもよい。
 なお、上述した非導電性粒子は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
[Non-conductive particles]
Furthermore, when the functional layer also functions as a porous membrane layer, the functional layer may contain non-conductive particles. The non-conductive particles to be blended in the functional layer are not particularly limited, and known non-conductive particles used for non-aqueous secondary batteries can be exemplified.
Specifically, as the non-conductive particles, both inorganic fine particles and organic fine particles other than the organic particles and the functional layer binder described above can be used, but inorganic fine particles are usually used. Especially, as a material of nonelectroconductive particle, the material which exists stably in the use environment of a non-aqueous secondary battery and is electrochemically stable is preferable. From this point of view, preferable examples of the non-conductive particle material include aluminum oxide (alumina), hydrated aluminum oxide (boehmite), silicon oxide, magnesium oxide (magnesia), calcium oxide, titanium oxide (titania). Oxide particles such as BaTiO 3 , ZrO, alumina-silica composite oxide; nitride particles such as aluminum nitride and boron nitride; covalently bonded crystal particles such as silicon and diamond; barium sulfate, calcium fluoride, barium fluoride Insoluble ion crystal particles such as; clay fine particles such as talc and montmorillonite; In addition, these particles may be subjected to element substitution, surface treatment, solid solution, and the like as necessary.
In addition, the nonelectroconductive particle mentioned above may be used individually by 1 type, and may be used in combination of 2 or more types.
[その他の成分]
 そして、機能層は、上述した成分以外にも、任意のその他の成分を含んでいてもよい。前記その他の成分は、電池反応に影響を及ぼさないものであれば特に限られず、公知のものを使用することができる。また、これらのその他の成分は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
 前記その他の成分としては、例えば、エチレンオキサイド-プロピレンオキサイド共重合体などの濡れ剤、粘度調整剤、電解液添加剤などの、機能層の形成時に使用される既知の添加剤が挙げられる。
[Other ingredients]
And the functional layer may contain arbitrary other components besides the component mentioned above. The other components are not particularly limited as long as they do not affect the battery reaction, and known components can be used. Moreover, these other components may be used individually by 1 type, and may be used in combination of 2 or more types.
Examples of the other components include known additives used at the time of forming a functional layer, such as a wetting agent such as an ethylene oxide-propylene oxide copolymer, a viscosity modifier, and an electrolytic solution additive.
[機能層の構成]
 そして、セパレータ基材の機能層形成面に形成された機能層には、例えば図1に機能層の一例の表面のSEM画像を示すように、単独の有機粒子または集合した複数の有機粒子よりなる有機粒子の相(即ち、有機粒子が存在する部分)と、有機粒子が存在しない部分(例えば、機能層用結着材などの有機粒子以外の成分のみが存在する部分など)とが混在している。なお、セパレータ基材の機能層形成面には、有機粒子や機能層用結着材などの機能層を構成する成分が存在しない部分が存在していてもよい。
[Function layer configuration]
The functional layer formed on the functional layer forming surface of the separator substrate is composed of a single organic particle or a plurality of assembled organic particles, as shown in FIG. The organic particle phase (that is, the portion where the organic particles are present) and the portion where the organic particles are not present (for example, the portion where only components other than the organic particles such as the binder for the functional layer are present) are mixed. Yes. In addition, on the functional layer forming surface of the separator substrate, there may be a portion where components constituting the functional layer such as organic particles and a functional layer binder are not present.
[[有機粒子の相]]
 ここで、有機粒子の相は、機能層形成面の全体を覆うことなく、機能層形成面の面積に対して20%以上80%以下の割合で存在している必要がある。機能層形成面の面積に対する、当該機能層形成面上に存在する有機粒子の相の面積の割合(=(有機粒子の相が存在する部分の面積/機能層形成面の面積)×100%)が20%未満の場合には、電解液中において優れた接着力を発揮する有機粒子の量が少なくなり過ぎて電解液中での機能層の接着性が低下し、セパレータを用いた二次電池の高温サイクル特性が低下するからである。また、有機粒子はある程度高いイオン伝導性を発揮するものの、有機粒子が存在する部分は有機粒子が存在しない部分と比較すればイオン伝導性が低下する。そのため、機能層の電解液中でのイオン伝導性を向上させ、セパレータを用いた二次電池の低温出力特性を高める観点からは、機能層形成面の面積に対する、当該機能層形成面上に存在する有機粒子の相の面積の割合は、80%以下とする必要がある。
 そして、電解液中での機能層の接着性を十分に確保して二次電池の高温サイクル特性を向上させる観点からは、機能層形成面の面積に対する有機粒子の相が存在する部分の面積の割合は、25%以上であることが好ましく、30%以上であることがより好ましく、35%以上であることが更に好ましい。また、機能層の電解液中でのイオン伝導性を更に向上させ、セパレータを用いた二次電池の低温出力特性を更に高める観点からは、機能層形成面の面積に対する有機粒子の相が存在する部分の面積の割合は、70%以下であることが好ましく、60%以下であることがより好ましく、45%以下であることが更に好ましい。
[[Phase of organic particles]]
Here, the phase of the organic particles needs to be present in a ratio of 20% to 80% with respect to the area of the functional layer forming surface without covering the entire functional layer forming surface. Ratio of the area of the organic particle phase existing on the functional layer forming surface to the area of the functional layer forming surface (= (area of the portion where the organic particle phase exists / area of the functional layer forming surface) × 100%) Is less than 20%, the amount of organic particles exhibiting excellent adhesive strength in the electrolytic solution becomes too small, and the adhesiveness of the functional layer in the electrolytic solution decreases, and a secondary battery using a separator This is because the high-temperature cycle characteristics of are deteriorated. Further, although the organic particles exhibit a certain degree of high ionic conductivity, the portion where the organic particles are present has a lower ionic conductivity than the portion where the organic particles are not present. Therefore, from the viewpoint of improving the ion conductivity of the functional layer in the electrolyte and enhancing the low-temperature output characteristics of the secondary battery using the separator, it exists on the functional layer forming surface with respect to the area of the functional layer forming surface. The ratio of the area of the phase of the organic particles to be performed needs to be 80% or less.
And, from the viewpoint of improving the high-temperature cycle characteristics of the secondary battery by sufficiently securing the adhesion of the functional layer in the electrolyte, the area of the portion where the organic particle phase is present relative to the area of the functional layer forming surface The ratio is preferably 25% or more, more preferably 30% or more, and further preferably 35% or more. Further, from the viewpoint of further improving the ion conductivity of the functional layer in the electrolyte and further improving the low-temperature output characteristics of the secondary battery using the separator, there is a phase of organic particles with respect to the area of the functional layer forming surface. The proportion of the area of the part is preferably 70% or less, more preferably 60% or less, and further preferably 45% or less.
 また、有機粒子の相は、不規則な形状で存在している。具体的には、機能層には、単独の有機粒子または集合した有機粒子よりなる複数の相が、一定の繰り返しパターン形状(例えば、縞状、格子状など)ではなく、不規則な形状で存在している。そして、機能層では、有機粒子の相が不規則な形状で存在していることにより、電解液中での接着性を高めることができる。
 ここで、有機粒子の相が不規則な形状で存在している構成としては、特に限定されることなく、例えば、単独の有機粒子または10個以下の有機粒子の集合体よりなる島状相と、11個以上の有機粒子の集合体よりなる大陸状相とが、有機粒子が存在しない部分を隔てて混在している構成などが挙げられる。
In addition, the phase of the organic particles exists in an irregular shape. Specifically, in the functional layer, a plurality of phases composed of single organic particles or aggregated organic particles are present in an irregular shape rather than a fixed repetitive pattern shape (for example, a stripe shape or a lattice shape). is doing. And in a functional layer, the adhesiveness in electrolyte solution can be improved because the phase of an organic particle exists in an irregular shape.
Here, the configuration in which the phase of the organic particles is present in an irregular shape is not particularly limited, and for example, an island-like phase composed of a single organic particle or an aggregate of 10 or less organic particles A configuration in which a continental phase composed of an aggregate of 11 or more organic particles is mixed with a portion where no organic particles exist is included.
 なお、有機粒子の相が存在する部分の面積および有機粒子の相の形状は、例えば、セパレータ基材および機能層の形成に用いる材料(非水系二次電池機能層用組成物)の種類、並びに、機能層の形成方法を変更することにより調整することができる。 In addition, the area of the part in which the phase of the organic particles exists and the shape of the phase of the organic particles are, for example, the type of the material used for forming the separator base material and the functional layer (composition for the non-aqueous secondary battery functional layer), and It can be adjusted by changing the method of forming the functional layer.
(非水系二次電池用セパレータの製造方法)
 そして、上述した構成の機能層を有する本発明の非水系二次電池用セパレータは、例えば本発明の非水系二次電池用セパレータの製造方法を用いて容易に作製することができる。
(Method for producing separator for non-aqueous secondary battery)
And the separator for non-aqueous secondary batteries of this invention which has a functional layer of the structure mentioned above can be easily produced, for example using the manufacturing method of the separator for non-aqueous secondary batteries of this invention.
 ここで、本発明の非水系二次電池用セパレータの製造方法は、機能層形成面の水滴接触角が80°以上130°以下であるセパレータ基材を準備する工程(基材準備工程)と、機能層を構成する成分と水などの分散媒とを含有し、且つ、表面張力が33mN/m以上39mN/m以下である非水系二次電池機能層用組成物を準備する工程(組成物準備工程)と、非水系二次電池機能層用組成物をセパレータ基材の機能層形成面上に塗布し、塗布した非水系二次電池機能層用組成物を乾燥させてセパレータ基材上に機能層を形成する工程(機能層形成工程)とを含むことを特徴とする。そして、本発明の非水系二次電池用セパレータの製造方法では、非水系二次電池機能層用組成物をセパレータ基材の機能層形成面上に塗布し、塗布した非水系二次電池機能層用組成物を乾燥させてセパレータ基材上に機能層を形成する際に、機能層形成面の水滴接触角が80°以上130°以下であるセパレータ基材を使用すると共に、表面張力が33mN/m以上39mN/m以下である非水系二次電池機能層用組成物を使用することにより、上述した構成の機能層を容易に形成することができる。 Here, the method for producing a separator for a non-aqueous secondary battery according to the present invention includes a step of preparing a separator base material having a water droplet contact angle of 80 ° to 130 ° on the functional layer forming surface (base material preparation step), A step of preparing a composition for a non-aqueous secondary battery functional layer containing a component constituting the functional layer and a dispersion medium such as water and having a surface tension of 33 mN / m to 39 mN / m (composition preparation) Step) and a non-aqueous secondary battery functional layer composition applied on the functional layer-forming surface of the separator base material, and the applied non-aqueous secondary battery functional layer composition is dried to function on the separator base material. And a step of forming a layer (functional layer forming step). And in the manufacturing method of the separator for non-aqueous secondary batteries of this invention, the composition for non-aqueous secondary battery functional layers was apply | coated on the functional layer formation surface of a separator base material, and the apply | coated non-aqueous secondary battery functional layer When forming the functional layer on the separator substrate by drying the composition for use, a separator substrate having a water droplet contact angle of 80 ° to 130 ° on the functional layer forming surface is used, and the surface tension is 33 mN / By using a composition for a non-aqueous secondary battery functional layer that is not less than m and not more than 39 mN / m, the functional layer having the above-described configuration can be easily formed.
<基材準備工程>
 基材準備工程では、少なくとも一方の表面(機能層形成面)の水滴接触角が80°以上130°以下のセパレータ基材を準備する。
 ここで、機能層形成面の水滴接触角が80°未満の場合には、形成された機能層において有機粒子の相が存在する部分の面積の割合が大きくなり過ぎてしまう。また、機能層形成面の水滴接触角が130°超の場合には、形成された機能層において有機粒子の相が存在する部分の面積の割合が小さくなり過ぎてしまう。そして、有機粒子の相が存在する部分の面積の割合を適度な大きさとする観点からは、機能層形成面の水滴接触角は、85°以上であることが好ましく、90°以上であることがより好ましく、また、120°以下であることが好ましく、110°以下であることがより好ましい。
<Base material preparation process>
In the base material preparation step, a separator base material having a water droplet contact angle on at least one surface (functional layer forming surface) of 80 ° or more and 130 ° or less is prepared.
Here, when the water droplet contact angle on the functional layer forming surface is less than 80 °, the ratio of the area of the portion where the organic particle phase exists in the formed functional layer becomes too large. Further, when the water droplet contact angle on the functional layer forming surface is more than 130 °, the ratio of the area of the formed functional layer where the organic particle phase exists is too small. And from the viewpoint of making the ratio of the area of the part where the organic particle phase exists to an appropriate size, the water droplet contact angle of the functional layer forming surface is preferably 85 ° or more, and preferably 90 ° or more. More preferably, it is preferably 120 ° or less, and more preferably 110 ° or less.
 なお、水滴接触角が80°以上130°以下のセパレータ基材は、特に限定されることなく、水滴接触角が上記範囲内の表面を有する市販のセパレータ基材を購入することにより準備してもよいし、前記<セパレータ基材>の項に記載したようなコロナ放電処理等の表面処理を使用し、セパレータ基材として使用し得る微多孔膜の表面の水滴接触角の大きさを調整することにより準備してもよい。 The separator substrate having a water droplet contact angle of 80 ° to 130 ° is not particularly limited, and may be prepared by purchasing a commercially available separator substrate having a surface with a water droplet contact angle within the above range. It is good to adjust the size of the contact angle of water droplets on the surface of the microporous membrane that can be used as a separator substrate by using a surface treatment such as corona discharge treatment as described in the section <Separator substrate>. You may prepare by.
<組成物準備工程>
 組成物準備工程では、上述した有機粒子を少なくとも含有し、任意に、機能層用結着材、非導電性粒子、その他の成分を含有する、水などを分散媒としたスラリー組成物であり、且つ、表面張力が33mN/m以上39mN/m以下である非水系二次電池機能層用組成物を準備する。
 ここで、機能層用組成物の表面張力が33mN/m未満の場合には、形成された機能層において有機粒子の相が存在する部分の面積の割合が大きくなり過ぎてしまう。また、機能層用組成物の表面張力が39mN/m超の場合には、形成された機能層において有機粒子の相が存在する部分の面積の割合が小さくなり過ぎてしまう。そして、有機粒子の相が存在する部分の面積の割合を適度な大きさとする観点からは、機能層用組成物の表面張力は、34mN/m以上であることが好ましく、35mN/m以上であることがより好ましく、また、38mN/m以下であることが好ましく、37mN/m以下であることがより好ましい。
<Composition preparation step>
In the composition preparation step, it is a slurry composition containing at least the organic particles described above, optionally containing a binder for functional layers, non-conductive particles, and other components, using water as a dispersion medium, And the composition for non-aqueous secondary battery functional layers whose surface tension is 33 mN / m or more and 39 mN / m or less is prepared.
Here, when the surface tension of the functional layer composition is less than 33 mN / m, the ratio of the area of the portion where the organic particle phase is present in the formed functional layer becomes too large. Moreover, when the surface tension of the composition for functional layers exceeds 39 mN / m, the ratio of the area of the part in which the organic particle phase exists in the formed functional layer becomes too small. And from the viewpoint of setting the ratio of the area of the portion where the organic particle phase is present to an appropriate size, the surface tension of the functional layer composition is preferably 34 mN / m or more, and more preferably 35 mN / m or more. More preferably, it is preferably 38 mN / m or less, and more preferably 37 mN / m or less.
 なお、機能層用組成物の調製方法は、特に限定はされないが、通常は、有機粒子と、分散媒としての水と、必要に応じて用いられる機能層用結着材、非導電性粒子およびその他の成分とを混合して機能層用組成物を調製する。混合方法は特に制限されないが、各成分を効率よく分散させるため、通常は混合装置として分散機を用いて混合を行う。
 分散機としては、上記成分を均一に分散および混合できる装置を用いることが好ましい。分散機の例としては、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサーなどが挙げられる。また、高い分散シェアを加えることができるという観点から、ビーズミル、ロールミル、フィルミックス等の高分散装置を用いることも好ましい。
The method for preparing the functional layer composition is not particularly limited, but usually, organic particles, water as a dispersion medium, and functional layer binder, non-conductive particles and A functional layer composition is prepared by mixing with other components. Although the mixing method is not particularly limited, in order to disperse each component efficiently, mixing is usually performed using a disperser as a mixing device.
As the disperser, it is preferable to use an apparatus capable of uniformly dispersing and mixing the above components. Examples of the disperser include a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, and a planetary mixer. From the viewpoint that a high dispersion share can be added, it is also preferable to use a high dispersion apparatus such as a bead mill, a roll mill, or a fill mix.
 また、機能層用組成物の表面張力の大きさは、特に限定されることなく、機能層用組成物に濡れ剤を添加して調整することができ、例えば濡れ剤の添加量を増加することにより、機能層用組成物の表面張力を小さくすることができる。
 ここで、濡れ剤としては、特に限定されることなく、ノニオン性界面活性剤やイオン性界面活性剤などの既知の界面活性剤を用いことができる。中でも、濡れ剤としては、ノニオン性界面活性剤を用いることが好ましく、ポリエーテル系共重合体を用いることがより好ましく、エチレンオキサイド-プロピレンオキサイド共重合体を用いることが更に好ましい。そして、濡れ剤の配合量は、機能層用組成物の表面張力を前述した範囲にすることができれば特に限定されることなく、例えば、有機粒子100質量部当たり、0.1質量部以上とすることが好ましく、0.5質量部以上とすることがより好ましく、1.0質量部以上とすることが更に好ましく、1.5質量部以上とすることが特に好ましく、5.0質量部以下とすることが好ましく、3.0質量部以下とすることがより好ましく、2.5質量部以下とすることが更に好ましく、2.2質量部以下とすることが特に好ましい。濡れ剤の配合量が少な過ぎる場合、機能層用組成物の表面張力を十分に小さくすることができない虞がある。一方、濡れ剤の配合量が多過ぎる場合、機能層用組成物の表面張力が小さくなり過ぎる虞がある。また、濡れ剤の配合量が多過ぎる場合、機能層の接着性が低下したり、二次電池の高温サイクル特性が低下したりする虞がある。
Moreover, the magnitude | size of the surface tension of the composition for functional layers is not specifically limited, It can adjust by adding a wetting agent to the composition for functional layers, for example, increasing the addition amount of a wetting agent. Thereby, the surface tension of the composition for functional layers can be made small.
Here, the wetting agent is not particularly limited, and a known surfactant such as a nonionic surfactant or an ionic surfactant can be used. Among these, as the wetting agent, a nonionic surfactant is preferably used, a polyether copolymer is more preferably used, and an ethylene oxide-propylene oxide copolymer is further preferably used. And the compounding quantity of a wetting agent will not be specifically limited if the surface tension of the composition for functional layers can be made into the range mentioned above, for example, shall be 0.1 mass part or more per 100 mass parts of organic particles. It is preferably 0.5 parts by mass or more, more preferably 1.0 part by mass or more, particularly preferably 1.5 parts by mass or more, and 5.0 parts by mass or less. Preferably, it is 3.0 mass parts or less, More preferably, it is 2.5 mass parts or less, It is especially preferable to set it as 2.2 mass parts or less. When the amount of the wetting agent is too small, the surface tension of the functional layer composition may not be sufficiently reduced. On the other hand, when the amount of the wetting agent is too large, the surface tension of the functional layer composition may be too small. Moreover, when there are too many compounding quantities of a wetting agent, there exists a possibility that the adhesiveness of a functional layer may fall or the high temperature cycling characteristic of a secondary battery may fall.
<機能層形成工程>
 機能層形成工程は、機能層用組成物をセパレータ基材の機能層形成面に塗布する工程(塗布工程)と、セパレータ基材上に塗布された機能層用組成物を乾燥させて機能層を形成する工程(乾燥工程)を含んでいる。そして、機能層形成工程では、上述した水滴接触角を有する機能層形成面上に上述した表面張力を有する機能層用組成物を塗布した際に、機能層用組成物が適度にはじかれ、機能層形成面の全面を覆うことなく不均一に分散する。その結果、機能層用組成物を乾燥して形成した機能層は、前述した特定の形状および特定の面積割合の有機粒子の相を備えることとなる。
<Functional layer formation process>
The functional layer forming step includes a step of applying the functional layer composition to the functional layer forming surface of the separator base material (application step), and drying the functional layer composition applied on the separator base material to form a functional layer. A process of forming (drying process) is included. In the functional layer forming step, when the functional layer composition having the surface tension described above is applied onto the functional layer forming surface having the water droplet contact angle, the functional layer composition is appropriately repelled and functions. Disperse non-uniformly without covering the entire surface of the layer formation. As a result, the functional layer formed by drying the composition for the functional layer has the above-described specific shape and phase of organic particles having a specific area ratio.
 ここで、塗布工程において、機能層用組成物をセパレータ基材上に塗布する方法は、特に制限は無く、例えば、スプレーコート法、ドクターブレード法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。なかでも、より薄い機能層を形成する点から、グラビア法やスプレーコート法が好ましい。
 また乾燥工程において、セパレータ基材上の機能層用組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥法、真空乾燥法、赤外線や電子線などの照射による乾燥法が挙げられる。乾燥条件は特に限定されないが、乾燥温度は好ましくは30~80℃で、乾燥時間は好ましくは30秒~10分である。
 なお、機能層用組成物の乾燥後、金型プレスまたはロールプレスなどを用い、機能層に加圧処理を施してもよい。加圧処理により、機能層と基材との密着性を向上させることができる。
Here, in the coating process, the method for coating the functional layer composition on the separator substrate is not particularly limited. For example, the spray coating method, the doctor blade method, the reverse roll method, the direct roll method, the gravure method, the extensible method. Examples include the rouge method and the brush painting method. Of these, the gravure method and the spray coating method are preferable from the viewpoint of forming a thinner functional layer.
In the drying step, the method for drying the composition for the functional layer on the separator substrate is not particularly limited, and a known method can be used. For example, a drying method using hot air, hot air, low-humidity air, or a vacuum drying method. And a drying method by irradiation with infrared rays or electron beams. The drying conditions are not particularly limited, but the drying temperature is preferably 30 to 80 ° C., and the drying time is preferably 30 seconds to 10 minutes.
In addition, after drying the composition for functional layers, you may perform a pressurization process to a functional layer using a die press or a roll press. By the pressure treatment, the adhesion between the functional layer and the substrate can be improved.
 そして、セパレータ基材上に形成する機能層の厚みは、好ましくは0.01μm以上、より好ましくは0.1μm以上、さらに好ましくは0.5μm以上であり、好ましくは20μm以下、より好ましくは10μm以下、さらに好ましくは5μm以下である。機能層の厚みが、前記範囲の下限値以上であることで、機能層の強度を十分に確保することができる。また、機能層の厚みが、前記範囲の上限値以下であることで、機能層のイオン拡散性を確保し二次電池の低温出力特性をさらに向上させることができる。 The thickness of the functional layer formed on the separator substrate is preferably 0.01 μm or more, more preferably 0.1 μm or more, further preferably 0.5 μm or more, preferably 20 μm or less, more preferably 10 μm or less. More preferably, it is 5 μm or less. When the thickness of the functional layer is not less than the lower limit of the above range, the strength of the functional layer can be sufficiently secured. Moreover, when the thickness of the functional layer is less than or equal to the upper limit of the above range, the ion diffusibility of the functional layer can be secured and the low-temperature output characteristics of the secondary battery can be further improved.
(非水系二次電池)
 本発明の非水系二次電池は、正極と、負極と、セパレータと、電解液とを備え、セパレータとして上述した機能層を備える非水系二次電池用セパレータを用いることを特徴とする。そして、本発明の非水系二次電池では、上記機能層が接着層として機能する場合には、正極とセパレータ、および/または、負極とセパレータが機能層を介して良好に接着される。なお、本発明の非水系二次電池は、電解液中での接着性とイオン伝導性との双方に優れる機能層を有する本発明のセパレータを備えているので、高温サイクル特性および低温出力特性などの電池特性に優れている。
(Non-aqueous secondary battery)
The non-aqueous secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and an electrolyte, and uses a separator for a non-aqueous secondary battery including the functional layer described above as a separator. And in the non-aqueous secondary battery of this invention, when the said functional layer functions as an adhesive layer, a positive electrode and a separator and / or a negative electrode and a separator are adhere | attached favorably through a functional layer. In addition, since the non-aqueous secondary battery of the present invention includes the separator of the present invention having a functional layer that is excellent in both adhesion and ionic conductivity in an electrolytic solution, high temperature cycle characteristics, low temperature output characteristics, etc. Excellent battery characteristics.
 なお、非水系二次電池において、正極および負極としては、非水系二次電池において用いられている既知の正極および負極を使用することができる。また、電解液としては、非水系二次電池において用いられている既知の電解液を使用することができる。 In the nonaqueous secondary battery, known positive electrodes and negative electrodes used in nonaqueous secondary batteries can be used as the positive electrode and the negative electrode. As the electrolytic solution, a known electrolytic solution used in a non-aqueous secondary battery can be used.
 具体的には、電極(正極および負極)としては、特に限定されることなく、集電体上に電極合材層が形成された電極を用いることができる。ここで、集電体、電極合材層中の成分(例えば、電極活物質(正極活物質、負極活物質)および電極合材層用結着材(正極合材層用結着材、負極合材層用結着材)など)、並びに、集電体上への電極合材層の形成方法は、既知のものを用いることができる。具体的には、例えば特開2013-145763号公報に記載のものを用いることができる。 Specifically, the electrode (positive electrode and negative electrode) is not particularly limited, and an electrode in which an electrode mixture layer is formed on a current collector can be used. Here, the current collector, the components in the electrode mixture layer (for example, the electrode active material (positive electrode active material, negative electrode active material) and the electrode mixture layer binder (positive electrode mixture layer binder, negative electrode composite) As a method for forming the electrode mixture layer on the current collector, and the like, a known material can be used. Specifically, for example, those described in JP2013-145663A can be used.
 また、電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。例えば、非水系二次電池がリチウムイオン二次電池である場合には、支持電解質としては、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF6、LiClO4、CF3SO3Liが好ましく、LiPF6が特に好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。 As the electrolytic solution, an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used. For example, when the non-aqueous secondary battery is a lithium ion secondary battery, a lithium salt is used as the supporting electrolyte. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like. Among these, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable, and LiPF 6 is particularly preferable because it is easily soluble in a solvent and exhibits a high degree of dissociation. In addition, electrolyte may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. Usually, the lithium ion conductivity tends to increase as the supporting electrolyte having a higher degree of dissociation is used, so that the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
 さらに、電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類を用いることが好ましく、エチレンカーボネートとエチルメチルカーボネートとの混合物を用いることがさらに好ましい。
 なお、電解液中の電解質の濃度は適宜調整することができ、例えば0.5~15質量%とすることが好ましく、2~13質量%とすることがより好ましく、5~10質量%とすることがさらに好ましい。また、電解液には、既知の添加剤、例えばフルオロエチレンカーボネートやエチルメチルスルホンなどを添加してもよい。
Furthermore, the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte. For example, dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC) ), Carbonates such as butylene carbonate (BC) and ethyl methyl carbonate (EMC); esters such as γ-butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; Sulfur compounds; etc. are preferably used. Moreover, you may use the liquid mixture of these solvents. Among them, it is preferable to use carbonates because they have a high dielectric constant and a wide stable potential region, and it is more preferable to use a mixture of ethylene carbonate and ethyl methyl carbonate.
The concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate. For example, the concentration is preferably 0.5 to 15% by mass, more preferably 2 to 13% by mass, and more preferably 5 to 10% by mass. More preferably. Further, known additives such as fluoroethylene carbonate and ethyl methyl sulfone may be added to the electrolytic solution.
<非水系二次電池の製造方法>
 非水系二次電池は、例えば、正極と負極とをセパレータを介して重ね合わせたものを、必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。非水系二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。非水系二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、いずれであってもよい。
<Method for producing non-aqueous secondary battery>
A non-aqueous secondary battery is, for example, a stack of a positive electrode and a negative electrode sandwiched between separators, wound in accordance with the battery shape as needed, folded into a battery container, and an electrolyte solution in the battery container. It can be manufactured by pouring and sealing. In order to prevent the occurrence of pressure rise inside the non-aqueous secondary battery, overcharge / discharge, etc., an overcurrent prevention element such as a fuse or a PTC element, an expanded metal, a lead plate, etc. may be provided as necessary. . The shape of the non-aqueous secondary battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like, for example.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 また、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される構造単位の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
 実施例および比較例において、コア部の重合体およびシェル部の重合体の電解液膨潤度およびガラス転移温度、機能層用結着材のガラス転移温度、有機粒子の体積平均粒子径D50、有機粒子のコアシェル比率および被覆率、非水系二次電池機能層用組成物の表面張力、セパレータ基材の水滴接触角、有機粒子の相が存在する部分の面積の割合、電解液浸漬後の電極とセパレータとの接着性、並びに、二次電池の高温サイクル特性および低温出力特性は、下記の方法で測定および評価した。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the following description, “%” and “part” representing amounts are based on mass unless otherwise specified.
In addition, in a polymer produced by copolymerizing a plurality of types of monomers, the proportion of the structural unit formed by polymerizing a certain monomer in the polymer is usually that unless otherwise specified. This coincides with the ratio (preparation ratio) of the certain monomer in the total monomers used for polymerization of the polymer.
In Examples and Comparative Examples, the electrolyte swelling degree and glass transition temperature of the polymer of the core part and the polymer of the shell part, the glass transition temperature of the binder for the functional layer, the volume average particle diameter D50 of the organic particles, the organic particles Core-shell ratio and coverage ratio, surface tension of the composition for the non-aqueous secondary battery functional layer, water droplet contact angle of the separator base material, ratio of the area where the organic particle phase is present, electrode and separator after immersion in the electrolyte The high-temperature cycle characteristics and low-temperature output characteristics of the secondary battery were measured and evaluated by the following methods.
<コア部の重合体およびシェル部の重合体の電解液膨潤度>
 有機粒子のコア部およびシェル部の形成に用いた単量体および各種添加剤等を使用し、当該コア部およびシェル部の重合条件と同様の重合条件で、コア部の重合体およびシェル部の重合体を含む水分散液をそれぞれ調製した。この水分散液を、ポリテトラフルオロエチレン製のシャーレに入れ、110℃、10時間の条件で乾燥して、厚み0.5mmのフィルムを得た。そして、得られたフィルムを1cm角に裁断し、試験片を得た。この試験片の質量W0を測定した。また、前記試験片を、電解液に60℃で72時間浸漬した。その後、試験片を電解液から取り出し、試験片の表面の電解液を拭き取り、浸漬試験後の試験片の質量W1を測定した。そして、これらの質量W0およびW1を用いて、電解液膨潤度S(倍)を、S=W1/W0にて求めた。
 なお、電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とビニレンカーボネート(VC)との混合溶媒(体積混合比:EC/DEC/VC=68.5/30/1.5、SP値:12.7(cal/cm1/2)に、支持電解質としてLiPF6を溶媒に対して1mol/Lの濃度で溶かしたものを用いた。
<コア部の重合体、シェル部の重合体および機能層用結着材のガラス転移温度>
 有機粒子のコア部およびシェル部の形成に用いた単量体および各種添加剤等を使用し、当該コア部およびシェル部の重合条件と同様の重合条件で、測定試料となる重合体(コア部の重合体およびシェル部の重合体)を含む水分散液をそれぞれ調製した。そして、調製した水分散液を測定試料とした。また、機能層用結着材を含む水分散液を準備し、測定試料とした。
 次に、示差熱分析測定装置(エスアイアイ・ナノテクノロジー社製「EXSTAR DSC6220」)を用い、乾燥させた測定試料10mgをアルミパンに計量し、リファレンスとして空のアルミパンを用い、測定温度範囲-100℃~500℃の間で、昇温速度10℃/分、常温常湿下で、DSC曲線を測定した。この昇温過程で、微分信号(DDSC)が0.05mW/分/mg以上となるDSC曲線の吸熱ピークが出る直前のベースラインと、吸熱ピーク後に最初に現れる変曲点でのDSC曲線の接線との交点から、ガラス転移温度を求めた。
<有機粒子の体積平均粒子径D50>
 有機粒子の体積平均粒子径D50は、レーザー回折式粒子径分布測定装置(島津製作所社製「SALD-3100」)により測定された粒子径分布において、小径側から計算した累積体積が50%となる粒子径とした。
<有機粒子のコアシェル比率>
 有機粒子のコアシェル比率を、以下の手順で測定した。
 調製した有機粒子を、可視光硬化性樹脂(日本電子株式会社製「D-800」)に十分分散させた後、包埋し、有機粒子を含有するブロック片を得た。次に、得られたブロック片を、ダイヤモンド刃を備えたミクロトームで厚さ100nmの薄片状に切り出して、測定用試料を作製した。その後、四酸化ルテニウムを用いて測定用試料に染色処理を施した。
 次に、染色処理を施した測定用試料を、透過型電子顕微鏡(日本電子社製「JEM-3100F」)にセットして、加速電圧80kVにて、有機粒子の断面構造を写真撮影した。電子顕微鏡の倍率は、視野に有機粒子1個の断面が入るように倍率を設定した。その後、撮影された有機粒子の断面構造を観察し、観察されたシェル部の構成に応じて、以下の手順で有機粒子のシェル部の平均厚みを測定した。そして、測定されたシェル部の平均厚みを有機粒子の体積平均粒子径D50で割ることにより、コアシェル比率を求めた。
<<シェル部が重合体の粒子により構成されている場合>>
 有機粒子の断面構造から、シェル部を構成する重合体の粒子の最長径を測定した。シェル部を構成する重合体の粒子の最長径を、任意に選択した20個の有機粒子について測定し、その最長径の平均値をシェル部の平均厚みとした。
<<シェル部が粒子以外の形状を有している場合>>
 有機粒子の断面構造から、シェル部の最大厚みを測定した。シェル部の最大厚みを、任意に選択した20個の有機粒子について測定し、その最大厚みの平均値をシェル部の平均厚みとした。
<有機粒子の被覆率>
 有機粒子の被覆率を、以下の手順で測定した。
 上記有機粒子のコアシェル比率の測定方法と同様にして、有機粒子の断面構造を写真撮影し、撮影された有機粒子の断面構造において、コア部の周の長さD1、および、コア部の外表面とシェル部とが当接する部分の長さD2を計測し、その有機粒子のコア部の外表面がシェル部によって覆われる割合(被覆割合)Rc(%)=(D2/D1)×100を算出した。被覆割合Rcの算出には、画像解析ソフトである「AnalySIS Pro」(オリンパス株式会社製)を使用した。
 前記の被覆割合Rcを、任意に選択した20個の有機粒子について測定し、その平均値を、有機粒子のコア部の外表面がシェル部によって覆われる平均割合(被覆率)とした。
<非水系二次電池機能層用組成物の表面張力>
 調製した非水系二次電池機能層用組成物をガラスシャーレ上に注いだ。そして、白金プレートを用い、プレート法により表面張力を測定した。測定は、協和界面科学製の全自動表面張力計「CBVP-Z」を使用して2回行い、測定値から表面張力の平均値を求めて、当該平均値を非水系二次電池機能層用組成物の表面張力とした。
<セパレータ基材の水滴接触角>
 セパレータ基材を平板上に固定した。そして、1μLのイオン交換水(表面張力72mN/m)をセパレータ基材上に滴下し、着滴から60秒後の接触角を測定した。なお、測定は、協和界面科学製の接触角計「DM-901」を使用して2回行い、測定値から水滴接触角の平均値を求めて、当該平均値をセパレータ基材の水滴接触角とした。
<有機粒子の相が存在する部分の面積の割合>
 セパレータの機能層の表面を、走査型電子顕微鏡(SEM)「日立S-4700」を用いて倍率5000倍で観察し、SEM画像を10枚取得した。得られた画像について、画像解析ソフト(オリンパス社製「analysis PRO」)を使用して以下の計算式により有機粒子の相が存在している部分の面積の割合を算出した。そして、算出値の平均値を、機能層形成面の面積に対する有機粒子の相が存在する部分の面積の割合とした。但し、比較例5のセパレータの機能層については、機能層の幅と、機能層の形成間隔とから機能層形成面の面積に対する有機粒子の相が存在する部分の面積の割合を算出した。
 有機粒子の相が存在している部分の面積の割合(%)=(有機粒子の相が存在する部分の面積/視野面積)×100
<電解液浸漬後のセパレータと電極との接着性>
 調製した正極およびセパレータを備える積層体、並びに、負極およびセパレータを備える積層体を、それぞれ10mm幅に切り出して試験片を得た。この試験片を電解液中に温度60℃で3日間浸漬した。ここで、電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とビニレンカーボネート(VC)との混合溶媒(体積混合比:EC/DEC/VC=68.5/30/1.5、SP値:12.7(cal/cm1/2)に、支持電解質としてLiPF6を溶媒に対して1mol/Lの濃度で溶かしたものを用いた。
 その後、試験片を取り出し、表面に付着した電解液を拭き取った。その後、この試験片を、電極(正極または負極)の集電体側の面を下にして、電極の表面にセロハンテープを貼り付けた。この際、セロハンテープとしてはJIS Z1522に規定されるものを用いた。また、セロハンテープは水平な試験台に固定しておいた。そして、セパレータ基材の一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を、正極およびセパレータを備える積層体、並びに、負極およびセパレータを備える積層体でそれぞれ3回、合計6回行い、応力の平均値をピール強度として求めて、電解液浸漬後の電極とセパレータとの接着性を下記の基準で評価した。ピール強度が大きいほど、接着性が高いことを示す。
 A:ピール強度が6.0N/m以上
 B:ピール強度が4.0N/m以上6.0N/m未満
 C:ピール強度が1.0N/m以上4.0N/m未満
 D:ピール強度が1.0N/m未満
<高温サイクル特性>
 製造した放電容量800mAhの捲回型セルのリチウムイオン二次電池を、25℃の環境下で24時間静置した。その後、25℃の環境下で、0.1Cで4.35Vまで充電し0.1Cで2.75Vまで放電する充放電の操作を行い、初期容量C0を測定した。その後、さらに、60℃の環境下で、前記と同様の条件で充放電を繰り返し、1000サイクル後の容量C1を測定した。そして、サイクル前後での容量維持率ΔC(%)=(C1/C0)×100を算出し、高温サイクル特性を下記の基準で評価した。この容量維持率ΔCの値が大きいほど、高温サイクル特性に優れ、電池が長寿命であることを示す。
 A:容量維持率ΔCが88%以上
 B:容量維持率ΔCが84%以上88%未満
 C:容量維持率ΔCが80%以上84%未満
 D:容量維持率ΔCが80%未満
<低温出力特性>
 製造した放電容量800mAhの捲回型セルのリチウムイオン二次電池を、25℃の環境下で24時間静置した。その後、25℃の環境下で、0.1Cの充電レートで5時間の充電の操作を行い、その時の電圧V0を測定した。その後、-10℃環境下で、1Cの放電レートにて放電の操作を行い、放電開始15秒後の電圧V1を測定した。そして、電圧変化ΔV=V0-V1を算出し、低温出力特性を下記の基準で評価した。この電圧変化ΔVの値が小さいほど、低温出力特性に優れることを示す。
 A:電圧変化ΔVが300mV未満
 B:電圧変化ΔVが300mV以上350mV未満
 C:電圧変化ΔVが350mV以上
<Swelling degree of electrolyte solution of polymer of core part and polymer of shell part>
Using the monomers and various additives used for the formation of the core part and shell part of the organic particles, under the same polymerization conditions as the polymerization conditions for the core part and shell part, the polymer of the core part and the shell part An aqueous dispersion containing the polymer was prepared. This aqueous dispersion was put in a petri dish made of polytetrafluoroethylene and dried under conditions of 110 ° C. and 10 hours to obtain a film having a thickness of 0.5 mm. And the obtained film was cut | judged to 1 square cm, and the test piece was obtained. The mass W0 of this test piece was measured. Further, the test piece was immersed in an electrolytic solution at 60 ° C. for 72 hours. Then, the test piece was taken out from the electrolytic solution, the electrolytic solution on the surface of the test piece was wiped off, and the mass W1 of the test piece after the immersion test was measured. And using these mass W0 and W1, electrolyte solution swelling degree S (times) was calculated | required by S = W1 / W0.
As the electrolytic solution, a mixed solvent of ethylene carbonate (EC), diethyl carbonate (DEC) and vinylene carbonate (VC) (volume mixing ratio: EC / DEC / VC = 68.5 / 30 / 1.5, SP Value: 12.7 (cal / cm 3 ) 1/2 ) was used as a supporting electrolyte in which LiPF 6 was dissolved in a solvent at a concentration of 1 mol / L.
<Glass transition temperature of core polymer, shell polymer and functional layer binder>
A polymer (core part) to be a measurement sample under the same polymerization conditions as the polymerization conditions of the core part and the shell part using the monomers and various additives used for forming the core part and shell part of the organic particles Water dispersions containing the polymer and the shell polymer). The prepared aqueous dispersion was used as a measurement sample. Moreover, the aqueous dispersion containing the binder for functional layers was prepared, and it was set as the measurement sample.
Next, using a differential thermal analyzer (“EXSTAR DSC6220” manufactured by SII Nano Technology), 10 mg of the dried measurement sample was weighed into an aluminum pan, an empty aluminum pan was used as a reference, and a measurement temperature range− The DSC curve was measured between 100 ° C. and 500 ° C. at a rate of temperature increase of 10 ° C./min and at normal temperature and humidity. During this temperature rising process, the baseline immediately before the endothermic peak of the DSC curve where the differential signal (DDSC) becomes 0.05 mW / min / mg or more and the tangent line of the DSC curve at the first inflection point after the endothermic peak The glass transition temperature was determined from the intersection with.
<Volume average particle diameter D50 of organic particles>
The volume average particle size D50 of the organic particles is 50% of the cumulative volume calculated from the small diameter side in the particle size distribution measured by a laser diffraction type particle size distribution measuring device (“SALD-3100” manufactured by Shimadzu Corporation). The particle diameter was taken.
<Core shell ratio of organic particles>
The core-shell ratio of the organic particles was measured by the following procedure.
The prepared organic particles were sufficiently dispersed in a visible light curable resin (“D-800” manufactured by JEOL Ltd.) and then embedded to obtain a block piece containing organic particles. Next, the obtained block piece was cut into a thin piece having a thickness of 100 nm with a microtome equipped with a diamond blade to prepare a measurement sample. Thereafter, the measurement sample was dyed using ruthenium tetroxide.
Next, the dyed measurement sample was set in a transmission electron microscope (“JEM-3100F” manufactured by JEOL Ltd.), and a cross-sectional structure of organic particles was photographed at an acceleration voltage of 80 kV. The magnification of the electron microscope was set so that the cross section of one organic particle was in the visual field. Thereafter, the cross-sectional structure of the photographed organic particles was observed, and the average thickness of the shell portion of the organic particles was measured by the following procedure according to the observed configuration of the shell portion. And the core-shell ratio was calculated | required by dividing the measured average thickness of the shell part by the volume average particle diameter D50 of organic particles.
<< When the shell part is composed of polymer particles >>
From the cross-sectional structure of the organic particles, the longest diameter of the polymer particles constituting the shell portion was measured. The longest diameter of the polymer particles constituting the shell part was measured for 20 arbitrarily selected organic particles, and the average value of the longest diameters was taken as the average thickness of the shell part.
<< When the shell has a shape other than particles >>
From the cross-sectional structure of the organic particles, the maximum thickness of the shell portion was measured. The maximum thickness of the shell portion was measured for 20 arbitrarily selected organic particles, and the average value of the maximum thickness was taken as the average thickness of the shell portion.
<Coverage of organic particles>
The organic particle coverage was measured by the following procedure.
In the same manner as the method for measuring the core-shell ratio of the organic particles, the cross-sectional structure of the organic particles is photographed. In the cross-sectional structure of the captured organic particles, the circumference D1 of the core portion and the outer surface of the core portion The length D2 of the part where the shell part abuts is measured, and the ratio (covering ratio) Rc (%) = (D2 / D1) × 100 where the outer surface of the core part of the organic particle is covered by the shell part is calculated. did. For the calculation of the covering ratio Rc, “AnalySIS Pro” (manufactured by Olympus Corporation) which is image analysis software was used.
The covering ratio Rc was measured for 20 arbitrarily selected organic particles, and the average value was defined as the average ratio (covering ratio) at which the outer surface of the core portion of the organic particles was covered by the shell portion.
<Surface tension of composition for non-aqueous secondary battery functional layer>
The prepared composition for a non-aqueous secondary battery functional layer was poured onto a glass petri dish. And the surface tension was measured by the plate method using the platinum plate. The measurement is performed twice using a fully automatic surface tension meter “CBVP-Z” manufactured by Kyowa Interface Science. The average value of the surface tension is obtained from the measured value, and the average value is used for the non-aqueous secondary battery functional layer. The surface tension of the composition was used.
<Water droplet contact angle of separator substrate>
The separator substrate was fixed on a flat plate. Then, 1 μL of ion exchange water (surface tension 72 mN / m) was dropped on the separator substrate, and the contact angle 60 seconds after the landing was measured. The measurement was performed twice using a contact angle meter “DM-901” manufactured by Kyowa Interface Science, and the average value of the water droplet contact angles was determined from the measured values, and the average value was used as the water droplet contact angle of the separator substrate. It was.
<Ratio of the area of the part where the phase of organic particles exists>
The surface of the functional layer of the separator was observed at a magnification of 5000 using a scanning electron microscope (SEM) “Hitachi S-4700” to obtain 10 SEM images. About the obtained image, the ratio of the area of the part in which the phase of an organic particle exists was computed with the following formula using image analysis software ("analysis PRO" by Olympus). And the average value of the calculated value was made into the ratio of the area of the part in which the phase of an organic particle exists with respect to the area of a functional layer formation surface. However, for the functional layer of the separator of Comparative Example 5, the ratio of the area of the portion where the organic particle phase was present to the area of the functional layer forming surface was calculated from the width of the functional layer and the functional layer formation interval.
Ratio (%) of the area where the organic particle phase exists = (area of the area where the organic particle phase exists / viewing area) × 100
<Adhesiveness between separator and electrode after immersion in electrolyte>
The prepared laminate including the positive electrode and the separator and the laminate including the negative electrode and the separator were each cut into a width of 10 mm to obtain test pieces. This test piece was immersed in the electrolytic solution at a temperature of 60 ° C. for 3 days. Here, as an electrolytic solution, a mixed solvent of ethylene carbonate (EC), diethyl carbonate (DEC), and vinylene carbonate (VC) (volume mixing ratio: EC / DEC / VC = 68.5 / 30 / 1.5, SP value: 12.7 (cal / cm 3 ) 1/2 ) was used in which LiPF 6 was dissolved in a solvent at a concentration of 1 mol / L as a supporting electrolyte.
Then, the test piece was taken out and the electrolytic solution adhering to the surface was wiped off. Then, the cellophane tape was affixed on the surface of the electrode of this test piece with the current collector side of the electrode (positive electrode or negative electrode) facing down. At this time, a cellophane tape defined in JIS Z1522 was used. The cellophane tape was fixed on a horizontal test bench. And the stress when one end of the separator base material was pulled vertically upward at a pulling speed of 50 mm / min and peeled was measured. This measurement was performed three times for each of the laminate including the positive electrode and the separator and the laminate including the negative electrode and the separator, for a total of 6 times, and the average value of the stress was obtained as the peel strength. The adhesiveness was evaluated according to the following criteria. It shows that adhesiveness is so high that peel strength is large.
A: Peel strength is 6.0 N / m or more B: Peel strength is 4.0 N / m or more and less than 6.0 N / m C: Peel strength is 1.0 N / m or more and less than 4.0 N / m D: Peel strength is <1.0 N / m <High-temperature cycle characteristics>
The manufactured lithium ion secondary battery of a wound type cell having a discharge capacity of 800 mAh was allowed to stand in an environment of 25 ° C. for 24 hours. Thereafter, under an environment of 25 ° C., a charge / discharge operation of charging up to 4.35 V at 0.1 C and discharging to 2.75 V at 0.1 C was performed, and the initial capacity C0 was measured. Thereafter, charging and discharging were further repeated under the same conditions as described above under an environment of 60 ° C., and the capacity C1 after 1000 cycles was measured. Then, the capacity retention ratio ΔC (%) = (C1 / C0) × 100 before and after the cycle was calculated, and the high temperature cycle characteristics were evaluated according to the following criteria. The larger the value of the capacity retention ratio ΔC, the better the high-temperature cycle characteristics and the longer the battery life.
A: Capacity maintenance ratio ΔC is 88% or more B: Capacity maintenance ratio ΔC is 84% or more and less than 88% C: Capacity maintenance ratio ΔC is 80% or more and less than 84% D: Capacity maintenance ratio ΔC is less than 80% <low temperature output characteristics >
The manufactured lithium ion secondary battery of a wound type cell having a discharge capacity of 800 mAh was allowed to stand in an environment of 25 ° C. for 24 hours. Thereafter, charging was performed for 5 hours at a charging rate of 0.1 C under an environment of 25 ° C., and the voltage V0 at that time was measured. Thereafter, a discharge operation was performed at a discharge rate of 1 C in an environment of −10 ° C., and the voltage V1 15 seconds after the start of discharge was measured. Then, the voltage change ΔV = V0−V1 was calculated, and the low temperature output characteristics were evaluated according to the following criteria. It shows that it is excellent in low temperature output characteristics, so that the value of this voltage change (DELTA) V is small.
A: Voltage change ΔV is less than 300 mV B: Voltage change ΔV is 300 mV or more and less than 350 mV C: Voltage change ΔV is 350 mV or more
(実施例1)
<コアシェル構造を有する有機粒子の調製>
 攪拌機付き5MPa耐圧容器に、コア部形成用として、(メタ)アクリル酸エステル単量体としてのメタクリル酸メチル75部、酸基含有単量体としてのメタクリル酸4部、架橋性単量体としてのエチレングリコールジメタクリレート1部;乳化剤としてのドデシルベンゼンスルホン酸ナトリウム1部;イオン交換水150部、並びに、重合開始剤としての過硫酸カリウム0.5部を入れ、十分に攪拌した。その後、60℃に加温して重合を開始した。重合転化率が96%になるまで重合を継続させて、コア部を構成する粒子状の重合体を含む水分散液を得た。
 この水分散液に、シェル部形成用として、芳香族ビニル単量体としてのスチレン19部および酸基含有単量体としてのメタクリル酸1部の混合物を連続添加し、70℃に加温して重合を継続した。重合転化率が96%になった時点で、冷却して反応を停止して、コア部の外表面が部分的にシェル部で覆われたコアシェル構造を有する有機粒子を含む水分散液を調製した。
 なお、得られた有機粒子の体積平均粒子径D50は、0.45μmであった。
 そして、得られた有機粒子のコアシェル比率および被覆率を評価した。結果を表1に示す。
<機能層用結着材の調製>
 撹拌機を備えた反応器に、イオン交換水70部、乳化剤としてのラウリル硫酸ナトリウム(花王ケミカル社製、製品名「エマール2F」)0.15部、および過流酸アンモニウム0.5部を、それぞれ供給し、気相部を窒素ガスで置換し、60℃に昇温した。
 一方、別の容器で、イオン交換水50部、分散剤としてのドデシルベンゼンスルホン酸ナトリウム0.5部、および、(メタ)アクリル酸エステル単量体としてのアクリル酸ブチル94部、アクリロニトリル2部、メタクリル酸2部、N-メチロールアクリルアミド1部、アクリルアミド1部を混合して単量体混合物を得た。この単量体混合物を4時間かけて前記反応器に連続的に添加して重合を行った。添加中は、60℃で反応を行った。添加終了後、さらに70℃で3時間撹拌して反応を終了し、粒子状の機能層用結着材(アクリル重合体)を含む水分散液を調製した。
 なお、得られた機能層用結着材のガラス転移温度は-40℃であった。
<非水系二次電池機能層用組成物の調製>
 前記のコアシェル構造を有する有機粒子を含む水分散液を固形分相当で100部に対し、前記の機能層用結着材を含む水分散液を固形分相当で15部、濡れ剤としてのエチレンオキサイド-プロピレンオキサイド共重合体(固形分濃度70質量%、重合比:5/5(質量比))を固形分相当で1.9部混合し、さらにイオン交換水を固形分濃度が15質量%になるように混合し、スラリー状の非水系二次電池機能層用組成物を調製した(組成物準備工程)。そして、得られた非水系二次電池機能層用組成物の表面張力を測定した。結果を表1に示す。
<セパレータ基材の準備>
 ポリエチレン製の微多孔膜(厚み16μm、ガーレー値210s/100cc)を用意した。用意した微多孔膜を、春日電機製の「エアプラズマAPW-602f」を使用して50W・min/mの処理強度でコロナ放電処理し、セパレータ基材とした(基材準備工程)。そして、セパレータ基材の水滴接触角を測定した。結果を表1に示す。
<セパレータの調製>
 セパレータ基材の両面に、スラリー状の非水系二次電池機能層用組成物をグラビアコート法(線数300)により塗布し、50℃で1分間乾燥させた(機能層形成工程)。これにより、1層当たりの厚みが0.8μmの機能層をセパレータ基材上に形成して、セパレータ基材の両面に機能層を形成してなるセパレータを得た。このセパレータは、機能層、セパレータ基材および機能層を、この順に備えている。そして、セパレータの機能層をSEMで観察し、有機粒子の相が存在する部分の面積の割合を求めた。得られたSEM画像を図1に示し、結果を表1に示す。なお、機能層には、有機粒子の相が不規則な形状で存在していた。また、粒子としては有機粒子のみが観察され、機能層用結着材はSEMでは粒子として観察されなかった。
<負極用の粒子状バインダーの製造>
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン33.5部、イタコン酸3.5部、スチレン62部、2-ヒドロキシエチルアクリレート1部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部および重合開始剤としての過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状バインダー(SBR)を含む混合物を得た。上記粒子状バインダーを含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって前記の混合物から未反応単量体の除去を行い、30℃以下まで冷却して、所望の粒子状バインダー(負極合材層用結着材)を含む水分散液を得た。
<負極用スラリー組成物の製造>
 負極活物質として人造黒鉛(体積平均粒子径:15.6μm)100部、および、増粘剤としてカルボキシメチルセルロースナトリウム塩(日本製紙社製「MAC350HC」)の2%水溶液を固形分相当で1部混合し、さらにイオン交換水を加えて固形分濃度を68%に調製し、25℃で60分間混合した。こうして得られた混合液に、イオン交換水を加えて固形分濃度を62%に調製した後、さらに25℃で15分間混合した。この混合液に、上記の粒子状バインダーを含む水分散液を固形分相当で1.5部入れ、さらにイオン交換水を加えて最終固形分濃度が52%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して、流動性の良い負極用スラリー組成物を得た。
<負極の製造>
 前記負極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、プレス前の負極原反を得た。このプレス前の負極原反をロールプレスで圧延して、負極合材層の厚みが80μmのプレス後の負極を得た。
<正極用スラリー組成物の製造>
 正極活物質として体積平均粒子径12μmのLiCoO2を100部、導電材としてアセチレンブラック(電気化学工業社製、製品名「HS-100」)を2部、および、正極用バインダー(正極合材層用結着材)としてポリフッ化ビニリデン(クレハ社製、製品名「#7208」)を固形分相当で2部混合し、これにN-メチルピロリドンを加えて全固形分濃度を70%にした。これらをプラネタリーミキサーにより混合し、正極用スラリー組成物を得た。
<正極の製造>
 前記正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミニウム箔上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、アルミニウム箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、プレス前の正極原反を得た。このプレス前の正極原反をロールプレスで圧延して、正極を得た。
<負極または正極とセパレータとの積層体の製造>
 プレス後の正極を直径13mmの円形に切り抜いて、円形の正極を得た。また、プレス後の負極を直径14mmの円形に切り抜いて、円形の負極を得た。さらに、上記セパレータを直径18mmの円形に切り抜いて、円形のセパレータを得た。
 そして、円形のセパレータの片面に、負極または正極のみを、電極合材層側の面でセパレータに接触する向きにして沿わせた。その後、温度80℃、圧力0.5MPaで10秒間、加熱プレス処理を施し、正極または負極をセパレータに圧着して、正極およびセパレータを備える積層体、並びに、負極およびセパレータを備える積層体を得た。そして、作製した積層体を用いて電解液浸漬後のセパレータと電極との接着性を評価した。結果を表1に示す。
<リチウムイオン二次電池の製造>
 プレス後の正極を49cm×5cmに切り出した。切り出された正極の正極合材層上に、55cm×5.5cmに切り出したセパレータを配置した。さらに、プレス後の負極を50cm×5.2cmに切り出し、この切り出された負極を前記セパレータの正極とは反対側に、負極合材層側の表面がセパレータに向かい合うよう配置した。更に、負極上に、55cm×5.5cmに切り出したセパレータを配置した。これを捲回機によって捲回し、捲回体を得た。この捲回体を60℃、0.5MPaでプレスし、扁平体とした。この扁平体を、電池の外装としてのアルミニウム包材外装で包み、電解液(溶媒:エチレンカーボネート(EC)/ジエチルカーボネート(DEC)/ビニレンカーボネート(VC)=68.5/30/1.5(体積比)、電解質:濃度1MのLiPF6)を空気が残らないように注入した。さらに、アルミニウム包材外装の開口を密封するために、150℃のヒートシールをしてアルミニウム包材外装を閉口した。これにより、800mAhの捲回型リチウムイオン二次電池を製造した。
 そして、得られたリチウムイオン二次電池について、高温サイクル特性および低温出力特性を評価した。結果を表1に示す。
(Example 1)
<Preparation of organic particles having a core-shell structure>
In a 5 MPa pressure vessel with a stirrer, 75 parts of methyl methacrylate as a (meth) acrylic acid ester monomer, 4 parts of methacrylic acid as an acid group-containing monomer, 1 part of ethylene glycol dimethacrylate; 1 part of sodium dodecylbenzenesulfonate as an emulsifier; 150 parts of ion-exchanged water and 0.5 part of potassium persulfate as a polymerization initiator were added and sufficiently stirred. Then, it heated to 60 degreeC and superposition | polymerization was started. Polymerization was continued until the polymerization conversion rate reached 96% to obtain an aqueous dispersion containing a particulate polymer constituting the core portion.
To this aqueous dispersion, a mixture of 19 parts of styrene as an aromatic vinyl monomer and 1 part of methacrylic acid as an acid group-containing monomer was continuously added to form a shell part, and heated to 70 ° C. Polymerization was continued. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to prepare an aqueous dispersion containing organic particles having a core-shell structure in which the outer surface of the core part was partially covered with the shell part. .
The obtained organic particles had a volume average particle diameter D50 of 0.45 μm.
Then, the core-shell ratio and the coverage of the obtained organic particles were evaluated. The results are shown in Table 1.
<Preparation of functional layer binder>
In a reactor equipped with a stirrer, 70 parts of ion-exchanged water, 0.15 part of sodium lauryl sulfate (product name “Emal 2F” manufactured by Kao Chemical Co., Ltd.) as an emulsifier, and 0.5 part of ammonium persulfate, Each was supplied, the gas phase was replaced with nitrogen gas, and the temperature was raised to 60 ° C.
On the other hand, in a separate container, 50 parts of ion-exchanged water, 0.5 part of sodium dodecylbenzenesulfonate as a dispersant, 94 parts of butyl acrylate as a (meth) acrylate monomer, 2 parts of acrylonitrile, 2 parts of methacrylic acid, 1 part of N-methylolacrylamide and 1 part of acrylamide were mixed to obtain a monomer mixture. This monomer mixture was continuously added to the reactor over 4 hours for polymerization. During the addition, the reaction was carried out at 60 ° C. After completion of the addition, the reaction was terminated by further stirring at 70 ° C. for 3 hours to prepare an aqueous dispersion containing a particulate functional layer binder (acrylic polymer).
The functional layer binder obtained had a glass transition temperature of −40 ° C.
<Preparation of non-aqueous secondary battery functional layer composition>
The aqueous dispersion containing the organic particles having the core-shell structure is 100 parts in terms of solid content, and the aqueous dispersion containing the functional layer binder is 15 parts in terms of solid content. Ethylene oxide as a wetting agent -Propylene oxide copolymer (solid content concentration 70% by mass, polymerization ratio: 5/5 (mass ratio)) is mixed with 1.9 parts in solid content, and ion-exchanged water is added to a solid content concentration of 15% by mass. Thus, a slurry-like composition for a nonaqueous secondary battery functional layer was prepared (composition preparation step). And the surface tension of the obtained composition for non-aqueous secondary battery functional layers was measured. The results are shown in Table 1.
<Preparation of separator substrate>
A polyethylene microporous film (thickness 16 μm, Gurley value 210 s / 100 cc) was prepared. The prepared microporous membrane was subjected to corona discharge treatment at a treatment strength of 50 W · min / m 2 using “Air Plasma APW-602f” manufactured by Kasuga Denki, and used as a separator base material (base material preparation step). And the water droplet contact angle of the separator base material was measured. The results are shown in Table 1.
<Preparation of separator>
A slurry-like composition for a non-aqueous secondary battery functional layer was applied to both surfaces of the separator substrate by a gravure coating method (number of lines: 300) and dried at 50 ° C. for 1 minute (functional layer forming step). Thus, a functional layer having a thickness of 0.8 μm per layer was formed on the separator base material, and a separator formed by forming the functional layers on both surfaces of the separator base material was obtained. This separator includes a functional layer, a separator base material, and a functional layer in this order. And the functional layer of the separator was observed with SEM, and the ratio of the area of the part in which the phase of an organic particle exists was calculated | required. The obtained SEM image is shown in FIG. 1 and the results are shown in Table 1. In the functional layer, the phase of organic particles was present in an irregular shape. Moreover, only organic particles were observed as particles, and the binder for functional layers was not observed as particles by SEM.
<Manufacture of particulate binder for negative electrode>
In a 5 MPa pressure vessel with a stirrer, 33.5 parts of 1,3-butadiene, 3.5 parts of itaconic acid, 62 parts of styrene, 1 part of 2-hydroxyethyl acrylate, 0.4 part of sodium dodecylbenzenesulfonate as an emulsifier, ions After adding 150 parts of exchange water and 0.5 part of potassium persulfate as a polymerization initiator and stirring sufficiently, the mixture was heated to 50 ° C. to initiate polymerization. When the polymerization conversion rate reached 96%, the reaction was stopped by cooling to obtain a mixture containing a particulate binder (SBR). A 5% aqueous sodium hydroxide solution was added to the mixture containing the particulate binder to adjust the pH to 8. Thereafter, unreacted monomers are removed from the mixture by heating under reduced pressure, and the mixture is cooled to 30 ° C. or lower to obtain an aqueous dispersion containing a desired particulate binder (binder for negative electrode mixture layer). It was.
<Manufacture of slurry composition for negative electrode>
100 parts of artificial graphite (volume average particle size: 15.6 μm) as a negative electrode active material and 1 part of a 2% aqueous solution of carboxymethylcellulose sodium salt (“MAC350HC” manufactured by Nippon Paper Industries Co., Ltd.) as a thickener are mixed in an amount equivalent to the solid content. Further, ion exchange water was added to adjust the solid content concentration to 68%, and the mixture was mixed at 25 ° C. for 60 minutes. Ion exchange water was added to the liquid mixture thus obtained to adjust the solid content concentration to 62%, and the mixture was further mixed at 25 ° C. for 15 minutes. To this mixed solution, 1.5 parts of the above aqueous dispersion containing the particulate binder is added in an amount corresponding to the solid content, and ion-exchanged water is further added to adjust the final solid content concentration to 52%, and further for 10 minutes. Mixed. This was defoamed under reduced pressure to obtain a negative electrode slurry composition having good fluidity.
<Manufacture of negative electrode>
The slurry composition for negative electrode was applied on a copper foil having a thickness of 20 μm, which is a current collector, with a comma coater so that the film thickness after drying was about 150 μm and dried. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a negative electrode raw material before pressing. The negative electrode raw material before pressing was rolled with a roll press to obtain a negative electrode after pressing with a negative electrode mixture layer thickness of 80 μm.
<Production of positive electrode slurry composition>
100 parts of LiCoO 2 having a volume average particle diameter of 12 μm as the positive electrode active material, 2 parts of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd., product name “HS-100”) as the conductive material, and binder for positive electrode (positive electrode mixture layer) Polyvinylidene fluoride (manufactured by Kureha Co., Ltd., product name “# 7208”) was mixed in an amount equivalent to the solid content, and N-methylpyrrolidone was added thereto to make the total solid content concentration 70%. These were mixed by a planetary mixer to obtain a positive electrode slurry composition.
<Production of positive electrode>
The positive electrode slurry composition was applied onto a 20 μm-thick aluminum foil as a current collector by a comma coater so that the film thickness after drying was about 150 μm and dried. This drying was performed by conveying the aluminum foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a positive electrode raw material before pressing. The positive electrode raw material before pressing was rolled with a roll press to obtain a positive electrode.
<Manufacture of laminate of negative electrode or positive electrode and separator>
The positive electrode after pressing was cut into a circle having a diameter of 13 mm to obtain a circular positive electrode. Further, the negative electrode after pressing was cut out into a circle having a diameter of 14 mm to obtain a circular negative electrode. Further, the separator was cut into a circle having a diameter of 18 mm to obtain a circular separator.
Then, only the negative electrode or the positive electrode was placed on one side of the circular separator so as to be in contact with the separator on the surface on the electrode mixture layer side. Thereafter, a heat press treatment was performed at a temperature of 80 ° C. and a pressure of 0.5 MPa for 10 seconds, and the positive electrode or the negative electrode was pressure-bonded to the separator to obtain a laminate including the positive electrode and the separator, and a laminate including the negative electrode and the separator. . And the adhesiveness of the separator and electrode after electrolyte solution immersion was evaluated using the produced laminated body. The results are shown in Table 1.
<Manufacture of lithium ion secondary batteries>
The pressed positive electrode was cut out to 49 cm × 5 cm. A separator cut out to 55 cm × 5.5 cm was disposed on the positive electrode mixture layer of the cut out positive electrode. Furthermore, the negative electrode after pressing was cut into 50 cm × 5.2 cm, and the cut negative electrode was arranged on the side opposite to the positive electrode of the separator so that the surface on the negative electrode mixture layer side faced the separator. Furthermore, the separator cut out to 55 cm x 5.5 cm was arrange | positioned on the negative electrode. This was wound by a winding machine to obtain a wound body. The wound body was pressed at 60 ° C. and 0.5 MPa to obtain a flat body. This flat body is wrapped with an aluminum packaging exterior as a battery exterior, and an electrolytic solution (solvent: ethylene carbonate (EC) / diethyl carbonate (DEC) / vinylene carbonate (VC) = 68.5 / 30 / 1.5 ( Volume ratio), electrolyte: LiPF 6 ) having a concentration of 1M was injected so that no air remained. Furthermore, in order to seal the opening of the aluminum packaging material exterior, heat sealing at 150 ° C. was performed to close the aluminum packaging material exterior. Thus, an 800 mAh wound type lithium ion secondary battery was manufactured.
And about the obtained lithium ion secondary battery, the high temperature cycling characteristic and the low temperature output characteristic were evaluated. The results are shown in Table 1.
(実施例2~4)
 有機粒子の調製時に、コア部の製造に用いるメタクリル酸メチル、メタクリル酸およびエチレングリコールジメタクリレートの量を表1に示すように変更した以外は実施例1と同様にして、有機粒子、機能層用結着材、非水系二次電池機能層用組成物、セパレータ基材、セパレータ、負極、正極、積層体およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
 なお、SEMでの観察の結果、機能層には、有機粒子の相が不規則な形状で存在していた。また、粒子としては有機粒子のみが観察され、機能層用結着材はSEMでは粒子として観察されなかった。
(Examples 2 to 4)
For the preparation of organic particles and functional layers in the same manner as in Example 1 except that the amounts of methyl methacrylate, methacrylic acid and ethylene glycol dimethacrylate used for the production of the core portion were changed as shown in Table 1 when the organic particles were prepared. A binder, a composition for a non-aqueous secondary battery functional layer, a separator base material, a separator, a negative electrode, a positive electrode, a laminate, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
As a result of observation by SEM, the organic particle phase was present in an irregular shape in the functional layer. Moreover, only organic particles were observed as particles, and the binder for functional layers was not observed as particles by SEM.
(実施例5)
 有機粒子の調製時に、コア部の製造に用いる単量体組成物について、メタクリル酸メチルの量を43部に、メタクリル酸の量を1部にそれぞれ変更し、さらに(メタ)アクリル酸エステル単量体としてのアクリル酸ブチル35部を加えた以外は実施例1と同様にして、有機粒子、機能層用結着材、非水系二次電池機能層用組成物、セパレータ基材、セパレータ、負極、正極、積層体およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
 なお、SEMでの観察の結果、機能層には、有機粒子の相が不規則な形状で存在していた。また、粒子としては有機粒子のみが観察され、機能層用結着材はSEMでは粒子として観察されなかった。
(Example 5)
When preparing the organic particles, the amount of methyl methacrylate is changed to 43 parts and the amount of methacrylic acid is changed to 1 part for the monomer composition used for the production of the core part. Except for adding 35 parts of butyl acrylate as a body, in the same manner as in Example 1, organic particles, functional layer binder, non-aqueous secondary battery functional layer composition, separator substrate, separator, negative electrode, A positive electrode, a laminate, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
As a result of observation by SEM, the organic particle phase was present in an irregular shape in the functional layer. Moreover, only organic particles were observed as particles, and the binder for functional layers was not observed as particles by SEM.
(実施例6)
 有機粒子の調製時に、シェル部の製造に用いる単量体組成物について、スチレンの量を18部に変更し、新たに(メタ)アクリロニトリル単量体としてのアクリロニトリル1.7部と架橋性単量体としてのエチレングリコールジメタクリレート0.3部とを追加し、メタクリル酸を添加しなかった以外は実施例1と同様にして、有機粒子、機能層用結着材、非水系二次電池機能層用組成物、セパレータ基材、セパレータ、負極、正極、積層体およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
 なお、SEMでの観察の結果、機能層には、有機粒子の相が不規則な形状で存在していた。また、粒子としては有機粒子のみが観察され、機能層用結着材はSEMでは粒子として観察されなかった。
(Example 6)
At the time of preparing the organic particles, the amount of styrene was changed to 18 parts for the monomer composition used for the production of the shell part, and 1.7 parts of acrylonitrile as a (meth) acrylonitrile monomer and a crosslinkable monomer Organic particles, binder for functional layer, functional layer for non-aqueous secondary battery, except that 0.3 part of ethylene glycol dimethacrylate as a body was added and methacrylic acid was not added Composition, separator substrate, separator, negative electrode, positive electrode, laminate, and lithium ion secondary battery were prepared. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
As a result of observation by SEM, the organic particle phase was present in an irregular shape in the functional layer. Moreover, only organic particles were observed as particles, and the binder for functional layers was not observed as particles by SEM.
(実施例7)
 有機粒子の調製時に、シェル部の製造に用いる単量体組成物について、スチレンの量を15部に変更し、新たに(メタ)アクリロニトリル単量体としてのアクリロニトリル4.5部と架橋性単量体としてのエチレングリコールジメタクリレート0.5部とを追加し、メタクリル酸を添加しなかった以外は実施例1と同様にして、有機粒子、機能層用結着材、非水系二次電池機能層用組成物、セパレータ基材、セパレータ、負極、正極、積層体およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
 なお、SEMでの観察の結果、機能層には、有機粒子の相が不規則な形状で存在していた。また、粒子としては有機粒子のみが観察され、機能層用結着材はSEMでは粒子として観察されなかった。
(Example 7)
When preparing organic particles, the amount of styrene is changed to 15 parts for the monomer composition used in the production of the shell part, and 4.5 parts of acrylonitrile as a (meth) acrylonitrile monomer and a crosslinkable monomer Organic particles, functional layer binder, non-aqueous secondary battery functional layer in the same manner as in Example 1 except that 0.5 part of ethylene glycol dimethacrylate as a body was added and methacrylic acid was not added. Composition, separator substrate, separator, negative electrode, positive electrode, laminate, and lithium ion secondary battery were prepared. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
As a result of observation by SEM, the organic particle phase was present in an irregular shape in the functional layer. Moreover, only organic particles were observed as particles, and the binder for functional layers was not observed as particles by SEM.
(実施例8~9)
 非水系二次電池機能層用組成物の調製時に、濡れ剤としてのエチレンオキサイド-プロピレンオキサイド共重合体の配合量を表1に示すように変更した以外は実施例1と同様にして、有機粒子、機能層用結着材、非水系二次電池機能層用組成物、セパレータ基材、セパレータ、負極、正極、積層体およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
 なお、SEMでの観察の結果、機能層には、有機粒子の相が不規則な形状で存在していた。また、粒子としては有機粒子のみが観察され、機能層用結着材はSEMでは粒子として観察されなかった。
(Examples 8 to 9)
In the same manner as in Example 1, except that the blending amount of the ethylene oxide-propylene oxide copolymer as the wetting agent was changed as shown in Table 1 when preparing the composition for the non-aqueous secondary battery functional layer, the organic particles Then, a functional layer binder, a non-aqueous secondary battery functional layer composition, a separator substrate, a separator, a negative electrode, a positive electrode, a laminate, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
As a result of observation by SEM, the organic particle phase was present in an irregular shape in the functional layer. Moreover, only organic particles were observed as particles, and the binder for functional layers was not observed as particles by SEM.
(実施例10~11)
 セパレータ基材を準備する際に、ポリエチレン製の微多孔膜に対するコロナ放電処理の処理強度を表1に示すように変更した以外は実施例1と同様にして、有機粒子、機能層用結着材、非水系二次電池機能層用組成物、セパレータ基材、セパレータ、負極、正極、積層体およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
 なお、SEMでの観察の結果、機能層には、有機粒子の相が不規則な形状で存在していた。また、粒子としては有機粒子のみが観察され、機能層用結着材はSEMでは粒子として観察されなかった。
(Examples 10 to 11)
When preparing the separator base material, the organic particles and the binder for functional layers were prepared in the same manner as in Example 1 except that the treatment strength of the corona discharge treatment for the polyethylene microporous membrane was changed as shown in Table 1. Then, a composition for a non-aqueous secondary battery functional layer, a separator substrate, a separator, a negative electrode, a positive electrode, a laminate, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
As a result of observation by SEM, the organic particle phase was present in an irregular shape in the functional layer. Moreover, only organic particles were observed as particles, and the binder for functional layers was not observed as particles by SEM.
(比較例1)
 非水系二次電池機能層用組成物の調製時に、濡れ剤としてのエチレンオキサイド-プロピレンオキサイド共重合体を配合しなかった以外は実施例1と同様にして、有機粒子、機能層用結着材、非水系二次電池機能層用組成物、セパレータ基材、セパレータ、負極、正極、積層体およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
 なお、SEMでの観察の結果、機能層には、有機粒子の相が不規則な形状で存在していた。また、粒子としては有機粒子のみが観察され、機能層用結着材はSEMでは粒子として観察されなかった。
(Comparative Example 1)
In the same manner as in Example 1 except that an ethylene oxide-propylene oxide copolymer as a wetting agent was not blended when preparing the composition for the functional layer of the non-aqueous secondary battery, the binder for organic particles and the functional layer was used. Then, a composition for a non-aqueous secondary battery functional layer, a separator substrate, a separator, a negative electrode, a positive electrode, a laminate, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
As a result of observation by SEM, the organic particle phase was present in an irregular shape in the functional layer. Moreover, only organic particles were observed as particles, and the binder for functional layers was not observed as particles by SEM.
(比較例2)
 非水系二次電池機能層用組成物の調製時に、濡れ剤としてのエチレンオキサイド-プロピレンオキサイド共重合体の配合量を表1に示すように変更した以外は実施例1と同様にして、有機粒子、機能層用結着材、非水系二次電池機能層用組成物、セパレータ基材、セパレータ、負極、正極、積層体およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
 なお、SEMでの観察の結果、セパレータ基材上には有機粒子が略全面に亘って均一に存在していた。また、粒子としては有機粒子のみが観察され、機能層用結着材はSEMでは粒子として観察されなかった。
(Comparative Example 2)
In the same manner as in Example 1, except that the blending amount of the ethylene oxide-propylene oxide copolymer as the wetting agent was changed as shown in Table 1 when preparing the composition for the non-aqueous secondary battery functional layer, the organic particles Then, a functional layer binder, a non-aqueous secondary battery functional layer composition, a separator substrate, a separator, a negative electrode, a positive electrode, a laminate, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
As a result of observation by SEM, organic particles were present uniformly over the entire surface of the separator substrate. Moreover, only organic particles were observed as particles, and the binder for functional layers was not observed as particles by SEM.
(比較例3)
 有機粒子の調製時に、コア部の製造に用いる単量体組成物について、メタクリル酸メチルの量を99部に、メタクリル酸の量を1部にそれぞれ変更し、エチレングリコールジメタクリレートを添加せず、かつ、シェル部を形成しなかった以外は実施例1と同様にして、コアシェル構造を有しない有機粒子、機能層用結着材、非水系二次電池機能層用組成物、セパレータ基材、セパレータ、負極、正極、積層体およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
 なお、SEMでの観察の結果、機能層には、コアシェル構造を有さない有機粒子の相が不規則な形状で存在していた。また、粒子としてはコアシェル構造を有さない有機粒子のみが観察され、機能層用結着材はSEMでは粒子として観察されなかった。
(Comparative Example 3)
At the time of preparing the organic particles, for the monomer composition used for the production of the core part, the amount of methyl methacrylate was changed to 99 parts, the amount of methacrylic acid was changed to 1 part, and ethylene glycol dimethacrylate was not added. In addition, organic particles not having a core-shell structure, a binder for a functional layer, a composition for a functional layer of a non-aqueous secondary battery, a separator base material, and a separator in the same manner as in Example 1 except that the shell portion was not formed A negative electrode, a positive electrode, a laminate, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
As a result of observation with SEM, the phase of organic particles having no core-shell structure was present in an irregular shape in the functional layer. Further, only organic particles having no core-shell structure were observed as particles, and the functional layer binder was not observed as particles by SEM.
(比較例4)
 有機粒子の調製時に、シェル部の製造に用いる単量体組成物について、スチレンの量を1部に変更し、メタクリル酸を添加せず、新たに(メタ)アクリル酸エステル単量体としてのメタクリル酸メチル19部を追加した以外は実施例1と同様にして有機粒子、機能層用結着材、非水系二次電池機能層用組成物、セパレータ基材、セパレータ、負極、正極、積層体およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
 なお、SEMでの観察の結果、機能層には、有機粒子の相が不規則な形状で存在していた。また、粒子としては有機粒子のみが観察され、機能層用結着材はSEMでは粒子として観察されなかった。
(Comparative Example 4)
At the time of preparing the organic particles, the monomer composition used for the production of the shell part was changed to 1 part of styrene, methacrylic acid was not added, and methacrylic acid as a (meth) acrylic acid ester monomer was newly added. Except for adding 19 parts of methyl acid, the organic particles, the functional layer binder, the non-aqueous secondary battery functional layer composition, the separator base material, the separator, the negative electrode, the positive electrode, the laminate, and the like A lithium ion secondary battery was produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
As a result of observation by SEM, the organic particle phase was present in an irregular shape in the functional layer. Moreover, only organic particles were observed as particles, and the binder for functional layers was not observed as particles by SEM.
(比較例5)
 非水系二次電池機能層用組成物の調製時に、濡れ剤としてのエチレンオキサイド-プロピレンオキサイド共重合体の配合量を表1に示すように変更し、更に、セパレータの調製時に、グラビアコート法に替えてワイヤーバーコート法を用いて非水系二次電池機能層用組成物をセパレータ基材にパターン塗工した以外は実施例1と同様にして、有機粒子、機能層用結着材、非水系二次電池機能層用組成物、セパレータ基材、セパレータ、負極、正極、積層体およびリチウムイオン二次電池を作製した。そして、実施例1と同様にして各種測定・評価を行った。結果を表1に示す。
 なお、SEMでの観察の結果、セパレータ基材上には幅100μmの機能層が150μm間隔で規則的に形成されており、機能層中には有機粒子が均一に存在していた。また、粒子としては有機粒子のみが観察され、機能層用結着材はSEMでは粒子として観察されなかった。
(Comparative Example 5)
At the time of preparing the composition for the non-aqueous secondary battery functional layer, the blending amount of the ethylene oxide-propylene oxide copolymer as a wetting agent was changed as shown in Table 1, and the gravure coating method was used at the time of preparing the separator. In the same manner as in Example 1 except that the composition for the non-aqueous secondary battery functional layer was applied to the separator substrate using the wire bar coating method, the organic particles, the binder for the functional layer, and the non-aqueous system were used. A composition for a secondary battery functional layer, a separator base material, a separator, a negative electrode, a positive electrode, a laminate, and a lithium ion secondary battery were produced. Various measurements and evaluations were performed in the same manner as in Example 1. The results are shown in Table 1.
As a result of observation by SEM, functional layers having a width of 100 μm were regularly formed on the separator substrate at intervals of 150 μm, and organic particles were uniformly present in the functional layer. Moreover, only organic particles were observed as particles, and the binder for functional layers was not observed as particles by SEM.
 なお、以下に示す表1中、
「MMA」は、メタクリル酸メチルを示し、
「BA」は、アクリル酸ブチルを示し、
「MAA]は、メタクリル酸を示し、
「EDMA」は、エチレングリコールジメタクリレートを示し、
「ST」は、スチレンを示し、
「AN」は、アクリロニトリルを示し、
「NMA」は、N-メチロールアクリルアミドを示し、
「AAm」は、アクリルアミドを示す。
In Table 1 shown below,
“MMA” indicates methyl methacrylate;
“BA” indicates butyl acrylate,
“MAA” indicates methacrylic acid,
“EDMA” refers to ethylene glycol dimethacrylate,
“ST” indicates styrene,
“AN” indicates acrylonitrile,
“NMA” stands for N-methylolacrylamide,
“AAm” indicates acrylamide.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、所定のコアシェル構造および性状を有する有機粒子の相が不規則な形状で存在し、且つ、有機粒子の相が存在する部分の面積の割合が20%以上80%以下である機能層を有するセパレータを用いた実施例1~11では、電解液浸漬後のセパレータと電極との接着性に優れ、さらに高温サイクル特性および低温出力特性などの電池特性が良好な二次電池を得ることができることが分かる。
 また、表1より、有機粒子の相が存在する部分の面積の割合が20%未満であるセパレータを用いた比較例1では、電解液浸漬後のセパレータと電極との接着性および高温サイクル特性が低下してしまうことが分かる。
 更に、表1より、有機粒子の相が存在する部分の面積の割合が80%超であるセパレータを用いた比較例2では、低温出力特性が低下してしまうことが分かる。また、表1より、濡れ剤の使用量が多い比較例2では、電解液浸漬後のセパレータと電極との接着性および高温サイクル特性が低下してしまうことも分かる。
 また、表1より、所定のコアシェル構造および性状を有する有機粒子を含有しないセパレータを用いた比較例3および4では、電解液浸漬後のセパレータと電極との接着性および高温サイクル特性が低下してしまうことが分かる。
 更に、表1より、有機粒子の相が不規則な形状で存在しないセパレータを用いた比較例5では、電解液浸漬後のセパレータと電極との接着性および高温サイクル特性が低下してしまうことが分かる。
From Table 1, a functional layer in which the phase of organic particles having a predetermined core-shell structure and properties exists in an irregular shape and the area ratio of the portion where the phase of organic particles exists is 20% or more and 80% or less In Examples 1 to 11 using the separator having the above, it is possible to obtain a secondary battery excellent in the adhesiveness between the separator and the electrode after immersion in the electrolyte, and having good battery characteristics such as high temperature cycle characteristics and low temperature output characteristics. I understand that I can do it.
Further, from Table 1, in Comparative Example 1 using a separator in which the proportion of the area where the organic particle phase is present is less than 20%, the adhesion between the separator and the electrode after immersion in the electrolyte and the high-temperature cycle characteristics are It turns out that it falls.
Furthermore, it can be seen from Table 1 that the low-temperature output characteristics are deteriorated in Comparative Example 2 using a separator in which the proportion of the area where the organic particle phase is present is more than 80%. Table 1 also shows that in Comparative Example 2 where the amount of wetting agent used is large, the adhesion between the separator and the electrode after immersion in the electrolyte and the high-temperature cycle characteristics deteriorate.
Further, from Table 1, in Comparative Examples 3 and 4 using a separator that does not contain organic particles having a predetermined core-shell structure and properties, the adhesion between the separator and the electrode after immersion in the electrolyte and the high-temperature cycle characteristics are reduced. I understand that.
Furthermore, from Table 1, in Comparative Example 5 using a separator in which the phase of the organic particles does not exist in an irregular shape, the adhesion between the separator and the electrode after immersion in the electrolyte and the high temperature cycle characteristics may be deteriorated. I understand.
 本発明によれば、電解液中での接着性およびイオン伝導性に優れるセパレータを提供することができる。
 また、本発明によれば、高温サイクル特性および低温出力特性に優れる非水系二次電池を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the separator excellent in the adhesiveness and ionic conductivity in electrolyte solution can be provided.
In addition, according to the present invention, it is possible to provide a non-aqueous secondary battery excellent in high temperature cycle characteristics and low temperature output characteristics.
 100 有機粒子
 110 コア部
 110S コア部の外表面
 120 シェル部
100 Organic particle 110 Core part 110S Outer surface of core part 120 Shell part

Claims (4)

  1.  セパレータ基材と、前記セパレータ基材の少なくとも一方の表面上に形成された機能層とを備える非水系二次電池用セパレータであって、
     前記機能層は、コア部および前記コア部の外表面を部分的に覆うシェル部を備えるコアシェル構造を有する有機粒子の相が不規則な形状で存在する構成を有し、
     前記コア部は、電解液膨潤度が5倍以上30倍以下の重合体からなり、
     前記シェル部は、電解液膨潤度が1倍超4倍以下の重合体からなり、
     前記セパレータ基材の機能層形成面の面積に対する前記有機粒子の相が存在する部分の面積の割合が20%以上80%以下である、非水系二次電池用セパレータ。
    A separator for a non-aqueous secondary battery comprising a separator substrate and a functional layer formed on at least one surface of the separator substrate,
    The functional layer has a configuration in which a phase of an organic particle having a core-shell structure including a core part and a shell part partially covering an outer surface of the core part exists in an irregular shape,
    The core portion is made of a polymer having an electrolyte solution swelling degree of 5 times or more and 30 times or less,
    The shell portion is made of a polymer having an electrolyte solution swelling degree of more than 1 time and 4 times or less,
    The separator for non-aqueous secondary batteries whose ratio of the area of the part in which the phase of the said organic particle exists with respect to the area of the functional layer formation surface of the said separator base material is 20% or more and 80% or less.
  2.  前記コア部の重合体のガラス転移温度が、-50℃以上150℃以下であり、
     前記シェル部の重合体のガラス転移温度が、50℃以上200℃以下である、請求項1に記載の非水系二次電池用セパレータ。
    The glass transition temperature of the polymer of the core part is −50 ° C. or higher and 150 ° C. or lower,
    The separator for a non-aqueous secondary battery according to claim 1, wherein a glass transition temperature of the polymer of the shell portion is 50 ° C or higher and 200 ° C or lower.
  3.  請求項1または2に記載の非水系二次電池用セパレータの製造方法であって、
     少なくとも一方の表面の水滴接触角が80°以上130°以下であるセパレータ基材を準備する工程と、
     前記有機粒子と分散媒とを含有し、且つ、表面張力が33mN/m以上39mN/m以下である非水系二次電池機能層用組成物を準備する工程と、
     前記非水系二次電池機能層用組成物を前記セパレータ基材の前記表面上に塗布し、塗布した非水系二次電池機能層用組成物を乾燥させてセパレータ基材上に機能層を形成する工程と、
    を含む、非水系二次電池用セパレータの製造方法。
    A method for producing a separator for a non-aqueous secondary battery according to claim 1 or 2,
    Preparing a separator substrate having a water droplet contact angle of at least one surface of not less than 80 ° and not more than 130 °;
    A step of preparing a composition for a nonaqueous secondary battery functional layer containing the organic particles and a dispersion medium and having a surface tension of 33 mN / m or more and 39 mN / m or less;
    The composition for a non-aqueous secondary battery functional layer is applied onto the surface of the separator base material, and the applied non-aqueous secondary battery functional layer composition is dried to form a functional layer on the separator base material. Process,
    A method for producing a separator for a non-aqueous secondary battery.
  4.  請求項1または2に記載の非水系二次電池用セパレータを備える、非水系二次電池。 A non-aqueous secondary battery comprising the non-aqueous secondary battery separator according to claim 1 or 2.
PCT/JP2015/006032 2015-01-09 2015-12-04 Separator for non-aqueous secondary battery, manufacturing method therefor, and non-aqueous secondary battery WO2016110894A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580071472.9A CN107112480B (en) 2015-01-09 2015-12-04 Non-aqueous secondary battery spacer and its manufacturing method and non-aqueous secondary battery
JP2016568172A JP6750506B2 (en) 2015-01-09 2015-12-04 Separator for non-aqueous secondary battery, method for manufacturing the same, and non-aqueous secondary battery
KR1020177017829A KR102477891B1 (en) 2015-01-09 2015-12-04 Separator for non-aqueous secondary battery, manufacturing method therefor, and non-aqueous secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015003646 2015-01-09
JP2015-003646 2015-01-09

Publications (1)

Publication Number Publication Date
WO2016110894A1 true WO2016110894A1 (en) 2016-07-14

Family

ID=56355626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006032 WO2016110894A1 (en) 2015-01-09 2015-12-04 Separator for non-aqueous secondary battery, manufacturing method therefor, and non-aqueous secondary battery

Country Status (4)

Country Link
JP (1) JP6750506B2 (en)
KR (1) KR102477891B1 (en)
CN (1) CN107112480B (en)
WO (1) WO2016110894A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017086466A1 (en) * 2015-11-19 2017-05-26 旭化成株式会社 Separator for electricity storage devices, electrode body using same, and electricity storage device
WO2018163761A1 (en) * 2017-03-10 2018-09-13 日本ゼオン株式会社 Composition for nonaqueous secondary battery functional layers, functional layer for nonaqueous secondary batteries, and nonaqueous secondary battery
WO2019151118A1 (en) * 2018-01-31 2019-08-08 日本ゼオン株式会社 Composition for lithium ion secondary cell separator, two-part composition for lithium ion secondary cell separator, method for manufacturing lithium ion secondary cell separator, and method for manufacturing lithium ion secondary cell
WO2020031614A1 (en) 2018-08-10 2020-02-13 日本ゼオン株式会社 Slurry composition for nonaqueous secondary battery adhesive layers, adhesive layer for nonaqueous secondary batteries, separator for nonaqueous secondary batteries, and nonaqueous secondary battery
WO2022163591A1 (en) * 2021-01-29 2022-08-04 日本ゼオン株式会社 Composition for electrochemical element functional layer, laminate for electrochemical element, and electrochemical element

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102647260B1 (en) 2018-07-02 2024-03-13 에스케이이노베이션 주식회사 Composite membrane for secondary battery
CN112868133B (en) * 2018-10-31 2023-03-21 日本瑞翁株式会社 Composition for functional layer of nonaqueous secondary battery, functional layer for nonaqueous secondary battery, separator, and nonaqueous secondary battery
CN110707357B (en) * 2019-10-23 2021-05-07 北京卫蓝新能源科技有限公司 Gel polymer electrolyte with core-shell structure and preparation method and application thereof
CN112928390A (en) * 2019-11-20 2021-06-08 北京卫蓝新能源科技有限公司 Diaphragm with surface coated with core-shell structure layer and application thereof
CN114846691B (en) * 2020-11-30 2024-03-29 宁德时代新能源科技股份有限公司 Separator, secondary battery comprising same, and battery module, battery pack and device related to same
CN113410576B (en) * 2021-06-17 2023-11-24 无锡恩捷新材料科技有限公司 Battery diaphragm and preparation method thereof, battery and preparation method of core-shell type sphere
CN116435711B (en) * 2023-06-14 2023-08-25 中材锂膜(内蒙古)有限公司 Polymer coated separator, preparation method thereof and battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001848A1 (en) * 2009-06-30 2011-01-06 日本ゼオン株式会社 Electrode for secondary battery, and secondary battery
WO2013080946A1 (en) * 2011-11-29 2013-06-06 日立マクセル株式会社 Separator for non-aqueous electrolyte cell and non-aqueous electrolyte cell using same
WO2014017651A1 (en) * 2012-07-26 2014-01-30 旭化成イーマテリアルズ株式会社 Separator for energy storage device, laminated body, and porous membrane
WO2015005145A1 (en) * 2013-07-10 2015-01-15 日本ゼオン株式会社 Adhesive for lithium ion secondary batteries, separator for lithium ion secondary batteries, and lithium ion secondary battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5010817B2 (en) * 2005-08-25 2012-08-29 日東電工株式会社 Adhesive-supporting porous film for battery separator and battery manufacturing method using the same
JP5611505B2 (en) * 2006-03-29 2014-10-22 日立マクセル株式会社 Battery separator and lithium secondary battery
JP5403857B2 (en) * 2006-05-18 2014-01-29 日立マクセル株式会社 Battery separator, method for producing the same, and lithium secondary battery
WO2009125984A2 (en) * 2008-04-08 2009-10-15 Sk Energy Co., Ltd. Microporous polyolefin composite film with a thermally stable porous layer at high temperature
CN101707242A (en) * 2009-10-14 2010-05-12 东莞新能源科技有限公司 Organic/inorganic composite porous isolating membrane
EP2551293A4 (en) * 2010-03-24 2016-08-03 Teijin Ltd Polyolefin microporous membrane, method for producing same, separator for nonaqueous secondary battery and nonaqueous secondary battery
JP5699576B2 (en) * 2010-12-08 2015-04-15 ソニー株式会社 Laminated microporous membrane, battery separator and non-aqueous electrolyte battery
CN103155216A (en) * 2011-10-03 2013-06-12 日立麦克赛尔株式会社 Heat resistant porous membrane, separator for nonaqueous cell, and nonaqueous cell
CN104170121B (en) * 2012-03-28 2016-08-24 日本瑞翁株式会社 Secondary cell perforated membrane and manufacture method, electrode for secondary battery, secondary cell dividing plate and secondary cell
WO2014098519A1 (en) * 2012-12-21 2014-06-26 주식회사 아모그린텍 Porous separation membrane, secondary battery using same, and method for manufacturing said secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001848A1 (en) * 2009-06-30 2011-01-06 日本ゼオン株式会社 Electrode for secondary battery, and secondary battery
WO2013080946A1 (en) * 2011-11-29 2013-06-06 日立マクセル株式会社 Separator for non-aqueous electrolyte cell and non-aqueous electrolyte cell using same
WO2014017651A1 (en) * 2012-07-26 2014-01-30 旭化成イーマテリアルズ株式会社 Separator for energy storage device, laminated body, and porous membrane
WO2015005145A1 (en) * 2013-07-10 2015-01-15 日本ゼオン株式会社 Adhesive for lithium ion secondary batteries, separator for lithium ion secondary batteries, and lithium ion secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017086466A1 (en) * 2015-11-19 2017-05-26 旭化成株式会社 Separator for electricity storage devices, electrode body using same, and electricity storage device
US10985354B2 (en) 2015-11-19 2021-04-20 Asahi Kasei Kabushiki Kaisha Separator for electricity storage devices, electrode body using same, and electricity storage device
WO2018163761A1 (en) * 2017-03-10 2018-09-13 日本ゼオン株式会社 Composition for nonaqueous secondary battery functional layers, functional layer for nonaqueous secondary batteries, and nonaqueous secondary battery
WO2019151118A1 (en) * 2018-01-31 2019-08-08 日本ゼオン株式会社 Composition for lithium ion secondary cell separator, two-part composition for lithium ion secondary cell separator, method for manufacturing lithium ion secondary cell separator, and method for manufacturing lithium ion secondary cell
EP3748729A4 (en) * 2018-01-31 2021-10-27 Zeon Corporation Composition for lithium ion secondary cell separator, two-part composition for lithium ion secondary cell separator, method for manufacturing lithium ion secondary cell separator, and method for manufacturing lithium ion secondary cell
WO2020031614A1 (en) 2018-08-10 2020-02-13 日本ゼオン株式会社 Slurry composition for nonaqueous secondary battery adhesive layers, adhesive layer for nonaqueous secondary batteries, separator for nonaqueous secondary batteries, and nonaqueous secondary battery
WO2022163591A1 (en) * 2021-01-29 2022-08-04 日本ゼオン株式会社 Composition for electrochemical element functional layer, laminate for electrochemical element, and electrochemical element

Also Published As

Publication number Publication date
JP6750506B2 (en) 2020-09-02
JPWO2016110894A1 (en) 2017-10-19
KR20170102876A (en) 2017-09-12
CN107112480A (en) 2017-08-29
CN107112480B (en) 2019-09-13
KR102477891B1 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
JP6750506B2 (en) Separator for non-aqueous secondary battery, method for manufacturing the same, and non-aqueous secondary battery
JP6601486B2 (en) Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, and non-aqueous secondary battery
JP6520938B2 (en) Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery and non-aqueous secondary battery
WO2016017066A1 (en) Composition for nonaqueous secondary battery function layers, base with function layer for nonaqueous secondary batteries, method for producing laminate for nonaqueous secondary batteries, and nonaqueous secondary battery
JP6614141B2 (en) Non-aqueous secondary battery laminate, method for producing the same, and non-aqueous secondary battery
WO2016031163A1 (en) Laminate for nonaqueous secondary batteries and method for manufacturing nonaqueous secondary battery member
JP6398431B2 (en) Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, and non-aqueous secondary battery
JP6413419B2 (en) Non-aqueous secondary battery porous membrane composite particles, non-aqueous secondary battery porous membrane, non-aqueous secondary battery member, and non-aqueous secondary battery
JP6455140B2 (en) Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer, and non-aqueous secondary battery
JP6737182B2 (en) Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery functional layer and non-aqueous secondary battery
WO2016051674A1 (en) Adhesive composition for electrochemical element, adhesive layer for electrochemical element, and electrochemical element
JP6565935B2 (en) Non-aqueous secondary battery functional layer composition, non-aqueous secondary battery separator and non-aqueous secondary battery
JP6834127B2 (en) A method for forming a functional layer for a non-aqueous secondary battery and a method for manufacturing a non-aqueous secondary battery
JP2017098203A (en) Composition for nonaqueous secondary battery adhesive layer, adhesive layer for nonaqueous secondary battery, and nonaqueous secondary battery
WO2018096975A1 (en) Composition for nonaqueous secondary battery functional layers, functional layer for nonaqueous secondary batteries, and nonaqueous secondary battery
JP6589269B2 (en) Non-aqueous secondary battery adhesive layer composition, non-aqueous secondary battery adhesive layer and non-aqueous secondary battery
WO2020090395A1 (en) Nonaqueous secondary battery functional layer composition, nonaqueous secondary battery functional layer, nonaqueous secondary battery separator, and nonaqueous secondary battery
JP6536017B2 (en) Composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery, non-aqueous secondary battery member, non-aqueous secondary battery, and method for producing adhesive layer for non-aqueous secondary battery
JP6891392B2 (en) Laminate for non-aqueous secondary batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876775

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016568172

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177017829

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15876775

Country of ref document: EP

Kind code of ref document: A1