JP2007179758A - Separator - Google Patents

Separator Download PDF

Info

Publication number
JP2007179758A
JP2007179758A JP2005373836A JP2005373836A JP2007179758A JP 2007179758 A JP2007179758 A JP 2007179758A JP 2005373836 A JP2005373836 A JP 2005373836A JP 2005373836 A JP2005373836 A JP 2005373836A JP 2007179758 A JP2007179758 A JP 2007179758A
Authority
JP
Japan
Prior art keywords
separator
melt
nonwoven fabric
battery
anisotropic polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005373836A
Other languages
Japanese (ja)
Other versions
JP4964463B2 (en
Inventor
Kenji Nishiomote
憲二 西面
Yutaka Miyaguchi
裕 宮口
Yasuhiro Shirotani
泰弘 城谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2005373836A priority Critical patent/JP4964463B2/en
Publication of JP2007179758A publication Critical patent/JP2007179758A/en
Application granted granted Critical
Publication of JP4964463B2 publication Critical patent/JP4964463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery separator capable of being formed into a thin-film and excelling in heat resistance and rupture resistance. <P>SOLUTION: This separator is made of a melt-blown nonwoven fabric formed out of a molten anisotropic polyester fiber, and having a fiber diameter of 1-12 μm, a basis weight not greater than 45 g/m<SP>2</SP>, and a thickness of 5-200 μm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐熱性に優れた非水系電池または非水系キャパシタ用セパレータに関する。   The present invention relates to a separator for a nonaqueous battery or a nonaqueous capacitor having excellent heat resistance.

近年、携帯電話、ノートパソコンなどの各種情報端末機器、携帯機器の急激な小型化、軽量化、薄型化とそれらの普及や、ハイブリット自動車の普及・拡大、燃料電池自動車等の普及および実用化を目指し、それらの電源、補助電源として高エネルギー密度の二次電池の要求が高まってきている。
特に、非水電解質を使用したリチウムイオン二次電池およびキャパシタは作動電圧が高く、高エネルギー密度を有する。このリチウムイオン二次電池およびキャパシタは、一般に正極と負極の間に電気絶縁性と保液性を備えたセパレータを介装してなる電極群を、負極端子も兼ねる電池缶の中に所定の非水電解液と一緒に収容し、前記電池缶の開口部を、正極端子を備えた封口板で絶縁性のガスケットを介して密閉した構造になっている。
In recent years, various information terminal devices such as mobile phones and notebook personal computers, mobile devices have rapidly become smaller, lighter, thinner and popularized, hybrid vehicles have been popularized and expanded, and fuel cell vehicles have been popularized and put into practical use. Aiming at these demands, the demand for high energy density secondary batteries as power sources and auxiliary power sources is increasing.
In particular, lithium ion secondary batteries and capacitors using a non-aqueous electrolyte have a high operating voltage and a high energy density. This lithium ion secondary battery and capacitor generally have a predetermined non-electrode in a battery can also serving as a negative electrode terminal, with an electrode group having a separator having electrical insulation and liquid retention between a positive electrode and a negative electrode. The battery can be accommodated together with the water electrolyte, and the opening of the battery can is sealed with an insulating gasket with a sealing plate having a positive electrode terminal.

特にエネルギー密度の高いリチウムイオン二次電池におけるセパレータとしては、有機溶媒との反応性が低いポリオレフィン系樹脂の多孔膜が広く用いられている。ポリオレフィン系樹脂の例としては、ポリエチレン、ポリプロピレン等があり、これらポリオレフィン系樹脂を100℃程度で融解させ、孔を閉塞させ、電池をシャットダウンさせることが提案されている(例えば、特許文献1参照。)。
しかしながら、薄膜化したポリオレフィン系セパレータを用いると、電極と一緒に巻き回す、あるいは積層して電池を製造する際にセパレータが破れたり、避けてしまうといった問題があった。
In particular, as a separator in a lithium ion secondary battery having a high energy density, a porous film of a polyolefin resin having low reactivity with an organic solvent is widely used. Examples of polyolefin resins include polyethylene and polypropylene, and it has been proposed to melt these polyolefin resins at about 100 ° C., close holes, and shut down the battery (see, for example, Patent Document 1). ).
However, when a polyolefin-based separator having a thin film is used, there is a problem that the separator is broken or avoided when it is wound together with an electrode or laminated to produce a battery.

シャットダウンと呼ばれる安全対策は、リチウムイオン電池においては電池中に不安定な金属が存在しており、ショートや引火等を生じる危険性があり、特に溶融した金属リチウムは反応性に富むので、安全性を確保するために電池中の温度がリチウムの融点になる前に回路を遮断することにあるが、シャットダウンに加えて、シャットダウン後にさらに温度が上昇した時にセパレータ自体が溶融破断(メルトダウン)して電池の発火、爆発を抑える機能を有することや、過充電や加熱保存試験時の熱暴走を抑えること等が求められてきている。   A safety measure called shutdown is the safety of lithium-ion batteries because unstable metals are present in the batteries, and there is a risk of short-circuiting, ignition, etc. Especially, molten metallic lithium is highly reactive. In order to ensure that the circuit is shut off before the temperature in the battery reaches the melting point of lithium, in addition to the shutdown, the separator itself melts and breaks (melts down) when the temperature rises further after the shutdown. It has been required to have a function of suppressing battery ignition and explosion, and to suppress thermal runaway during overcharge and heat storage tests.

さらに近年、イオン性液体のような耐熱性電解液、外部の短絡時保護回路、ポリエチレングリコールやポリメタアクリレート、ポリアクリロニトリルなどのポリマー電解質の安全性が高まってきたため、高温で作動し、かつ耐熱性が高く、かつショートしないセパレータが求められてきている。
使用方法としても、ハイブリット車のように、車のエンジンルームの近くで用いる電池や電気二重層コンデンサー等において、従来のポリエチレン、ポリプロピレン製セパレータを用いた電池等では、その融点以上で稼動する場合があることから、さらに耐熱性および低抵抗を有するセパレータが求められていた。
In recent years, the safety of heat-resistant electrolytes such as ionic liquids, external short-circuit protection circuits, and polymer electrolytes such as polyethylene glycol, polymethacrylate, and polyacrylonitrile have increased. Therefore, a separator that is high and does not short-circuit has been demanded.
As a method of use, batteries such as hybrid cars used in the vicinity of the engine room of an automobile or electric double layer capacitors, etc., may be operated at a temperature higher than the melting point of conventional batteries using polyethylene or polypropylene separators. Therefore, a separator having further heat resistance and low resistance has been demanded.

特開平3−203160号公報JP-A-3-203160

本発明の目的は、上記従来技術の背景・問題点に鑑みてなされたものであり、セパレータの薄膜化に対応でき、耐熱性および耐破裂性に優れた非水電解液電池セパレータを提供することにある。   The object of the present invention has been made in view of the background and problems of the above-described prior art, and can provide a nonaqueous electrolyte battery separator that can cope with the thinning of the separator and has excellent heat resistance and burst resistance. It is in.

本発明者等は、かかる課題を解決するために鋭意検討した結果、溶融異方性ポリエステル繊維からなるメルトブローン不織布を用いることにより、セパレータの薄膜化が達成でき、さらに耐熱性、耐破裂性に優れた非水電解液電池用、キャパシタ用セパレータが得られることを見出し、本発明を完成した。   As a result of intensive investigations to solve such problems, the present inventors have been able to achieve a thinner separator by using a melt-blown nonwoven fabric made of melt-anisotropic polyester fibers, and are excellent in heat resistance and burst resistance. It was found that separators for non-aqueous electrolyte batteries and capacitors were obtained, and the present invention was completed.

すなわち本発明は、溶融異方性ポリエステル繊維で構成され、繊維径が1〜12μm、目付が45g/m以下、厚みが5〜200μmであるメルトブローン不織布からなるセパレータであり、好ましくは不織布を構成する溶融異方性ポリエステルがパラヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸を主成分とする上記のセパレータに関する。 That is, the present invention is a separator composed of a melt-blown nonwoven fabric composed of melt anisotropic polyester fibers, having a fiber diameter of 1 to 12 μm, a basis weight of 45 g / m 2 or less, and a thickness of 5 to 200 μm, and preferably comprises a nonwoven fabric The melt-anisotropic polyester is related to the above-mentioned separator whose main components are parahydroxybenzoic acid and 6-hydroxy-2-naphthoic acid.

溶融異方性ポリエステル繊維からなるメルトブローン不織布を用いることにより、耐熱性、耐破裂性に優れ、特に高温になってもセパレータの形状を保持して溶融破断(メルトダウン)のような爆発的暴走を防止する、安全性に優れた非水電解液電池用、キャパシタ用セパレータが得られる。   By using a melt-blown nonwoven fabric made of melt-anisotropic polyester fiber, it has excellent heat resistance and burst resistance, and keeps the shape of the separator even at high temperatures, and prevents explosive runaway such as melt fracture. A separator for a non-aqueous electrolyte battery and a capacitor excellent in safety can be obtained.

本発明において用いる溶融異方性ポリエステルは、耐熱性、耐薬品性に優れた樹脂である。本発明にいう溶融異方性ポリエステルとは、溶融相において光学的異方性(液晶性)を示す芳香族ポリエステルであり、例えば試料をホットステージに載せ窒素雰囲気下で加熱し、試料の透過光を観察することで認定できる。溶融異方性ポリエステルは芳香族ジオール、芳香族ジカルボン酸、芳香族ヒドロキシカルボン酸の反復構成単位を主成分とするものであり、例えば、以下に示す反復構成単位群の組合せからなるものが好ましい。   The melt anisotropic polyester used in the present invention is a resin excellent in heat resistance and chemical resistance. The melt-anisotropic polyester referred to in the present invention is an aromatic polyester that exhibits optical anisotropy (liquid crystallinity) in the melt phase. For example, a sample is placed on a hot stage and heated in a nitrogen atmosphere, and the light transmitted through the sample is transmitted. It can be recognized by observing. The melt-anisotropic polyester is composed mainly of repeating structural units of aromatic diol, aromatic dicarboxylic acid, and aromatic hydroxycarboxylic acid. For example, those composed of combinations of repeating structural units shown below are preferable.

Figure 2007179758
Figure 2007179758

これらの中でも、本発明で使用される溶融異方性ポリエステルとしては、パラヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸が主成分となる構成、またはパラヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸とテレフタル酸とビフェノールが主成分となる構成が好ましい。
なお、上記溶融異方性ポリエステルには、必要に応じて着色剤、無機フィラー、酸化防止剤、紫外線吸収剤等の通常使用されている添加剤および熱可塑性エラストマーを本発明の機能を阻害しない範囲で添加してもよい。
Among these, as the melt anisotropic polyester used in the present invention, a composition mainly composed of parahydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, or parahydroxybenzoic acid and 6-hydroxy-2- A configuration mainly composed of naphthoic acid, terephthalic acid and biphenol is preferred.
In addition, the above-mentioned melt-anisotropic polyester has a range that does not hinder the function of the present invention, as required, such as colorants, inorganic fillers, antioxidants, ultraviolet absorbers, and other commonly used additives and thermoplastic elastomers. May be added.

セパレータに用いる本発明の溶融異方性ポリエステル不織布は、メルトブロー法により得られるメルトブローン不織布である。メルトブロー法は公知の方法を採用することができ、例えば、溶融した溶融異方性ポリエステルを、一列に配列した複数のノズル孔から溶融ポリマーとして吐出し、オリフィスダイに隣接して設備した噴射ガス口から高温高速空気を噴射せしめて、吐出された溶融ポリマーを細繊維化し、次いで繊維流をコレクタであるコンベヤネット上等に捕集して不織布を製造する方法である。   The melt anisotropic polyester nonwoven fabric of the present invention used for a separator is a melt blown nonwoven fabric obtained by a melt blow method. A known method can be adopted as the melt blow method. For example, a melted anisotropic polyester is ejected as a molten polymer from a plurality of nozzle holes arranged in a row, and an injection gas port provided adjacent to an orifice die. High temperature and high speed air is sprayed to make the discharged molten polymer into fine fibers, and then the fiber stream is collected on a conveyor net or the like as a collector to produce a nonwoven fabric.

セパレータに用いる本発明の溶融異方性ポリエステルからなるメルトブローン不織布の繊維径は1〜12μmであることが必要である。繊維径が1μm未満では電池の内部抵抗が大きくなりすぎ、12μmを超えると内部短絡の危険性が高まる。好ましくは2〜10μmであり、より好ましくは3〜6μmである。   The fiber diameter of the melt blown nonwoven fabric made of the melt anisotropic polyester of the present invention used for the separator is required to be 1 to 12 μm. If the fiber diameter is less than 1 μm, the internal resistance of the battery becomes too large, and if it exceeds 12 μm, the risk of internal short circuit increases. Preferably it is 2-10 micrometers, More preferably, it is 3-6 micrometers.

また、セパレータに用いる本発明の溶融異方性ポリエステルからなるメルトブローン不織布の目付は45g/m以下であることが必要である。目付が45g/mを超えると内部抵抗が上昇する。一方目付が疎になりすぎるとセパレータ強度が不足し、アセンブリでの信頼性が低下したり、ショートが起こりやすいため好ましくないので、2g/m以上あることが好ましい。好ましくは2〜30g/mである。 The basis weight of the melt blown nonwoven fabric made of the melt anisotropic polyester of the present invention used for the separator is required to be 45 g / m 2 or less. When the basis weight exceeds 45 g / m 2 , the internal resistance increases. On the other hand the basis weight is insufficient becomes too the separator strength is sparse, reliability is lowered in the assembly, since the short is not preferable because the easily occur, it is preferable that 2 g / m 2 or more. Preferably from 2 to 30 g / m 2.

さらに、セパレータに用いる本発明の溶融異方性ポリエステルからなるメルトブローン不織布の厚みは5〜200μmであることが必要である。厚みが5μm未満であると電解液保持能力が低下し、一方200μmを超えると生産性が劣る。好ましくは7〜100μmであり、より好ましくは10〜70μmである。   Furthermore, the thickness of the melt blown nonwoven fabric made of the melt anisotropic polyester of the present invention used for the separator needs to be 5 to 200 μm. When the thickness is less than 5 μm, the electrolytic solution holding ability is lowered, and when it exceeds 200 μm, the productivity is inferior. Preferably it is 7-100 micrometers, More preferably, it is 10-70 micrometers.

本発明の溶融異方性ポリエステルからなるメルトブローン不織布のMD方向の強度は、10N/50mm以上であることが好ましく、20N/50mmであることがより好ましい。MD方向の強度が10N/50mm未満であると非水系二次電池、キャパシタ作成時での信頼性が低下する。   The MD direction strength of the melt blown nonwoven fabric made of the melt anisotropic polyester of the present invention is preferably 10 N / 50 mm or more, and more preferably 20 N / 50 mm. If the strength in the MD direction is less than 10 N / 50 mm, the reliability at the time of producing the non-aqueous secondary battery and the capacitor is lowered.

本発明のセパレータは、厚み、均質性の精度向上のために、必要に応じてカレンダー処理およびプレス処理を行い、成形性を整えることができる。
また本発明のセパレータは、その目的に応じてグラフト重合やプラズマ処理、コロナ処理、界面活性剤塗布等により不織布表面の親液性を向上させて用いることができる。
In order to improve the accuracy of thickness and homogeneity, the separator of the present invention can be subjected to calendering and pressing as necessary to adjust the formability.
Further, the separator of the present invention can be used by improving the lyophilicity of the nonwoven fabric surface by graft polymerization, plasma treatment, corona treatment, surfactant coating or the like depending on the purpose.

本発明のセパレータは、前記の物性を有する溶融異方性ポリエステルからなるメルトブローン不織布を一枚で使用しても、複数枚を積層体として使用しても、あるいは従来のオレフィン系シートやポリフッ化ビニリデン、シリカゲルのような他の素材をコーティングしてもかまわない。
このようにして得られる本発明のセパレータはリチウム系一次、二次電池等のセパレータおよび電気二重層キャパシタ等のセパレータとして用いることができ、特に高温になってもセパレータの形状を保持して溶融破断(メルトダウン)のような爆発的熱暴走を防止する安全性に優れた電池用セパレータとして用いることができる。
The separator of the present invention may be a single melt blown nonwoven fabric made of a melt anisotropic polyester having the above physical properties, a plurality of laminates, or a conventional olefin-based sheet or polyvinylidene fluoride. Other materials such as silica gel may be coated.
The separator of the present invention thus obtained can be used as a separator for lithium-based primary and secondary batteries, and as a separator for electric double layer capacitors, etc., and keeps the shape of the separator even at high temperatures and melt fracture It can be used as a battery separator excellent in safety for preventing explosive thermal runaway such as (meltdown).

以下、実施例によって本発明を詳細に説明するが、本発明は実施例によって限定されるものではない。なお、本発明において溶融異方性ポリエステルからなるメルトブローン不織布の物性は以下の測定方法により測定されたものを意味する。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by an Example. In the present invention, the physical properties of the melt blown nonwoven fabric made of melt anisotropic polyester mean those measured by the following measuring method.

[不織布を構成する繊維の繊維径 μm]
試験片の中で5箇所を任意に選択し、電子顕微鏡で5枚の写真撮影を行い、1枚の写真につき20本の繊維の直径を測定し、合計100本の繊維径を平均して求めた。
[Fiber diameter of the fibers constituting the nonwoven fabric μm]
Select 5 locations in the test piece, take 5 photos with an electron microscope, measure the diameter of 20 fibers per photo, and average 100 fiber diameters. It was.

[不織布の目付 g/m
試料長さ方向より、100×100mmの試験片を採取し、水分平衡状態の質量を測定し、1m当りに換算して求めた。
[Non-woven fabric weight g / m 2 ]
A test piece of 100 × 100 mm was taken from the sample length direction, the mass in a moisture equilibrium state was measured, and calculated per 1 m 2 .

[不織布の厚み μm]
試料長さ方向より、100×100mmの試験片を採取し、ダイヤルシックネスゲージで測定した。
[Nonwoven fabric thickness μm]
A 100 × 100 mm test piece was taken from the sample length direction and measured with a dial thickness gauge.

[リチウムイオン電池の作製]
正極は厚さ100μmの長方形のアルミニウム箔からなる集電体の片面にコバルト酸リチウムの活物質粉末とアセチレンブラック等の導電材と結着材からなる合剤にポリエチレンオキサイドの固体電解質と、6−フッ化リン酸リチウムのプロピレンカーボネート溶液からなる電解液の混合物をドクターブレードにより塗布し、熱プレスにより硬化し、正極板とした。負極は厚さ100μmの長方形の銅箔からなる集電体の片面に炭素粉末およびポリエチレンオキサイドの固体電解質と、6−フッ化リン酸リチウムのプロピレンカーボネート溶液からなる電解液の混合物からなる合剤を銅箔に結着させ、正極同様熱プレスにより硬化したものからなる。このようにしてなるセパレータを正極および負極の活物質面で貼り合わせることによりリチウムイオンポリマー電池の極群が完成する。この極群をアルミラミネートで包み込むことにより、リチウムイオンポリマー電池が完成する。
完成した電池の寸法は54×75×0.57mmであり、容量は40mAhであった。
[Production of lithium-ion batteries]
The positive electrode has a current collector made of a rectangular aluminum foil having a thickness of 100 μm, a solid electrolyte of polyethylene oxide in a mixture of an active material powder of lithium cobaltate, a conductive material such as acetylene black, and a binder on one side; A mixture of an electrolytic solution composed of a propylene carbonate solution of lithium fluorophosphate was applied by a doctor blade and cured by hot pressing to obtain a positive electrode plate. The negative electrode has a mixture made of a mixture of a solid electrolyte of carbon powder and polyethylene oxide and an electrolyte solution of a propylene carbonate solution of lithium 6-fluorophosphate on one surface of a current collector made of a rectangular copper foil having a thickness of 100 μm. It consists of what was bound to copper foil and hardened by hot pressing like the positive electrode. By sticking the separator thus formed on the active material surfaces of the positive electrode and the negative electrode, a pole group of a lithium ion polymer battery is completed. A lithium ion polymer battery is completed by wrapping this pole group with an aluminum laminate.
The dimensions of the completed battery were 54 × 75 × 0.57 mm and the capacity was 40 mAh.

[リチウムイオン電池の性能評価]
得られたリチウムイオン電池を用いて、下記1)〜3)の条件にて1回目の放電容量、20回目の放電容量を測定し、20回目の放電容量を1回目の放電容量で割った値(百分率)を放電容量維持率として求めた。
1)充放電 充電条件;0.1C(4mA)
放電条件;0.1C(4mA)
2)容量 計画容量;40mAh
実行容量;40mAh(1回目の放電容量)
3)充放電試験温度 100℃
[Performance evaluation of lithium-ion battery]
Using the obtained lithium ion battery, the first discharge capacity and the 20th discharge capacity were measured under the following conditions 1) to 3), and the 20th discharge capacity was divided by the first discharge capacity. (Percentage) was determined as the discharge capacity maintenance rate.
1) Charging / discharging Charging conditions: 0.1 C (4 mA)
Discharge condition: 0.1 C (4 mA)
2) Capacity Planned capacity: 40 mAh
Effective capacity: 40 mAh (first discharge capacity)
3) Charging / discharging test temperature 100 ° C

[実施例1]
パラヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸との共重合物から製造した、平均繊維径5μm、目付6g/m、厚み20μm、MD方向の強度15N/50mmの溶融異方性ポリエステルからなるメルトブローン不織布をセパレータとして用い、電池を作製した。セパレータとしての評価結果を表1に示す。
[Example 1]
A melt anisotropic polyester produced from a copolymer of parahydroxybenzoic acid and 6-hydroxy-2-naphthoic acid and having an average fiber diameter of 5 μm, a basis weight of 6 g / m 2 , a thickness of 20 μm, and an MD direction strength of 15 N / 50 mm. A battery was prepared using the melt blown nonwoven fabric as a separator. The evaluation results as a separator are shown in Table 1.

[実施例2]
実施例1と同様にパラヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸との共重合物から製造した、平均繊維径8μm、目付9g/m、厚み30μm、MD方向の強度20N/50mmの溶融異方性ポリエステルからなるメルトブローン不織布をセパレータとして用い、電池を作製した。セパレータとしての評価結果を表1に示す。
[Example 2]
In the same manner as in Example 1, produced from a copolymer of parahydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, having an average fiber diameter of 8 μm, a basis weight of 9 g / m 2 , a thickness of 30 μm, and an MD strength of 20 N / 50 mm. A battery was fabricated using a melt blown nonwoven fabric made of melt anisotropic polyester as a separator. The evaluation results as a separator are shown in Table 1.

[比較例1]
ポリプロピレンから製造した平均繊維径4μm、目付10g/m、厚み40μm、MD方向の強度4N/50mmのポリプロピレンからなるメルトブローン不織布をセパレータとして用い、電池を作製した。セパレータとしての評価結果を表1に示す。
[Comparative Example 1]
A battery was produced using a melt blown nonwoven fabric made of polypropylene having an average fiber diameter of 4 μm, a basis weight of 10 g / m 2 , a thickness of 40 μm, and a strength in the MD direction of 4 N / 50 mm as a separator. The evaluation results as a separator are shown in Table 1.

Figure 2007179758
Figure 2007179758

表1に示すように、実施例1〜2の溶融異方性ポリエステル繊維で構成されるメルトブローン不織布をセパレータとして用いた電池は放電容量維持率が90%以上であり優れるものであった。一方、比較例1のようにポリプロピレンからなるメルトブローン不織布をセパレータとして用いた電池は充放電を5回繰り返しただけでショートしてしまい、実用性には程遠いものであった。   As shown in Table 1, the battery using the melt-blown nonwoven fabric composed of the melt-anisotropic polyester fibers of Examples 1 and 2 as a separator had an excellent discharge capacity maintenance rate of 90% or more. On the other hand, as in Comparative Example 1, a battery using a melt blown nonwoven fabric made of polypropylene as a separator was short-circuited by repeating charging and discharging five times, and was far from practical.

本発明の溶融異方性ポリエステル繊維で構成されるメルトブローン不織布からなるセパレータはリチウム系一次、二次電池等のセパレータおよび電気二重層キャパシタ等のセパレータとして用いることができ、特に高温になってもセパレータの形状を保持して溶融破断(メルトダウン)のような爆発的熱暴走を防止する安全性に優れた電池用セパレータとして用いることができる。


The separator made of the melt blown nonwoven fabric composed of the melt anisotropic polyester fiber of the present invention can be used as a separator for lithium-based primary and secondary batteries, and a separator for electric double layer capacitors, etc. It can be used as a battery separator excellent in safety that keeps the shape and prevents explosive thermal runaway such as melt fracture (meltdown).


Claims (2)

溶融異方性ポリエステル繊維で構成され、繊維径が1〜12μm、目付が45g/m以下、厚みが5〜200μmであるメルトブローン不織布からなるセパレータ。 A separator made of a melt-blown nonwoven fabric composed of melt anisotropic polyester fibers, having a fiber diameter of 1 to 12 μm, a basis weight of 45 g / m 2 or less, and a thickness of 5 to 200 μm. 不織布を構成する溶融異方性ポリエステルがパラヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸を主成分とする請求項1記載のセパレータ。
The separator according to claim 1, wherein the melt-anisotropic polyester constituting the nonwoven fabric is composed mainly of parahydroxybenzoic acid and 6-hydroxy-2-naphthoic acid.
JP2005373836A 2005-12-27 2005-12-27 Separator Active JP4964463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005373836A JP4964463B2 (en) 2005-12-27 2005-12-27 Separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005373836A JP4964463B2 (en) 2005-12-27 2005-12-27 Separator

Publications (2)

Publication Number Publication Date
JP2007179758A true JP2007179758A (en) 2007-07-12
JP4964463B2 JP4964463B2 (en) 2012-06-27

Family

ID=38304755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005373836A Active JP4964463B2 (en) 2005-12-27 2005-12-27 Separator

Country Status (1)

Country Link
JP (1) JP4964463B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076350A (en) * 2007-09-21 2009-04-09 Kuraray Co Ltd Separator, and manufacturing method thereof
JP2009248357A (en) * 2008-04-02 2009-10-29 Asahi Kasei E-Materials Corp Composite microporous membrane
JP2016196047A (en) * 2016-08-31 2016-11-24 住友化学株式会社 Sheet material cutting method
JP2021034325A (en) * 2019-08-29 2021-03-01 マクセルホールディングス株式会社 Solid electrolyte sheet and all-solid type lithium secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120535A (en) * 2003-10-20 2005-05-12 Tapyrus Co Ltd Liquid crystal polyester melt blow nonwoven fabric and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120535A (en) * 2003-10-20 2005-05-12 Tapyrus Co Ltd Liquid crystal polyester melt blow nonwoven fabric and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076350A (en) * 2007-09-21 2009-04-09 Kuraray Co Ltd Separator, and manufacturing method thereof
JP2009248357A (en) * 2008-04-02 2009-10-29 Asahi Kasei E-Materials Corp Composite microporous membrane
JP2016196047A (en) * 2016-08-31 2016-11-24 住友化学株式会社 Sheet material cutting method
JP2021034325A (en) * 2019-08-29 2021-03-01 マクセルホールディングス株式会社 Solid electrolyte sheet and all-solid type lithium secondary battery
JP7374664B2 (en) 2019-08-29 2023-11-07 マクセル株式会社 Solid electrolyte sheet and all-solid lithium secondary battery

Also Published As

Publication number Publication date
JP4964463B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
US9166251B2 (en) Battery separator and nonaqueous electrolyte battery
JP5525630B2 (en) Non-aqueous electrolyte secondary battery electrode, non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5165158B1 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5405568B2 (en) Separator provided with porous coating layer and electrochemical device provided with the same
JP5093997B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP6143992B1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP5247657B2 (en) Non-aqueous electrolyte battery
JP5576740B2 (en) Electrochemical element
CN111954943A (en) Separator, method for manufacturing the same, and lithium battery including the same
KR20160118966A (en) Multi-layered lithium ion battery separator and method of manufacturing the same
JP2006032246A (en) Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
KR20180077190A (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
KR20180081072A (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
KR20150129669A (en) Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
KR20160101895A (en) Non-aqueous secondary cell separator and non-aqueous secondary cell
JP2013101954A (en) Separator for battery and nonaqueous electrolyte battery including the same
CN111357133B (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
CN101276895A (en) Lithium ion secondary battery as well as composition for porus diaphragm layer of the same
KR101370674B1 (en) Separator for electrochemical device, method for producing the same, and electrochemical device
JP6371905B2 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP2011146252A (en) Nonaqueous electrolyte battery and method of manufacturing the same
KR20100051353A (en) Stacked electrochemical cell
KR20080106881A (en) Separator and electrochemical device prepared thereby
JP4964463B2 (en) Separator
JP2014026946A (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120328

R150 Certificate of patent or registration of utility model

Ref document number: 4964463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3