【0001】
【発明の属する技術分野】
本発明は電池用耐熱性セパレータ及びこれを用いた二次電池に関し、より詳しくはオーバーヒートによる危険性を回避する機能を備え、高温においても膜形状を維持して発火の危険性を回避できる耐熱性セパレータ及びこれを用いた二次電池に関し、特に電力貯蔵用や電気自動車用など大型のバッテリに適用すると有効なものである。
【0002】
【従来の技術】
リチウムイオン型などの二次電池は、ケーシングの内部に正極と負極とが互いに対面するように配置され、電解液が充填されている。ケーシングの内部の正極と負極の間には短絡防止のため、イオンや電解質を透過させる多孔質体からなるセパレータが配設されている。
通常、電池が外部短絡した場合、大電流が流れ、発熱して電池温度が上昇して熱暴走が始まり、電解液の蒸発や発煙による安全弁の作動や発火などに至る危険性がある。そこで、外部短絡時の温度上昇を抑制し、熱暴走を防止するため、ポリオレフィンなどの熱溶融性樹脂からなる多孔質体をセパレータに用い、ある温度以上になるとセパレータが溶融してその開孔部を目詰まりさせることで電池反応を停止させ、発熱を抑制する機能をセパレータに持たせている。この機能はシャットダウン機能と呼ばれている。
【0003】
【発明が解決しようとする課題】
しかし、このような熱溶融性樹脂からなるセパレータを電力貯蔵用や電気自動車用などの大型の二次電池に用いると、大型二次電池は比較的放熱性が悪くなり、短絡などの場合の発熱量も多大なため、電池内部温度がすぐに400〜500℃に上昇する。このような状態になると、セパレータの溶融が開孔部の目詰まりにとどまらず、更に進行してセパレータの完全溶融や溶融亀裂に至る場合がある。この完全に溶融する状態をメルトダウンという。
このメルトダウンが生じると、セパレータにより阻止されていた電極間の接触が起こり、再び短絡電流が流れ、発熱状態となり、熱暴走に至ることになる。
【0004】
特開平8−111214号公報には、ガラス多孔質体としてガラス繊維からなる不織布を用い、これとポリオレフィン多孔質体を積層したセパレータが提案されている。
特開平11−283603号公報には、セラミック繊維が互いにその交点において結合したセラミックシートの間隙にポリオレフィンが保持されてなるセパレータが提案されている。
【0005】
しかし、これらのセパレータは、いずれも比較的分厚い無機繊維からなるシートが用いられているため、特開平8−111214号公報に記載のセパレータは75μm、特開平11−283603号公報に記載のセパレータは約45μmといずれも分厚いセパレータとならざるを得ないものである。
電力貯蔵用や電気自動車用などの大型の二次電池は、大型といえども可能な限りコンパクトであることが望ましく、電極間の距離を可能な限り狭くして、一定の容積内により大きな面積の電極を搭載することが要請されており、セパレータとしてもより薄いものが強く要望されている状況にある。
【0006】
【課題を解決するための手段】
本発明は、よりコンパクトな構造でありながら、シャットダウン機能を有し、熱溶融性樹脂のメルトダウンを防止可能なセパレータ及びこれを用いた二次電池を提供することを目的とする。
すなわち、本発明の要旨は、有機多孔質フィルム表面に無機酸化物多孔質膜が形成されてなることを特徴とする耐熱性セパレータにあり、さらに、正極と、負極と、前記の耐熱性セパレータと、電解液とが電池ケーシング内に収納され、正極と負極とが耐熱性セパレータを介して対向配置されてなる二次電池にある。
【0007】
【発明の実施の形態】
本発明において、有機多孔質フィルムとしては、100℃未満では溶融せず、100〜200℃の間に融点を有し、その温度近傍でシャットダウンするものが好ましく用いられる。
この有機多孔質フィルムとしては、ポリエチレンやポリプロピレンなどのポリオレフィンからなる多孔質フィルムがより好ましく用いられる。有機多孔質フィルムがポリプロピレンからなる場合は160℃付近でシャットダウンし、ポリエチレンからなる場合は、135℃付近でシャットダウンする。
有機多孔質フィルムとしては厚みが5〜30μmのものが好ましく用いられ、気孔率は20〜60%であることが好ましい。多孔質フィルムの孔径、孔形状は、イオンや電解質を透過でき、両極の接触による短絡を防止できる範囲であれば特に限定されるものではない。
【0008】
有機多孔質フィルム表面に形成される被膜を構成する無機酸化物としては、酸化チタン、二酸化珪素、酸化アルミニウム、酸化ジルコニウム、酸化バリウム、酸化ビスマス、酸化銅、酸化鉄、酸化モリブデン、酸化ニッケル、酸化錫、酸化ゲルマニウム、酸化ストロンチウムなどを例示できる。
無機酸化物多孔質膜は、無機酸化物前駆体の溶液を有機多孔質フィルム上に塗布した後、熱処理して無機酸化物多孔質膜としてもよく、ゾルゲル法で、無機酸化物多孔質膜を形成してもよい。
【0009】
無機酸化物前駆体としては、ペルヒドロキシポリシラザン[−(SiH2NH)−を基本ユニットとする無機ポリマー]を例示でき、このペルヒドロキシポリシラザンは、有機溶媒に可溶で、有機多孔質フィルム上に被膜を形成することができ、水分と反応して二酸化珪素に転化する。無機酸化物前駆体を用いて無機酸化物多孔質膜を形成する場合は、無機酸化物が二酸化珪素であることが好ましい。
ゾルゲル法とは、金属アルコキシドの溶液に水を加えて加水分解して金属水酸化物ゾルを形成し、これを重縮合させて金属酸化物のゲルとするものであって、金属水酸化物ゾルを基板上に塗布してゲル化させると、金属酸化物薄膜を形成することができる。
【0010】
金属アルコキシドのアルコキシ基の例を挙げると、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基等を例示することができ、チタン−n−ブトキシド、チタンイソプロポキシド、チタンエトキシド、チタンメトキシド、アルミニウム−n−ブトキシド、アルミニウムエトキシド、ゲルマニウムエトキシド、ストロンチウムエトキシド、ジルコニウム−n−ブトキシド、ジルコニウム−n−プロポキシド、ジルコニウムエトキシド、シリコンエトキシドなどは一般に市販されており、容易に入手することができる。
【0011】
これらのアルコキシドは溶媒に溶解して溶液とし、さらに水を加えてゾル液とし、このゾル液を有機多孔質フィルム上に塗布し、不溶となる溶媒を揮発などにより除去する。
溶媒としては、メチルアルコール、エチルアルコール、イソプロピルアルコール、エトキシエチルアルコール、アリルアルコール、エチレングリコール、エチレンオキシドなどを例示できる。
無機基板上にゾルゲル法で無機酸化物層を形成させる場合は、通常、焼結により無機酸化物結晶としているが、本発明においては、有機多孔質フィルム上に無機酸化物多孔質膜を形成するため、ゲル化は金属アルコキシドの吸収波長の光照射による光硬化あるいは、塩酸や硝酸などの酸性触媒による硬化で行えば、焼結せずとも無機酸化物多孔質膜とすることができる。ゾルゲル法で無機酸化物多孔質膜を形成させる場合は、無機酸化物としては酸化チタンまたは酸化アルミニウムであることが好ましい。
【0012】
有機多孔質フィルム上に形成する無機酸化物多孔質膜の厚みは1〜20μm、気孔率は20〜60%であることが好ましい。無機酸化物多孔質膜の厚みが1μm未満であると、有機多孔質フィルム溶融時のセパレータの強度が不充分となり、亀裂が入ったりして、両極の短絡が生じるおそれがある。無機酸化物多孔質膜の厚みが20μmを越える厚さでの強度による形態維持機能の必要はなく、20μmを越えると、それだけ厚くなりコンパクトさに欠けるようになる。
【0013】
本発明の耐熱性セパレータは、有機多孔質フィルム表面に無機酸化物多孔質膜が形成されているので、短絡時には発熱により有機多孔質フィルムの融点を超えると、フィルムが一部溶融して開孔部を目詰まりさせて電池反応を停止させ、発熱を抑制する。しかし、有機多孔質フィルム表面に無機酸化物多孔質膜が形成されているので、有機多孔質フィルムが溶融する温度以上になっても、無機酸化物多孔質膜により形態が保持され、有機多孔質フィルムが完全に溶融するメルトダウンは生じることない。従って、両極の短絡は生じないので熱暴走を防止でき、発火させることがないという特徴を有する。
【0014】
本発明の二次電池は、上記の耐熱性セパレータを用いたことを特徴とする。
以下本発明の二次電池につき、リチウム二次電池を例にとって説明するが、本発明の二次電池はこれに限定されるものではない。
すなわち、本発明の二次電池においては、正極と、負極と、有機多孔質フィルム表面に無機酸化物多孔質膜が形成されてなる耐熱性セパレータと、電解液とが電池ケーシング内に収納され、正極と負極とが耐熱性セパレータを介して対向配置されている。
【0015】
電解液に使用される電解質としては、LiClO4、LiAsF6、LiPF6、LiBr、LiCF3SO3、(CF3SO2)2N・Li等を例示できる。電解液を構成する溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート等の環状カーボネート類、γ−ブチロラクトン等の環状ラクトン類、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート等の鎖状カーボネート類、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン等のエーテル類等の単独または2種以上を混合したものを例示できる。
【0016】
正極としては、アルミ箔等の集電体に、正極活物質と導電助剤粉末と、高分子結着剤とからなる電極層が担持されてなるものを例示できる。正極活物質としては、例えばコバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、バナジン酸リチウム等のリチウム金属複合酸化物を用いることができる。導電助剤粉末としては例えばカーボンブラックを例示でき、高分子結着剤としては、ポリフッ化ビニリデンを例示できる。
負極としては、銅箔等の負極集電体に、負極活物質と高分子結着剤からなる負極電極層が担持されている。負極活物質としては、コークス、黒鉛、非晶質カーボン等のリチウムイオンを吸蔵・放出する炭素質材料が好ましく用いられる。
【0017】
【実施例】
以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。
(実施例1)
市販の多孔質エチレンフィルム(旭化成社製、N720(商品名)厚さ25μm、平均孔径0.05μm)の表面(両面)に東燃ポリシラザン(商品名、東燃株式会社製)の20質量%キシレン溶液を塗布し、室温でトリエチルアミン5質量%水溶液の蒸気中に2分間接触させた後、40℃室温で70%RHの恒温恒湿室に1日おくことにより、多孔質ポリエチレンフィルム表面に多孔質シリカ膜を形成させた。得られたシリカ膜にポリシラザンの塗布、恒温恒湿処理処理を繰り返すことにより、両面にそれぞれ約10μmのシリカ被膜を有する多孔質ポリエチレンフィルムを得た。
【0018】
この多孔質ポリエチレンフィルムをセパレータとし、正極として、アルミ箔にマンガン酸リチウムとカーボンブラックのスラリーを塗布してなる厚さ140μmの正極板を用い、負極として、銅箔に黒鉛スラリーを塗布してなる厚さ150μmの負極板を用い、電解液としてLiPF6を含むエチレンカーボネートとジメチルカーボネートの混合液を用いて、複数枚の正極と負極とがセパレータを介して配置された構成の50Wh級角形リチウム電池を作成した。
この電池に電流4Aで上限4.2まで充電した。
この電池に保護回路や保護素子を全く付けない状態で安全性試験を行った。
試験方法として、充電した電池をセパレータの溶融温度付近の160℃まで加熱し、その際の電池電圧や発熱状況を比較した。
その結果を表1に示す。
【0019】
(実施例2)
チタンテトラブトキシドの1−プロパノール溶液に錯化剤としてベンゾイルアセトンを加えて約1時間室温で攪拌してチタンアルコキシドとの間にキレートを形成させた。これに少量の水を加え、約2時間攪拌した。実施例1で用いたと同様の多孔質ポリエチレンフィルムの両面に、この錯体溶液を塗布し、波長360nmの光を照射して光硬化させることを繰り返し、厚み10μmの酸化チタン多孔質膜を形成した。
この多孔質ポリエチレンフィルムをセパレータとし、実施例1と同様の構成のリチウム電池を作成した。
この電池を実施例1と同様にして充電し、安全性試験を行った。
その結果を表1に示す。
【0020】
(比較例1)
実施例1で用いたと同様の市販の多孔質ポリエチレンフィルムを2枚重ねたものをセパレータとして用いた以外は実施例1と同様にして電池を作成、充電後、安全性試験を行った。その結果を表1に示す。
【0021】
【表1】
【0022】
表1から明らかなように、安全性試験の結果、多孔質ポリエチレンフィルムのみからなるセパレータを用いた電池は、シャットダウン状態の維持ができないものが存在したが、実施例1、実施例2の電池はいずれもシャットダウンが維持され、安全性の高いことがわかる。
【0023】
【発明の効果】
従来のポリオレフィン多孔質体からなるセパレータは、外部短絡などによる発熱を生じた場合、ポリオレフィンの融点近くになるとポリオレフィンが溶融して電流がシャットダウンするが、大型電池になると更に溶融が進行してメルトダウンし、正極と負極の隔離ができずに内部短絡により更に発熱が生じて熱暴走の危険性が生じる。
無機多孔質体では耐熱性を有し、300℃以上でもその形態を維持できるが、シャットダウン機能はない。
本発明のセパレータはシャットダウン機能を有し、しかも大型電池での外部短絡によって発熱が生じてもメルトダウンによる正極と負極の内部短絡を阻止し、熱暴走の危険性の少ない、ポリオレフィン系セパレータと無機多孔質体系セパレータの両者の特徴を併せ持つものであり、安全性が高く、工業的価値は大きい。又、本発明の電池は、発熱を生じたときにシャットダウン機能を有し、しかも、急激に温度上昇が進行して、従来のポリオレフィン系セパレータを用いた電池では内部短絡が生じて発火の危険性があるような状況になっても、正極と負極の内部短絡を生じず、安全性に優れるという特徴を有する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat-resistant separator for a battery and a secondary battery using the same, and more particularly, to a heat-resistant separator having a function of avoiding the danger of overheating and maintaining the film shape even at a high temperature to avoid the danger of ignition. A separator and a secondary battery using the same are particularly effective when applied to a large battery such as for power storage or an electric vehicle.
[0002]
[Prior art]
In a secondary battery such as a lithium ion battery, a positive electrode and a negative electrode are arranged inside a casing so as to face each other, and are filled with an electrolytic solution. In order to prevent a short circuit between the positive electrode and the negative electrode inside the casing, a separator made of a porous material that allows ions and electrolyte to pass therethrough is provided.
Normally, when a battery is short-circuited externally, a large current flows, heat is generated, the temperature of the battery rises, thermal runaway starts, and there is a danger that the safety valve may be activated or fired due to evaporation of the electrolyte or smoke. Therefore, in order to suppress the temperature rise at the time of external short circuit and prevent thermal runaway, a porous body made of a heat-meltable resin such as polyolefin is used for the separator. The separator has a function of stopping the battery reaction by clogging the battery and suppressing heat generation. This function is called a shutdown function.
[0003]
[Problems to be solved by the invention]
However, when such a separator made of a heat-fusible resin is used for a large secondary battery such as for power storage or an electric vehicle, the large secondary battery has relatively poor heat dissipation, and generates heat when a short circuit occurs. Due to the large amount, the battery internal temperature immediately rises to 400 to 500 ° C. In such a state, the melting of the separator is not limited to the clogging of the opening portion, and may further proceed to complete melting of the separator or melting crack. This completely melted state is called meltdown.
When this meltdown occurs, contact between the electrodes prevented by the separator occurs, a short-circuit current flows again, a heat is generated, and thermal runaway occurs.
[0004]
JP-A-8-111214 proposes a separator using a nonwoven fabric made of glass fiber as a glass porous body and laminating the same with a porous polyolefin body.
JP-A-11-283603 proposes a separator in which a polyolefin is held in a gap between ceramic sheets in which ceramic fibers are bonded at their intersections.
[0005]
However, since each of these separators uses a sheet made of relatively thick inorganic fibers, the separator described in JP-A-8-111214 is 75 μm, and the separator described in JP-A-11-283603 is Each of them has a thickness of about 45 μm and must be a thick separator.
Large rechargeable batteries, such as for power storage and electric vehicles, should be as compact as possible, even if they are large.The distance between the electrodes should be as small as possible, and a larger area within a given volume. There is a demand for mounting electrodes, and there is a strong demand for a thinner separator.
[0006]
[Means for Solving the Problems]
An object of the present invention is to provide a separator which has a shutdown function and can prevent meltdown of a hot-melt resin while having a more compact structure, and a secondary battery using the same.
That is, the gist of the present invention resides in a heat-resistant separator characterized by being formed with an inorganic oxide porous film on the surface of an organic porous film, and further includes a positive electrode, a negative electrode, and the heat-resistant separator. The present invention is directed to a secondary battery in which an electrolyte is contained in a battery casing, and a positive electrode and a negative electrode are opposed to each other via a heat-resistant separator.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, as the organic porous film, a film which does not melt below 100 ° C., has a melting point between 100 ° C. and 200 ° C., and shuts down near that temperature is preferably used.
As the organic porous film, a porous film made of a polyolefin such as polyethylene or polypropylene is more preferably used. When the organic porous film is made of polypropylene, it shuts down at around 160 ° C, and when it is made of polyethylene, it shuts down at around 135 ° C.
As the organic porous film, a film having a thickness of 5 to 30 μm is preferably used, and the porosity is preferably 20 to 60%. The pore diameter and pore shape of the porous film are not particularly limited as long as they can transmit ions and electrolytes and can prevent a short circuit due to contact between both electrodes.
[0008]
Examples of the inorganic oxide constituting the coating formed on the surface of the organic porous film include titanium oxide, silicon dioxide, aluminum oxide, zirconium oxide, barium oxide, bismuth oxide, copper oxide, iron oxide, molybdenum oxide, nickel oxide, and nickel oxide. Examples include tin, germanium oxide, and strontium oxide.
The inorganic oxide porous film may be formed by applying a solution of the inorganic oxide precursor on the organic porous film and then heat-treating the inorganic oxide porous film. It may be formed.
[0009]
Examples of the inorganic oxide precursor include perhydroxypolysilazane [an inorganic polymer having — (SiH 2 NH) — as a basic unit]. This perhydroxypolysilazane is soluble in an organic solvent and is formed on an organic porous film. A film can be formed and reacts with moisture to convert to silicon dioxide. When the inorganic oxide porous film is formed using the inorganic oxide precursor, the inorganic oxide is preferably silicon dioxide.
The sol-gel method is a method in which water is added to a solution of a metal alkoxide and hydrolyzed to form a metal hydroxide sol, which is polycondensed to form a metal oxide gel. Is coated on a substrate and gelled, a metal oxide thin film can be formed.
[0010]
Examples of the alkoxy group of the metal alkoxide include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group and the like, and titanium-n-butoxide, titanium isopropoxide, titanium Ethoxide, titanium methoxide, aluminum-n-butoxide, aluminum ethoxide, germanium ethoxide, strontium ethoxide, zirconium-n-butoxide, zirconium-n-propoxide, zirconium ethoxide, silicon ethoxide and the like are generally commercially available. And can be easily obtained.
[0011]
These alkoxides are dissolved in a solvent to form a solution, and water is further added to form a sol solution. The sol solution is applied on an organic porous film, and the insoluble solvent is removed by volatilization or the like.
Examples of the solvent include methyl alcohol, ethyl alcohol, isopropyl alcohol, ethoxyethyl alcohol, allyl alcohol, ethylene glycol, ethylene oxide and the like.
When the inorganic oxide layer is formed on the inorganic substrate by the sol-gel method, usually, the inorganic oxide crystal is formed by sintering. In the present invention, the inorganic oxide porous film is formed on the organic porous film. Therefore, if gelation is carried out by light curing by irradiation with light having an absorption wavelength of the metal alkoxide, or by curing with an acidic catalyst such as hydrochloric acid or nitric acid, an inorganic oxide porous film can be obtained without sintering. When the inorganic oxide porous film is formed by a sol-gel method, the inorganic oxide is preferably titanium oxide or aluminum oxide.
[0012]
The thickness of the inorganic oxide porous film formed on the organic porous film is preferably 1 to 20 μm, and the porosity is preferably 20 to 60%. When the thickness of the inorganic oxide porous film is less than 1 μm, the strength of the separator when the organic porous film is melted becomes insufficient, and there is a possibility that a crack may occur and a short circuit between the two electrodes may occur. When the thickness of the inorganic oxide porous membrane exceeds 20 μm, there is no need for a shape maintaining function by strength. When the thickness exceeds 20 μm, the inorganic oxide porous membrane becomes thicker and lacks compactness.
[0013]
In the heat-resistant separator of the present invention, since the inorganic oxide porous film is formed on the surface of the organic porous film, if the heat exceeds the melting point of the organic porous film due to heat generation during a short circuit, the film partially melts and opens. The reaction of the battery is stopped by clogging the part, thereby suppressing heat generation. However, since the inorganic oxide porous film is formed on the surface of the organic porous film, even when the temperature exceeds the melting temperature of the organic porous film, the shape is retained by the inorganic oxide porous film, and the organic porous film is retained. There is no meltdown in which the film melts completely. Therefore, since there is no short circuit between the electrodes, thermal runaway can be prevented and there is no ignition.
[0014]
A secondary battery according to the present invention is characterized by using the above-mentioned heat-resistant separator.
Hereinafter, the secondary battery of the present invention will be described by taking a lithium secondary battery as an example, but the secondary battery of the present invention is not limited to this.
That is, in the secondary battery of the present invention, a positive electrode, a negative electrode, a heat-resistant separator in which an inorganic oxide porous film is formed on the surface of an organic porous film, and an electrolytic solution are contained in a battery casing, The positive electrode and the negative electrode are arranged to face each other with a heat-resistant separator interposed therebetween.
[0015]
Examples of the electrolyte used for the electrolyte include LiClO 4 , LiAsF 6 , LiPF 6 , LiBr, LiCF 3 SO 3 , (CF 3 SO 2 ) 2 N · Li, and the like. Examples of the solvent constituting the electrolyte include, for example, propylene carbonate, ethylene carbonate, cyclic carbonates such as butylene carbonate, cyclic lactones such as γ-butyrolactone, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and chains such as methyl propyl carbonate. Carbonates, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, ethers such as 2-methyltetrahydrofuran, or a mixture of two or more of them.
[0016]
Examples of the positive electrode include a positive electrode in which a current collector such as an aluminum foil carries an electrode layer composed of a positive electrode active material, a conductive additive powder, and a polymer binder. As the positive electrode active material, for example, a lithium metal composite oxide such as lithium cobaltate, lithium manganate, lithium nickelate, and lithium vanadate can be used. Examples of the conductive auxiliary powder include carbon black, and examples of the polymer binder include polyvinylidene fluoride.
As the negative electrode, a negative electrode current collector such as a copper foil carries a negative electrode layer made of a negative electrode active material and a polymer binder. As the negative electrode active material, a carbonaceous material that occludes and releases lithium ions, such as coke, graphite, and amorphous carbon, is preferably used.
[0017]
【Example】
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist.
(Example 1)
A 20 mass% xylene solution of Tonen polysilazane (trade name, manufactured by Tonen Co., Ltd.) was applied to the surface (both sides) of a commercially available porous ethylene film (N720 (trade name, manufactured by Asahi Kasei Corporation) having a thickness of 25 μm and an average pore diameter of 0.05 μm). It is applied and brought into contact with a vapor of a 5% by mass aqueous solution of triethylamine at room temperature for 2 minutes, and then placed in a constant temperature and humidity room at 40 ° C. and a room temperature of 70% RH for 1 day to form a porous silica film on the surface of the porous polyethylene film. Was formed. By repeating the application of polysilazane and the constant temperature and humidity treatment on the obtained silica film, a porous polyethylene film having a silica coating of about 10 μm on both surfaces was obtained.
[0018]
Using this porous polyethylene film as a separator, a positive electrode, a positive electrode plate having a thickness of 140 μm obtained by applying a slurry of lithium manganate and carbon black to an aluminum foil is used, and a graphite slurry is applied to a copper foil as a negative electrode. A 50 Wh-class square lithium battery having a configuration in which a plurality of positive electrodes and a negative electrode are disposed via a separator using a negative electrode plate having a thickness of 150 μm and a mixed solution of ethylene carbonate and dimethyl carbonate containing LiPF 6 as an electrolytic solution It was created.
The battery was charged at a current of 4 A to an upper limit of 4.2.
A safety test was performed without any protection circuit or protection element attached to this battery.
As a test method, the charged battery was heated to 160 ° C. near the melting temperature of the separator, and the battery voltage and heat generation status at that time were compared.
Table 1 shows the results.
[0019]
(Example 2)
Benzoylacetone was added as a complexing agent to a 1-propanol solution of titanium tetrabutoxide and stirred at room temperature for about 1 hour to form a chelate with the titanium alkoxide. A small amount of water was added thereto, and the mixture was stirred for about 2 hours. This complex solution was applied to both sides of the same porous polyethylene film as used in Example 1, and light-curing was performed by irradiating light having a wavelength of 360 nm to form a titanium oxide porous film having a thickness of 10 μm.
Using this porous polyethylene film as a separator, a lithium battery having the same configuration as in Example 1 was produced.
This battery was charged in the same manner as in Example 1, and a safety test was performed.
Table 1 shows the results.
[0020]
(Comparative Example 1)
A battery was prepared and charged, and a safety test was performed in the same manner as in Example 1, except that a laminate of two commercially available porous polyethylene films similar to those used in Example 1 was used as a separator. Table 1 shows the results.
[0021]
[Table 1]
[0022]
As is evident from Table 1, as a result of the safety test, some batteries using the separator composed of only the porous polyethylene film could not maintain the shutdown state, but the batteries of Examples 1 and 2 had In any case, the shutdown is maintained, and it is understood that the safety is high.
[0023]
【The invention's effect】
When a conventional separator made of a porous polyolefin generates heat due to an external short circuit or the like, the polyolefin melts near the melting point of the polyolefin and the current shuts down. However, the positive electrode and the negative electrode cannot be separated from each other, and further heat is generated due to an internal short circuit, thereby causing a risk of thermal runaway.
An inorganic porous body has heat resistance and can maintain its form even at 300 ° C. or higher, but has no shutdown function.
The separator of the present invention has a shutdown function, and even if heat is generated by an external short circuit in a large battery, prevents the internal short circuit between the positive electrode and the negative electrode due to meltdown, and reduces the risk of thermal runaway. It has both features of a porous separator, and has high safety and great industrial value. In addition, the battery of the present invention has a shutdown function when heat is generated, and furthermore, the temperature rises rapidly, and in a battery using a conventional polyolefin-based separator, an internal short circuit occurs and there is a risk of ignition. Even in such a situation, there is a feature that an internal short circuit between the positive electrode and the negative electrode does not occur and safety is excellent.