JP2013020769A - Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery - Google Patents

Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2013020769A
JP2013020769A JP2011152188A JP2011152188A JP2013020769A JP 2013020769 A JP2013020769 A JP 2013020769A JP 2011152188 A JP2011152188 A JP 2011152188A JP 2011152188 A JP2011152188 A JP 2011152188A JP 2013020769 A JP2013020769 A JP 2013020769A
Authority
JP
Japan
Prior art keywords
heat
porous layer
separator
electrolyte battery
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011152188A
Other languages
Japanese (ja)
Inventor
Atsuhiro Otsuka
淳弘 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2011152188A priority Critical patent/JP2013020769A/en
Publication of JP2013020769A publication Critical patent/JP2013020769A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide: a separator for a nonaqueous electrolyte battery, excellent in adhesiveness with an electrode, heat resistance and shutdown characteristics; and a nonaqueous electrolyte battery excellent in cycle characteristics.SOLUTION: The separator for a nonaqueous electrolyte battery includes: a porous base material containing polyolefin; a heat resistant porous layer provided on both sides of the porous base material and containing a heat resistant resin; and an adhesive porous layer provided on at least one side of the heat resistant porous layer and containing a fluoro-based resin.

Description

本発明は、非水電解質電池用セパレータ及び非水電解質電池に関する。   The present invention relates to a separator for a nonaqueous electrolyte battery and a nonaqueous electrolyte battery.

リチウムイオン二次電池に代表される非水電解質電池は、携帯電話やノートパソコンといった携帯用電子機器の主電源として広範に普及している。
近年、非水電解質電池の軽量化を目的に、外装材として金属缶にかわってアルミ外装材が開発されている。アルミ外装材を用いた場合、外部からの衝撃よる電極のズレや、電極の膨張・収縮による電解液の液枯れが起こりやすいため、電極接着性や電解液膨潤性に優れたセパレータが望まれる。そこで、ポリオレフィン微多孔膜に、ポリフッ化ビニリデン系樹脂(以下、PVdFと略す。)を塗布したセパレータや、耐熱性を付与したアラミド樹脂とPVdFとの混合物を塗布したセパレータが報告されている(例えば、特許文献1参照)。ほかに、電池特性を向上させる目的で、下記のセパレータが報告されている。
Nonaqueous electrolyte batteries typified by lithium ion secondary batteries are widely used as main power sources for portable electronic devices such as mobile phones and notebook computers.
In recent years, for the purpose of reducing the weight of a nonaqueous electrolyte battery, an aluminum exterior material has been developed as an exterior material instead of a metal can. When an aluminum exterior material is used, the electrode is liable to be displaced due to an external impact, or the electrolyte is liable to wither due to expansion / contraction of the electrode. Therefore, a separator excellent in electrode adhesion and electrolyte swellability is desired. Therefore, a separator in which a polyolefin microporous membrane is coated with a polyvinylidene fluoride-based resin (hereinafter abbreviated as PVdF), or a separator in which a mixture of an aramid resin and PVdF with heat resistance is coated is reported (for example, , See Patent Document 1). In addition, the following separators have been reported for the purpose of improving battery characteristics.

(1)ポリオレフィン微多孔膜にアラミド樹脂を積層したセパレータは、熱収縮の抑制とシャットダウン特性に優れるとされている(例えば、特許文献2参照)。
(2)ポリオレフィン微多孔膜にPVdFを積層したセパレータは、耐酸化性がよく高温下において微小ショートを防ぐことができるため、サイクル特性及び温度保存特性に優れるとされている(例えば、特許文献3参照)。
(3)ポリオレフィン微多孔膜にPVdFを積層し、さらにアラミド樹脂層を積層したセパレータは、酸化分解が抑制され、かつ熱収縮に優れるとされている(例えば、特許文献4参照)。
(4)ポリオレフィン微多孔膜の正極側にアラミド樹脂を積層し、負極側にPVdFを積層したセパレータは、耐酸化性とガス発生抑制に優れるとされている(例えば、特許文献5参照)。
(1) A separator in which an aramid resin is laminated on a microporous polyolefin membrane is said to be excellent in suppression of thermal shrinkage and shutdown characteristics (see, for example, Patent Document 2).
(2) A separator in which PVdF is laminated on a microporous polyolefin membrane is excellent in cycle characteristics and temperature storage characteristics because it has good oxidation resistance and can prevent micro shorts at high temperatures (for example, Patent Document 3). reference).
(3) A separator in which PVdF is laminated on a polyolefin microporous film and further an aramid resin layer is laminated is suppressed in oxidative decomposition and is excellent in thermal shrinkage (see, for example, Patent Document 4).
(4) A separator in which an aramid resin is laminated on the positive electrode side of a polyolefin microporous membrane and PVdF is laminated on the negative electrode side is said to be excellent in oxidation resistance and gas generation suppression (see, for example, Patent Document 5).

特許第3942277号公報Japanese Patent No. 3942277 特許第4303307号公報Japanese Patent No. 4303307 特開2006−286531号公報JP 2006-286531 A 特開2009−187702号公報JP 2009-187702 A 特許第3419393号公報Japanese Patent No. 3419393

以上のように様々な非水電解質電池用セパレータが報告されているが、機械的強度、耐熱性、電解液保持性、電極との接着性等の性能は一長一短であり、バランスよく性能を満たすものは報告されていない。
上記の事情に鑑み、本発明は、電極との接着性、耐熱性及びシャットダウン特性に優れる非水電解質電池用セパレータ、並びにサイクル特性に優れる非水電解質電池を提供することを目的とする。
As described above, various non-aqueous electrolyte battery separators have been reported. However, the mechanical strength, heat resistance, electrolyte retention, adhesion to the electrode, etc. have their merits and demerits. Has not been reported.
In view of the above circumstances, an object of the present invention is to provide a separator for a nonaqueous electrolyte battery excellent in adhesion to an electrode, heat resistance and shutdown characteristics, and a nonaqueous electrolyte battery excellent in cycle characteristics.

本発明者は、ポリオレフィンを含む多孔質基材に、耐熱性多孔質層と、フッ素系樹脂を含む接着性多孔質層とを積層させたセパレータが、電極との接着性、耐熱性、シャットダウン特性のすべてにおいてバランスのよい性能を示し、電池を作製したときにサイクル特性が向上することを見出した。
前記課題を解決するために、本発明は以下の構成を採用する。
The present inventor has developed a separator in which a heat-resistant porous layer and an adhesive porous layer containing a fluororesin are laminated on a porous substrate containing polyolefin, and has adhesion to electrodes, heat resistance, and shutdown characteristics. It was found that all of these exhibited well-balanced performance, and that the cycle characteristics were improved when a battery was produced.
In order to solve the above problems, the present invention adopts the following configuration.

<1> ポリオレフィンを含む多孔質基材と、前記多孔質基材の両面に設けられ、耐熱性樹脂を含む耐熱性多孔質層と、前記耐熱性多孔質層の少なくとも一方の上に設けられ、フッ素系樹脂を含む接着性多孔質層と、を備えた非水電解質電池用セパレータ。
<2> 前記接着性多孔質層は、塗工量が0.5g/m以上3.5g/m以下の範囲である、前記<1>に記載の非水電解質電池用セパレータ。
<3> 前記耐熱性多孔質層が有機フィラー及び無機フィラーの少なくとも一方を含む、前記<1>又は<2>に記載の非水電解質電池用セパレータ。
<4> 前記耐熱性多孔質層は、無機フィラーを含み、前記無機フィラーの含有量が、前記耐熱性樹脂1質量部に対し1〜10質量部の範囲である、前記<1>〜<3>のいずれか1項に記載の非水電解質電池用セパレータ。
<5> 前記フッ素系樹脂は、(i)ポリフッ化ビニリデン、及び、(ii)フッ化ビニリデンと、パーフルオロアルキルビニルエーテル、ヘキサフルオロプロピレン、3フッ化塩化エチレン、テトラフロロエチレン及びエチレンからなる群から選ばれる少なくとも1種のモノマーとが、前記モノマーのモル分率1〜10%で共重合した共重合体、の少なくとも一方である、前記<1>〜<4>のいずれか1項に記載の非水電解質電池用セパレータ。
<6> 前記耐熱性樹脂は、全芳香族ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルイミド及びポリスルホンからなる群から選ばれる少なくとも1種である、前記<1>〜<5>のいずれか1項に記載の非水電解質電池用セパレータ。
<7> 前記接着性多孔質層が、前記多孔質基材の両面に設けられた前記耐熱性多孔質層の各々の上に設けられている、前記<1>〜<6>のいずれか1項に記載の非水電解質電池用セパレータ。
<8> 正極と、負極と、前記正極及び前記負極の間に配置された前記<1>〜<7>のいずれか1項に記載の非水電解質電池用セパレータとを備え、リチウムのドープ・脱ドープにより起電力を得る非水電解質電池。
<1> Provided on at least one of a porous substrate containing polyolefin, a heat-resistant porous layer containing a heat-resistant resin, and a heat-resistant porous layer provided on both surfaces of the porous substrate; A separator for a nonaqueous electrolyte battery comprising: an adhesive porous layer containing a fluorine-based resin.
<2> The nonaqueous electrolyte battery separator according to <1>, wherein the adhesive porous layer has a coating amount in a range of 0.5 g / m 2 to 3.5 g / m 2 .
<3> The separator for a nonaqueous electrolyte battery according to <1> or <2>, wherein the heat-resistant porous layer contains at least one of an organic filler and an inorganic filler.
<4> The heat-resistant porous layer includes an inorganic filler, and the content of the inorganic filler is in the range of 1 to 10 parts by mass with respect to 1 part by mass of the heat-resistant resin. > The separator for nonaqueous electrolyte batteries according to any one of the above.
<5> The fluororesin is selected from the group consisting of (i) polyvinylidene fluoride, and (ii) vinylidene fluoride, perfluoroalkyl vinyl ether, hexafluoropropylene, trifluorochloroethylene, tetrafluoroethylene, and ethylene. The at least one monomer selected is at least one of a copolymer copolymerized at a molar fraction of the monomer of 1 to 10%, according to any one of <1> to <4>. Nonaqueous electrolyte battery separator.
<6> The heat resistant resin according to any one of <1> to <5>, wherein the heat resistant resin is at least one selected from the group consisting of wholly aromatic polyamide, polyamideimide, polyimide, polyetherimide, and polysulfone. The separator for nonaqueous electrolyte batteries as described.
<7> Any one of <1> to <6>, wherein the adhesive porous layer is provided on each of the heat-resistant porous layers provided on both surfaces of the porous substrate. A separator for a nonaqueous electrolyte battery according to Item.
<8> A positive electrode, a negative electrode, and the separator for a nonaqueous electrolyte battery according to any one of <1> to <7> disposed between the positive electrode and the negative electrode. A non-aqueous electrolyte battery that obtains an electromotive force by dedoping.

本発明によれば、電極との接着性、耐熱性及びシャットダウン特性に優れる非水電解質電池用セパレータ、並びにサイクル特性に優れる非水電解質電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the nonaqueous electrolyte battery separator excellent in the adhesiveness with an electrode, heat resistance, and a shutdown characteristic, and the nonaqueous electrolyte battery excellent in cycling characteristics can be provided.

以下に、本発明の実施の形態について順次説明する。なお、これらの説明および実施例は本発明を例示するものであり、本発明の範囲を制限するものではない。
本明細書において「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
本明細書において、各層の積層関係について「上」及び「下」で表現する場合、基材に対してより近い層について「下」といい、基材に対してより遠い層について「上」という。
Hereinafter, embodiments of the present invention will be sequentially described. In addition, these description and Examples illustrate this invention, and do not restrict | limit the scope of the present invention.
In the present specification, a numerical range indicated using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
In this specification, when expressing the stacking relationship of each layer as “upper” and “lower”, the layer closer to the substrate is referred to as “lower”, and the layer farther from the substrate is referred to as “upper” .

<非水電解質電池用セパレータ>
本発明の非水電解質電池用セパレータは、
ポリオレフィンを含む多孔質基材(以下、「ポリオレフィン多孔質基材」、「多孔質基材」及び「基材」とも称する。)と、
前記多孔質基材の両面に設けられた耐熱性樹脂を含む耐熱性多孔質層と、
前記耐熱性多孔質層の少なくとも一方の上に設けられたフッ素系樹脂を含む接着性多孔質層とを備える。
前記非水電解質電池用セパレータは、基材を挟んで両面に耐熱性多孔質層を設け、該層上に接着性多孔質層を設けたことにより、電極との接着性、耐熱性、シャットダウン特性のすべてにおいてバランスよく優れた性能を示す。そして、前記非水電解質電池用セパレータは、電池を作製したときに電極とセパレータとの接着が保たれ、また、多孔質層が電解液をよく保持するので、サイクル特性に優れる。
<Separator for non-aqueous electrolyte battery>
The separator for a non-aqueous electrolyte battery of the present invention is
A porous substrate containing polyolefin (hereinafter also referred to as “polyolefin porous substrate”, “porous substrate”, and “substrate”);
A heat resistant porous layer comprising a heat resistant resin provided on both surfaces of the porous substrate; and
An adhesive porous layer containing a fluorine-based resin provided on at least one of the heat-resistant porous layers.
The separator for a non-aqueous electrolyte battery is provided with a heat-resistant porous layer on both sides with a base material interposed therebetween, and an adhesive porous layer is provided on the layer, thereby providing adhesion to an electrode, heat resistance, and shutdown characteristics. Excellent performance in a well-balanced manner. The separator for a non-aqueous electrolyte battery is excellent in cycle characteristics because the adhesion between the electrode and the separator is maintained when the battery is manufactured, and the porous layer holds the electrolyte well.

[ポリオレフィン多孔質基材]
前記ポリオレフィン多孔質基材は、内部に空孔ないし空隙を有する基材である。このようなポリオレフィン基材としては、ポリオレフィンからなる微多孔膜や、ポリオレフィンからなる繊維状物などの多孔性シートを挙げることができる。なお、微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜である。
前記ポリオレフィン多孔質基材は、130〜150℃で軟化し、多孔質の空孔ないし空隙が閉塞されシャットダウン機能を発現し、かつ非水電解質電池の電解液に溶解しない多孔質基材であることが好ましい。本発明においては、かかる多孔質基材として、ポリオレフィン微多孔膜が好ましい。
[Polyolefin porous substrate]
The polyolefin porous substrate is a substrate having pores or voids therein. Examples of such a polyolefin substrate include a porous sheet such as a microporous membrane made of polyolefin and a fibrous material made of polyolefin. A microporous membrane is a membrane that has a large number of micropores inside and a structure in which these micropores are connected, and allows gas or liquid to pass from one surface to the other. It is.
The polyolefin porous substrate is a porous substrate that softens at 130 to 150 ° C., closes porous pores or voids, exhibits a shutdown function, and does not dissolve in the electrolyte of the nonaqueous electrolyte battery. Is preferred. In the present invention, a polyolefin microporous membrane is preferred as the porous substrate.

前記ポリオレフィン微多孔膜としては、従来の非水電解質電池用セパレータに適用されているポリオレフィン微多孔膜の中から、十分な力学物性とイオン透過性を有するものを好適に用いることができる。
前記ポリオレフィン微多孔膜は、電池の安全性を確保するためのシャットダウン機能を有する観点から、ポリエチレンを主体としていることが好ましい。具体的には、ポリエチレンが95質量%以上含まれる厚さ5μm以上の層を有していることが好ましい。
ほかに、高温に晒されたときの電池の安全性を確保する観点からは、ポリエチレンに加えポリプロピレンも含むポリオレフィン微多孔膜が好適である。この場合、シャットダウン機能との兼ね合いを考慮すると、95質量%以上のポリエチレンと5質量%以下のポリプロピレンとを含むことが好ましい。また、ポリオレフィン微多孔膜が少なくとも2つの層を備え、少なくとも1層はポリエチレンからなり、少なくとも1層はポリプロピレンからなる積層構造のポリオレフィン微多孔膜も、シャットダウン機能と耐熱性の両立という観点から好適に用いられる。
As the polyolefin microporous membrane, those having sufficient mechanical properties and ion permeability can be suitably used from among polyolefin microporous membranes applied to conventional non-aqueous electrolyte battery separators.
The polyolefin microporous membrane is preferably composed mainly of polyethylene from the viewpoint of having a shutdown function for ensuring the safety of the battery. Specifically, it is preferable to have a layer having a thickness of 5 μm or more containing 95% by mass or more of polyethylene.
In addition, from the viewpoint of ensuring battery safety when exposed to high temperatures, a polyolefin microporous membrane containing polypropylene in addition to polyethylene is preferred. In this case, considering the balance with the shutdown function, it is preferable to include 95% by mass or more of polyethylene and 5% by mass or less of polypropylene. In addition, the polyolefin microporous membrane includes at least two layers, at least one layer is made of polyethylene, and at least one layer is made of polypropylene, and the polyolefin microporous membrane is also preferable from the viewpoint of both shutdown function and heat resistance. Used.

前記ポリオレフィン微多孔膜に含まれるポリオレフィンは、重量平均分子量が10万〜500万のものが好適である。重量平均分子量が10万以上であると、十分な力学物性を確保できる。他方、重量平均分子量が500万以下であると、シャットダウン特性が良好であるし、膜の成形がしやすい。   The polyolefin contained in the polyolefin microporous membrane preferably has a weight average molecular weight of 100,000 to 5,000,000. When the weight average molecular weight is 100,000 or more, sufficient mechanical properties can be secured. On the other hand, when the weight average molecular weight is 5 million or less, the shutdown characteristics are good and the film can be easily formed.

前記ポリオレフィン微多孔膜は、例えば以下の方法で製造可能である。すなわち、溶融したポリオレフィン樹脂をT−ダイから押し出し、シート化し、これを結晶化処理した後延伸し、さらに熱処理をして微多孔膜とする方法である。または、流動パラフィンなどの可塑剤と一緒に溶融したポリオレフィン樹脂をT−ダイから押し出し、これを冷却してシート化し、延伸した後、可塑剤を抽出し熱処理をして微多孔膜とする方法である。   The polyolefin microporous membrane can be produced, for example, by the following method. That is, it is a method in which a molten polyolefin resin is extruded from a T-die, formed into a sheet, subjected to crystallization treatment, stretched, and further heat treated to form a microporous film. Alternatively, by extruding a polyolefin resin melted with a plasticizer such as liquid paraffin from a T-die, cooling it into a sheet, stretching, and then extracting the plasticizer and heat treating it into a microporous membrane. is there.

前記ポリオレフィン多孔質基材の厚さは、5μm〜25μmが好ましい。膜厚が5μm以上であると、十分な力学物性を得ることができ、またハンドリング性がよい。膜厚が25μm以下であると、内部抵抗が適度な範囲に抑えられる。
前記ポリオレフィン多孔質基材のガーレ値(JIS P8117)は、50〜800秒/100ccが好ましい。ガーレ値が50秒/100cc以上であると、微小短絡などの問題が生じにくい。他方、800秒/100cc以下であると、イオン透過性が十分である。
前記ポリオレフィン多孔質基材の突刺強度は、製造歩留まりの観点から、300g以上であることが好ましい。
The thickness of the polyolefin porous substrate is preferably 5 μm to 25 μm. When the film thickness is 5 μm or more, sufficient mechanical properties can be obtained, and handling properties are good. When the film thickness is 25 μm or less, the internal resistance is suppressed to an appropriate range.
The Gurley value (JIS P8117) of the polyolefin porous substrate is preferably 50 to 800 seconds / 100 cc. When the Gurley value is 50 seconds / 100 cc or more, problems such as a micro short-circuit hardly occur. On the other hand, if it is 800 seconds / 100 cc or less, the ion permeability is sufficient.
The puncture strength of the polyolefin porous substrate is preferably 300 g or more from the viewpoint of production yield.

[耐熱性多孔質層]
前記耐熱性多孔質層としては、微多孔膜状、不織布状、紙状、その他三次元ネットワーク状の多孔質構造を有した層を挙げることができる。耐熱性多孔質層としては、より優れた耐熱性が得られる観点から、微多孔膜状の層であることが好ましい。ここで、微多孔膜状の層とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった層をいう。耐熱性とは、200℃未満の温度領域で溶融ないし分解等を起こさない性状をいう。
[Heat-resistant porous layer]
Examples of the heat-resistant porous layer include a layer having a microporous membrane shape, a nonwoven fabric shape, a paper shape, and other three-dimensional network-like porous structures. The heat-resistant porous layer is preferably a microporous film-like layer from the viewpoint of obtaining better heat resistance. Here, the microporous film-like layer has a large number of micropores inside, and has a structure in which these micropores are connected. Gas or liquid can pass from one surface to the other. The layer that became. The heat resistance is a property that does not cause melting or decomposition in a temperature range of less than 200 ° C.

前記耐熱性多孔質層は、ポリオレフィン多孔質基材の両面にある。本発明のセパレータは、基材の両面に耐熱性多孔質層を有するため、耐熱性に優れ、電池としたとき高温での安全性に優れる。また、本発明のセパレータは、基材の両面に耐熱性多孔質層を有するため、電解液の保持性がよくサイクル特性(容量維持率)に優れる。さらに、耐久性及びハンドリング性に優れる。   The heat resistant porous layer is on both sides of the polyolefin porous substrate. Since the separator of this invention has a heat resistant porous layer on both surfaces of a base material, it is excellent in heat resistance, and when it is set as a battery, it is excellent in safety | security at high temperature. Moreover, since the separator of this invention has a heat resistant porous layer on both surfaces of a base material, the retainability of electrolyte solution is good and it is excellent in cycling characteristics (capacity maintenance factor). Furthermore, it is excellent in durability and handling properties.

前記耐熱性多孔質層は、耐熱性、ハンドリング性、及び液枯れの防止効果の観点から、両面の厚さの合計が2μm〜12μmであることが好ましい。
前記耐熱性多孔質層の空孔率は、40〜90%が好ましく、60〜90%がより好ましい。
The heat-resistant porous layer preferably has a total thickness of 2 μm to 12 μm from the viewpoints of heat resistance, handling properties, and liquid drainage prevention effect.
The porosity of the heat resistant porous layer is preferably 40 to 90%, more preferably 60 to 90%.

(耐熱性樹脂)
前記耐熱性多孔質層に含まれる耐熱性樹脂としては、融点が200℃以上のポリマー、あるいは、融点を有しないが分解温度が200℃以上のポリマーが好ましい。例えば、全芳香族ポリアミド、ポリアミドイミド、ポリイミド、ポリスルホン、ポリエーテルスルホン、ポリケトン、ポリエーテルケトン、ポリエーテルイミド、セルロース、及びポリフッ化ビニリデン含有樹脂が挙げられる。中でも、電解液の保持性に優れる観点から、全芳香族ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルイミド及びポリスルホンからなる群から選ばれる少なくとも1種が好ましい。
かかる耐熱性樹脂は、特に耐久性の観点から、全芳香族ポリアミドが好適であり、多孔質層を形成しやすく、電極反応において耐酸化還元性に優れるという観点から、メタ型全芳香族ポリアミドであるポリメタフェニレンイソフタルアミド、ポリパラフェニレンテレフタルアミドが更に好適であり、ポリメタフェニレンイソフタルアミドが特に好適である。
(Heat resistant resin)
The heat resistant resin contained in the heat resistant porous layer is preferably a polymer having a melting point of 200 ° C. or higher, or a polymer having no melting point but having a decomposition temperature of 200 ° C. or higher. Examples include wholly aromatic polyamide, polyamideimide, polyimide, polysulfone, polyethersulfone, polyketone, polyetherketone, polyetherimide, cellulose, and polyvinylidene fluoride-containing resin. Among these, at least one selected from the group consisting of wholly aromatic polyamides, polyamideimides, polyimides, polyetherimides, and polysulfones is preferable from the viewpoint of excellent electrolytic solution retention.
Such a heat-resistant resin is particularly preferably a wholly aromatic polyamide from the viewpoint of durability, is easy to form a porous layer, and is excellent in oxidation-reduction resistance in an electrode reaction. Certain polymetaphenylene isophthalamides and polyparaphenylene terephthalamides are more preferred, and polymetaphenylene isophthalamides are particularly preferred.

(有機フィラー及び無機フィラー)
前記耐熱性多孔質層は、有機フィラー及び無機フィラー(以下、あわせて「フィラー」と称する。)の少なくとも一方を含んでいてもよい。耐熱性多孔質層は、耐熱性多孔質層の表面粗さを適度な大きさにする観点から、フィラーの少なくとも1種を含むことが好ましい。耐熱性多孔質層の表面粗さが適度に大きいと、接着性多孔質層との接着性が上がる点で有利である。
フィラーは、耐熱性樹脂との混合時を考慮すると、極性が高く高分散が容易な観点から、有機フィラーより無機フィラーの方が好ましい。
(Organic filler and inorganic filler)
The heat-resistant porous layer may contain at least one of an organic filler and an inorganic filler (hereinafter collectively referred to as “filler”). The heat-resistant porous layer preferably contains at least one filler from the viewpoint of making the surface roughness of the heat-resistant porous layer appropriate. When the surface roughness of the heat-resistant porous layer is moderately large, it is advantageous in that the adhesion with the adhesive porous layer is improved.
In consideration of mixing with the heat resistant resin, the filler is preferably an inorganic filler rather than an organic filler from the viewpoint of high polarity and easy high dispersion.

有機フィラーとしては、特に限定はないが、例えばメラニン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂等が挙げられる。
有機フィラーは、その平均粒子径が0.1μm〜3.0μmの範囲であることが好ましい。平均粒子径が0.1μmより大きいと、耐熱性多孔質層の表面が適度に粗くなり、耐熱性多孔質層と接着性多孔質層との接着性が良好である。他方、平均粒子径が3.0μmより小さいと、耐熱性多孔質層が脆くなることを回避でき、セパレータのハンドリング性がよい。
Although it does not specifically limit as an organic filler, For example, a melanin resin, a polyethylene resin, a polypropylene resin, an acrylic resin etc. are mentioned.
The organic filler preferably has an average particle size in the range of 0.1 μm to 3.0 μm. When the average particle size is larger than 0.1 μm, the surface of the heat-resistant porous layer becomes moderately rough, and the adhesion between the heat-resistant porous layer and the adhesive porous layer is good. On the other hand, when the average particle size is smaller than 3.0 μm, the heat resistant porous layer can be prevented from becoming brittle, and the handling property of the separator is good.

無機フィラーとしては、特に限定はないが、例えばアルミナ、チタニア、シリカ、ジルコニア等の金属酸化物、炭酸カルシウム等の金属炭酸塩、リン酸カルシウム等の金属リン酸塩、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物等が好適に用いられる。無機フィラーは、安定性又は耐熱性の観点から、酸化物及び水酸化物が好ましい。
無機フィラーは、その平均粒子径が0.1μm〜3.0μmの範囲であることが好ましい。平均粒子径が0.1μmより大きいと、耐熱性多孔質層の表面が適度に粗くなり、耐熱性多孔質層と接着性多孔質層との接着性が良好である。他方、平均粒子径が3.0μmより小さいと、耐熱性多孔質層が脆くなることを回避でき、セパレータのハンドリング性がよい。
Examples of the inorganic filler include, but are not limited to, metal oxides such as alumina, titania, silica, and zirconia, metal carbonates such as calcium carbonate, metal phosphates such as calcium phosphate, aluminum hydroxide, and magnesium hydroxide. A metal hydroxide or the like is preferably used. The inorganic filler is preferably an oxide or a hydroxide from the viewpoint of stability or heat resistance.
The inorganic filler preferably has an average particle size in the range of 0.1 μm to 3.0 μm. When the average particle diameter is larger than 0.1 μm, the surface of the heat resistant porous layer becomes moderately rough, and the adhesion between the heat resistant porous layer and the adhesive porous layer is good. On the other hand, when the average particle size is smaller than 3.0 μm, the heat resistant porous layer can be prevented from becoming brittle, and the handling property of the separator is good.

前記耐熱性多孔質層において、無機フィラーの含有量は、耐熱性樹脂1質量部に対し1〜10質量部の範囲が好ましい。無機フィラーの含有量が、耐熱性樹脂1質量部に対し1質量部以上であると、耐熱性多孔質層と接着性多孔質層との接着性が良好である。他方、耐熱性樹脂1質量部に対し10質量部以下であると、耐熱性多孔質層が脆くなり粉落ちが発生することを回避でき、またセパレータのハンドリング性がよい。無機フィラーの含有量は、耐熱性樹脂1質量部に対し1〜5質量部の範囲がより好ましい。   In the heat resistant porous layer, the content of the inorganic filler is preferably in the range of 1 to 10 parts by mass with respect to 1 part by mass of the heat resistant resin. When the content of the inorganic filler is 1 part by mass or more with respect to 1 part by mass of the heat resistant resin, the adhesion between the heat resistant porous layer and the adhesive porous layer is good. On the other hand, when the amount is 10 parts by mass or less with respect to 1 part by mass of the heat-resistant resin, the heat-resistant porous layer can be prevented from becoming brittle and powder falling off, and the handling property of the separator is good. As for content of an inorganic filler, the range of 1-5 mass parts is more preferable with respect to 1 mass part of heat resistant resins.

(耐熱性多孔質層の形成方法)
前記耐熱性多孔質層の形成方法に特に制限はないが、例えば下記(1)〜(5)の工程を経て形成することが可能である。前記耐熱性多孔質層を基材上に固定するためには、耐熱性多孔質層を塗工法により基材上に直接形成する手法が好ましいが、これに限らず、別途製造した耐熱性多孔質層のシートを基材上に接着剤等を用いて接着する手法や、熱融着や圧着などの手法も採用することができる。
(Method for forming heat-resistant porous layer)
Although there is no restriction | limiting in particular in the formation method of the said heat resistant porous layer, For example, it can form through the process of following (1)-(5). In order to fix the heat-resistant porous layer on the base material, a method of directly forming the heat-resistant porous layer on the base material by a coating method is preferable, but not limited thereto, a heat-resistant porous layer manufactured separately is not limited thereto. A technique of adhering the layer sheet onto the base material using an adhesive or the like, or a technique such as heat fusion or pressure bonding can also be employed.

(1)塗工用スラリーの作製
耐熱性樹脂を溶剤に溶かし、塗工用スラリーを作製する。溶剤は耐熱性樹脂を溶解するものであればよく、特に限定はないが、極性溶剤が好ましく、例えば、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等が挙げられる。また、当該溶剤は、極性溶剤に加えて耐熱性樹脂に対して貧溶剤となる溶剤も加えることができる。このような貧溶剤を適用することでミクロ相分離構造が誘発され、耐熱性多孔質層を形成する上で多孔化が容易となる。貧溶剤としては、アルコール類が好適であり、特にグリコールのような多価アルコールが好適である。
塗工用スラリー中の耐熱性樹脂の濃度は4〜9質量%が好ましい。また必要に応じ、これに有機フィラー又は無機フィラーを分散させて塗工用スラリーとする。塗工用スラリー中に無機フィラーを分散させるに当たって、無機フィラーの分散性が好ましくないときは、無機フィラーをシランカップリング剤等で表面処理し、分散性を改善する手法も適用可能である。
(1) Preparation of coating slurry A heat-resistant resin is dissolved in a solvent to prepare a coating slurry. The solvent is not particularly limited as long as it dissolves the heat-resistant resin, but is preferably a polar solvent, for example, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2- Examples include pyrrolidone and the like. In addition to the polar solvent, the solvent may be a solvent that becomes a poor solvent for the heat-resistant resin. By applying such a poor solvent, a microphase separation structure is induced and the formation of a heat-resistant porous layer is facilitated. As the poor solvent, alcohols are preferable, and polyhydric alcohols such as glycol are particularly preferable.
The concentration of the heat-resistant resin in the coating slurry is preferably 4 to 9% by mass. Moreover, an organic filler or an inorganic filler is disperse | distributed to this as needed, and it is set as the slurry for coating. In dispersing the inorganic filler in the coating slurry, when the dispersibility of the inorganic filler is not preferable, a method of surface-treating the inorganic filler with a silane coupling agent or the like to improve the dispersibility is also applicable.

(2)スラリーの塗工
スラリーをポリオレフィン多孔質基材の両方の表面に塗工する。基材の両面に同時に塗工することが、工程の短縮という観点で好ましい。塗工用スラリーを塗工する方法としては、ナイフコーター法、グラビアコーター法、マイヤーバー法、ダイコーター法、リバースロールコーター法、ロールコーター法、スクリーン印刷法、インクジェット法、スプレー法等が挙げられる。この中でも、塗布層を均一に形成するという観点において、リバースロールコーター法が好適である。例えば、基材を一対のマイヤーバーの間に通すことで基材の両面に過剰な塗工用スラリーを塗布し、これを一対のリバースロールコーターの間に通して過剰なスラリーを掻き落すことで精密計量するという方法を採用できる。
(2) Coating of slurry The slurry is coated on both surfaces of the polyolefin porous substrate. It is preferable from the viewpoint of shortening the process that coating is performed simultaneously on both surfaces of the substrate. Examples of the method for coating the slurry for coating include a knife coater method, a gravure coater method, a Mayer bar method, a die coater method, a reverse roll coater method, a roll coater method, a screen printing method, an ink jet method, and a spray method. . Among these, the reverse roll coater method is preferable from the viewpoint of uniformly forming the coating layer. For example, by applying the excess slurry for coating on both sides of the substrate by passing the substrate between a pair of Meyer bars, and scraping off the excess slurry by passing it between a pair of reverse roll coaters. A method of precision weighing can be adopted.

(3)スラリーの凝固
ポリオレフィン多孔質基材に塗工用スラリーを塗工したものを、耐熱性樹脂を凝固させることが可能な凝固液で処理することにより、耐熱性樹脂を凝固させて、耐熱性多孔質層を形成する。凝固液で処理する方法としては、塗工用スラリーを塗工した面に凝固液をスプレーで吹き付ける方法や、塗工用スラリーを塗工したポリオレフィン多孔質基材を凝固液の入った浴(凝固浴)中に浸漬する方法等が挙げられる。凝固液としては、耐熱性樹脂を凝固できるものであれば特に限定されないが、水、又は、スラリーに用いた溶剤に水を適当量混合したものが好ましい。ここで、水の混合量は、凝固効率や多孔化の観点から、凝固液に対して40〜80質量%が好ましい。
(3) Solidification of slurry By applying a slurry for coating on a polyolefin porous substrate with a coagulation liquid capable of coagulating the heat resistant resin, the heat resistant resin is coagulated and heat resistant. Forming a porous layer. As a method of treating with the coagulating liquid, a method of spraying the coagulating liquid onto the surface coated with the coating slurry or a polyolefin porous substrate coated with the coating slurry on a bath containing the coagulating liquid (coagulating liquid) The method of immersing in bath) etc. is mentioned. The coagulation liquid is not particularly limited as long as it can coagulate the heat-resistant resin, but water or a mixture of an appropriate amount of water in the solvent used in the slurry is preferable. Here, the mixing amount of water is preferably 40 to 80% by mass with respect to the coagulating liquid from the viewpoint of coagulation efficiency and porosity.

(4)凝固液の除去
スラリーの凝固に用いた凝固液を、水洗することによって、除去する。
(4) Removal of coagulating liquid The coagulating liquid used for coagulating the slurry is removed by washing with water.

(5)乾燥
ポリオレフィン多孔質基材に耐熱性樹脂の塗工層を形成したシートから、水を乾燥により除去する。乾燥方法は特に限定はないが、乾燥温度は50〜80℃が好適であり、高い乾燥温度を適用する場合は、熱収縮による寸法変化が起こらないようにするためにロールに接触させる方法などを適用することが好ましい。
(5) Drying Water is removed by drying from a sheet in which a heat-resistant resin coating layer is formed on a polyolefin porous substrate. There is no particular limitation on the drying method, but the drying temperature is preferably 50 to 80 ° C. When applying a high drying temperature, a method of contacting the roll in order to prevent dimensional change due to heat shrinkage, etc. It is preferable to apply.

[接着性多孔質層]
前記接着性多孔質層は、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった層である。
前記接着性多孔質層は、ポリオレフィン多孔質基材の片面又は両面において、耐熱性多孔質層の上に積層されてある。前記接着性多孔質層は、本発明のセパレータを電池に適用したときに電極と接触する。前記接着性多孔質層は、基材の片面のみにあるよりも両面にある方が、電池のサイクル特性(容量維持率)がより優れる観点から好ましい。前記接着性多孔質層が基材の両面にあると、セパレータの両面が接着性多孔質層を介して正極と負極の両方に接触し、セパレータと両電極とがよく接着する。
[Adhesive porous layer]
The adhesive porous layer has a structure in which a large number of micropores are formed in the inside and these micropores are connected, and gas or liquid can pass from one surface to the other surface. It is.
The said adhesive porous layer is laminated | stacked on the heat resistant porous layer in the single side | surface or both surfaces of a polyolefin porous base material. The adhesive porous layer comes into contact with the electrode when the separator of the present invention is applied to a battery. The adhesive porous layer is preferably on both sides rather than only on one side of the base material from the viewpoint of better cycle characteristics (capacity maintenance ratio) of the battery. When the adhesive porous layer is on both sides of the substrate, both sides of the separator come into contact with both the positive electrode and the negative electrode through the adhesive porous layer, and the separator and both electrodes are well bonded.

前記接着性多孔質層は、イオン透過性という観点から十分に多孔化された構造であることが好ましい。具体的には、空孔率が30〜80%であることが好ましい。空孔率が80%以下であると、電極と接着させるプレス工程に耐え得る力学物性を確保できる。また、空孔率が80%以下であると、表面開孔率が高過ぎず十分な接着力を確保することができる。他方、空孔率が30%以上であると、イオン透過性が良好である。
また、前記接着性多孔質層は、平均孔径が10nm〜200nmであることが好ましい。平均孔径が200nm以下であると、孔の不均一性が抑えられ、接着点が均等に散在し、接着性がよい。また、平均孔径が200nm以下であると、イオンの移動が均一でサイクル特性及び負荷特性がよい。他方、平均孔径が10nm以上であると、接着性多孔質層に電解液を含浸させたとき、樹脂が膨潤して孔を閉塞しイオン透過性が阻害されることが起きにくい。
The adhesive porous layer preferably has a sufficiently porous structure from the viewpoint of ion permeability. Specifically, the porosity is preferably 30 to 80%. When the porosity is 80% or less, it is possible to secure mechanical properties that can withstand a pressing process for bonding to an electrode. Further, when the porosity is 80% or less, the surface porosity is not too high and a sufficient adhesive force can be ensured. On the other hand, if the porosity is 30% or more, the ion permeability is good.
Further, the adhesive porous layer preferably has an average pore size of 10 nm to 200 nm. When the average pore diameter is 200 nm or less, the nonuniformity of the pores is suppressed, the adhesion points are evenly dispersed, and the adhesiveness is good. Further, when the average pore diameter is 200 nm or less, the movement of ions is uniform and the cycle characteristics and load characteristics are good. On the other hand, when the average pore diameter is 10 nm or more, when the adhesive porous layer is impregnated with the electrolytic solution, it is difficult for the resin to swell and block the pores to inhibit the ion permeability.

前記接着性多孔質層の厚さは、電極との接着性及びイオン透過性の観点から、片面につき0.5μm〜10μmであることが好ましく、1μm〜5μmであることがより好ましい。
前記接着性多孔質層の塗工量は、基材の片面に形成されている場合、基材の両面に形成されている場合ともに、0.5g/m〜3.5g/mの範囲であることが好ましい。前記塗工量が0.5g/m以上であると、電極との接着性が良好で、電池のサイクル特性がよい。他方、前記塗工量が3.5g/m以下であると、イオン透過性が良好で、電池の負荷特性がよい。接着性多孔質層の塗工量は、1.0g/m〜2.5g/mの範囲であることがより好ましく、1.5g/m〜2.5g/mの範囲であることが更に好ましい。
The thickness of the adhesive porous layer is preferably 0.5 μm to 10 μm and more preferably 1 μm to 5 μm per side from the viewpoints of adhesion to the electrode and ion permeability.
Coating amount of the adhesive porous layer, when it is formed on one side of the substrate, both when it is formed on both sides of the substrate, the range of 0.5g / m 2 ~3.5g / m 2 It is preferable that When the coating amount is 0.5 g / m 2 or more, the adhesion with the electrode is good and the cycle characteristics of the battery are good. On the other hand, when the coating amount is 3.5 g / m 2 or less, the ion permeability is good and the load characteristics of the battery are good. The coating amount of the adhesive porous layer is more preferably in the range of 1.0g / m 2 ~2.5g / m 2 , in the range of 1.5g / m 2 ~2.5g / m 2 More preferably.

(フッ素系樹脂)
前記接着性多孔質層に含まれるフッ素系樹脂としては、特に限定はない。例えば、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニリデン共重合体、ポリフッ化ビニル、ペルフルオロアルコキシフッソ樹脂、四フッ化エチレン・6フッ化エチレン共重合体、エチレン・四フッ化エチレン共重合体等が挙げられる。特に、ポリフッ化ビニリデン及びポリフッ化ビニリデン共重合体が好ましい。このようなフッ素系樹脂は、乳化重合又は懸濁重合により得ることが可能である。
(Fluorine resin)
There is no limitation in particular as a fluorine resin contained in the said adhesive porous layer. For example, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinylidene fluoride copolymer, polyvinyl fluoride, perfluoroalkoxy fluorine resin, tetrafluoroethylene / hexafluoroethylene copolymer, ethylene / tetrafluoroethylene And ethylene copolymer. In particular, polyvinylidene fluoride and a polyvinylidene fluoride copolymer are preferable. Such a fluororesin can be obtained by emulsion polymerization or suspension polymerization.

(ポリフッ化ビニリデン系樹脂)
本発明において、フッ素系樹脂は、電極との接着性の観点から、ポリフッ化ビニリデン系樹脂であることが好ましく、下記(i)及び(ii)の少なくとも一方であることが好ましい。特に、耐熱性多孔質層と接着性多孔質層との接着性の観点では、下記(ii)の共重合体が好ましい。
(i)ポリフッ化ビニリデン
(ii)フッ化ビニリデンと、パーフルオロアルキルビニルエーテル、ヘキサフルオロプロピレン、3フッ化塩化エチレン、テトラフロロエチレン及びエチレンからなる群から選ばれる少なくとも1種のモノマーとが、前記モノマーのモル分率1〜10%で共重合した共重合体(以下、「特定ポリフッ化ビニリデン共重合体」とも称する。)
(Polyvinylidene fluoride resin)
In the present invention, the fluororesin is preferably a polyvinylidene fluoride resin from the viewpoint of adhesion to the electrode, and is preferably at least one of the following (i) and (ii). In particular, from the viewpoint of adhesion between the heat-resistant porous layer and the adhesive porous layer, the following copolymer (ii) is preferable.
(I) polyvinylidene fluoride (ii) vinylidene fluoride and at least one monomer selected from the group consisting of perfluoroalkyl vinyl ether, hexafluoropropylene, trifluorochloroethylene, tetrafluoroethylene and ethylene, Copolymer having a molar fraction of 1 to 10% (hereinafter, also referred to as “specific polyvinylidene fluoride copolymer”).

前記の特定ポリフッ化ビニリデン共重合体は、パーフルオロアルキルビニルエーテル、ヘキサフルオロプロピレン、3フッ化塩化エチレン、テトラフロロエチレン及びエチレンからなる群から選ばれる少なくとも1種のモノマー(以下、「コモノマー」とも称する。)のモル分率が1〜10%である。ポリフッ化ビニリデン共重合体は、コモノマーの含有率が多いと電解液に膨潤しやすい傾向がある。コモノマーのモル分率が10%以下であると、接着性多孔質層の形状保持性が高く、電解液の保持性がよくなるため、サイクル特性がよい。他方、コモノマーのモル分率が1%以上であると、耐熱性多孔質層との接着性が良好である。
特定ポリフッ化ビニリデン共重合体の中でも、電解液保持性及び耐熱性多孔質層との接着性の観点から、フッ化ビニリデンとヘキサフルオロプロピレンとが、ヘキサフルオロプロピレンのモル分率1〜10%で共重合した共重合体が好ましい。
The specific polyvinylidene fluoride copolymer is at least one monomer selected from the group consisting of perfluoroalkyl vinyl ether, hexafluoropropylene, trifluorochloroethylene, tetrafluoroethylene and ethylene (hereinafter also referred to as “comonomer”). .) Is 1 to 10%. The polyvinylidene fluoride copolymer tends to swell in the electrolyte solution when the comonomer content is high. When the molar fraction of the comonomer is 10% or less, the shape retention of the adhesive porous layer is high and the retention of the electrolyte is improved, so that the cycle characteristics are good. On the other hand, when the molar fraction of the comonomer is 1% or more, the adhesion with the heat-resistant porous layer is good.
Among the specific polyvinylidene fluoride copolymers, from the viewpoint of electrolytic solution retention and adhesiveness to the heat-resistant porous layer, vinylidene fluoride and hexafluoropropylene have a mole fraction of 1 to 10% of hexafluoropropylene. Copolymerized copolymers are preferred.

本発明に用いるポリフッ化ビニリデン系樹脂は、重量平均分子量が30万〜150万の範囲であることが好ましい。重量平均分子量が30万以上であると、接着性多孔質層が電極との接着処理に耐える力学物性を確保でき、十分な接着性が得られる。他方、重量平均分子量が150万以下であると、成形時の粘度が高くなり過ぎず成形性及び結晶形成がよく、多孔化が良好である。より好ましくは50万〜120万の範囲である。
ポリフッ化ビニリデン系樹脂のフィブリル径は、サイクル特性の観点から、10nm〜1000nmの範囲であることが好ましい。
The polyvinylidene fluoride resin used in the present invention preferably has a weight average molecular weight in the range of 300,000 to 1,500,000. If the weight average molecular weight is 300,000 or more, the adhesive porous layer can secure mechanical properties that can withstand the adhesion treatment with the electrode, and sufficient adhesion can be obtained. On the other hand, when the weight average molecular weight is 1,500,000 or less, the viscosity at the time of molding does not become too high, the moldability and crystal formation are good, and the porosity is good. More preferably, it is the range of 500,000 to 1,200,000.
The fibril diameter of the polyvinylidene fluoride resin is preferably in the range of 10 nm to 1000 nm from the viewpoint of cycle characteristics.

(接着性多孔質層の形成方法)
本発明において、接着性多孔質層の形成方法に特に制限はない。ポリフッ化ビニリデン系樹脂の層(以下、「PVdF層」と称する。)については、例えば特許第4163894号に記載されている湿式塗工法によって形成することができる。湿式塗工法は、ポリフッ化ビニリデン系樹脂を適切な溶媒に溶解させて塗工用ドープを調製し、この塗工用ドープを基材に塗工し、その後、適切な凝固液に浸漬させることで、相分離を誘発しつつポリフッ化ビニリデン系樹脂を固化させ、水洗と乾燥を行って、基材上に多孔質層を形成する製膜法である。本発明に好適な湿式塗工法の詳細は、以下のとおりである。
(Method for forming adhesive porous layer)
In the present invention, the method for forming the adhesive porous layer is not particularly limited. The polyvinylidene fluoride resin layer (hereinafter referred to as “PVdF layer”) can be formed, for example, by a wet coating method described in Japanese Patent No. 4163894. In the wet coating method, a polyvinylidene fluoride resin is dissolved in an appropriate solvent to prepare a coating dope, the coating dope is applied to a substrate, and then immersed in an appropriate coagulation liquid. This is a film forming method in which a polyvinylidene fluoride resin is solidified while inducing phase separation, washed with water and dried to form a porous layer on a substrate. The details of the wet coating method suitable for the present invention are as follows.

塗工用ドープの調製に用いる、ポリフッ化ビニリデン系樹脂を溶解する溶媒(以下、「良溶媒」とも称する。)としては、N−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルホルムアミド等の極性アミド溶媒が好適に用いられる。良好な多孔構造を形成する観点から、良溶媒に加えて相分離を誘発させる相分離剤を混合させることが好ましい。相分離剤としては、水、メタノール、エタノール、プロピルアルコール、ブチルアルコール、ブタンジオール、エチレングリコール、プロピレングリコール、トリプロピレングリコール等が挙げられる。塗工用ドープは、良好な多孔構造を形成する観点から、ポリフッ化ビニリデン系樹脂の濃度が3〜10質量%であることが好ましい。   As a solvent for dissolving a polyvinylidene fluoride resin used for the preparation of a coating dope (hereinafter also referred to as “good solvent”), polar amide solvents such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethylformamide, etc. Are preferably used. From the viewpoint of forming a good porous structure, it is preferable to mix a phase separation agent that induces phase separation in addition to a good solvent. Examples of the phase separation agent include water, methanol, ethanol, propyl alcohol, butyl alcohol, butanediol, ethylene glycol, propylene glycol, and tripropylene glycol. The coating dope preferably has a concentration of polyvinylidene fluoride resin of 3 to 10% by mass from the viewpoint of forming a good porous structure.

凝固液は、塗工用ドープの調製に用いた良溶媒と相分離剤、及び水から構成されるのが一般的である。良溶媒と相分離剤の混合比はポリフッ化ビニリデン系樹脂の溶解に用いた混合溶媒の混合比に合わせるのが生産上好ましい。水の濃度は40〜90質量%であることが多孔構造形成、生産性の観点から適切である。   The coagulating liquid is generally composed of a good solvent used for preparing the coating dope, a phase separation agent, and water. It is preferable in production that the mixing ratio of the good solvent and the phase separation agent is adjusted to the mixing ratio of the mixed solvent used for dissolving the polyvinylidene fluoride resin. It is appropriate that the water concentration is 40 to 90% by mass from the viewpoint of the formation of a porous structure and productivity.

基材への塗工用ドープの塗工は、マイヤーバー、ダイコーター、リバースロールコーター、グラビアコーターなど従来の塗工方式を適用することが可能である。PVdF層を基材の両面に形成する場合、塗工用ドープを両面同時に基材へ塗工することが生産性の観点から好ましい。   Conventional coating methods such as a Meyer bar, a die coater, a reverse roll coater, and a gravure coater can be applied to the substrate for applying the dope for coating. When forming a PVdF layer on both surfaces of a base material, it is preferable from a viewpoint of productivity to apply dope for coating to a base material simultaneously on both surfaces.

上記のような湿式塗工法においては、PVdF層と耐熱性多孔質層との接着性を上げる観点から、条件を下記のように調整することが好ましい。
ポリフッ化ビニリデン系樹脂を溶解させる溶媒として、通常、良溶媒と相分離剤(以下、「貧溶媒」とも称する。)の混合溶媒が使用されるが、この混合比を調整することにより、耐熱性多孔質層の表面を適度に溶解又は膨潤させて、耐熱性多孔質層とPVdF層の接着性を高めることが好ましい。具体的には、耐熱性多孔質層に芳香族ポリアミドを用いた場合、ポリフッ化ビニリデン系樹脂の溶解に用いる良溶媒(例えば、ジメチルアセトアミド:DMAc)と貧溶媒(例えば、トリプロピレングリコール:TPG)の混合割合は、質量比90:10〜60:40の範囲が好ましい。良溶媒の割合が60質量%以上であると、耐熱性多孔質層の表面が適度に溶解又は膨潤し、耐熱性多孔質層とPVdF層の接着性がよい。他方、貧溶媒の割合が10質量%以上であると、多孔質化が良好な点で有利である。
また、凝固液(通常、良溶媒と貧溶媒、及び水から構成される)に浸漬させて凝固させる工程においては、凝固速度は速い方が好ましい。すなわち、凝固液の溶剤濃度が低いほど、また凝固液温度が高いほど、接着性が向上する傾向がある。ただし、凝固速度が速過ぎると、PVdF層の表面が緻密となり過ぎるので、適度な多孔質構造を得ることと、耐熱性多孔質層との接着性とのバランスを考慮する。
具体的には、凝固浴の水:溶剤(良溶媒と貧溶媒の合計)の割合は、質量比90:10〜50:50の範囲が好ましい。水の量が90質量%以下、即ち溶剤濃度が10質量%以上であると、PVdF層の表面が緻密になり過ぎず良好な多孔質構造が得られつつ、耐熱性多孔質層の表面が適度に溶解又は膨潤し、耐熱性多孔質層とPVdF層の接着性を確保できる。他方、水の量が50質量%以上であると、凝固速度が適度に速く、耐熱性多孔質層への接着性がよい。
In the wet coating method as described above, it is preferable to adjust the conditions as follows from the viewpoint of increasing the adhesion between the PVdF layer and the heat-resistant porous layer.
As a solvent for dissolving the polyvinylidene fluoride resin, a mixed solvent of a good solvent and a phase separation agent (hereinafter also referred to as “poor solvent”) is usually used. By adjusting the mixing ratio, heat resistance is improved. It is preferable to enhance the adhesion between the heat-resistant porous layer and the PVdF layer by appropriately dissolving or swelling the surface of the porous layer. Specifically, when an aromatic polyamide is used for the heat resistant porous layer, a good solvent (for example, dimethylacetamide: DMAc) and a poor solvent (for example, tripropylene glycol: TPG) used for dissolving the polyvinylidene fluoride resin. The mixing ratio is preferably in the range of 90:10 to 60:40 by mass ratio. When the proportion of the good solvent is 60% by mass or more, the surface of the heat resistant porous layer is appropriately dissolved or swollen, and the adhesiveness between the heat resistant porous layer and the PVdF layer is good. On the other hand, when the proportion of the poor solvent is 10% by mass or more, it is advantageous in terms of good porosity.
In the step of solidifying by dipping in a coagulation liquid (usually composed of a good solvent, a poor solvent, and water), it is preferable that the coagulation rate is fast. That is, as the solvent concentration of the coagulating liquid is lower and the coagulating liquid temperature is higher, the adhesion tends to be improved. However, if the solidification rate is too high, the surface of the PVdF layer becomes too dense, so that a balance between obtaining an appropriate porous structure and adhesiveness with the heat-resistant porous layer is taken into consideration.
Specifically, the ratio of water: solvent (total of good solvent and poor solvent) in the coagulation bath is preferably in the range of mass ratio 90:10 to 50:50. When the amount of water is 90% by mass or less, that is, the solvent concentration is 10% by mass or more, the surface of the PVdF layer is not too dense and a good porous structure is obtained, and the surface of the heat-resistant porous layer is moderate. It can melt | dissolve or swell and can ensure the adhesiveness of a heat resistant porous layer and a PVdF layer. On the other hand, when the amount of water is 50% by mass or more, the coagulation rate is moderately fast and the adhesion to the heat-resistant porous layer is good.

前記接着性多孔質層は、上述した湿式塗工法以外にも、乾式塗工法で製造することが可能である。ここで、乾式塗工法とは、例えばポリフッ化ビニリデン系樹脂と溶媒を含んだ塗工用ドープを基材に塗工し、これを乾燥することで溶媒を揮発除去することにより、多孔層を得る方法である。ただし、乾式塗工法は湿式塗工法と比べて塗工層が緻密になり易く、良好な多孔質構造を得られる点で湿式塗工法のほうが好ましい。   The adhesive porous layer can be produced by a dry coating method other than the wet coating method described above. Here, the dry coating method refers to, for example, applying a coating dope containing a polyvinylidene fluoride resin and a solvent to a substrate, and drying the solvent to volatilize and remove the solvent, thereby obtaining a porous layer. Is the method. However, the dry coating method is more preferable than the wet coating method in that the coating layer tends to be denser and a good porous structure can be obtained.

前記接着性多孔質層は、アルミナ等の金属酸化物や、水酸化マグネシウム等の金属水酸化物等の無機フィラーを含有していてもよい。この場合、多孔質層の形成の際に、塗工用ドープに無機フィラーを分散すればよい。ただし、接着性多孔質層が無機フィラーを含むと、電極に対する接着性が低下するおそれもあるため、接着性多孔質層は無機フィラーを含まない方が好ましい。   The adhesive porous layer may contain an inorganic filler such as a metal oxide such as alumina or a metal hydroxide such as magnesium hydroxide. In this case, an inorganic filler may be dispersed in the coating dope when forming the porous layer. However, if the adhesive porous layer contains an inorganic filler, the adhesiveness to the electrode may be lowered. Therefore, the adhesive porous layer preferably does not contain an inorganic filler.

(セパレータの諸特性)
本発明の非水電解質電池用セパレータのシャットダウン温度は、130〜155℃であることが好ましい。シャットダウン温度が130℃以上であると、低温でメルトダウンすることがなく安全性が高い。他方、シャットダウン温度が155℃以下であると、電池の各種素材が高温に曝されることがなく、安全確保が期待できる。前記シャットダウン温度は、より好ましくは135〜150℃である。
(Separator characteristics)
The shutdown temperature of the nonaqueous electrolyte battery separator of the present invention is preferably 130 to 155 ° C. When the shutdown temperature is 130 ° C. or higher, the melt does not melt at a low temperature and the safety is high. On the other hand, when the shutdown temperature is 155 ° C. or lower, various materials of the battery are not exposed to high temperatures, and safety can be expected. The shutdown temperature is more preferably 135 to 150 ° C.

前記非水電解質電池用セパレータは、MD方向の熱収縮率が15%以下であることが好ましく、10%以下であることがより好ましい。また、TD方向の熱収縮率が10%以下であることが好ましく、5%以下であることがより好ましい。熱収縮率がこの範囲にあると、セパレータの耐熱性がよく、高温においても電池の安全性を確保できる。ここで熱収縮率とは、実施例に記載の評価方法によって135℃の環境下で測定される。   The non-aqueous electrolyte battery separator preferably has a thermal shrinkage in the MD direction of 15% or less, and more preferably 10% or less. Further, the thermal shrinkage rate in the TD direction is preferably 10% or less, and more preferably 5% or less. When the thermal contraction rate is within this range, the heat resistance of the separator is good, and the safety of the battery can be ensured even at high temperatures. Here, the heat shrinkage rate is measured in an environment of 135 ° C. by the evaluation method described in the examples.

前記非水電解質電池用セパレータは、機械強度と電池としたときのエネルギー密度の観点から、全体の膜厚が5μm〜35μmであることが好ましい。
前記非水電解質電池用セパレータの空孔率は、機械的強度、ハンドリング性、及びイオン透過性の観点から、30〜60%であることが好ましい。
前記非水電解質電池用セパレータのガーレ値(JIS P8117)は、機械強度と膜抵抗のバランスがよい点で、50〜800秒/100ccであることが好ましく、100〜500秒/100ccであることがより好ましい。
前記非水電解質電池用セパレータの膜抵抗は、電池の負荷特性の観点から、1〜10ohm・cmであることが好ましい。ここで膜抵抗とは、セパレータに電解液を含浸させたときの抵抗値であり、交流法にて測定される。当然、電解液の種類、温度によって異なるが、上記の数値は電解液として1M LiBF プロピレンカーボネート/エチレンカーボネート(質量比1/1)を用い、20℃にて測定した数値である。
前記非水電解質電池用セパレータの突刺強度は、耐短絡性、機械強度、及びハンドリング性の観点から、250g以上であることが好ましい。
前記非水電解質電池用セパレータの引張強度は、耐短絡性、機械強度、及びハンドリング性の観点から、10N以上であることが好ましい。
前記非水電解質電池用セパレータの曲路率は、イオン透過性の観点から、1.5〜2.5であることが好ましい。
The separator for a nonaqueous electrolyte battery preferably has a total film thickness of 5 μm to 35 μm from the viewpoint of mechanical strength and energy density when used as a battery.
The porosity of the nonaqueous electrolyte battery separator is preferably 30 to 60% from the viewpoints of mechanical strength, handling properties, and ion permeability.
The Gurley value (JIS P8117) of the non-aqueous electrolyte battery separator is preferably 50 to 800 seconds / 100 cc, and preferably 100 to 500 seconds / 100 cc, in terms of a good balance between mechanical strength and membrane resistance. More preferred.
The membrane resistance of the non-aqueous electrolyte battery separator is preferably 1 to 10 ohm · cm 2 from the viewpoint of battery load characteristics. Here, the membrane resistance is a resistance value when the separator is impregnated with an electrolytic solution, and is measured by an alternating current method. Of course, the type of the electrolyte varies depending on the temperature, the above figures are used 1M LiBF 4 propylene carbonate / ethylene carbonate as an electrolyte solution (weight ratio 1/1), is a value measured at 20 ° C..
The puncture strength of the nonaqueous electrolyte battery separator is preferably 250 g or more from the viewpoint of short circuit resistance, mechanical strength, and handling properties.
The tensile strength of the nonaqueous electrolyte battery separator is preferably 10 N or more from the viewpoint of short circuit resistance, mechanical strength, and handling properties.
The curvature of the nonaqueous electrolyte battery separator is preferably 1.5 to 2.5 from the viewpoint of ion permeability.

<非水電解質電池>
本発明の非水電解質電池は、リチウムのドープ・脱ドープにより起電力を得る非水電解質電池であって、正極と、負極と、既述の構成の非水電解質電池用セパレータを備える。非水電解質電池は、負極と正極がセパレータを介して対向している電池要素に電解液が含浸され、これが外装に封入された構造を有する。かかる構成の非水電解質電池の中でも、非水電解質二次電池、特にはリチウムイオン二次電池が好ましい。
<Nonaqueous electrolyte battery>
The non-aqueous electrolyte battery of the present invention is a non-aqueous electrolyte battery that obtains an electromotive force by doping or dedoping lithium, and includes a positive electrode, a negative electrode, and a separator for a non-aqueous electrolyte battery having the above-described configuration. A non-aqueous electrolyte battery has a structure in which a battery element in which a negative electrode and a positive electrode face each other with a separator interposed therebetween is impregnated with an electrolytic solution, and this is enclosed in an exterior. Among the nonaqueous electrolyte batteries having such a configuration, a nonaqueous electrolyte secondary battery, particularly a lithium ion secondary battery is preferable.

本発明の非水電解質電池は、セパレータとして、既述した本発明の非水電解質電池用セパレータを用いる。かかる構成の非水電解質電池は、シャットダウン機能及び耐熱性を有し、サイクル特性(容量維持率)に優れる。   The nonaqueous electrolyte battery of the present invention uses the above-described separator for nonaqueous electrolyte batteries of the present invention as a separator. The nonaqueous electrolyte battery having such a configuration has a shutdown function and heat resistance, and is excellent in cycle characteristics (capacity maintenance ratio).

負極は、負極活物質、導電助剤及びバインダーからなる負極合剤が、集電体上に成形された構造である。負極活物質としては、リチウムを電気化学的にドープすることが可能な材料が挙げられ、例えば炭素材料、シリコン、アルミニウム、スズ、ウッド合金等が挙げられる。導電助剤は、アセチレンブラック、ケッチェンブラックといった炭素材料が挙げられる。バインダーは有機高分子からなり、例えばポリフッ化ビニリデン、カルボキシメチルセルロース等が挙げられる。集電体には銅箔、ステンレス箔、ニッケル箔等を用いることが可能である。   The negative electrode has a structure in which a negative electrode mixture composed of a negative electrode active material, a conductive additive and a binder is formed on a current collector. Examples of the negative electrode active material include materials capable of electrochemically doping lithium, and examples thereof include carbon materials, silicon, aluminum, tin, and wood alloys. Examples of the conductive assistant include carbon materials such as acetylene black and ketjen black. The binder is made of an organic polymer, and examples thereof include polyvinylidene fluoride and carboxymethyl cellulose. A copper foil, a stainless steel foil, a nickel foil or the like can be used for the current collector.

正極は、正極活物質、導電助剤及びバインダーからなる正極合剤が、集電体上に成形された構造である。正極活物質としては、リチウム含有遷移金属酸化物等が挙げられ、具体的にはLiCoO、LiNiO、LiMn0.5Ni0.5、LiCo1/3Ni1/3Mn1/3、LiMn、LiFePO、LiCo0.5Ni0.5、LiAl0.25Ni0.75等が挙げられる。導電助剤はアセチレンブラック、ケッチェンブラックといった炭素材料が挙げられる。バインダーは有機高分子からなり、例えばポリフッ化ビニリデン等が挙げられる。集電体にはアルミ箔、ステンレス箔、チタン箔等を用いることが可能である。 The positive electrode has a structure in which a positive electrode mixture composed of a positive electrode active material, a conductive additive and a binder is formed on a current collector. Examples of the positive electrode active material include lithium-containing transition metal oxides. Specifically, LiCoO 2 , LiNiO 2 , LiMn 0.5 Ni 0.5 O 2 , LiCo 1/3 Ni 1/3 Mn 1/3 Examples include O 2 , LiMn 2 O 4 , LiFePO 4 , LiCo 0.5 Ni 0.5 O 2 , LiAl 0.25 Ni 0.75 O 2, and the like. Examples of the conductive assistant include carbon materials such as acetylene black and ketjen black. The binder is made of an organic polymer, and examples thereof include polyvinylidene fluoride. For the current collector, aluminum foil, stainless steel foil, titanium foil, or the like can be used.

電解液は、リチウム塩を非水系溶媒に溶解した溶液である。リチウム塩としては、LiPF、LiBF、LiClO等が挙げられる。非水系溶媒としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、ビニレンカーボネート等が挙げられ、これらは単独で用いても混合して用いてもよい。 The electrolytic solution is a solution in which a lithium salt is dissolved in a non-aqueous solvent. Examples of the lithium salt include LiPF 6 , LiBF 4 , LiClO 4 and the like. Examples of the non-aqueous solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, vinylene carbonate, and the like. These may be used alone or in combination.

外装材は、金属缶又はアルミラミネートパック等が挙げられる。電池の形状は角型、円筒型、コイン型等があるが、本発明の非水電解質電池用セパレータはいずれの形状においても好適に適用することが可能である。   Examples of the exterior material include a metal can or an aluminum laminate pack. The shape of the battery includes a square shape, a cylindrical shape, a coin shape, and the like, but the nonaqueous electrolyte battery separator of the present invention can be suitably applied to any shape.

以下に実施例を挙げて、本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
以下の実施例及び比較例において、ポリフッ化ビニリデン系樹脂を含む接着性多孔質層を「PVdF層」と呼称する。
The present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
In the following Examples and Comparative Examples, an adhesive porous layer containing a polyvinylidene fluoride resin is referred to as a “PVdF layer”.

本発明の実施例及び比較例で適用した測定方法は、以下のとおりである。
[膜厚]
膜厚(μm)は、接触式の厚み計(LITEMATIC、ミツトヨ社製)にて20点測定し、これを平均することで求めた。ここで、測定端子は直径5mmの円柱状のものを用い、測定中に7gの荷重が印加されるように調整した。
The measurement methods applied in the examples and comparative examples of the present invention are as follows.
[Film thickness]
The film thickness (μm) was determined by measuring 20 points with a contact-type thickness meter (LITEMATIC, manufactured by Mitutoyo Corporation) and averaging them. Here, a cylindrical terminal having a diameter of 5 mm was used as the measurement terminal, and it was adjusted so that a load of 7 g was applied during the measurement.

[PVdF塗工量]
PVdF塗工後のサンプルを10cm×10cmに切り出し質量を測定し、質量を面積で除することで、目付(1m当たりの質量)を求めた。別途、PVdF塗工前のサンプルを10cm×10cmに切り出し質量を測定し、質量を面積で除することで、目付を求めた。前者の目付から後者の目付を減じ、PVdF塗工量(g/m)を求めた。
[PVdF coating amount]
The sample after PVdF coating was cut into 10 cm × 10 cm, the mass was measured, and the mass per unit area (mass per m 2 ) was determined by dividing the mass by the area. Separately, a sample before PVdF coating was cut into 10 cm × 10 cm, the mass was measured, and the mass per unit area was obtained by dividing the mass by the area. The latter basis weight was subtracted from the former basis weight, and the PVdF coating amount (g / m 2 ) was determined.

[シャットダウン特性]
作製したセパレータに電解液を含浸させSUS板に挟み、これをコインセル中に封入した。電解液には、LiBFをプロピレンカーボネートとエチレンカーボネートの混合溶媒(質量比1:1)に1mol/L溶解したものを用いた。コインセルからリード線をとり、熱電対を付けてオーブンの中に入れた。昇温速度1.6℃/分で昇温させ、同時に振幅10mV、1kHzの周波数の交流を印加することで抵抗を測定した。
シャットダウン特性については、抵抗値が10ohm・cmに達した時の温度が130〜155℃である場合を良好と判断し、抵抗値が10ohm・cmに達しないか、あるいは達したとしてもその時の温度が155℃を超えた場合を不良と判断した。
[Shutdown characteristics]
The produced separator was impregnated with an electrolytic solution and sandwiched between SUS plates, which were enclosed in a coin cell. As the electrolytic solution, a solution obtained by dissolving 1 mol / L of LiBF 4 in a mixed solvent of propylene carbonate and ethylene carbonate (mass ratio 1: 1) was used. I took the lead from the coin cell, put a thermocouple, and put it in the oven. The resistance was measured by increasing the temperature at a temperature increase rate of 1.6 ° C./min and simultaneously applying alternating current with an amplitude of 10 mV and a frequency of 1 kHz.
The shutdown properties, a case where the temperature at which the resistance value has reached 10 3 ohm · cm 2 is one hundred thirty to one hundred and fifty-five ° C. was determined to be good, or the resistance value does not reach 10 3 ohm · cm 2, or who Even if it was, the case where the temperature at that time exceeded 155 ° C. was judged as defective.

[熱収縮率]
サンプルを18cm(MD方向)×6cm(TD方向)に切り出した。TD方向を2等分する線上で、かつ、一方の端から2cm及び17cmの2点(点A及び点B)に印をつけた。また、MD方向を2等分する線上で、かつ、一方の端から1cm及び5cmの2点(点C及び点D)に印をつけた。点Aから最も近い端と点Aとの間をクリップで把持し、135℃のオーブンの中にMD方向が重力方向となるようにつるし、無張力下で30分間熱処理を行った。熱処理前後のAB間及びCD間の長さを測定し、以下の式から熱収縮率(%)を算出した。
MD方向熱収縮率(%)=(熱処理前のAB間の長さ−熱処理後のAB間の長さ)/(熱処理前のAB間の長さ)×100
TD方向熱収縮率(%)=(熱処理前のCD間の長さ−熱処理後のCD間の長さ)/(熱処理前のCD間の長さ)×100
[Heat shrinkage]
The sample was cut into 18 cm (MD direction) × 6 cm (TD direction). Two points (point A and point B) of 2 cm and 17 cm from one end were marked on a line that bisects the TD direction. Further, two points (point C and point D) of 1 cm and 5 cm from one end were marked on a line that bisects the MD direction. A clip was held between the end closest to point A and point A, suspended in a 135 ° C. oven so that the MD direction was the direction of gravity, and heat-treated for 30 minutes under no tension. The length between AB and between CD before and after heat treatment was measured, and the thermal shrinkage rate (%) was calculated from the following formula.
MD direction thermal shrinkage (%) = (length between AB before heat treatment−length between AB after heat treatment) / (length between AB before heat treatment) × 100
TD direction thermal shrinkage (%) = (length between CDs before heat treatment−length between CDs after heat treatment) / (length between CDs before heat treatment) × 100

[電極接着性]
試験電池を解体し、セパレータから負極と正極とをそれぞれ剥がす時の力の大きさを、引張試験機を用いて測定した。実施例1におけるセパレータから電極を剥がす時に必要な力を100としたときの指数として評価した。指数60以上が実用的に好ましいレベルである。
[Electrode adhesion]
The test battery was disassembled, and the magnitude of the force when peeling the negative electrode and the positive electrode from the separator was measured using a tensile tester. Evaluation was made as an index when the force required to peel the electrode from the separator in Example 1 was taken as 100. An index of 60 or more is a practically preferable level.

[サイクル特性(容量維持率)]
充電条件を1C、4.2Vの定電流定電圧充電、放電条件を1C、2.75Vカットオフの定電流放電とし、30℃の環境下で充放電を繰返した。300サイクル目の放電容量を初期容量で除して得られた値を容量維持率(%)とした。
[Cycle characteristics (capacity maintenance ratio)]
Charging conditions were 1C, 4.2V constant current constant voltage charging, and discharging conditions were 1C, 2.75V cut-off constant current discharging, and charging and discharging were repeated in an environment of 30 ° C. A value obtained by dividing the discharge capacity at the 300th cycle by the initial capacity was defined as the capacity retention rate (%).

[負荷特性]
25℃の環境下、0.2Cで放電した時の放電容量と、2Cで放電した時の放電容量とを測定し、後者を前者で除して得られた値(%)を負荷特性の指標とした。ここで、充電条件は0.2C、4.2Vの定電流定電圧充電8時間とし、放電条件は2.75Vカットオフの定電流放電とした。
[Load characteristics]
Measure the discharge capacity when discharged at 0.2C and the discharge capacity when discharged at 2C in an environment of 25 ° C, and divide the latter by the former value (%) as an indicator of load characteristics It was. Here, the charging condition was 0.2 C, 4.2 V constant current constant voltage charging for 8 hours, and the discharging condition was 2.75 V cut-off constant current discharging.

[層間の接着性]
セパレータのPVdF層の表面にセロハンテープを貼り、セロハンテープを引っ張って剥がすときの力をバネばかりで測定し、耐熱性多孔質層とPVdF層との接着性を評価した。
ここで、実施例1のセパレータについて剥離力を測定した場合、PVdF層と耐熱性多孔質層との界面において剥離が発生せずに、セロハンテープのみがPVdF層からきれいに剥がれた。このときのバネばかりの測定値を指数100とし、これとの比較で他の実施例の測定値を指数化した。なお、他の実施例において指数100未満となった場合は、セロハンテープがPVdF層から剥がれる前に、PVdF層と耐熱性多孔質層との界面において剥離が発生していた。
[Adhesion between layers]
A cellophane tape was applied to the surface of the PVdF layer of the separator, and the force when the cellophane tape was pulled and peeled was measured with a spring alone to evaluate the adhesion between the heat resistant porous layer and the PVdF layer.
Here, when the peeling force was measured for the separator of Example 1, no peeling occurred at the interface between the PVdF layer and the heat-resistant porous layer, and only the cellophane tape peeled cleanly from the PVdF layer. The measured value of only the spring at this time was taken as an index 100, and the measured values of other examples were indexed by comparison with this. In other examples, when the index was less than 100, peeling occurred at the interface between the PVdF layer and the heat-resistant porous layer before the cellophane tape was peeled from the PVdF layer.

[粉落ち]
ポリオレフィン多孔質基材上に耐熱性多孔質層が形成されたフィルムどうし2枚を擦り合わせて、擦り合わせた面において、粉落ちが目視でまったく確認されない場合を○、粉落ちが目視で確認される場合を×と評価した。
[Food fall]
Two films with a heat-resistant porous layer formed on a polyolefin porous substrate are rubbed together, and ○ on the rubbed surface where no powder fall is confirmed at all. The case was evaluated as x.

<実施例1>
[非水電解質電池用セパレータの作製]
(耐熱性多孔質層の形成)
メタ型アラミド樹脂(コーネックス、帝人製)と、無機フィラーとして平均粒子径0.8μmの水酸化マグネシウム(キスマ5P、協和化学社製)とを、両者の質量比が1:4で、メタ型アラミド樹脂濃度が5.0質量%となるように、ジメチルアセトアミド(DMAc)とトリプロピレングリコール(TPG)の混合溶媒(DMAc:TPG=60:40[質量比])に混合し、塗工用スラリー(I)を得た。
一対のマイヤーバーに塗工用スラリー(I)を適量のせ、ポリエチレン微多孔膜(TN1201、SK社製、膜厚12μm)をマイヤーバー間に通して、両面に塗工用スラリー(I)を塗工した。これを、30℃の凝固液(水:DMAc:TPG=70:18:12[質量比])に浸漬した。次いで、水温40℃の水洗槽で洗浄後、乾燥し、ポリオレフィン多孔質基材の両面に耐熱性多孔質層が形成されたフィルム(膜厚20μm)を得た。
<Example 1>
[Preparation of separator for non-aqueous electrolyte battery]
(Formation of heat-resistant porous layer)
Meta-type aramid resin (Conex, manufactured by Teijin) and magnesium hydroxide having an average particle size of 0.8 μm as inorganic filler (Kisuma 5P, manufactured by Kyowa Chemical Co., Ltd.) have a mass ratio of 1: 4. Slurry for coating by mixing in a mixed solvent of dimethylacetamide (DMAc) and tripropylene glycol (TPG) (DMAc: TPG = 60: 40 [mass ratio]) so that the aramid resin concentration is 5.0% by mass. (I) was obtained.
Apply a suitable amount of slurry (I) for coating to a pair of Meyer bars, and pass a polyethylene microporous membrane (TN1201, SK, film thickness 12 μm) between the Mayer bars to coat the slurry (I) for coating on both sides. Worked. This was immersed in a coagulating liquid (water: DMAc: TPG = 70: 18: 12 [mass ratio]) at 30 ° C. Next, the film was washed in a water washing tank having a water temperature of 40 ° C. and dried to obtain a film (film thickness 20 μm) in which a heat-resistant porous layer was formed on both surfaces of a polyolefin porous substrate.

(PVdF層の形成)
ポリフッ化ビニリデン系樹脂としてフッ化ビニリデンとヘキサフルオロプロピレンのランダムコポリマー(共重合比[モル比]VdF:HFP=95:5、KYNAR2801、アルケマ社製)を8質量%で、DMAcとTPGの混合溶媒(DMAc:TPG=70:30[質量比])に溶解し、塗工用ドープ(A)を作製した。
一対のマイヤーバーに塗工用ドープ(A)を適量のせ、前記フィルムをマイヤーバー間に通して、表面と裏面の塗工量が同じになるように、両面に塗工用ドープ(A)を塗工した。これを、30℃の凝固液(水:DMAc:TPG=70:21:9[質量比])に浸漬した。次いで、水温40℃の水洗槽で洗浄後、乾燥し、前記フィルムの両面にPVdF層(PVdF塗工量1.9g/m)が形成された非水電解質電池用セパレータ(膜厚24μm)を得た。
(Formation of PVdF layer)
As a polyvinylidene fluoride resin, a random copolymer of vinylidene fluoride and hexafluoropropylene (copolymerization ratio [molar ratio] VdF: HFP = 95: 5, KYNAR2801, manufactured by Arkema) is 8% by mass, and a mixed solvent of DMAc and TPG. It melt | dissolved in (DMAc: TPG = 70: 30 [mass ratio]), and dope (A) for coating was produced.
Apply a suitable amount of coating dope (A) to a pair of Meyer bars, pass the film between the Meyer bars, and apply the coating dope (A) on both sides so that the coating amount on the front and back surfaces is the same. Coated. This was immersed in a coagulating liquid at 30 ° C. (water: DMAc: TPG = 70: 21: 9 [mass ratio]). Next, after washing in a water washing tank having a water temperature of 40 ° C., drying, a separator for a nonaqueous electrolyte battery (film thickness: 24 μm) in which a PVdF layer (PVdF coating amount 1.9 g / m 2 ) is formed on both surfaces of the film Obtained.

[非水電解質電池の作製]
(負極の作製)
負極活物質である人造黒鉛(MCMB25−28、大阪ガス化学社製)300g、バインダーである日本ゼオン製「BM−400B」(スチレン−ブタジエン共重合体の変性体を40質量%含む水溶性分散液)7.5g、増粘剤であるカルボキシメチルセルロース3g、及び適量の水を双腕式混合機にて攪拌し、負極用スラリーを作製した。この負極用スラリーを負極集電体である厚さ10μmの銅箔に塗布し、乾燥後プレスして、負極活物質層を有する負極を得た。
[Preparation of non-aqueous electrolyte battery]
(Preparation of negative electrode)
300 g of artificial graphite (MCMB25-28, manufactured by Osaka Gas Chemical Co., Ltd.) as a negative electrode active material, and “BM-400B” (manufactured by Nippon Zeon as a binder) (water-soluble dispersion containing 40% by mass of a modified styrene-butadiene copolymer) ) 7.5 g, 3 g of carboxymethyl cellulose as a thickener, and an appropriate amount of water were stirred with a double-arm mixer to prepare a slurry for negative electrode. This negative electrode slurry was applied to a 10 μm thick copper foil as a negative electrode current collector, dried and pressed to obtain a negative electrode having a negative electrode active material layer.

(正極の作製)
正極活物質であるコバルト酸リチウム(セルシードC、日本化学工業社製)粉末89.5g、導電助剤のアセチレンブラック(デンカブラック、電気化学工業社製)4.5g、及びバインダーであるポリフッ化ビニリデン(KFポリマー W#1100、クレハ化学社製)6gを、6質量%となるようにN−メチル−ピロリドン(NMP)に溶解し、双腕式混合機にて攪拌し、正極用スラリーを作製した。この正極用スラリーを正極集電体である厚さ20μmのアルミ箔に塗布し、乾燥後プレスして、正極活物質層を有する正極を得た。
(Preparation of positive electrode)
Lithium cobaltate (cell seed C, Nippon Kagaku Kogyo Co., Ltd.) powder 89.5 g as a positive electrode active material, conductive auxiliary agent acetylene black (Denka Black, Denki Kagaku Kogyo Co., Ltd.) 4.5 g, and polyvinylidene fluoride as a binder (KF polymer W # 1100, manufactured by Kureha Chemical Co., Ltd.) 6 g was dissolved in N-methyl-pyrrolidone (NMP) so as to be 6% by mass and stirred with a double-arm mixer to prepare a positive electrode slurry. . This positive electrode slurry was applied to a 20 μm thick aluminum foil as a positive electrode current collector, dried and pressed to obtain a positive electrode having a positive electrode active material layer.

(電池の作製)
前記の正極と負極にリードタブを溶接し、セパレータを介してこれら正負極を接合させ、電解液をしみ込ませてアルミパック中に真空シーラーを用いて封入した。ここで、電解液は1M LiPF−エチレンカーボネート/エチルメチルカーボネート(質量比3/7)を用いた。これに、熱プレス機を用いて熱プレス(電極1cm当たり20kgの荷重、90℃、2分)を行って、試験電池を得た。
(Production of battery)
A lead tab was welded to the positive electrode and the negative electrode, the positive and negative electrodes were joined via a separator, an electrolyte solution was impregnated, and sealed in an aluminum pack using a vacuum sealer. Here, 1 M LiPF 6 -ethylene carbonate / ethyl methyl carbonate (mass ratio 3/7) was used as the electrolytic solution. This was hot-pressed using a hot press machine (20 kg load per 1 cm 2 of electrode, 90 ° C., 2 minutes) to obtain a test battery.

<実施例2>
塗工用ドープ(A)の塗工時にマイヤーバー間のクリアランスを調節する以外は、実施例1と同様にして、PVdF塗工量が1.0g/mの非水電解質電池用セパレータ(膜厚22μm)を得た。そして、実施例1と同様にして非水電解質電池を作製した。
<Example 2>
A separator for a non-aqueous electrolyte battery having a PVdF coating amount of 1.0 g / m 2 (membrane) except that the clearance between the Meyer bars is adjusted during the coating of the coating dope (A). A thickness of 22 μm) was obtained. Then, a nonaqueous electrolyte battery was produced in the same manner as in Example 1.

<実施例3>
塗工用ドープ(A)の塗工時にマイヤーバー間のクリアランスを調節する以外は、実施例1と同様にして、PVdF塗工量が0.5g/mの非水電解質電池用セパレータ(膜厚21μm)を得た。そして、実施例1と同様にして非水電解質電池を作製した。
<Example 3>
A separator for a non-aqueous electrolyte battery having a PVdF coating amount of 0.5 g / m 2 (membrane), except that the clearance between the Meyer bars is adjusted when the coating dope (A) is applied. A thickness of 21 μm) was obtained. Then, a nonaqueous electrolyte battery was produced in the same manner as in Example 1.

<実施例4>
塗工用ドープ(A)の塗工時にマイヤーバー間のクリアランスを調節する以外は、実施例1と同様にして、PVdF塗工量が3.5g/mの非水電解質電池用セパレータ(膜厚26μm)を得た。そして、実施例1と同様にして非水電解質電池を作製した。
<Example 4>
A separator for a nonaqueous electrolyte battery having a PVdF coating amount of 3.5 g / m 2 (membrane) except that the clearance between the Meyer bars is adjusted at the time of coating the coating dope (A). A thickness of 26 μm) was obtained. Then, a nonaqueous electrolyte battery was produced in the same manner as in Example 1.

<実施例5>
塗工用ドープ(A)を前記フィルムの片面に塗工した以外は、実施例1と同様にして、PVdF塗工量が0.9g/mの非水電解質電池用セパレータ(膜厚22μm)を得た。そして、実施例1と同様にして、ただし、負極側にPVdF層が接触するように、非水電解質電池を作製した。
<Example 5>
A separator for a nonaqueous electrolyte battery having a PVdF coating amount of 0.9 g / m 2 (film thickness: 22 μm) in the same manner as in Example 1 except that the coating dope (A) was coated on one side of the film. Got. A nonaqueous electrolyte battery was prepared in the same manner as in Example 1 except that the PVdF layer was in contact with the negative electrode side.

<実施例6>
メタ型アラミド樹脂と無機フィラーの質量比を1:1に変えて塗工用スラリーを作製し、この塗工用スラリー(II)を用いて耐熱性多孔質層を形成した以外は実施例1と同様にして、PVdF塗工量が1.8g/mの非水電解質電池用セパレータ(膜厚24μm)を得た。
<Example 6>
Example 1 except that a coating slurry was prepared by changing the mass ratio of the meta-type aramid resin and the inorganic filler to 1: 1, and a heat-resistant porous layer was formed using this coating slurry (II). Similarly, a separator for nonaqueous electrolyte batteries (film thickness: 24 μm) having a PVdF coating amount of 1.8 g / m 2 was obtained.

<実施例7>
ポリフッ化ビニリデン系樹脂をフッ化ビニリデンとヘキサフルオロプロピレンのランダムコポリマー(KYNAR2750、アルケマ社製)に変えて塗工用ドープを作製し、この塗工用ドープ(B)を用いてPVdF層を形成した以外は実施例1と同様にして、PVdF塗工量が1.5g/mの非水電解質電池用セパレータ(膜厚23μm)を得た。
<Example 7>
A polyvinylidene fluoride resin was changed to a random copolymer of vinylidene fluoride and hexafluoropropylene (KYNAR2750, manufactured by Arkema) to prepare a coating dope, and a PVdF layer was formed using this coating dope (B). Except for the above, a separator for a nonaqueous electrolyte battery (film thickness: 23 μm) having a PVdF coating amount of 1.5 g / m 2 was obtained in the same manner as in Example 1.

<実施例8>
無機フィラーの添加なしで塗工用スラリーを作製し、この塗工用スラリー(III)を用いて耐熱性多孔質層を形成した以外は実施例1と同様にして、PVdF塗工量が1.7g/mの非水電解質電池用セパレータ(膜厚24μm)を得た。
<Example 8>
The coating amount of PVdF was 1. in the same manner as in Example 1 except that a coating slurry was prepared without adding an inorganic filler, and a heat-resistant porous layer was formed using this coating slurry (III). A non-aqueous electrolyte battery separator (film thickness: 24 μm) of 7 g / m 2 was obtained.

<実施例9>
メタ型アラミド樹脂と無機フィラーの質量比を1:20に変えて塗工用スラリーを作製し、この塗工用スラリー(IV)を用いて耐熱性多孔質層を形成した以外は実施例1と同様にして、PVdF塗工量が1.9g/mの非水電解質電池用セパレータ(膜厚24μm)を得た。
<Example 9>
Example 1 except that a coating slurry was prepared by changing the mass ratio of the meta-type aramid resin and the inorganic filler to 1:20, and the heat-resistant porous layer was formed using this coating slurry (IV). Similarly, a separator for a nonaqueous electrolyte battery (film thickness: 24 μm) having a PVdF coating amount of 1.9 g / m 2 was obtained.

<実施例10>
ポリフッ化ビニリデン系樹脂をフッ化ビニリデンのホモポリマー(KYNAR721、アルケマ社製)に変えて塗工用ドープを作製し、この塗工用ドープ(C)を用いてPVdF層を形成した以外は実施例1と同様にして、PVdF塗工量が1.4g/mの非水電解質電池用セパレータ(膜厚23μm)を得た。
<Example 10>
Example except that the polyvinylidene fluoride resin was changed to a homopolymer of vinylidene fluoride (KYNAR721, manufactured by Arkema) to prepare a coating dope, and this coating dope (C) was used to form a PVdF layer. In the same manner as in Example 1, a nonaqueous electrolyte battery separator (film thickness: 23 μm) having a PVdF coating amount of 1.4 g / m 2 was obtained.

<実施例11>
ポリフッ化ビニリデン系樹脂をフッ化ビニリデンのホモポリマー(KYNAR761、アルケマ社製)に変えて塗工用ドープを作製し、この塗工用ドープ(D)を用いてPVdF層を形成した以外は実施例1と同様にして、PVdF塗工量が1.5g/mの非水電解質電池用セパレータ(膜厚23μm)を得た。
<Example 11>
Example except that the polyvinylidene fluoride resin was changed to a homopolymer of vinylidene fluoride (KYNAR761, manufactured by Arkema) to prepare a coating dope, and a PVdF layer was formed using this coating dope (D) In the same manner as in Example 1, a nonaqueous electrolyte battery separator (film thickness: 23 μm) having a PVdF coating amount of 1.5 g / m 2 was obtained.

<比較例1>
ポリエチレン微多孔膜(TN1201、SK社製、膜厚12μm)をセパレータとして用い、実施例1と同様にして非水電解質電池を作製した。
<Comparative Example 1>
A nonaqueous electrolyte battery was produced in the same manner as in Example 1 using a polyethylene microporous membrane (TN1201, manufactured by SK, film thickness: 12 μm) as a separator.

<比較例2>
実施例1における「耐熱性多孔質層の形成」と同様にして、ポリオレフィン多孔質基材の両面に耐熱性多孔質層が形成されたフィルム(膜厚20μm)を得て、これをセパレータとして用い、実施例1と同様にして非水電解質電池を作製した。
<Comparative example 2>
In the same manner as in “Formation of heat-resistant porous layer” in Example 1, a film (film thickness 20 μm) having a heat-resistant porous layer formed on both surfaces of a polyolefin porous substrate was obtained, and this was used as a separator. A nonaqueous electrolyte battery was produced in the same manner as in Example 1.

<比較例3>
一対のマイヤーバーに塗工用ドープ(A)を適量のせ、ポリエチレン微多孔膜(TN1201、SK社製、膜厚12μm)をマイヤーバー間に通して、両面に塗工用ドープ(A)を塗工した。これを、30℃の凝固液(水:DMAc:TPG=70:21:9[質量比])に浸漬した。次いで、水温40℃の水洗槽で洗浄後、乾燥し、ポリオレフィン多孔質基材の両面にPVdF層(PVdF塗工量1.8g/m)が形成された非水電解質電池用セパレータ(膜厚15μm)を得た。そして、実施例1と同様にして非水電解質電池を作製した。
<Comparative Example 3>
Apply an appropriate amount of coating dope (A) to a pair of Meyer bars, and pass a polyethylene microporous membrane (TN1201, SK, film thickness 12 μm) between the Meyer bars to coat the coating dope (A) on both sides. Worked. This was immersed in a coagulating liquid at 30 ° C. (water: DMAc: TPG = 70: 21: 9 [mass ratio]). Next, after washing in a water washing tank having a water temperature of 40 ° C., drying, a separator for a non-aqueous electrolyte battery having a PVdF layer (PVdF coating amount of 1.8 g / m 2 ) formed on both surfaces of the polyolefin porous substrate (film thickness) 15 μm) was obtained. Then, a nonaqueous electrolyte battery was produced in the same manner as in Example 1.

<比較例4>
一対のマイヤーバーに塗工用スラリー(I)を適量のせ、ポリエチレン微多孔膜(TN1201、SK社製、膜厚12μm)をマイヤーバー間に通して、片面に塗工用スラリー(I)を塗工した。これを、実施例1と同様にして、凝固、洗浄、乾燥し、ポリオレフィン多孔質基材の両面に耐熱性多孔質層が形成されたフィルム(膜厚16μm)を得た。このフィルムを用いて実施例1における「PVdF層の形成」と同様にして、前記フィルムの両面にPVdF層(PVdF塗工量1.7g/m)が形成された非水電解質電池用セパレータ(膜厚20μm)を得た。そして、実施例1と同様にして、ただし、耐熱性多孔質層上に設けたPVdF層が負極側に接触するように、非水電解質電池を作製した。
<Comparative example 4>
Apply a suitable amount of slurry (I) for coating to a pair of Meyer bars, and pass a polyethylene microporous membrane (TN1201, SK, film thickness 12 μm) between the Meyer bars to coat the coating slurry (I) on one side. Worked. This was coagulated, washed and dried in the same manner as in Example 1 to obtain a film (film thickness 16 μm) in which a heat-resistant porous layer was formed on both surfaces of a polyolefin porous substrate. Using this film, a separator for a nonaqueous electrolyte battery in which PVdF layers (PVdF coating amount 1.7 g / m 2 ) were formed on both sides of the film in the same manner as in “Formation of PVdF layer” in Example 1 ( A film thickness of 20 μm) was obtained. Then, a nonaqueous electrolyte battery was produced in the same manner as in Example 1, except that the PVdF layer provided on the heat resistant porous layer was in contact with the negative electrode side.

表1に明らかなとおり、本発明の非水電解質電池用セパレータは、MD方向、TD方向ともに熱収縮率が低く、電極との接着性に優れ、電池としたときにシャットダウン特性及び容量維持率に優れていた。したがって、本発明の非水電解質電池用セパレータは、電池としたときに、安全性が高く且つサイクル特性に優れる。   As apparent from Table 1, the separator for a nonaqueous electrolyte battery of the present invention has a low thermal shrinkage in both the MD direction and the TD direction, has excellent adhesion to electrodes, and has a shutdown characteristic and a capacity retention rate when used as a battery. It was excellent. Therefore, the separator for nonaqueous electrolyte batteries of the present invention has high safety and excellent cycle characteristics when used as a battery.

Claims (8)

ポリオレフィンを含む多孔質基材と、
前記多孔質基材の両面に設けられ、耐熱性樹脂を含む耐熱性多孔質層と、
前記耐熱性多孔質層の少なくとも一方の上に設けられ、フッ素系樹脂を含む接着性多孔質層と、
を備えた非水電解質電池用セパレータ。
A porous substrate comprising a polyolefin;
A heat-resistant porous layer provided on both surfaces of the porous substrate and containing a heat-resistant resin;
An adhesive porous layer provided on at least one of the heat-resistant porous layer and containing a fluorine-based resin;
A separator for a nonaqueous electrolyte battery.
前記接着性多孔質層は、塗工量が0.5g/m以上3.5g/m以下の範囲である、請求項1に記載の非水電解質電池用セパレータ。 The separator for a nonaqueous electrolyte battery according to claim 1, wherein the adhesive porous layer has a coating amount in a range of 0.5 g / m 2 or more and 3.5 g / m 2 or less. 前記耐熱性多孔質層が有機フィラー及び無機フィラーの少なくとも一方を含む、請求項1又は請求項2に記載の非水電解質電池用セパレータ。   The separator for nonaqueous electrolyte batteries according to claim 1 or 2, wherein the heat-resistant porous layer contains at least one of an organic filler and an inorganic filler. 前記耐熱性多孔質層は、無機フィラーを含み、前記無機フィラーの含有量が、前記耐熱性樹脂1質量部に対し1〜10質量部の範囲である、請求項1〜請求項3のいずれか1項に記載の非水電解質電池用セパレータ。   The heat-resistant porous layer contains an inorganic filler, and the content of the inorganic filler is in the range of 1 to 10 parts by mass with respect to 1 part by mass of the heat-resistant resin. The separator for a nonaqueous electrolyte battery according to item 1. 前記フッ素系樹脂は、
(i)ポリフッ化ビニリデン、及び、
(ii)フッ化ビニリデンと、パーフルオロアルキルビニルエーテル、ヘキサフルオロプロピレン、3フッ化塩化エチレン、テトラフロロエチレン及びエチレンからなる群から選ばれる少なくとも1種のモノマーとが、前記モノマーのモル分率1〜10%で共重合した共重合体、
の少なくとも一方である、請求項1〜請求項4のいずれか1項に記載の非水電解質電池用セパレータ。
The fluorine-based resin is
(I) polyvinylidene fluoride, and
(Ii) vinylidene fluoride and at least one monomer selected from the group consisting of perfluoroalkyl vinyl ether, hexafluoropropylene, trifluoroethylene chloride, tetrafluoroethylene and ethylene, A copolymer copolymerized at 10%,
The separator for nonaqueous electrolyte batteries according to any one of claims 1 to 4, which is at least one of the following.
前記耐熱性樹脂は、全芳香族ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルイミド及びポリスルホンからなる群から選ばれる少なくとも1種である、請求項1〜請求項5のいずれか1項に記載の非水電解質電池用セパレータ。   The non-water according to any one of claims 1 to 5, wherein the heat-resistant resin is at least one selected from the group consisting of wholly aromatic polyamides, polyamideimides, polyimides, polyetherimides, and polysulfones. Electrolyte battery separator. 前記接着性多孔質層が、前記多孔質基材の両面に設けられた前記耐熱性多孔質層の各々の上に設けられている、請求項1〜請求項6のいずれか1項に記載の非水電解質電池用セパレータ。   The said adhesive porous layer is provided on each of the said heat resistant porous layer provided in both surfaces of the said porous base material, The any one of Claims 1-6. Nonaqueous electrolyte battery separator. 正極と、負極と、前記正極及び前記負極の間に配置された請求項1〜請求項7のいずれか1項に記載の非水電解質電池用セパレータとを備え、リチウムのドープ・脱ドープにより起電力を得る非水電解質電池。   A non-aqueous electrolyte battery separator according to any one of claims 1 to 7, which is disposed between the positive electrode and the negative electrode, and between the positive electrode and the negative electrode. Non-aqueous electrolyte battery that obtains electric power.
JP2011152188A 2011-07-08 2011-07-08 Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery Withdrawn JP2013020769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011152188A JP2013020769A (en) 2011-07-08 2011-07-08 Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011152188A JP2013020769A (en) 2011-07-08 2011-07-08 Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2013020769A true JP2013020769A (en) 2013-01-31

Family

ID=47692040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011152188A Withdrawn JP2013020769A (en) 2011-07-08 2011-07-08 Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2013020769A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149936A (en) * 2013-01-31 2014-08-21 Nippon Zeon Co Ltd Secondary battery separator, method for manufacturing secondary battery separator, and secondary battery
WO2014136813A1 (en) * 2013-03-05 2014-09-12 協立化学産業株式会社 Coating film composition for battery electrodes or separators, battery electrode or separator provided with coating film obtained by using same, and battery provided with battery electrode or separator
WO2014147888A1 (en) * 2013-03-19 2014-09-25 帝人株式会社 Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
CN104733775A (en) * 2013-12-19 2015-06-24 索尼公司 Electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
US20150180003A1 (en) * 2013-12-24 2015-06-25 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery and rechargeable lithium battery including same
KR20150075023A (en) * 2013-12-24 2015-07-02 삼성에스디아이 주식회사 Separator for rechargeable lithium battery and rechargeable lithium battery including the same
KR20160046386A (en) * 2014-10-20 2016-04-29 주식회사 엘지화학 A multi-layered separator having high heat resistance property for a secondary battery
CN105830251A (en) * 2013-12-26 2016-08-03 帝人株式会社 Non-aqueous secondary cell separator and non-aqueous secondary cell
KR20160109669A (en) 2015-03-12 2016-09-21 에스케이이노베이션 주식회사 High heat resistance separator for secondary batteries and method of manufacturing the same
JP2016207277A (en) * 2015-04-15 2016-12-08 トヨタ自動車株式会社 Electrode body
JP2017103030A (en) * 2015-11-30 2017-06-08 日本ゼオン株式会社 Functional layer for nonaqueous secondary battery and manufacturing method thereof, and nonaqueous secondary battery and manufacturing method thereof
EP3046163A4 (en) * 2013-09-10 2017-07-26 Toray Industries, Inc. Separator for secondary cell, and secondary cell
JP2017195206A (en) * 2017-08-04 2017-10-26 ソニー株式会社 Electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic apparatus
KR101838654B1 (en) * 2014-10-08 2018-04-26 주식회사 엘지화학 A method of manufacturing a separator with water-based binder adhesive layer and a separator manufactured thereby
JP2018520492A (en) * 2015-07-15 2018-07-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Separator for lithium ion battery, method for producing the same, and lithium ion battery
CN109390533A (en) * 2017-08-03 2019-02-26 帝人株式会社 Diaphragm for non-water system secondary battery and non-aqueous secondary battery
WO2019065660A1 (en) 2017-09-26 2019-04-04 東レ株式会社 Porous film, separator for secondary batteries, and secondary battery
WO2019107219A1 (en) 2017-11-28 2019-06-06 東レ株式会社 Porous film, separator for secondary cell, and secondary cell
WO2019130994A1 (en) 2017-12-27 2019-07-04 帝人株式会社 Separator for non-aqueous secondary batteries, and non-aqueous secondary battery
WO2019230219A1 (en) * 2018-05-31 2019-12-05 株式会社クレハ Adhesive composition, separator structure, electrode structure, non-aqueous electrolyte secondary battery, and manufacturing method therefor
JP2020064879A (en) * 2020-01-21 2020-04-23 三星エスディアイ株式会社Samsung SDI Co., Ltd. Lithium-ion secondary battery separator and lithium-ion secondary battery
JP2020532845A (en) * 2018-07-13 2020-11-12 エルジー・ケム・リミテッド Separation membrane for electrochemical device including low resistance coating layer and its manufacturing method
WO2020246497A1 (en) 2019-06-04 2020-12-10 帝人株式会社 Separator for non-aqueous secondary battery, and non-aqueous secondary battery
WO2021002369A1 (en) * 2019-07-01 2021-01-07 ダイキン工業株式会社 Composition for electrochemical device, positive electrode mixture, positive electrode structure, and secondary battery
US10923698B2 (en) 2017-05-19 2021-02-16 Fdk Corporation Laminate-type power storage element
US11075432B2 (en) 2016-09-27 2021-07-27 Gs Yuasa International Ltd. Energy storage device and method for manufacturing same
JP2021523253A (en) * 2018-05-07 2021-09-02 ティーブス アールアンドディ エルエルシーTeebs R&D,Llc The method of forming the composition and the composition formed from it
CN114008849A (en) * 2019-08-20 2022-02-01 住友精化株式会社 Battery separator, nonaqueous electrolyte battery, electrical device, and coating agent
CN111492504B (en) * 2017-12-27 2024-04-30 帝人株式会社 Separator for nonaqueous secondary battery and nonaqueous secondary battery

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014149936A (en) * 2013-01-31 2014-08-21 Nippon Zeon Co Ltd Secondary battery separator, method for manufacturing secondary battery separator, and secondary battery
JP6058783B2 (en) * 2013-03-05 2017-01-11 協立化学産業株式会社 Battery electrode or separator coating film composition, battery electrode or separator having a coating film obtained by using the same, and battery having this battery electrode or separator
WO2014136813A1 (en) * 2013-03-05 2014-09-12 協立化学産業株式会社 Coating film composition for battery electrodes or separators, battery electrode or separator provided with coating film obtained by using same, and battery provided with battery electrode or separator
CN105027328B (en) * 2013-03-05 2017-10-27 协立化学产业株式会社 Battery electrode coating composition or dividing plate coating composition, the battery electrode with the film obtained using the coating composition or dividing plate and the battery with the battery electrode or dividing plate
JPWO2014136813A1 (en) * 2013-03-05 2017-02-16 協立化学産業株式会社 Battery electrode or separator coating film composition, battery electrode or separator having a coating film obtained by using the same, and battery having this battery electrode or separator
CN105027328A (en) * 2013-03-05 2015-11-04 协立化学产业株式会社 Coating film composition for battery electrodes or separators, battery electrode or separator provided with coating film obtained by using same, and battery provided with battery electrode or separator
WO2014147888A1 (en) * 2013-03-19 2014-09-25 帝人株式会社 Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
JP5647378B1 (en) * 2013-03-19 2014-12-24 帝人株式会社 Non-aqueous secondary battery separator and non-aqueous secondary battery
US10374204B2 (en) 2013-03-19 2019-08-06 Teijin Limited Non-aqueous-secondary-battery separator and non-aqueous secondary battery
CN105051940A (en) * 2013-03-19 2015-11-11 帝人株式会社 Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
KR20150129669A (en) 2013-03-19 2015-11-20 데이진 가부시키가이샤 Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
EP3046163A4 (en) * 2013-09-10 2017-07-26 Toray Industries, Inc. Separator for secondary cell, and secondary cell
US10559800B2 (en) 2013-12-19 2020-02-11 Murata Manufacturing Co., Ltd. Electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2015118841A (en) * 2013-12-19 2015-06-25 ソニー株式会社 Electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic apparatus
CN104733775A (en) * 2013-12-19 2015-06-24 索尼公司 Electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
EP2889934B1 (en) * 2013-12-24 2019-07-03 Samsung SDI Co., Ltd. Separator for rechargeable lithium battery and rechargeable lithium battery including same
US10903467B2 (en) 2013-12-24 2021-01-26 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery and rechargeable lithium battery including same
JP2015122223A (en) * 2013-12-24 2015-07-02 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Separator for lithium ion secondary batteries, and lithium ion secondary battery
KR20150075023A (en) * 2013-12-24 2015-07-02 삼성에스디아이 주식회사 Separator for rechargeable lithium battery and rechargeable lithium battery including the same
KR102273644B1 (en) * 2013-12-24 2021-07-06 삼성에스디아이 주식회사 Separator for rechargeable lithium battery and rechargeable lithium battery including the same
US20150180003A1 (en) * 2013-12-24 2015-06-25 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery and rechargeable lithium battery including same
CN105830251B (en) * 2013-12-26 2018-05-29 帝人株式会社 Diaphragm for non-water system secondary battery and non-aqueous secondary battery
CN105830251A (en) * 2013-12-26 2016-08-03 帝人株式会社 Non-aqueous secondary cell separator and non-aqueous secondary cell
KR101838654B1 (en) * 2014-10-08 2018-04-26 주식회사 엘지화학 A method of manufacturing a separator with water-based binder adhesive layer and a separator manufactured thereby
KR101910222B1 (en) * 2014-10-20 2018-10-19 주식회사 엘지화학 A multi-layered separator having high heat resistance property for a secondary battery
KR20160046386A (en) * 2014-10-20 2016-04-29 주식회사 엘지화학 A multi-layered separator having high heat resistance property for a secondary battery
KR20160109669A (en) 2015-03-12 2016-09-21 에스케이이노베이션 주식회사 High heat resistance separator for secondary batteries and method of manufacturing the same
JP2016207277A (en) * 2015-04-15 2016-12-08 トヨタ自動車株式会社 Electrode body
JP2018520492A (en) * 2015-07-15 2018-07-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Separator for lithium ion battery, method for producing the same, and lithium ion battery
JP2017103030A (en) * 2015-11-30 2017-06-08 日本ゼオン株式会社 Functional layer for nonaqueous secondary battery and manufacturing method thereof, and nonaqueous secondary battery and manufacturing method thereof
US11075432B2 (en) 2016-09-27 2021-07-27 Gs Yuasa International Ltd. Energy storage device and method for manufacturing same
US10923698B2 (en) 2017-05-19 2021-02-16 Fdk Corporation Laminate-type power storage element
CN109390533A (en) * 2017-08-03 2019-02-26 帝人株式会社 Diaphragm for non-water system secondary battery and non-aqueous secondary battery
JP2017195206A (en) * 2017-08-04 2017-10-26 ソニー株式会社 Electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic apparatus
CN110998911B (en) * 2017-09-26 2022-10-14 东丽株式会社 Porous film, secondary battery separator, and secondary battery
KR102613667B1 (en) * 2017-09-26 2023-12-14 도레이 카부시키가이샤 Porous films, separators for secondary batteries and secondary batteries
CN110998911A (en) * 2017-09-26 2020-04-10 东丽株式会社 Porous film, secondary battery separator, and secondary battery
US10950914B2 (en) 2017-09-26 2021-03-16 Toray Industries, Inc. Porous film, separator for secondary batteries, and secondary battery
KR20200056379A (en) 2017-09-26 2020-05-22 도레이 카부시키가이샤 Porous film, secondary battery separator and secondary battery
WO2019065660A1 (en) 2017-09-26 2019-04-04 東レ株式会社 Porous film, separator for secondary batteries, and secondary battery
KR20200092323A (en) 2017-11-28 2020-08-03 도레이 카부시키가이샤 Porous film, separator for secondary battery and secondary battery
EP3719868A4 (en) * 2017-11-28 2021-12-15 Toray Industries, Inc. Porous film, separator for secondary cell, and secondary cell
TWI808109B (en) * 2017-11-28 2023-07-11 日商東麗股份有限公司 Porous film, separator for secondary battery, and secondary battery
CN111433940A (en) * 2017-11-28 2020-07-17 东丽株式会社 Porous film, secondary battery separator, and secondary battery
CN111433940B (en) * 2017-11-28 2023-02-03 东丽株式会社 Porous film, secondary battery separator, and secondary battery
WO2019107219A1 (en) 2017-11-28 2019-06-06 東レ株式会社 Porous film, separator for secondary cell, and secondary cell
CN111492504A (en) * 2017-12-27 2020-08-04 帝人株式会社 Separator for nonaqueous secondary battery and nonaqueous secondary battery
WO2019130994A1 (en) 2017-12-27 2019-07-04 帝人株式会社 Separator for non-aqueous secondary batteries, and non-aqueous secondary battery
KR20200102437A (en) 2017-12-27 2020-08-31 데이진 가부시키가이샤 Separator for non-aqueous secondary battery and non-aqueous secondary battery
CN111492504B (en) * 2017-12-27 2024-04-30 帝人株式会社 Separator for nonaqueous secondary battery and nonaqueous secondary battery
JP2021523253A (en) * 2018-05-07 2021-09-02 ティーブス アールアンドディ エルエルシーTeebs R&D,Llc The method of forming the composition and the composition formed from it
JPWO2019230219A1 (en) * 2018-05-31 2020-12-17 株式会社クレハ Adhesive composition, separator structure, electrode structure, non-aqueous electrolyte secondary battery and its manufacturing method
CN112088457A (en) * 2018-05-31 2020-12-15 株式会社吴羽 Adhesive composition, separator structure, electrode structure, nonaqueous electrolyte secondary battery, and method for producing same
WO2019230219A1 (en) * 2018-05-31 2019-12-05 株式会社クレハ Adhesive composition, separator structure, electrode structure, non-aqueous electrolyte secondary battery, and manufacturing method therefor
CN112088457B (en) * 2018-05-31 2021-12-03 株式会社吴羽 Adhesive composition, separator structure, electrode structure, nonaqueous electrolyte secondary battery, and method for producing same
JP7072639B2 (en) 2018-07-13 2022-05-20 エルジー・ケム・リミテッド Separation membrane for electrochemical devices including a low resistance coating layer and its manufacturing method
JP2020532845A (en) * 2018-07-13 2020-11-12 エルジー・ケム・リミテッド Separation membrane for electrochemical device including low resistance coating layer and its manufacturing method
US11929458B2 (en) 2018-07-13 2024-03-12 Lg Chem, Ltd. Separator having inorganic coating layer including small weight average molecular weight and low melting point PVDF, and method for manufacturing the same
KR20210136100A (en) 2019-06-04 2021-11-16 데이진 가부시키가이샤 Separator for non-aqueous secondary battery and non-aqueous secondary battery
WO2020246497A1 (en) 2019-06-04 2020-12-10 帝人株式会社 Separator for non-aqueous secondary battery, and non-aqueous secondary battery
EP4235891A2 (en) 2019-06-04 2023-08-30 Teijin Limited Separator for non-aqueous secondary battery, and non-aqueous secondary battery
WO2021002369A1 (en) * 2019-07-01 2021-01-07 ダイキン工業株式会社 Composition for electrochemical device, positive electrode mixture, positive electrode structure, and secondary battery
CN114008849A (en) * 2019-08-20 2022-02-01 住友精化株式会社 Battery separator, nonaqueous electrolyte battery, electrical device, and coating agent
JP2020064879A (en) * 2020-01-21 2020-04-23 三星エスディアイ株式会社Samsung SDI Co., Ltd. Lithium-ion secondary battery separator and lithium-ion secondary battery
JP7088969B2 (en) 2020-01-21 2022-06-21 三星エスディアイ株式会社 Lithium ion separator for secondary batteries and lithium ion secondary batteries

Similar Documents

Publication Publication Date Title
JP2013020769A (en) Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP5624251B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
KR101297771B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
US9065119B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
TWI524581B (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
KR102086416B1 (en) Separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
JP5670811B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
KR101602867B1 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
KR20160093096A (en) Non-aqueous electrolyte battery separator and non-aqueous electrolyte battery
JP5356878B2 (en) Non-aqueous secondary battery separator
JPWO2017082259A1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP5584371B2 (en) Non-aqueous electrolyte battery separator, non-aqueous electrolyte battery, and non-aqueous electrolyte battery manufacturing method
JP5745174B2 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP5612797B1 (en) Nonaqueous secondary battery separator and nonaqueous secondary battery
JP4291392B2 (en) Nonaqueous secondary battery separator and method for producing the same
US11777175B2 (en) Separator for non-aqueous secondary battery, non-aqueous secondary battery, and method of manufacturing non-aqueous secondary battery
JP2010092718A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
KR20190121287A (en) Porous film, secondary battery separator and secondary battery
JPWO2019146155A1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP2014026946A (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2012099324A (en) Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2014026947A (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JPWO2019131927A1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007