JP2010160939A - Separator for nonaqueous secondary battery, and nonaqueous secondary battery - Google Patents

Separator for nonaqueous secondary battery, and nonaqueous secondary battery Download PDF

Info

Publication number
JP2010160939A
JP2010160939A JP2009001654A JP2009001654A JP2010160939A JP 2010160939 A JP2010160939 A JP 2010160939A JP 2009001654 A JP2009001654 A JP 2009001654A JP 2009001654 A JP2009001654 A JP 2009001654A JP 2010160939 A JP2010160939 A JP 2010160939A
Authority
JP
Japan
Prior art keywords
separator
secondary battery
coating layer
coating
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009001654A
Other languages
Japanese (ja)
Other versions
JP5587555B2 (en
Inventor
Ayumi Kozuki
亜由美 上月
Takahisa Ono
隆央 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2009001654A priority Critical patent/JP5587555B2/en
Publication of JP2010160939A publication Critical patent/JP2010160939A/en
Application granted granted Critical
Publication of JP5587555B2 publication Critical patent/JP5587555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high quality separator for a nonaqueous secondary battery in which there is less adhesion amount of agglomerates, and there is no effect on battery characteristics. <P>SOLUTION: In the separator for the nonaqueous secondary battery in which a porous coating layer containing an organic polymer compound is laminated on one face or both faces of a base material membrane, and the separator for the nonaqueous secondary battery in which in an area 1 m<SP>2</SP>of the separator surface, there exists no agglomerates of the maximum diameter 300 μm or more composed of a structure of the coating layer, and there are five pieces or less of the agglomerates of the maximum diameters 5 μm or more and 300 μm or less composed of a constituent of the coating layer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、非水系二次電池用セパレータ及び非水系二次電池に関するものである。   The present invention relates to a separator for a non-aqueous secondary battery and a non-aqueous secondary battery.

従来、非水系二次電池用セパレータの用途に適するフィルムとして、通気性の基材上に多孔質層を被覆したコーティング膜が知られている(例えば、特許文献1,2参照)。このようなコーティング膜においては、多孔質層は、通常、耐熱性や電解液保持特性等の諸機能を追加的に付与する目的で設けられる。例えば、特許文献1に記載のコーティング膜は、ポリエチレン微多孔膜上に全芳香族ポリアミド等の多孔質層を被覆したリチウムイオン二次電池用セパレータであるが、この場合、多孔質層は主にセパレータの耐熱性を向上することを目的として設けられている。また、特許文献2には、ポリプロピレン微多孔膜上にポリフッ化ビニリデン共重合体からなる多孔質層を積層した複合多孔膜が示されているが、この場合、多孔質層はリチウムイオン電池の電解液に対する膨潤性・保持性等を向上する目的で設けられている。   Conventionally, a coating film in which a porous layer is coated on a breathable substrate is known as a film suitable for use as a separator for a non-aqueous secondary battery (see, for example, Patent Documents 1 and 2). In such a coating film, the porous layer is usually provided for the purpose of additionally imparting various functions such as heat resistance and electrolytic solution retention characteristics. For example, the coating film described in Patent Document 1 is a separator for a lithium ion secondary battery in which a porous layer such as wholly aromatic polyamide is coated on a polyethylene microporous film. In this case, the porous layer is mainly composed of a porous layer. It is provided for the purpose of improving the heat resistance of the separator. Patent Document 2 discloses a composite porous film in which a porous layer made of a polyvinylidene fluoride copolymer is laminated on a polypropylene microporous film. In this case, the porous layer is used as an electrolytic cell for a lithium ion battery. It is provided for the purpose of improving the swellability and retention of the liquid.

かかるコーティング膜の製造方法としては、(i)多孔質の塗工層を構成する有機高分子化合物および水溶性有機溶媒を含む塗工液を作製する工程と、(ii)塗工液を基材膜の片面もしくは両面に塗工する工程と、(iii)この塗工層を有した基材膜を、水又は水と水溶性有機溶剤の混合液からなる凝固液を有する凝固浴中に浸漬し、当該塗工層を凝固させる工程と、(iv)水洗及び乾燥する工程から成る湿式塗工法が広く知られている。特に、特許文献2に示されたように、上記(ii)から(iv)までの工程間において基材を連続的に搬送する連続式の湿式塗工法は、生産性が高く、良質のコーティング膜を得やすいという観点から優れた方法と言える。かかる連続式の湿式塗工法においては、より生産性を高めるためにも、基材をより速く搬送することが望まれている。   As a method for producing such a coating film, (i) a step of producing a coating liquid containing an organic polymer compound and a water-soluble organic solvent constituting a porous coating layer, and (ii) a coating liquid as a base material A step of coating on one or both sides of the membrane, and (iii) immersing the substrate membrane having this coating layer in a coagulation bath having a coagulation liquid comprising water or a mixture of water and a water-soluble organic solvent. A wet coating method comprising a step of solidifying the coating layer and a step of (iv) washing and drying is widely known. In particular, as shown in Patent Document 2, the continuous wet coating method in which the substrate is continuously conveyed between the processes (ii) to (iv) is highly productive and has a high quality coating film. It can be said that it is an excellent method from the viewpoint of being easy to obtain. In such a continuous wet coating method, it is desired to transport the substrate faster in order to further increase productivity.

国際公開第2008/062727号公報International Publication No. 2008/062727 特開2003−171495号公報JP 2003-171495 A

しかしながら、塗工層の組成や製法によっては、高速で凝固浴に浸漬することで凝固前の塗工層の一部が欠落し、この欠落した塗工層の構成物質によって凝固浴が汚染されてしまうことがある。そして、凝固浴中に存在する塗工層の構成物質は凝集して、かかる凝集物が順次凝固浴に搬送される塗工膜の表面に付着する場合がある。このようなコーティング膜表面に付着した凝集物は、非水系二次電池用セパレータの品質を悪化させ、非水系二次電池の特性にも影響を及ぼしかねない。よって、セパレータ表面における凝集物の付着量を極力低下させることが望ましいが、完全に凝集物を排除することは現実的には困難であり、製法を改善したとしても凝集物はある程度は付着してしまうのが現実である。しかし、現状は、どの程度の凝集物であれば電池特性に悪影響を与えないのかについて、明確な知見を示した例は存在しない。   However, depending on the composition and manufacturing method of the coating layer, a part of the coating layer before solidification is lost by being immersed in the coagulation bath at a high speed, and the coagulation bath is contaminated by the constituent material of the missing coating layer. It may end up. And the constituent material of the coating layer which exists in a coagulation bath may aggregate, and this aggregate may adhere to the surface of the coating film conveyed to a coagulation bath one by one. Aggregates adhering to the coating film surface may deteriorate the quality of the non-aqueous secondary battery separator and may affect the characteristics of the non-aqueous secondary battery. Therefore, it is desirable to reduce the adhesion amount of the aggregate on the separator surface as much as possible, but it is practically difficult to completely eliminate the aggregate, and even if the manufacturing method is improved, the aggregate will adhere to some extent. It is a reality. However, at present, there is no example showing clear knowledge as to how much aggregates do not adversely affect battery characteristics.

そこで、本発明では、凝集物の付着量が少なく、電池特性にも影響を及ぼさない高品質の非水系二次電池用セパレータを提供することを目的とする。   Therefore, an object of the present invention is to provide a high-quality non-aqueous secondary battery separator that has a small amount of aggregates and does not affect the battery characteristics.

本発明は、上記課題を解決すべく、以下の構成を採用する。
(1) 基材膜の片面又は両面に、有機高分子化合物を含む多孔質の塗工層が積層された非水系二次電池用セパレータであって、該セパレータ表面の面積1m当りには、前記塗工層の構成物から成る最大径が300μm以上の凝集物が存在せず、かつ、前記塗工層の構成物から成る最大径が5μm以上300μm未満の凝集物が5個以下であることを特徴とする非水系二次電池用セパレータ。
(2) 前記塗工層は無機フィラーを含むことを特徴とする上記(1)に記載の非水系二次電池用セパレータ。
(3) 前記塗工層表面400μmにおける最大径0.5〜5μmの前記凝集物が20個以上であることを特徴とする上記(1)又は(2)記載の非水系二次電池用セパレータ。
(4) 前記凝集物を起因とする幅0.05〜1mm、長さ1cm以上の筋が該セパレータ表面の面積1m当り5本以下であることを特徴とする上記(1)〜(3)のいずれかに記載の非水系二次電池用セパレータ。
(5) リチウムのドープ・脱ドープにより起電力を得る非水系二次電池であって、上記(1)〜(4)のいずれかに記載の非水系二次電池セパレータを用いたことを特徴とする非水系二次電池。
The present invention adopts the following configuration in order to solve the above problems.
(1) A separator for a non-aqueous secondary battery in which a porous coating layer containing an organic polymer compound is laminated on one side or both sides of a base film, and per 1 m 2 of the separator surface area, There are no aggregates having a maximum diameter of 300 μm or more composed of the composition of the coating layer, and there are 5 or less aggregates having a maximum diameter of 5 μm or more and less than 300 μm composed of the composition of the coating layer. A separator for a non-aqueous secondary battery.
(2) The separator for a nonaqueous secondary battery according to (1), wherein the coating layer contains an inorganic filler.
(3) The separator for a nonaqueous secondary battery according to the above (1) or (2), wherein there are 20 or more aggregates having a maximum diameter of 0.5 to 5 μm on the surface of the coating layer 400 μm 2 .
(4) The above (1) to (3), wherein the number of streaks having a width of 0.05 to 1 mm and a length of 1 cm or more due to the aggregates is 5 or less per 1 m 2 of the separator surface area. The separator for non-aqueous secondary batteries in any one of.
(5) A non-aqueous secondary battery that obtains an electromotive force by doping or dedoping lithium, wherein the non-aqueous secondary battery separator according to any one of (1) to (4) is used. Non-aqueous secondary battery.

本発明では、凝集物の付着量が少なく、電池特性にも影響を及ぼさない高品質の非水系二次電池セパレータを提供することができる。   In the present invention, it is possible to provide a high-quality non-aqueous secondary battery separator that has a small amount of aggregates and does not affect battery characteristics.

本発明の非水系二次電池用セパレータを製造するためのコーティングシステムを示した模式図である。It is the schematic diagram which showed the coating system for manufacturing the separator for non-aqueous secondary batteries of this invention. 上記のコーティングシステムにおけるプレ凝固部の各種態様を示した模式図である。It is the schematic diagram which showed the various aspects of the pre-solidification part in said coating system.

以下、本発明の実施の形態について詳細に説明する。
[非水系二次電池セパレータ]
本発明の非水系二次電池セパレータは、基材膜の片面又は両面に、有機高分子化合物を含む多孔質の塗工層が積層された非水系二次電池用セパレータであって、該セパレータ表面の面積1m当りには、前記塗工層の構成物から成る最大径が300μm以上の凝集物が存在せず、かつ、前記塗工層の構成物から成る最大径が5μm以上300μm未満の凝集物が5個以下であることを特徴とする。
Hereinafter, embodiments of the present invention will be described in detail.
[Non-aqueous secondary battery separator]
The non-aqueous secondary battery separator of the present invention is a non-aqueous secondary battery separator in which a porous coating layer containing an organic polymer compound is laminated on one side or both sides of a substrate film, the separator surface There is no agglomerate having a maximum diameter of 300 μm or more composed of a constituent of the coating layer per 1 m 2 of the coating, and agglomeration having a maximum diameter of 5 μm or more and less than 300 μm composed of the constituent of the coating layer. The number of objects is 5 or less.

このような非水系二次電池セパレータであれば、表面平滑性が高く、被着部材との密着性が高いため、膜抵抗が低くサイクル特性に優れた非水系二次電池を得ることができる。なお、最大径が300μm以上の凝集物が存在すると、電池の膜抵抗およびサイクル特性を著しく悪化させるため、存在してはならない。また、最大径が5μm以上300μm未満の凝集物が5個より多く存在すると、表面平滑性や塗工層の均一性が失われ、凝集物が原因の筋や剥れなどの欠点が多数発生しやすくなる。結果として、膜抵抗の上昇や、セパレータと電極との接触性の保持が困難となる問題がある。また、最大径が5μm未満の凝集物は、表面平滑性、塗工層の均一性に関して影響しないため、含まれていても問題がない。   Such a non-aqueous secondary battery separator has high surface smoothness and high adhesion to the adherent member, and thus a non-aqueous secondary battery having low film resistance and excellent cycle characteristics can be obtained. It should be noted that the presence of aggregates having a maximum diameter of 300 μm or more remarkably deteriorates the membrane resistance and cycle characteristics of the battery, and therefore should not be present. In addition, if there are more than 5 aggregates having a maximum diameter of 5 μm or more and less than 300 μm, surface smoothness and uniformity of the coating layer are lost, and many defects such as streaks and peeling due to the aggregates occur. It becomes easy. As a result, there is a problem that it is difficult to increase the membrane resistance and to maintain the contact property between the separator and the electrode. Moreover, since the aggregate with the maximum diameter of less than 5 μm does not affect the surface smoothness and the uniformity of the coating layer, there is no problem even if it is contained.

ここで、本発明における凝集物とは、塗工層を構成する高分子化合物や無機フィラーで主に構成される固体を意味する。凝集物の形状は、主に円形、楕円形、長方形が挙げられるが、形は様々である。なお、本発明において、セパレータ表面面積1m当りの凝集物の個数は、塗工層が基材膜の両面に形成されている場合、および、表裏片面にのみ形成されている場合のいずれであっても、セパレータの1m当りの表裏両面における凝集物の合計の個数を意味する。 Here, the aggregate in the present invention means a solid mainly composed of a polymer compound or an inorganic filler constituting the coating layer. The shape of the aggregate mainly includes a circle, an ellipse, and a rectangle, but the shapes are various. In the present invention, the number of aggregates per 1 m 2 of the separator surface area is either when the coating layer is formed on both surfaces of the substrate film or when only the front and back surfaces are formed. However, it means the total number of aggregates on the front and back surfaces per 1 m 2 of the separator.

本発明では、前記塗工層表面400μmにおける最大径0.5μm以上5μm未満の前記凝集物が20個以上であることが好ましい。このようにすれば、高速搬送にも耐えうる滑り性をもつため、ハンドリング性に優れたセパレータとなる。 In the present invention, it is preferable that there are 20 or more aggregates having a maximum diameter of 0.5 μm or more and less than 5 μm on the surface of the coating layer 400 μm 2 . In this way, since it has a slipperiness that can withstand high-speed conveyance, it becomes a separator with excellent handling properties.

本発明では、前記凝集物を起因とする幅0.05〜1mm、長さ1cm以上の筋がセパレータ表面の面積1m当り5本以下であることが好ましい。幅0.05〜1mm、長さ10cm以上の筋が表面の面積1m当り5本よりも多く存在すると、表面平滑性が失われ、塗工層の均一性が失われる。その結果、品位だけではなく、機械物性や熱収縮といったコーティング膜の性能にも影響を与えてしまう場合がある。筋の幅が0.05μm未満の場合や、長さ1cm以下の筋の場合、セパレータの熱収縮等に及ぼす影響が殆どなく、電池特性に与える影響は無視できるレベルである。また、幅が1mmを超えるような筋は湿式塗工法においては殆ど形成されず、仮に形成されたとしても電池セパレータとして使用することは困難である。なお、本発明において、セパレータ表面積1m当りの筋の本数は、塗工層が基材膜の両面に形成されている場合、および、表裏片面にのみ形成されている場合のいずれであっても、セパレータの1m当りの表裏両面における筋の合計の本数を意味する。また、凝集物に起因する筋とは、凝集物が塗工層表面上に付着してその凝集物が当該表面上をひきずられた結果形成された筋を言い、通常、筋の端部に凝集物が付着した状態で観察される。 In the present invention, it is preferable that the number of streaks having a width of 0.05 to 1 mm and a length of 1 cm or more due to the aggregate is 5 or less per 1 m 2 of the separator surface area. When there are more than 5 streaks having a width of 0.05 to 1 mm and a length of 10 cm or more per 1 m 2 of the surface area, the surface smoothness is lost and the uniformity of the coating layer is lost. As a result, not only the quality but also the performance of the coating film such as mechanical properties and heat shrinkage may be affected. When the width of the streak is less than 0.05 μm or when the streak is 1 cm or less in length, there is almost no effect on the thermal shrinkage of the separator, and the impact on the battery characteristics is negligible. Further, the streak having a width exceeding 1 mm is hardly formed in the wet coating method, and even if it is formed, it is difficult to use it as a battery separator. In the present invention, the number of streaks per 1 m 2 of the separator surface area may be either when the coating layer is formed on both surfaces of the base film or only on the front and back surfaces. , it means the total number of muscle in both sides of 1 m 2 per separator. In addition, the streaks caused by aggregates are streaks formed as a result of aggregates adhering to the surface of the coating layer and the aggregates being dragged on the surface, and usually aggregated at the ends of the muscles. Observed with objects attached.

ここで、本発明における基材膜としては、微多孔膜、不織布、紙状シート、高分子その他三次元ネットーワーク構造を有するシート等を挙げることができるが、基材膜のハンドリング性や生産性を考慮すると、微多孔膜が好ましい。また、基材膜を構成する材料は、有機材料あるいは無機材料のいずれをも使用できるが、基材膜のハンドリング性や強度、生産性を考慮すると、ポリオレフィン、特にポリエチレンやポリプロピレンが好ましい。特に、シャットダウン機能(高温下で基材膜が溶融して孔を閉塞し、電池の安全性を高める機能)が得られる観点から、ポリエチレン微多孔膜が好ましい。   Here, examples of the substrate film in the present invention include microporous films, nonwoven fabrics, paper sheets, polymers, and other sheets having a three-dimensional network structure. In view of the above, a microporous membrane is preferable. The material constituting the base film can be either an organic material or an inorganic material, but polyolefins, particularly polyethylene and polypropylene, are preferred in view of handling properties, strength, and productivity of the base film. In particular, a polyethylene microporous membrane is preferable from the viewpoint of obtaining a shutdown function (a function in which the base material film melts and closes the pores at a high temperature to enhance the safety of the battery).

また、前記基材膜としては、基材膜の搬送速度の向上およびコーティング膜の品質向上の観点から、機械物性、表面平滑性に優れるものが好ましい。例えば基材膜の引張り強度は、0.5N/cm以上が好ましい。基材膜の突刺強度は、30g以上が好適である。表面粗さ(Ra)は2μm以下であれば望ましい。表面粗さ(Ra)が2μmを超える場合、高い表面平滑性を持ったコーティング膜を作ることが困難となることがある。また、基材膜の厚さは3μm以上であることが好ましい。膜厚が3μmより薄いと、引張強度や突刺強度といった機械物性が不十分となり、基材の高速搬送中に破断が発生してしまうおそれがある。   Moreover, as said base material film, what is excellent in a mechanical physical property and surface smoothness from a viewpoint of the improvement of the conveyance speed of a base material film and the quality improvement of a coating film is preferable. For example, the tensile strength of the base film is preferably 0.5 N / cm or more. The puncture strength of the base film is preferably 30 g or more. The surface roughness (Ra) is desirably 2 μm or less. When the surface roughness (Ra) exceeds 2 μm, it may be difficult to produce a coating film having high surface smoothness. Moreover, it is preferable that the thickness of a base film is 3 micrometers or more. When the film thickness is thinner than 3 μm, mechanical properties such as tensile strength and puncture strength are insufficient, and there is a possibility that breakage may occur during high-speed conveyance of the substrate.

本発明における塗工層とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった層を意味する。この塗工層は、主として有機高分子化合物を含んで構成されており、場合によっては無機フィラーをさらに含んでいてもよい。有機高分子化合物は、水溶性有機溶剤に溶解可能であればいずれをも採用することができる。例えば、セパレータの耐熱性を向上させる観点では、有機高分子化合物は芳香族ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミドからなる群から選ばれる1種又は2種以上ものが好ましい。特に、耐熱性に優れかつ良好な多孔構造が得られる点で、メタ型全芳香族ポリアミドであるポリメタフェニレンイソフタルアミドが好ましい。また、電解液の保持特性を向上する観点では、有機高分子化合物としてはポリフッ化ビニリデンやその共重合体等を用いることもできる。   The coating layer in the present invention has a structure in which a large number of micropores are connected inside and these micropores are connected, and gas or liquid can pass from one surface to the other. Means layer. This coating layer is mainly composed of an organic polymer compound, and may further contain an inorganic filler in some cases. Any organic polymer compound can be used as long as it is soluble in a water-soluble organic solvent. For example, from the viewpoint of improving the heat resistance of the separator, the organic polymer compound may be one or more selected from the group consisting of aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone, and polyetherimide. preferable. In particular, polymetaphenylene isophthalamide, which is a meta-type wholly aromatic polyamide, is preferable in that it has excellent heat resistance and a good porous structure. Further, from the viewpoint of improving the retention property of the electrolytic solution, polyvinylidene fluoride or a copolymer thereof can be used as the organic polymer compound.

無機フィラーは、セパレータの滑り性を向上させたり、塗工層の多孔構造を制御できたりする点で、塗工層中に添加することが好ましい。また、無機フィラーの物性によって、塗工層に様々の機能を付与することができる。例えば、セパレータの耐熱性や耐酸化性を向上する上では、アルミナ、チタニア、シリカ、ジルコニアなどの金属酸化物や、窒化アルミニウム、窒化ホウ素、窒化チタニウムなどの金属窒化物が好ましい。また、セパレータの難燃性を向上させる上では、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化クロム、水酸化ジルコニウム、水酸化ニッケル、水酸化ホウ素などの金属水酸化物が好ましい。その他、目的に応じて、炭酸カルシウム、炭酸マグネシウム等の炭酸塩や、硫酸バリウム、硫酸カルシウム等の硫酸塩、ケイ酸カルシウム、タルク等の粘土鉱物等を用いることもできる。なお、上述した各種無機フィラーは、それぞれ単独で使用しても2種以上を組み合わせて使用してもよい。無機フィラーの平均粒子径は、0.01〜10μmの範囲で適応範囲であるが、0.1〜1μmの範囲にあるものが好ましい。   The inorganic filler is preferably added to the coating layer in terms of improving the slipperiness of the separator and controlling the porous structure of the coating layer. Moreover, various functions can be imparted to the coating layer depending on the physical properties of the inorganic filler. For example, in order to improve the heat resistance and oxidation resistance of the separator, metal oxides such as alumina, titania, silica, and zirconia, and metal nitrides such as aluminum nitride, boron nitride, and titanium nitride are preferable. In order to improve the flame retardancy of the separator, metal hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, chromium hydroxide, zirconium hydroxide, nickel hydroxide, and boron hydroxide are preferable. In addition, carbonates such as calcium carbonate and magnesium carbonate, sulfates such as barium sulfate and calcium sulfate, clay minerals such as calcium silicate and talc can also be used depending on the purpose. The various inorganic fillers described above may be used alone or in combination of two or more. The average particle diameter of the inorganic filler is within the range of 0.01 to 10 μm, but preferably within the range of 0.1 to 1 μm.

本発明の非水系二次電池用セパレータの膜厚は30μm以下が好ましく、さらに20μm以下が好ましい。セパレータの膜厚が30μmを超えるとこれを適用した電池のエネルギー密度や出力特性が低下し好ましくない。セパレータの物性としては、ガーレ値(JIS・P8117)が10〜1000sec/100ccであること好ましく、さらに100〜400sec/100ccであることが好ましい。膜抵抗は0.5〜10ohm・cm、好ましくは1〜5ohm・cmである。 The film thickness of the separator for a non-aqueous secondary battery of the present invention is preferably 30 μm or less, and more preferably 20 μm or less. When the thickness of the separator exceeds 30 μm, the energy density and output characteristics of a battery to which the separator is applied are lowered, which is not preferable. As the physical properties of the separator, the Gurley value (JIS P8117) is preferably 10 to 1000 sec / 100 cc, and more preferably 100 to 400 sec / 100 cc. The membrane resistance is 0.5 to 10 ohm · cm 2 , preferably 1 to 5 ohm · cm 2 .

本発明において塗工層は、基材膜の少なくとも一方の面に形成すればよいが、カール抑制の観点から、表裏両面に形成した方がより好ましい。そして、塗工層が基材膜の両面に形成されている場合は塗工層の厚みの合計が3μm以上12μm以下であるか、または、塗工層が基材膜の片面にのみ形成されている場合は該耐熱性多孔質層の厚みが3μm以上12μm以下であることが好ましい。   In the present invention, the coating layer may be formed on at least one surface of the substrate film, but it is more preferable to form the coating layer on both the front and back surfaces from the viewpoint of curling suppression. And when the coating layer is formed on both surfaces of the substrate film, the total thickness of the coating layer is 3 μm or more and 12 μm or less, or the coating layer is formed only on one surface of the substrate film. When it is, it is preferable that the thickness of the heat resistant porous layer is 3 μm or more and 12 μm or less.

[非水系二次電池用セパレータの製造方法]
本発明の非水系二次電池用セパレータの製造方法は、上述した凝集物範囲を満足するセパレータを製造できるものであれば特に限定されるものではないが、例えば次の(i)〜(iv)の工程を含む方法を採用することができる。
(i) 塗工層を構成する有機高分子化合物、および、この有機高分子化合物を溶解する水溶性有機溶媒を含む塗工液を、前記基材膜の片面もしくは両面に塗工する工程。
(ii) この水溶性有機溶媒を含んだ状態の塗工層の最表面のみを凝固させる工程。
(iii) 前記(ii)の工程後の塗工層を有した基材膜を、水又は水と前記水溶性有機溶剤の混合液からなる凝固液を有する凝固浴中に搬送し、当該未凝固の塗工層を凝固させる工程。
(iv) 水洗及び乾燥する工程。
[Method for producing separator for non-aqueous secondary battery]
The method for producing a separator for a non-aqueous secondary battery of the present invention is not particularly limited as long as it can produce a separator that satisfies the above-described aggregate range. For example, the following (i) to (iv) A method including these steps can be employed.
(i) A step of coating a coating liquid containing an organic polymer compound constituting the coating layer and a water-soluble organic solvent for dissolving the organic polymer compound on one side or both sides of the substrate film.
(ii) A step of solidifying only the outermost surface of the coating layer containing the water-soluble organic solvent.
(iii) The substrate film having the coating layer after the step (ii) is transported into a coagulation bath having a coagulation liquid composed of water or a mixture of water and the water-soluble organic solvent, and the uncoagulated The process of solidifying the coating layer.
(iv) Washing with water and drying.

かかる製造方法は、例えば図1に示すようなコーティングシステムによって実現することができる。すなわち、図1において、コーティングシステムは、基材膜1を連続搬送しながら上記(i)〜(iv)の工程を実施するものであり、塗工部2と、プレ凝固部3と、完全凝固部4とを備えている。なお、各部の詳細については、以下において説明する。また、図1では工程(iv)については図示省略している。   Such a manufacturing method can be realized by, for example, a coating system as shown in FIG. That is, in FIG. 1, the coating system performs the steps (i) to (iv) while continuously transporting the base film 1, and includes a coating part 2, a pre-solidification part 3, and a complete solidification. Part 4. Details of each part will be described below. In FIG. 1, step (iv) is not shown.

上記工程(i)は、塗工層を構成する有機高分子化合物、および、この有機高分子化合物を溶解する水溶性有機溶媒を、前記基材膜の片面もしくは両面に塗工する工程である。この工程(i)において、水溶性有機溶媒としては、用いる有機高分子化合物を溶解できるものであれば特に限定されないが、例えばN−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドなどの極性溶媒が挙げられる。また、塗工液には、有機高分子化合物に対して貧溶剤となる溶剤を添加してもよい。このような溶剤を適用することでミクロ相分離構造が誘発され、塗工層の多孔質構造を良好に形成することが可能となる。かかる貧溶剤としては、アルコールの類が好適であり、特にグリコールのような多価アルコールが好適である。塗工液の高分子濃度は4〜9重量%が好ましい。塗工膜に無機フィラーを加える場合は、この工程(i)における塗工液に無機フィラーを混合すればよい。無機フィラーの添加量は、有機高分子化合物と無機フィラーの合計重量において40〜80重量%であることが好ましい。塗工液の基材膜への塗工量は10〜60g/m程度が好ましい。塗工方法としては、ナイフコーター法、グラビアコーター法、スクリーン印刷法、マイヤーバー法、ダイコーター法、リバースロールコーター法、インクジェット法、スプレー法、ロールコーター法などが挙げられる。塗膜を均一に塗布するという観点において、特にリバースロールコーター法が好適である。例えば、図1における塗工部2はマイヤーバー法によるものであり、この塗工部2は、塗工液21を貯留する塗工浴22と、この塗工浴22の底部開口部に設けられた一対のマイヤーバー23とを備えている。この塗工部2では、基材膜1を塗工浴22内および一対のマイヤーバー23の間を通過させて、基材膜1の両面に均一かつ平滑な塗工膜を同時に形成できるようになっている。 The step (i) is a step of coating the organic polymer compound constituting the coating layer and a water-soluble organic solvent that dissolves the organic polymer compound on one side or both sides of the substrate film. In this step (i), the water-soluble organic solvent is not particularly limited as long as it can dissolve the organic polymer compound to be used. For example, polar solvents such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and dimethylsulfoxide are used. Can be mentioned. Moreover, you may add the solvent used as a poor solvent with respect to an organic polymer compound to a coating liquid. By applying such a solvent, a micro phase separation structure is induced and a porous structure of the coating layer can be favorably formed. As such a poor solvent, alcohols are preferred, and polyhydric alcohols such as glycol are particularly preferred. The polymer concentration of the coating solution is preferably 4 to 9% by weight. When an inorganic filler is added to the coating film, the inorganic filler may be mixed in the coating liquid in this step (i). It is preferable that the addition amount of an inorganic filler is 40 to 80 weight% in the total weight of an organic polymer compound and an inorganic filler. Coat weight of the coating formulation of the base film is preferably about 10 to 60 g / m 2. Examples of the coating method include a knife coater method, a gravure coater method, a screen printing method, a Mayer bar method, a die coater method, a reverse roll coater method, an ink jet method, a spray method, and a roll coater method. From the viewpoint of uniformly applying the coating film, the reverse roll coater method is particularly suitable. For example, the coating part 2 in FIG. 1 is based on the Meyer bar method, and this coating part 2 is provided in the coating bath 22 which stores the coating liquid 21, and the bottom opening part of this coating bath 22. FIG. And a pair of Meyer bars 23. In the coating unit 2, the base film 1 is passed through the coating bath 22 and between the pair of Meyer bars 23 so that a uniform and smooth coating film can be simultaneously formed on both surfaces of the base film 1. It has become.

上記工程(ii)は、塗工層の表面から水溶性有機溶媒を除去する工程であり、例えば図1に示すプレ凝固部3にて実施される。この工程(ii)としては、例えば、水溶性有機溶媒を含んだ状態の塗工層の表面に対して、送風処理、加熱処理、水又は水と水溶性有機溶剤の混合液からなる処理液をシャワー状にして吹き付ける処理(以下、シャワー処理と適宜称す)、および、当該処理液の蒸気またはミスト中に暴露する処理(以下、暴露処理と適宜称す)の少なくともいずれかの処理を施すことが好ましい。   The step (ii) is a step of removing the water-soluble organic solvent from the surface of the coating layer, and is performed, for example, in the pre-solidification part 3 shown in FIG. As this step (ii), for example, for the surface of the coating layer containing a water-soluble organic solvent, a blast treatment, a heat treatment, a treatment liquid comprising water or a mixture of water and a water-soluble organic solvent is used. It is preferable to perform at least one of a process of spraying in a shower form (hereinafter referred to as a shower process as appropriate) and a process of exposing to vapor or mist of the process liquid (hereinafter referred to as an exposure process as appropriate). .

送風処理は、水溶性有機溶媒を含んだ状態の塗工層の表面に対して、空気を吹き付けることによって、塗工層表面のみを凝固させる処理である。風速としては、好ましくは5〜50m/秒であり、特に好ましくは10〜30m/秒である。風速が高いほど乾燥効率は上がるが、50m/秒を越えるとコーティング膜の表面平滑性が損なわれてしまう場合がある。送風角度はコーティング表面の平滑性を観察しながら、0〜180°で任意である。送風時間は乾燥風量に応じて、適宜設定すればよく、例えば1秒〜10秒である。空気は適宜加熱してもよく、例えば60〜80℃が好適である。このような乾燥処理は、例えば図2(A)に示すような装置を用いて実施することができる。すなわち、図2(A)において、プレ凝固部3は、基材膜1の搬入窓および搬出窓を有した乾燥室31と、この乾燥室31中に設けられたフィルム用ドライヤー等の乾燥手段32とを備えている。なお、乾燥室31内の空気はブロア等により外部の回収手段へと導出されて、この回収手段にて空気中に混入した溶媒を冷却回収する等の処理が施されることが好ましい。   The blowing process is a process in which only the surface of the coating layer is solidified by blowing air onto the surface of the coating layer containing the water-soluble organic solvent. The wind speed is preferably 5 to 50 m / sec, particularly preferably 10 to 30 m / sec. Although the drying efficiency increases as the wind speed increases, the surface smoothness of the coating film may be impaired when it exceeds 50 m / sec. The air blowing angle is arbitrary from 0 to 180 ° while observing the smoothness of the coating surface. The blowing time may be appropriately set according to the amount of dry air, and is, for example, 1 second to 10 seconds. The air may be appropriately heated, and for example, 60 to 80 ° C. is suitable. Such a drying process can be implemented using an apparatus as shown to FIG. 2 (A), for example. That is, in FIG. 2A, the pre-solidification unit 3 includes a drying chamber 31 having a carry-in window and a carry-out window for the base film 1, and a drying means 32 such as a film drier provided in the drying chamber 31. And. It is preferable that the air in the drying chamber 31 is led out to an external recovery means by a blower or the like, and the recovery means cools and recovers the solvent mixed in the air.

加熱処理は、塗工後の基材膜を加熱して、塗工膜表面の水溶性有機溶媒を揮発させることにより、塗工層表面のみを凝固させる処理である。加熱温度は、60℃〜180℃が好ましい。60℃未満であると塗工層表面のみを短時間に凝固することが難しくなる。180℃以上は、基材によっては熱収縮による寸法変化が起こってしまう恐れがある。例えば、セパレータ用途のコーティングの場合、ポリエチレン基材が多く使用されており、80〜120℃が適当である。加熱時間は乾燥温度に応じて、適宜設定すればよく、例えば約0.5秒〜5秒である。このような加熱処理は、例えば図2(B)に示すような装置を用いて実施することができる。すなわち、図2(B)において、プレ凝固部3は、基材膜1の搬入窓および搬出窓を有した加熱室33と、この加熱室33中に設けられた遠赤外線ヒータ等の加熱手段34とを備えている。なお、加熱室33内の空気についても上述したような回収手段にて回収されることが好ましい。   The heat treatment is a treatment for solidifying only the surface of the coating layer by heating the base film after coating and volatilizing the water-soluble organic solvent on the surface of the coating film. The heating temperature is preferably 60 ° C to 180 ° C. When the temperature is less than 60 ° C., it is difficult to solidify only the coating layer surface in a short time. When the temperature is 180 ° C. or higher, a dimensional change due to thermal shrinkage may occur depending on the base material. For example, in the case of a coating for a separator, a polyethylene base material is often used, and 80 to 120 ° C. is appropriate. What is necessary is just to set a heating time suitably according to drying temperature, for example, it is about 0.5 second-5 second. Such heat treatment can be performed using, for example, an apparatus as shown in FIG. That is, in FIG. 2B, the pre-solidification unit 3 includes a heating chamber 33 having a carry-in window and a carry-out window for the base film 1, and a heating means 34 such as a far infrared heater provided in the heating chamber 33. And. Note that the air in the heating chamber 33 is also preferably recovered by the recovery means as described above.

シャワー処理は、処理液をシャワー状にして、これを水溶性有機溶媒を含んだ状態の塗工層の表面に対して噴射することによって、塗工層表面のみを凝固させる処理である。処理液は、水、又は、水と水溶性有機溶剤の混合液からなり、混合液としては後述する凝固液と同じものを使用することができる。処理液の温度は10〜90℃であることが好ましい。塗工された基材膜の表面に対するシャワーの供給方向はフィルムに対して平行であることが好ましい。平行であると膜にシャワーがあたる衝撃が少なく、塗工層の乱れが起きにくいためである。また、シャワーの噴射速度は、フィルムの搬送速度に合わせることが好ましい。シャワー処理時間は適宜設定すればよく、例えば約0.1秒〜2秒である。このようなシャワー処理は、例えば図2(C)に示すような装置を用いて実施することができる。すなわち、図2(C)において、プレ凝固部3は、基材膜1の搬入窓および搬出窓を有したシャワー室35と、このシャワー室35中に設けられたシャワー手段36とを備えている。シャワー手段36には、図示しない供給手段から処理液が供給されるようになっている。かかる供給手段は、新しい処理液を供給してもよいが、シャワー室35の底部に貯まった処理液を回収して、これをフィルタリングした処理液を使用してもよい。   The shower treatment is a treatment for solidifying only the surface of the coating layer by making the treatment liquid into a shower and spraying it onto the surface of the coating layer containing a water-soluble organic solvent. The treatment liquid is composed of water or a mixed liquid of water and a water-soluble organic solvent, and the same liquid as a coagulating liquid described later can be used as the mixed liquid. It is preferable that the temperature of a process liquid is 10-90 degreeC. It is preferable that the supply direction of the shower with respect to the surface of the coated base film is parallel to the film. This is because, when they are parallel, there is little impact of the shower on the film, and the coating layer is less likely to be disturbed. Moreover, it is preferable to match the jetting speed of the shower with the transport speed of the film. What is necessary is just to set shower treatment time suitably, for example, it is about 0.1 second-2 second. Such a shower treatment can be performed using, for example, an apparatus as shown in FIG. That is, in FIG. 2C, the pre-solidification unit 3 includes a shower chamber 35 having a carry-in window and a carry-out window for the base film 1, and shower means 36 provided in the shower chamber 35. . A treatment liquid is supplied to the shower means 36 from a supply means (not shown). Such supply means may supply a new processing liquid, but may use a processing liquid obtained by collecting the processing liquid stored in the bottom of the shower chamber 35 and filtering the recovered processing liquid.

暴露処理は、処理液を蒸気化あるいはミスト化した雰囲気中に、塗工後の基材膜を曝すことによって、塗工層表面のみを凝固させる処理である。処理液は、水、又は、水と水溶性有機溶剤の混合液からなり、混合液としては後述する凝固液と同じものを使用することができる。水蒸気またはミストの供給量は0.1〜1000mg/sec・cm程度であることが好ましく、0.5〜500mg/sec・cm程度であることがより好ましい。暴露時間は搬送速度に応じて、適宜設定すればよく、例えば約0.1〜2秒である。このような暴露処理は、例えば図2(D)に示すような装置を用いて実施することができる。すなわち、図2(D)において、プレ凝固部3は、基材膜1の搬入窓および搬出窓を有した暴露室37と、この暴露室37中に設けられた超音波霧化装置などの霧化手段38とを備えている。霧化手段38には、図示しない供給手段から処理液が供給されるようになっている。かかる供給手段は、新しい処理液を供給してもよいが、暴露室37の底部に貯まった処理液を回収して、これをフィルタリングした処理液を使用してもよい。 The exposure treatment is a treatment for solidifying only the surface of the coating layer by exposing the substrate film after coating in an atmosphere in which the treatment liquid is vaporized or misted. The treatment liquid is composed of water or a mixed liquid of water and a water-soluble organic solvent, and the same liquid as a coagulating liquid described later can be used as the mixed liquid. The supply amount of water vapor or mist is preferably about 0.1 to 1000 mg / sec · cm 2 , more preferably about 0.5 to 500 mg / sec · cm 2 . What is necessary is just to set exposure time suitably according to a conveyance speed, for example, it is about 0.1 to 2 second. Such an exposure process can be performed using, for example, an apparatus as shown in FIG. That is, in FIG. 2 (D), the pre-solidification unit 3 includes an exposure chamber 37 having a carry-in window and a carry-out window for the base film 1, and a mist such as an ultrasonic atomizer provided in the exposure chamber 37. And an activating means 38. A treatment liquid is supplied to the atomizing means 38 from a supply means (not shown). Such supply means may supply a new processing solution, but may use a processing solution obtained by collecting the processing solution stored at the bottom of the exposure chamber 37 and filtering it.

この暴露処理を行うことにより、塗工層内部に多数の微細孔を形成する際、これら微細孔が連結された構造を作ることが容易になり、より通気性の高いセパレータを得ることができるため、本発明のセパレータを作製する上では特に好ましい。   By performing this exposure treatment, when a large number of micropores are formed inside the coating layer, it becomes easy to make a structure in which these micropores are connected, and a separator with higher air permeability can be obtained. In producing the separator of the present invention, it is particularly preferable.

上記工程(iii)は、工程(ii)において、塗工層表面のみが凝固されたコーティング膜を、前記高分子化合物を凝固させることが可能な凝固液中に浸漬することで、塗工層を凝固させる。凝固の方法としては、例えば図1に示したような、内部に凝固液41が貯留された凝固浴42中に浸漬する方法などが挙げられる。凝固液は、前記高分子化合物を凝固できるものであれば特に限定されないが、水又は塗工に用いた良溶媒に水を適当量混合させたものが好ましい。ここで、水の混合量は凝固液に対して40〜80重量%が好適である。水の量が40重量%より少ないと前記高分子を凝固するのに必要な時間が長くなり、凝固が不十分になるという問題が生じる。また、80重量%より多いと溶剤回収においてコスト高となり、良好な多孔構造が得られない場合がある。   In the step (iii), in the step (ii), the coating film in which only the surface of the coating layer is solidified is immersed in a coagulating liquid capable of coagulating the polymer compound. Solidify. Examples of the coagulation method include a method of immersing in a coagulation bath 42 in which a coagulation liquid 41 is stored as shown in FIG. The coagulation liquid is not particularly limited as long as it can coagulate the polymer compound, but is preferably a mixture of water or a good solvent used for coating with an appropriate amount of water. Here, the mixing amount of water is preferably 40 to 80% by weight with respect to the coagulation liquid. If the amount of water is less than 40% by weight, the time required for coagulating the polymer becomes long, resulting in insufficient coagulation. On the other hand, if it is more than 80% by weight, the cost for recovering the solvent increases, and a good porous structure may not be obtained.

上記工程(iv)は、工程(iii)後のコーティング膜を水洗および乾燥するものである。水洗処理は、コーティング膜に付着した凝固液等を水で除去するものであるが、例えば水洗浴の中にコーティング膜を浸漬することにより実施される。乾燥処理は、コーティング膜に付着した水等を乾燥除去するものであるが、乾燥方法は特に限定されない。乾燥温度は40〜80℃が適当であり、高い乾燥温度を適用する場合は、熱収縮による寸法変化が起こらないようにするためにロールに接触させるような方法を適用することが好ましい。   In the step (iv), the coating film after the step (iii) is washed with water and dried. The water washing treatment is for removing the coagulating liquid or the like adhering to the coating film with water, and is performed, for example, by immersing the coating film in a water washing bath. In the drying process, water or the like attached to the coating film is removed by drying, but the drying method is not particularly limited. The drying temperature is suitably 40 to 80 ° C. When a high drying temperature is applied, it is preferable to apply a method of contacting with a roll in order to prevent dimensional change due to heat shrinkage.

なお、セパレータ表面の凝集物を上述した本発明の範囲内に調整するには、上記(ii)のようなプレ凝固工程を行うことが好適であるが、このようなプレ凝固工程を行わずとも当該範囲内に調整することは可能である。すなわち、例えば、基材膜の搬送速度を低減することや、凝固浴内の凝固液を定期的あるいは連続的に回収してフィルタリングを行うことによっても、凝固浴内での凝集物の発生を防ぐことができ、本発明における凝集物の範囲内に収めることができる。   In order to adjust the aggregate on the separator surface within the scope of the present invention described above, it is preferable to perform the pre-solidification step as described in (ii) above, but without performing such a pre-solidification step. It is possible to adjust within the range. That is, for example, by reducing the conveyance speed of the substrate film, or by collecting the coagulating liquid in the coagulation bath periodically or continuously and performing filtering, the generation of aggregates in the coagulation bath is prevented. And can fall within the scope of the aggregates in the present invention.

[非水系二次電池]
本発明の非水系二次電池用セパレータは、公知のいかなる構成の非水系二次電池にも適用することができ、各種の性能に優れた電池が得られる。適用される非水系二次電池の種類や構成は、何ら限定されるものではないが、本発明の非水系二次電池用セパレータは、リチウムのドープ・脱ドープにより起電力を得る非水系二次電池に好適に応用することができる。中でも、リチウムイオン二次電池への適用が好ましい。
[Non-aqueous secondary battery]
The separator for non-aqueous secondary batteries of the present invention can be applied to any known non-aqueous secondary battery, and a battery excellent in various performances can be obtained. The type and configuration of the applied non-aqueous secondary battery is not limited in any way, but the non-aqueous secondary battery separator of the present invention is a non-aqueous secondary battery that obtains an electromotive force by doping or dedoping lithium. It can be suitably applied to a battery. Among these, application to a lithium ion secondary battery is preferable.

一般に非水系二次電池とは、負極と正極がセパレータを介して対向している電池要素に電解液が含浸され、これが外装に封入された構造となっているものをいう。負極は、負極活物質、導電助剤、バインダーからなる負極合剤が集電体(銅箔、ステンレス箔、ニッケル箔等)上に成形された構造となっている。負極活物質としては、リチウムを電気化学的にドープすることが可能な材料、例えば、炭素材料、シリコン、アルミニウム、スズが用いられる。正極は、正極活物質、導電助剤、バインダーからなる正極合剤が集電体上に成形された構造となっている。正極活物質としては、リチウム含有遷移金属酸化物、例えば、LiCoO、LiNiO、LiMn0.5Ni0.5、LiCo1/3Ni1/3Mn1/3、LiMn、LiFePOが用いられる。電解液は、リチウム塩、例えば、LiPF、LiBF、LiClOを非水系溶媒に溶解した構成である。非水系溶媒としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、ビニレンカーボネートなどが挙げられる。外装材は金属缶またはアルミラミネートパック等が挙げられる。電池の形状は角型、円筒型、コイン型などがあるが、本発明のセパレータはいずれの形状においても好適に適用することが可能である。 In general, a non-aqueous secondary battery means a battery element in which a negative electrode and a positive electrode are opposed to each other with a separator interposed therebetween and an electrolytic solution is impregnated, and this is enclosed in an exterior. The negative electrode has a structure in which a negative electrode mixture composed of a negative electrode active material, a conductive additive, and a binder is formed on a current collector (copper foil, stainless steel foil, nickel foil, etc.). As the negative electrode active material, a material capable of electrochemically doping lithium, for example, a carbon material, silicon, aluminum, or tin is used. The positive electrode has a structure in which a positive electrode mixture composed of a positive electrode active material, a conductive additive, and a binder is formed on a current collector. Examples of the positive electrode active material include lithium-containing transition metal oxides such as LiCoO 2 , LiNiO 2 , LiMn 0.5 Ni 0.5 O 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiMn 2 O. 4 and LiFePO 4 are used. The electrolytic solution has a configuration in which a lithium salt, for example, LiPF 6 , LiBF 4 , or LiClO 4 is dissolved in a non-aqueous solvent. Examples of the non-aqueous solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, and vinylene carbonate. Examples of the exterior material include a metal can or an aluminum laminate pack. The shape of the battery includes a square shape, a cylindrical shape, a coin shape, and the like, but the separator of the present invention can be suitably applied to any shape.

本発明の実施例および比較例における試験方法は次の通りである。   Test methods in Examples and Comparative Examples of the present invention are as follows.

[凝集物の検出方法]
(1)最大径が5μm以上の凝集物について
実施例及び比較例で得られた長さ1m以上のセパレータの背面から、三波長昼白色蛍光灯(FPL27EX−N/:ナショナル社製)を30cm離して照射し、これらセパレータの全範囲の凝集物個数をセパレータの表面側から目視にて計測し、凝集物の数を平均した。その後、マークした凝集物をデジタル顕微鏡(キーエンス社製、VHZ−450)で観察し、デジタルマイクロスコープ (キーエンス社製、VH−7000、2点間距離計測モード)を用いて、当該凝集物の外周の任意の2点間距離を測定した。そのときの最大径を本発明における最大径とみなした。
[Aggregate detection method]
(1) Aggregates having a maximum diameter of 5 μm or more From the back side of the separators having a length of 1 m or more obtained in Examples and Comparative Examples, a three-wavelength daylight fluorescent lamp (FPL27EX-N /: manufactured by National Corporation) is separated by 30 cm. The number of aggregates in the entire range of these separators was visually measured from the surface side of the separators, and the number of aggregates was averaged. Then, the marked aggregate was observed with a digital microscope (VHZ-450, manufactured by Keyence Corporation), and the outer periphery of the aggregate using a digital microscope (VH-7000, two-point distance measurement mode manufactured by Keyence Corporation). The distance between any two points was measured. The maximum diameter at that time was regarded as the maximum diameter in the present invention.

(2)最大径が0.5μm以上5μm未満の凝集物について
実施例及び比較例で得られたセパレータの表面について、電子顕微鏡(日立製作所製、S−2400)を用いて2000倍で10箇所観察し、400μmの範囲内における0.5〜5μmに当てはまる表面の凝集物の数を測定し、平均化した。なお、凝集物のサイズは、凝集物の外周の任意の2点間距離を測定し、そのときの最大径を本発明における最大径とみなした。
(2) Aggregates having a maximum diameter of 0.5 μm or more and less than 5 μm The surface of the separator obtained in Examples and Comparative Examples was observed at 10 locations at 2000 times using an electron microscope (Hitachi, S-2400). The number of surface agglomerates falling within the range of 400 μm 2 to 0.5-5 μm was measured and averaged. The size of the aggregate was measured by measuring the distance between any two points on the outer periphery of the aggregate, and the maximum diameter at that time was regarded as the maximum diameter in the present invention.

[筋の検出方法]
実施例及び比較で得られた長さ1m以上のコーティング膜の背面から三波長昼白色蛍光灯(ナショナル社製、FPL27EX−N)を30cm離して照射し、これら全範囲の筋の本数をコーティング膜の表面側から目視にて計測し、筋の数を計測し、平均した。
[Muscle detection method]
A three-wavelength daylight fluorescent lamp (National, FPL27EX-N) was irradiated 30 cm away from the back surface of the coating film having a length of 1 m or more obtained in the Examples and the comparison, and the number of streaks in the entire range was coated. The number of muscles was measured and averaged by visual observation from the surface side.

[膜厚]
接触式の膜厚計(ミツトヨ社製)にて20点測定し、これを平均することで求めた。ここで接触端子は底面が直径0.5cmの円柱状のものを用いた。
[Film thickness]
It was determined by measuring 20 points with a contact-type film thickness meter (manufactured by Mitutoyo Co., Ltd.) and averaging them. Here, the contact terminal used was a cylindrical one having a bottom surface of 0.5 cm in diameter.

[ガーレ値]
ガーレ値(sec/100cc)はJIS・P8117に従い測定した。このガーレ値が低い程、通気性に優れていることを意味する。
[Gurley value]
The Gurley value (sec / 100 cc) was measured according to JIS P8117. It means that it is excellent in air permeability, so that this Gurley value is low.

[膜抵抗]
本発明の実施例および比較例で作成したコーティング膜をサンプルセパレータとし、このセパレータをそれぞれ2.6cm×2.0cmのサイズに切り出した。非イオン性界面活性剤(花王社製;エマルゲン210P)を3重量%溶解したメタノール溶液に、切り出したセパレータを浸漬した後、風乾させた。厚さ20μmのアルミ箔を2.0cm×1.4cmに切り出しリードタブを付け、このアルミ箔を2枚用意して、アルミ箔間に切り出したセパレータをアルミ箔が短絡しないように挟んだ。セパレータに、電解液である1M・ LiBF・ プロピレンカーボネート/エチレンカーボネート(1/1重量比)を含浸させ、これをアルミラミネートパック中に、タブがアルミパックの外に出るようにして減圧封入した。このようなセルを、アルミ箔中にセパレータが1枚、2枚、3枚となるようにそれぞれ作製した。該セルを20℃の恒温槽中に入れ、交流インピーダンス法で振幅10mV、周波数100kHzにて該セルの抵抗を測定した。測定されたセルの抵抗値をセパレータの枚数に対してプロットし、このプロットを線形近似し傾きを求めた。この傾きに、電極面積である2.0cm×1.4cmを乗じて、セパレータ1枚当たりの膜抵抗(ohm・cm)を求めた。
[Membrane resistance]
The coating films prepared in the examples of the present invention and the comparative examples were used as sample separators, and the separators were cut into a size of 2.6 cm × 2.0 cm. The cut separator was immersed in a methanol solution in which 3% by weight of a nonionic surfactant (manufactured by Kao Corporation; Emulgen 210P) was dissolved, and then air-dried. A 20 μm thick aluminum foil was cut out to 2.0 cm × 1.4 cm, a lead tab was attached, two aluminum foils were prepared, and the separator cut out between the aluminum foils was sandwiched so that the aluminum foil was not short-circuited. The separator was impregnated with 1M · LiBF 4 · propylene carbonate / ethylene carbonate (1/1 weight ratio) as an electrolytic solution, and this was sealed in an aluminum laminate pack under reduced pressure so that the tab would come out of the aluminum pack. . Such cells were prepared so that there were one, two, and three separators in the aluminum foil, respectively. The cell was placed in a constant temperature bath at 20 ° C., and the resistance of the cell was measured by an AC impedance method at an amplitude of 10 mV and a frequency of 100 kHz. The measured resistance values of the cells were plotted against the number of separators, and the plot was linearly approximated to obtain the slope. The inclination was multiplied by the electrode area of 2.0 cm × 1.4 cm to determine the membrane resistance (ohm · cm 2 ) per separator.

[電池サイクル特性]
本発明の実施例および比較例で作成したコーティング膜を用いて、以下の通りリチウムイオン二次電池のセパレータを作成し、その電池サイクル特性を評価した。
[Battery cycle characteristics]
Using the coating films prepared in Examples and Comparative Examples of the present invention, lithium ion secondary battery separators were prepared as follows, and the battery cycle characteristics were evaluated.

1)正極
コバルト酸リチウム(LiCoO、日本化学工業社製)粉末89.5重量部と、アセチレンブラック4.5重量部及びPVdFの乾燥重量が6重量部となるように、6重量%のPVdFのNMP溶液を用い、正極剤ペーストを作製した。得られたペーストを、厚さ20μmのアルミ箔上に塗布乾燥後プレスして、厚さ97μmの正極を得た。
1) Positive electrode 6 wt% PVdF so that the lithium cobalt oxide (LiCoO 2 , Nippon Chemical Industry Co., Ltd.) powder 89.5 parts by weight, acetylene black 4.5 parts by weight and PVdF dry weight 6 parts by weight A positive electrode paste was prepared using the NMP solution. The obtained paste was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 97 μm.

2)負極
負極活物質としてメソフェーズカーボンマイクロビーズ(MCMB、大阪瓦斯化学社製)粉末87重量部と、アセチレンブラック3重量部及びPVdFの乾燥重量が10重量部となるように、6重量%のPVdFのNMP溶液を用い、負極剤ペーストを作製した。得られたペーストを、厚さ18μmの銅箔上に塗布乾燥後プレスして、厚さ90μmの負極を作製した。
2) Negative electrode 6 wt% PVdF so that the dry weight of mesophase carbon microbeads (MCMB, manufactured by Osaka Gas Chemical Co., Inc.) powder 87 parts by weight, acetylene black 3 parts by weight and PVdF 10 parts by weight as the negative electrode active material. An NMP solution was used to prepare a negative electrode agent paste. The obtained paste was applied onto a copper foil having a thickness of 18 μm, dried and pressed to prepare a negative electrode having a thickness of 90 μm.

3)電解液
エチレンカーボネートとエチルメチルカーボネートを3:7の重量比で混合した溶液に、LiPFが1mol/Lとなるように溶解したものを用いた。
3) electrolyte of ethylene carbonate and ethyl methyl carbonate of 3: a mixed solution with 7 weight ratio, was used as the LiPF 6 is dissolved at a 1 mol / L.

4)リチウムイオン二次電池の試作
上記正極(2cm×1.4cm)及び負極(2.2cm×1.6cm)を以下の実施例および比較例で作製したセパレータ(2.6cm×2.2cm)を介して対向させた。これに上記電解液(0.15〜0.19g)を含浸させアルミラミネートフィルムからなる外装に封入してリチウムイオン二次電池を作製した。
4) Trial manufacture of lithium ion secondary battery Separator (2.6 cm × 2.2 cm) in which the positive electrode (2 cm × 1.4 cm) and the negative electrode (2.2 cm × 1.6 cm) were prepared in the following examples and comparative examples It was made to face through. This was impregnated with the above electrolytic solution (0.15 to 0.19 g) and sealed in an exterior made of an aluminum laminate film to produce a lithium ion secondary battery.

5)サイクル試験
作製したリチウムイオン二次電池について、充放電測定装置(北斗電工社製 HJ−101SM6)を使用し、充放電を100サイクル繰り返した(充放電の条件として、充電については、1.6mA/hで4.2Vまでの充電を行い、放電については1.6mA/hで2.75Vまでの放電を行った)。そして、1サイクル目の放電容量と100サイクル目の放電容量から、サイクル特性を以下の式により算出した。
サイクル特性(%)=(100サイクル目の放電容量)÷(1サイクル目の放電容量)×100
5) Cycle test About the produced lithium ion secondary battery, charging / discharging measurement apparatus (HJ-101SM6 by Hokuto Denko Co., Ltd.) was used, and charging / discharging was repeated 100 cycles. The battery was charged up to 4.2 V at 6 mA / h, and was discharged up to 2.75 V at 1.6 mA / h). From the discharge capacity at the first cycle and the discharge capacity at the 100th cycle, the cycle characteristics were calculated by the following equation.
Cycle characteristics (%) = (discharge capacity at the 100th cycle) ÷ (discharge capacity at the first cycle) × 100

[滑り性]
SUS板上にセパレータをのせて引張ったとき容易に滑ったものを○、滑り難かったものを×とした。
[Sliding]
When the separator was placed on a SUS plate and pulled, the one that slipped easily was marked with ◯, and the one that was difficult to slip was marked with ×.

[熱収縮率]
熱収縮率は次のように測定した。18cm(MD方向)×6cm(TD方向)にサンプルを切り出す。TD方向を2等分にする線上に上部から2cm、17cmの箇所(点A、点B)に印をする。また、MD方向を2等分する線上に左から1cm、5cmの箇所(点C、点D)に印をする。これにクリップをつけ175℃に調整したオーブンの中につるし、無張力下で30分間熱処理する。2点AB間、CD間長さを熱処理前後で測定し、以下の式から熱収縮率を求めた。
MD方向熱収縮率={(熱処理前のAB間長さ−熱処理後のAB間長さ)/熱処理前のAB間長さ}×100
TD方向熱収縮率={(熱処理前のCD間長さ−熱処理後のCD間長さ)/熱処理前のAB間長さ}×100
[Heat shrinkage]
The thermal contraction rate was measured as follows. A sample is cut out at 18 cm (MD direction) × 6 cm (TD direction). Mark 2 cm and 17 cm points (point A and point B) from the top on the line that divides the TD direction into two equal parts. Also, mark the points 1 cm and 5 cm (point C, point D) from the left on the line that bisects the MD direction. This is clipped and hung in an oven adjusted to 175 ° C. and heat-treated for 30 minutes under no tension. The length between two points AB and the length between CDs were measured before and after the heat treatment, and the thermal shrinkage rate was obtained from the following equation.
MD direction thermal shrinkage = {(length between AB before heat treatment−length between AB after heat treatment) / length between AB before heat treatment} × 100
TD direction thermal shrinkage = {(length between CDs before heat treatment−length between CDs after heat treatment) / length between ABs before heat treatment} × 100

[実施例1]
ポリエチレンパウダーとしてTicona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143を1:9(重量比)となるようにして、ポリエチレン濃度が30重量%となるように流動パラフィンとデカリンの混合溶媒中に溶解させ、ポリエチレン溶液を作製した。該ポリエチレン溶液の組成はポリエチレン:流動パラフィン:デカリン=30:45:25(重量比)である。このポリエチレン溶液を148℃でダイから押し出し、水浴中で冷却して、60℃で8分、95℃で15分乾燥し、ゲル状テープ(ベーステープ)を作製した。該ベーステープを縦延伸、横延伸と逐次行う2軸延伸にて延伸した。ここで、縦延伸は5.5倍、延伸温度は90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。横延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理することでポリエチレン微多孔膜を得た。このポリエチレン微多孔膜の膜厚は13μm、突刺強度は379gであった。
[Example 1]
As polyethylene powder, GUR2126 (weight average molecular weight 41.50 million, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona were used. A polyethylene solution was prepared by dissolving GUR2126 and GURX143 in a mixed solvent of liquid paraffin and decalin such that the polyethylene concentration was 30% by weight so that the ratio was 1: 9 (weight ratio). The composition of the polyethylene solution is polyethylene: liquid paraffin: decalin = 30: 45: 25 (weight ratio). This polyethylene solution was extruded from a die at 148 ° C., cooled in a water bath, and dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes to produce a gel tape (base tape). The base tape was stretched by biaxial stretching, which was sequentially performed with longitudinal stretching and lateral stretching. Here, the longitudinal stretching was 5.5 times, the stretching temperature was 90 ° C., the transverse stretching was 11.0 times the stretching ratio, and the stretching temperature was 105 ° C. After transverse stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and obtained the polyethylene microporous film by annealing at 120 degreeC. The polyethylene microporous membrane had a thickness of 13 μm and a puncture strength of 379 g.

メタ型全芳香族ポリアミドであるコーネックス(登録商標;帝人テクノプロダクツ社製)と無機フィラーとして平均粒子径0.8μmのα−アルミナ(昭和電工社製;AL160SG−3)を用い、重量比で25:75となるように調整し、これらをメタ型全芳香族ポリアミド濃度が5.5重量%となるようにジメチルアセトアミド(DMAc)とトリプロピレングリコール(TPG)が重量比50:50となっている混合溶媒に混合し塗工用スラリーを得た。   Using Conex (registered trademark; manufactured by Teijin Techno Products), which is a meta-type wholly aromatic polyamide, and α-alumina (manufactured by Showa Denko; AL160SG-3) having an average particle diameter of 0.8 μm as an inorganic filler, The weight ratio of dimethylacetamide (DMAc) and tripropylene glycol (TPG) was 50:50 so that the concentration of meta-type wholly aromatic polyamide was 5.5% by weight. A slurry for coating was obtained by mixing with the mixed solvent.

製膜には図1に示した装置を用いて、計量・平滑化治具にはマイヤーバー(ヨシミツ精機社製 8番 直径20mm)を用いた。2本のマイヤーバーと凝固浴間に図2(D)に示したプレ凝固装置を設置した。2本のマイヤーバーとプレ凝固装置間のエアギャップは5cmとした。プレ凝固の装置と凝固浴の間のエアギャップは7cmとした。2本のマイヤーバー間のクリアランスを20μmとし、ポリエチレン微多孔膜が2本のマイヤーバー間のほぼ中央にくるように設置した。その後、調製したスラリー(温度:30℃)及び凝固液(温度:40℃)を所定の容器にいれ、製膜の準備を整えた。   The apparatus shown in FIG. 1 was used for film formation, and a Mayer bar (No. 8 diameter 20 mm, manufactured by Yoshimitsu Seiki Co., Ltd.) was used for the weighing / smoothing jig. The pre-coagulation apparatus shown in FIG. 2 (D) was installed between the two Meyer bars and the coagulation bath. The air gap between the two Meyer bars and the pre-coagulator was 5 cm. The air gap between the pre-coagulation apparatus and the coagulation bath was 7 cm. The clearance between the two Meyer bars was set to 20 μm, and the polyethylene microporous membrane was installed so as to be approximately at the center between the two Meyer bars. Then, the prepared slurry (temperature: 30 ° C.) and coagulation liquid (temperature: 40 ° C.) were put in a predetermined container to prepare for film formation.

ポリエチレン微多孔膜を10m/minの速度で搬送させ、塗工させた後、プレ凝固装置内において、水:DMAc:TPG=50:25:25となっている凝固液を500mg/sec・cmの供給量でミスト化した雰囲気中に2秒ほど曝すことによって、塗工層表面のみを凝固させた。
これを重量比で水:DMAc:TPG=50:25:25で40℃となっている凝固液中に浸漬した。次いで水洗・乾燥を行い、該ポリエチレン微多孔膜の表裏に多孔質層を形成し、コーティング膜を得た。以下の例も含め、得られたセパレータの各種データは表1、2にまとめて示した。
After the polyethylene microporous membrane was conveyed and coated at a speed of 10 m / min, the coagulation liquid in which water: DMAc: TPG = 50: 25: 25 was added in the pre-coagulation apparatus at 500 mg / sec · cm 2. Only the surface of the coating layer was solidified by exposing to a mist atmosphere with a supply amount of about 2 seconds.
This was immersed in a coagulating liquid having a weight ratio of water: DMAc: TPG = 50: 25: 25 and 40 ° C. Next, washing with water and drying were performed to form a porous layer on the front and back of the polyethylene microporous membrane, thereby obtaining a coating membrane. Various data of the obtained separator including the following examples are shown in Tables 1 and 2.

[実施例2]
実施例1において、ポリエチレン微多孔膜を20m/minの速さで搬送したこと以外は、実施例1と同様にして、コーティング膜を得た。
[Example 2]
In Example 1, a coating film was obtained in the same manner as in Example 1 except that the polyethylene microporous film was conveyed at a speed of 20 m / min.

[実施例3]
実施例1において、ポリエチレン微多孔膜を30m/minの速さで搬送したこと以外は、実施例1と同様にして、コーティング膜を得た。
[Example 3]
In Example 1, a coating film was obtained in the same manner as in Example 1 except that the polyethylene microporous film was conveyed at a speed of 30 m / min.

[実施例4]
実施例1において、スラリーに無機フィラーを使用しなかった点以外は、実施例1と同様にして、コーティング膜を得た。
[Example 4]
In Example 1, the coating film was obtained like Example 1 except the point which did not use an inorganic filler for a slurry.

[比較例1]
実施例1において、プレ凝固装置を取り外して、ミスト中への暴露処理を行わなかった以外は、実施例1と同様にしてコーティング膜を得た。
[Comparative Example 1]
In Example 1, a coating film was obtained in the same manner as in Example 1 except that the pre-coagulation apparatus was removed and the exposure process into mist was not performed.

[比較例2]
実施例2において、プレ凝固装置を取り外して、ミスト中への暴露処理を行わなかった以外は、実施例2と同様にしてコーティング膜を得た。
[Comparative Example 2]
In Example 2, a coating film was obtained in the same manner as in Example 2 except that the pre-coagulation apparatus was removed and the exposure process into mist was not performed.

Figure 2010160939
Figure 2010160939

Figure 2010160939
Figure 2010160939

1…基材膜
2…塗工部
3…プレ凝固部
4…完全凝固部
21…塗工液
22…塗工浴
23…マイヤーバー
31…乾燥室
32…乾燥手段
33…加熱室
34…加熱手段
35…シャワー室
36…シャワー手段
37…暴露室
38…霧化手段
41…凝固液
42…凝固浴
DESCRIPTION OF SYMBOLS 1 ... Base film 2 ... Coating part 3 ... Pre-solidification part 4 ... Complete solidification part 21 ... Coating liquid 22 ... Coating bath 23 ... Meyer bar 31 ... Drying chamber 32 ... Drying means 33 ... Heating chamber 34 ... Heating means 35 ... Shower room 36 ... Shower means 37 ... Exposure room 38 ... Atomizing means 41 ... Coagulating liquid 42 ... Coagulating bath

Claims (5)

基材膜の片面又は両面に、有機高分子化合物を含む多孔質の塗工層が積層された非水系二次電池用セパレータであって、
該セパレータ表面の面積1m当りには、前記塗工層の構成物から成る最大径が300μm以上の凝集物が存在せず、かつ、前記塗工層の構成物から成る最大径が5μm以上300μm未満の凝集物が5個以下であることを特徴とする非水系二次電池用セパレータ。
A separator for a non-aqueous secondary battery in which a porous coating layer containing an organic polymer compound is laminated on one side or both sides of a base film,
There is no aggregate having a maximum diameter of 300 μm or more composed of the constituent of the coating layer per 1 m 2 of the surface of the separator, and a maximum diameter of 5 μm or more and 300 μm consisting of the constituent of the coating layer. A separator for a non-aqueous secondary battery, wherein less than 5 aggregates are present.
前記塗工層は無機フィラーを含むことを特徴とする請求項1に記載の非水系二次電池用セパレータ。   The separator for a non-aqueous secondary battery according to claim 1, wherein the coating layer contains an inorganic filler. 前記塗工層表面400μmにおける最大径0.5μm以上5μm未満の前記凝集物が20個以上であることを特徴とする請求項1又は2記載の非水系二次電池用セパレータ。 The separator for a non-aqueous secondary battery according to claim 1 or 2, wherein there are 20 or more aggregates having a maximum diameter of 0.5 µm or more and less than 5 µm on the surface of the coating layer 400 µm 2 . 前記凝集物を起因とする幅0.05〜1mm、長さ1cm以上の筋が該セパレータ表面の面積1m当り5本以下であることを特徴とする請求項1〜3のいずれかに記載の非水系二次電池用セパレータ。 The line having a width of 0.05 to 1 mm and a length of 1 cm or more due to the aggregate is 5 or less per 1 m 2 of the surface area of the separator. Separator for non-aqueous secondary battery. リチウムのドープ・脱ドープにより起電力を得る非水系二次電池であって、請求項1〜4のいずれかに記載の非水系二次電池セパレータを用いたことを特徴とする非水系二次電池。   A non-aqueous secondary battery that obtains an electromotive force by doping or dedoping lithium, wherein the non-aqueous secondary battery separator according to claim 1 is used. .
JP2009001654A 2009-01-07 2009-01-07 Non-aqueous secondary battery separator and non-aqueous secondary battery Active JP5587555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009001654A JP5587555B2 (en) 2009-01-07 2009-01-07 Non-aqueous secondary battery separator and non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009001654A JP5587555B2 (en) 2009-01-07 2009-01-07 Non-aqueous secondary battery separator and non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2010160939A true JP2010160939A (en) 2010-07-22
JP5587555B2 JP5587555B2 (en) 2014-09-10

Family

ID=42577968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009001654A Active JP5587555B2 (en) 2009-01-07 2009-01-07 Non-aqueous secondary battery separator and non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP5587555B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143677A1 (en) * 2009-06-10 2010-12-16 日立マクセル株式会社 Separator for electrochemical element, and electrochemical element including same
WO2013058371A1 (en) * 2011-10-21 2013-04-25 帝人株式会社 Separator for non-aqueous rechargeable battery and non-aqueous rechargeable battery
WO2020184360A1 (en) 2019-03-08 2020-09-17 株式会社エンビジョンAescエナジーデバイス Battery
WO2020189298A1 (en) 2019-03-20 2020-09-24 株式会社エンビジョンAescエナジーデバイス Electrode, method for producing electrode, and battery
CN114243210A (en) * 2022-02-25 2022-03-25 深圳市博盛新材料有限公司 Anti-aging lithium ion battery diaphragm and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030686A (en) * 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd Non-aqueous electrolyte battery separator and lithium secondary battery
JP2007125821A (en) * 2005-11-04 2007-05-24 Toyobo Co Ltd Composite porous membrane, manufacturing method thereof, and battery separator using the same, battery, and capacitor
JP2008016312A (en) * 2006-07-06 2008-01-24 Matsushita Electric Ind Co Ltd Manufacturing method and manufacturing apparatus of secondary battery member
WO2008156033A1 (en) * 2007-06-19 2008-12-24 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030686A (en) * 1998-04-27 2000-01-28 Sumitomo Chem Co Ltd Non-aqueous electrolyte battery separator and lithium secondary battery
JP2007125821A (en) * 2005-11-04 2007-05-24 Toyobo Co Ltd Composite porous membrane, manufacturing method thereof, and battery separator using the same, battery, and capacitor
JP2008016312A (en) * 2006-07-06 2008-01-24 Matsushita Electric Ind Co Ltd Manufacturing method and manufacturing apparatus of secondary battery member
WO2008156033A1 (en) * 2007-06-19 2008-12-24 Teijin Limited Separator for nonaqueous secondary battery, method for producing the same, and nonaqueous secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143677A1 (en) * 2009-06-10 2010-12-16 日立マクセル株式会社 Separator for electrochemical element, and electrochemical element including same
WO2013058371A1 (en) * 2011-10-21 2013-04-25 帝人株式会社 Separator for non-aqueous rechargeable battery and non-aqueous rechargeable battery
CN103890999A (en) * 2011-10-21 2014-06-25 帝人株式会社 Separator for non-aqueous rechargeable battery and non-aqueous rechargeable battery
KR101434379B1 (en) * 2011-10-21 2014-08-27 데이진 가부시키가이샤 Separator for non-aqueous rechargeable battery and non-aqueous rechargeable battery
TWI557969B (en) * 2011-10-21 2016-11-11 帝人股份有限公司 Separator for non-aqueous type secondary battery, and non-aqueous type secondary battery
US9799868B2 (en) 2011-10-21 2017-10-24 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery
WO2020184360A1 (en) 2019-03-08 2020-09-17 株式会社エンビジョンAescエナジーデバイス Battery
US12021240B2 (en) 2019-03-08 2024-06-25 Aesc Japan Ltd. Battery
WO2020189298A1 (en) 2019-03-20 2020-09-24 株式会社エンビジョンAescエナジーデバイス Electrode, method for producing electrode, and battery
CN114243210A (en) * 2022-02-25 2022-03-25 深圳市博盛新材料有限公司 Anti-aging lithium ion battery diaphragm and manufacturing method thereof
CN114243210B (en) * 2022-02-25 2022-05-13 深圳市博盛新材料有限公司 Aging-resistant lithium ion battery diaphragm and manufacturing method thereof

Also Published As

Publication number Publication date
JP5587555B2 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
JP5134526B2 (en) Method for producing coating film and method for producing separator for non-aqueous secondary battery
JP5657177B2 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP4685974B2 (en) Non-aqueous secondary battery porous membrane, non-aqueous secondary battery separator, non-aqueous secondary battery adsorbent and non-aqueous secondary battery
JP2005209570A (en) Separator for nonaqueous secondary battery, its manufacturing method and nonaqueous secondary battery
JP2010092718A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2013020769A (en) Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP5745174B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP2010123383A (en) Separator for nonaqueous secondary battery, method of manufacturing the same, and nonaqueous secondary battery
KR102609392B1 (en) Lithium battery separator comprising a porous PVDF-based resin coating layer and method for manufacturing the same
JP2012119224A (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP5587555B2 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP2011210436A (en) Polyolefin microporous film, separator for nonaqueous secondary battery, and nonaqueous secondary battery
CN113678313B (en) Separator for nonaqueous secondary battery, method for producing same, and nonaqueous secondary battery
JP6984033B2 (en) Separator for non-water-based secondary battery and non-water-based secondary battery
JPWO2016006453A1 (en) Separator roll manufacturing method
JP2011198553A (en) Polyolefin fine porous membrane, separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011124177A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011113921A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011129304A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011192529A (en) Polyolefin microporous film, separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP5583998B2 (en) Polyolefin microporous membrane, non-aqueous secondary battery separator and non-aqueous secondary battery
JP5400671B2 (en) Polyolefin microporous membrane, non-aqueous secondary battery separator and non-aqueous secondary battery
JP5864981B2 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP2009205956A (en) Nonaqueous electrolyte battery separator, manufacturing method thereof, and nonaqueous electrolyte secondary battery using the separator
JP2012129116A (en) Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110705

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130903

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131118

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20131206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140724

R150 Certificate of patent or registration of utility model

Ref document number: 5587555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150